
Efficient Procedural Generation of Forests
Julian Kenwood

University of Cape Town
nomad010@gmail.com

James Gain
University of Cape Town

jgain@cs.uct.ac.za

Patrick Marais
University of Cape Town

patrick@cs.uct.ac.za

ABSTRACT
Forested landscapes are an important component of many large virtual environments in games and film. In order
to reduce modelling time, procedural methods are often used. Unfortunately, procedural tree generation tends to
be slow and resource-intensive for large forests.
The main contribution of this paper is the development of an efficient procedural generation system for the creation
of large forests. Our system uses L-systems, a grammar-based procedural technique, to generate each tree. We
algorithmically modify L-system tree grammars to intelligently use an instance cache for tree branches. Our
instancing approach not only makes efficient use of memory but also reduces the visual repetition artifacts which
can arise due to the granularity of the instances. Instances can represent a range of structures, from a single branch
to multiple branches or even an entire tree.
Our system improves the speed and memory requirements for forest generation by 3–4 orders of magnitude over
naïve methods: we generate over 1,000,000 trees in 4.5 seconds, while using only 350MB of memory.

Keywords
procedural tree generation, L-systems, instancing

1 INTRODUCTION

When large forests are used in CGI they are often cre-
ated using procedural methods, due to their inherent
geometric complexity. Unfortunately, the memory re-
quirements of a procedural approach can be prohibitive.
For example, some tree generation methods require as
much as 10MB per tree [1]. Using such schemes, even
a relatively small forest of 1,000 trees would require
much more memory than most commodity computer
systems support. In addition to large memory require-
ments, procedurally creating a large forest from scratch
could take minutes or even hours. Forests are thus usu-
ally created in an off-line process, which limits their use
in games and interactive media.

We explore the problem of procedurally generating
complete forests, focussing on algorithms and optimi-
sations that facilitate the creation of very large forests,
in the range of 10,000 trees or more, in a few seconds.

We propose a new system for generating large numbers
of trees with a fixed memory budget. We use L-systems
to generate trees and introduce an optimisation to the L-
system grammar that enables efficient caching of tree

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

sub-branches. This allows the creation of subsequent
trees to be accelerated, whilst also saving memory.
The focus of our work is not on the rendering of real-
istic trees, but rather on the often expensive procedu-
ral methods that underpin such systems. Consequently
we illustrate our optimizations on basic branching tree
structures and make no use of billboards, complex tex-
turing and so on.
Our optimisations allow the generation of very large
forests in a few seconds and with low memory over-
head. This work is applicable to a broad range of L-
systems and can thus supplement systems which cur-
rently make use of such a procedural approach.
The remainder of this paper is laid out as follows. Sec-
tion 2 presents relevant background. Basic L-system
formalism is introduced in Section 3. The optimisa-
tions that we have developed are presented in Section 4
and Section 5. The creation of tree geometry is dis-
cussed in Section 6. Section 7 presents our results and
discusses the performance of the system. Finally, Sec-
tion 8 summarises our findings and contributions and
provides suggestions for future work.

2 RELATED WORK
EcoSys [1] represents one of the earliest and best-
known procedural tree generation systems. EcoSys
is able to generate realistic looking forests, including
plants and other foliage, from a relatively small amount
of input, such as a heightmap of the landscape. The
system allows for interactive editing of the parameters
with built-in editors. Each individual plant is procedu-
rally created using an L-system. L-systems provide a

set of match-replace rules that specify the appearance
of the tree. These rules control everything from the tex-
ture and colour of the tree and its leaves to how the tree
branches and how branches lengthen. L-systems allow
modellers to present a set of rules that describe a partic-
ular species of tree.

Unfortunately, the amount of data generated for a single
tree in EcoSys can be as much as 10MB. A small forest
of 1,000 trees results in a total of 10GB of data which
cannot be rendered efficiently using current technology.

In order to reduce the amount of memory required the
system uses instancing to generate a single tree that can
be used in multiple places, which saves memory but can
reduce realism. EcoSys only uses instances in cases
where the resulting trees are likely to be similar.

EcoSys is able to render forests interactively using
points and lines, but cannot achieve high enough visual
quality and frame rates for games, even when executed
on modern hardware [2].

The trees that are presented in modern games are usu-
ally made with a third-party library called SpeedTree1.
SpeedTree, however, is proprietary software and com-
panies have to pay a license fee to use it. SpeedTree
generates trees using an offline process: either proce-
dural generation or manual generation by an artist.

As with EcoSys, large forests are accommodated with
instancing. The trees in the forest originate from a con-
siderably smaller ‘hero’ tree set. Unfortunately, since
the library of trees that an artist works with can be
small, the same tree could be repeated in an unrealis-
tic fashion, particularly when the game is intended for
a very resource-limited platform. Recently, however,
SpeedTree has added a WorldBuilder module which is
able to export tree positions that exhibit fewer jarring
repetition artifacts.

In this paper, we explore an alternative method for cre-
ating large forests. Similarly to EcoSys and SpeedTree,
we use procedural methods to generate the individual
trees in the forest. Unlike EcoSys and SpeedTree, we
aim to use instancing to reduce the size of the forest
without resorting to instancing entire trees. Our pri-
mary aim is to decrease the memory requirements for
trees in forests without sacrificing visual quality.

3 L-SYSTEMS
Lindenmayer Systems, or L-systems, are used exten-
sively in Procedural Graphics [5]. The rules for these
systems are capable of describing complex structures
such as plants [6] and buildings yet are simple enough
to be created by modellers [4]. The simplest type of
L-system — deterministic context-free L-systems (also
called DOL-systems [7]) are simple match-replace

1 http://www.speedtree.com

rules that occur over a string of symbols. Each symbol
has a specific meaning used later in the tree creation
process. For instance, the symbol ‘F’ means to draw
a cylinder at the current position, while a ‘+’ symbol
changes the orientation of the next cylinder.

O︸︷︷︸
Strict predecessor

→ F F F F F F︸ ︷︷ ︸
Derivation

The strict predecessor is a single symbol that should be
transformed into a (possibly empty) sequence of sym-
bols called the derivation. All rules in the L-system are
applied simultaneously to the entire string of symbols.
The number of times the rules are applied is called the
generation of the string, corresponding to the required
age of the output tree. The initial string of symbols, also
called the axiom, is denoted by generation 0.

The symbols from the final string are used as drawing
instructions for a turtle-like graphics module called the
interpreter. Symbols with no meaning are simply dis-
carded.

There are several drawbacks to DOL-systems in the
context of tree creation. Most importantly, the output
for a given generation of an L-system is always the
same. This means that the only way to add variation
is to create scaled copies of each tree type. This limita-
tion can be addressed by using stochastic L-systems [3],
which allow multiple derivations with associated prob-
abilities that indicate the likelihood of selection.

A second drawback to DOL-systems is the difficulty
of growing branches of a desired length: each tree is
made of individual cylinders of equal length. This can
be solved by introducing parameters: each symbol in
the string can have additional parameters, which can
exactly model the desired length, width, and other at-
tributes.

Researchers have also found it useful to modify the
DOL-system to add two symbols, [and], to assist in
creating trees efficiently by controlling a stack of saved
turtles; pushing and popping onto the stack, respec-
tively.

Before moving on, we need to introduce the concept of
a module. A module is a special symbol in the L-system
that can used to achieve higher order functionality: it ef-
fectively represents a callout to a ‘subroutine’. Modules
can be distinguished from regular L-system symbols by
the inclusion of parentheses, which surround 0 or more
parameters. Our modifications make extensive use of
modules.

4 BRANCH OPTIMISATION
Branching in trees is a crucial aspect of realistic growth.
Unfortunately, L-system branches generate a signifi-
cant amount of geometry. This problem is exacerbated

when creating large numbers of trees. Our system, like
EcoSys and SpeedTree, attempts to solve this problem
through the application of instancing. However, un-
like these methods, we choose to perform instancing at
the granularity of branches. Such fine-grained instanc-
ing allows branches to be shared across multiple trees,
whilst saving memory and keeping some degree of vi-
sual differentiation.

L-System String
Creation

Forest Input L-System
Input

Branch
Optimisation

Tree
Rendering

Tree Generation

Forest
Files

L-System
Files

L-System Optimisation

Forest I/O

Forest Data

L-Systems

Drawing Commands

Instance Cache

Rendered Forests

Renderer Geometry Creation

Instances,
Transformations

Figure 1: System structure - input L-systems are taken
in together with forest generation parameters. The L-
systems are then optimised to make use of instancing
and geometry is generated to represent the various in-
stanced structures. This information is then passed off
to the renderer, along with positioning.

In the context of tree L-systems, branches represent ad-
ditional recursive work that must be performed. With
the help of instancing, we essentially memoise the re-
sult of this work so it can be re-used later. The basic
architecture of our system is presented in Figure 1.

We use the stochastic nature of L-systems to decide
which branches should be instanced and which created.
A fixed instancing probability, P, is used to control in-
stancing. This is a percentage represented by an inte-
gral number between 0 and 100, where 0 indicates no
instancing and 100 indicates full instancing. We modify
the L-system rules to reflect this probability. However,
rules that are responsible for branching must first be de-
tected.

4.1 Rule Detection
Each rule is examined to determine if it contributes
branches to the tree. It is difficult to determine ex-
actly which rules branch, so a heuristic is used instead.
The bracket symbols, [and], are a common indicator
of branching because they isolate state changes. The
left bracket saves state information, such as position

and orientation, which is restored at the right bracket.
While this behaviour is useful in branching it is also
applied to create leaves, as indicated in Table 1, as well
as other non-branching phenomena.

L 7→ [ˆ ˆ − f + f + f − | − f + f + f]

Table 1: A rule from an L-system used to draw a leaf.
Brackets are employed but no branching occurs.

The heuristic uses brackets as an indicator of branch-
ing, but to filter out erroneous cases a further restriction
is applied: the brackets must contain at least one non-
terminal symbol. Non-terminals are the strict predeces-
sors on the left-hand side of each rule. While this may
still incorrectly identify rules as branching, it is signifi-
cantly more accurate than using brackets alone.

X 7→ [L]

L 7→ ˆ ˆ − f + f + f − | − f + f + f

Table 2: A modified version of the L-system in Table 1.
The second rule is incorrectly identified as a branching
rule by our heuristic.

Segments of the rule symbols are identified as start and
end points for the branch. The brackets and the symbols
between them are tagged with an identifier. Branches
represented by identical symbols share an identifier,
the assumption being that the resultant geometry is the
same. The identifiers are global in that they may be
shared across different rules; they are used later to ac-
cess one of several instance caches.

Algorithm 1 shows the detection process. In the pseu-
docode, seenBranch and branchGUID return in-
formation about the branch currently being examined.
seenBranch returns true if it is identical to a previ-
ously seen branch. branchGUID returns the unique
identifier of a previously seen branch. The function
addBranch adds a branch to the global list of previ-
ously seen branches and returns its new unique identi-
fier. createBranch creates a structure that packages
the unique identifier and the branch symbol information
for later use in the program.

4.2 Rule Modification
The rule modification process is complicated by the ex-
istence of stochastic rules.

We begin by looking at the simpler case of modification
for deterministic L-systems. For such systems, each
rule’s right-hand side is replaced by several right-hand
sides (meaning that the resulting rule becomes stochas-
tic) depending on the number of branches that occur. If
B branches are present on the right-hand side, then 2B

detectBranching(rhs, nonTerminals)
output = []
for s = 1→ length(rhs)

if rhs[s] = [then
t = s+1
for t→ length(rhs)

if rhs[t] =] then break
if t = length(rhs) then continue
for u = s+1→ t

if rhs[u] in nonTerminals then
continue s

guid = -1
if seenBranch(s, t) then

guid = branchGUID(s, t)
else seenBranch(s, t) then

guid = addBranch(s, t)
output += [createBranch(guid, s, t)]

return output

Algorithm 1: Branching RHS Detection.

7→F A

A 7→
Branch 1︷ ︸︸ ︷

[& F L ! A] / / / / /

Branch 2︷ ︸︸ ︷
[ˆ F L ! A] / / / / / / /

Branch 1︷ ︸︸ ︷
[& F L ! A]

F 7→F F

L 7→[ˆ ˆ { − f + f + f − | −
f + f + f }]

Table 3: A leafy tree L-system [5]. The A-rule has
been annotated with information that marks the seg-
ments that branch. Each branch is tagged with a number
that identifies the branch segment. Note that the third
branch has the same identifier as the first branch due to
having identical symbols.

new right-hand sides are created, representing the pos-
sibility of either instancing each branch or not.

If a branch is to be instanced, the relevant symbols are
replaced by a getInstance module. Otherwise, other
control modules, startInstance and stopInstance are in-
serted instead. These two modules demarcate segments
of a string that correspond to branch information. Each
takes two parameters: an identifier and an age. The
identifier is the same as the one associated with the
branch in the rule detection phase. The age is deter-
mined from the getGeneration function, which returns
the generation at which the module was created.

Each right-hand side is given a probability, p, based on
the instancing probability and the number of branches
being instanced, calculated as follows:

p(I) = PI× (1−P)B−I

where P is the probability of replacing a branch with
an instance, B is the total number of branches and I is
an index variable. For each right-hand side, the index
variable is the number of times that the decision is made
to instance a particular branch.

A simple binary number counting algorithm is used to
enumerate these rules that is both efficient and easy to
implement. It is only suitable if the number of branches
in a rule is less than the bit-length of a machine’s word
size. In practice this constraint is not at all problem-
atic. The disadvantages of this optimisation are evident
from inspecting the output: the number of right-hand
sides has greatly increased and each is significantly less
humanly readable.

Stochastic L-systems add complexity in that the several
right-hand sides may create branches. The above algo-
rithm is performed on each original right-hand that con-
tains branching segments. The relative probabilities of
each group of newly created right-hand sides must re-
flect the original distribution. To enforce this, the equa-
tion for p is modified:

p(I) = Poriginal×PI× (1−P)B−I

where Poriginal is the probability of the originating rule.
Multiplying by the original probability ensures that the
probabilities have the correct distribution.

The time required to apply this optimisation to a set of
rules depends on the number of branches, Bi, and the
length, Li, of each right-hand side. The total computa-
tion and memory cost is bounded by O(∑2BiLi). The
main source of the inefficiency of this algorithm is the
number of right-hand sides that are created. In our in-
vestigations, Bi is rarely larger than three and is thus
not problematic. It may also be possible to achieve the
same effects using fewer right-hand sides. This is, how-
ever, left as future work.

The effectiveness of the branching optimisation de-
pends on the instancing probability. If this is set too
high, repetition will become evident. Conversely, set-
ting it too low results in the memory required for a for-
est becoming too large. We use an instancing probabil-
ity that varies as more trees are created to support in-
stancing that becomes more aggressive as memory be-
comes scarcer.

The getInstance, startInstance and stopInstance sym-
bols are used during interpretation to communicate with
the higher levels of the system. getInstance indicates
that the system should record the current position and
orientation where an instance should be used to com-
plete the tree. startInstance notifies the system that

all the geometry created until the corresponding stopIn-
stance symbol forms a coherent instance usable as part
of other trees. The instance cache is the device used to
store and retrieve instances and is introduced next.

5 INSTANCE CACHE
The end result of the interpretation phase is geometry in
the form of vertex and index buffers, required for ren-
dering. Using the symbols introduced for the L-system
rule modification process, we annotate the index buffers
as they are created. In this way, we can determine which
ranges of the index buffers correspond to branches with
different sizes and properties. Multiple instances can
exist within the same index buffer. For example, a tree
branch could have an annotated sub-branch. For this
reason, in addition to pointers to the vertex and index
buffers, two integers are stored to denote the range in
the buffers that correspond to the current instance.

Each index buffer range also stores metadata about the
range. The age, species type and branch identification
information are stored in hash tables to allow for easy
and efficient access. The hash table data contains arrays
of pointers to these ranges, which allows for efficient
random selection. The Instance Cache can thus retrieve
a random index buffer range based on any set of age and
species criteria.

In addition to storing the buffer range, the transforma-
tion of geometry is retained. Each transformation is a
matrix that represents the spatial orientation of the ge-
ometry in the index buffer. This information is neces-
sary to correctly place the branch on a renderable tree.
Finally, the orientation and positions of any getInstance
modules that occurred in the branch string are recorded.
These getInstance modules are used to indicate exit
points for the instance which must be filled with other
instances in order to generate a complete tree.

6 TREES FROM INSTANCES
Trees are created in the system in two distinct phases:
Hero Creation and Tree Placement. Hero Creation
runs the L-systems in order to fill up the various in-
stance caches that exist. We use one instance cache
per unique identifier generated in the rule modification
phase. These heroes serve as the template geometry for
tree and branch instances. Although each hero created
is a correctly derived tree, they are not used directly for
rendering purposes: the creation of trees for rendering
is left to the Tree Placement phase.

The cumulative size of all geometry buffers is limited in
our system depending on the available memory. For ex-
ample, if one were creating a virtual environment where
forests are not important, the maximum size could be
very low, perhaps as little as 16MB. On the other hand,
for environments where forests are a prominent fea-
ture, one can devote upwards of 256MB to the required

buffer. The ability to define a range of cache sizes al-
lows developers to tightly control the resources used to
generate a forest.

As more hero trees are created, the memory space that
can be devoted to geometry decreases. In order to al-
low for the continued creation of new geometry, we in-
crease the instancing probability for each hero tree that
is created. A higher instancing probability means that
more getInstance symbols will occur in the L-system
strings. In other words, fewer new branches are created
and more instances are used.

The final stage in forest creation is Tree Placement.
Tree Placement creates new trees by cutting and join-
ing parts of the hero trees together and calculating the
necessary transformations to place the trees on the ter-
rain.

A renderable tree is represented by a collection of point-
ers to geometry buffer ranges that are stored in the In-
stance Cache. Creating a tree from the instance cache is
done recursively. The algorithm takes the species of the
desired tree, its generation and a transformation matrix
describing the desired position and orientation, as input.
Given this information, an instance is selected from the
instance cache to serve as the base of the tree.

An instance is not limited to representing a single gen-
eration. Instead, it can represent the entire tree, a single
generation or, more likely, several generations with exit
points that need to be filled with sub-branches. The exit
points describe not only the desired position and orien-
tation relative to the start of the instance but also the de-
sired age and branch identification of the instance that
should fill the gap.

The algorithm recurses for each exit point required by
the current instance. The age and branch information
parameters are used to constrain the subsequent search
of the instance cache. The instances are re-oriented by
computing a placement transformation matrix. Given
the desired orientation matrix, D, and the orientation
matrix of the instance within its hero tree, M, we calcu-
late the transformation to reorient an instance, T , as:

T = D×M−1

The initial desired orientation is passed as a parameter
to the recursive function so it must be updated before
it is passed into the next function call. To update the
orientation we use the following formula:

Dnew = Dold×E

where Dnew is the new orientation, Dold is D from
above, and E is the orientation of the next exit point
in relation to its hero tree.

Algorithm 2 shows the tree creation process described
above. The recursive function, CREATE, takes several

create(output, direction, age, cache)
instance = cache.getInstance(age)
T = direction × instance.direction.inverse
output.addTreeInstance(instance.buffers, T)
for i = 1→ length(instance.exitPoints)

newAge = instance.exitPoints[i].exitAge
exit = instance.exitPoints[i].direction
newDirection = direction × exit
create(output, newDirection, newAge, cache)

Algorithm 2: Renderable tree building process.

input arguments that describe the instance we wish to
find. In the algorithm listed above, we only search the
instance cache by generation; in practice we use other
criteria as well. The desired orientation, direction,
is used to compute the transformation, T , needed to cor-
rectly draw the geometry buffer. The output contains
a list of geometry buffers that we should draw and their
correcting transformations. The addTreeInstance
method simply appends the buffers and transformations
to this list. The recursive function terminates when all
exit points have been filled. Although this function is
recursive, it remains significantly faster than regular L-
system creation as no geometry is created. Only geom-
etry in the instance caches are used.

Rather than applying the transformations to the geom-
etry data immediately, the transformation is stored so
that the renderer can perform the transformation on the
fly. This allows the geometry data to be efficiently re-
used across multiple trees and branches. The index
buffer range and the required transformation are saved
to the tree object for use with the renderer. The end
result of this process is a collection of pointers to in-
dex buffer ranges and the transformations necessary to
correctly render the tree at a particular position.

7 RESULTS
Testing was done on an Intel Core i5 2.80GHz quad-
core machine with 8GB of RAM and an NVidia
580GTX graphics card. To avoid interfering memory
requests from other applications or processes, we
limited the system to using 4GB of RAM.

We split our tests into two groups. For the first group,
we kept the forest size constant, while testing the
run-time of different cache schemes. The forest size
was kept at 10,000 trees and the following cache sizes
were tested: 16MB, 32MB, 64MB, 128MB, 256MB,
and 512MB. The second group of tests kept the cache
size at a constant 128MB and created forests of up to
1,000,000 trees, and measured both the memory and
run-time of the forest creation process.

Figure 2 shows the results of creating forests with vary-
ing cache sizes. In most cases, the majority of the time
is spent creating hero trees to fill the various caches.

0 2,000 4,000 6,000 8,000

16MB
32MB
64MB

128MB
256MB
512MB

Total Hero Creation Tree Placement

Figure 2: Time (in milliseconds) required to create
10,000 trees, as a function of cache size. Hero tree cre-
ation accounts for the largest proportion of processing
time for larger cache sizes.

From our results, hero creation time grows roughly lin-
early with increasing cache size. The 16MB cache
takes approxmately one second to fill, while the 512MB
cache takes up to eight seconds. The hero creation pro-
cess requires, on average, 25 milliseconds per MB of
cache.

By comparison, tree placement generally requires much
less computation time, although it does scale with the
number of trees being created. However, for smaller
cache sizes, tree placement requires a larger proportion
of total running time for a fixed number of trees. There
are two reasons for this. First, a smaller cache can
be filled significantly faster than a large cache. Sec-
ond, each additional hero tree depletes the percentage
of cache space available much more rapidly for small
cache sizes. This has a knock-on effect on the instanc-
ing probability used to generate new hero tree. A hero
tree created with a high instancing probability is likely
to contain many instance exit points (getInstance sym-
bols in the L-system string). Consequently, Algorithm 2
will require many more recursive calls on average and,
thus, take longer to run. This phenomenon is not seen
in the large cache sizes since the instancing probability
increases much more slowly.

As the cache size increases, the time required for tree
placement reduces from one second, for the 32MB
cache, to 130 milliseconds for the 512MB cache. This
equates to a placement time of 0.1 milliseconds per tree
and 0.013 milliseconds per tree, respectively. The to-
tal time to create and place 10,000 trees ranges from
1.3 seconds for the 16 MB cache to 8.4 seconds for the
512MB cache. The cache size is an important choice
that must be made by the user of the system. If the de-
sired output is a small forest, a small cache size should
be chosen and vice versa. The disadvantage to choosing
larger cache sizes, however, is the significantly longer
time that users must wait in order for the cache to fill.

To determine the general utility of our instancing ap-
proach, we also evaluated the running time for forest
creation without using any instancing. Unfortunately,

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 100 200 300 400 500 600 700 800 900 1000

Ti
m

e(
m

s)

Thousands of Trees

Forest Creation Time

Total Creation Time
Hero Creation Time
Tree Creation Time

Figure 3: Time (in milliseconds) required to create
forests for a cache size of 128MB. Hero tree creation
accounts for most of the time, and is almost constant.
Tree creation, which includes tree placement, increases
linearly with the number of trees, but very slowly: cre-
ation of 1,000,000 trees requires only 1.5 seconds.

the system ran out of memory when attempting to cre-
ate all 10,000 trees. The largest size that we were able
to create was approximately 2,000 trees over sixty sec-
onds. Based on our testing, we estimate that creating
10,000 trees would require at least 300 seconds to com-
plete. It is clear that our caching system is markedly
faster than the uninstanced approach.

Our next set of tests show the running time and memory
consumption of our method as the forest size increases.

As can be seen in Figure 3, the time required to add new
renderable trees grows very slowly. Although this graph
only shows results for a 128MB cache, the other cache
sizes exhibit similar behaviour. Even for a million trees,
the majority of time, about 3 seconds, is taken up with
hero creation. A million trees only requires 1.5 sec-
onds to create, which is equivalent to approximately
650 trees per millisecond. The time required to place
trees — a component of the creation time — grows
linearly with the desired number of trees. As noted
above, our system performs better than the uninstanced
approach: we can create a million trees in the time that
the uninstanced method is only able to create three hun-
dred trees.

Figure 4 shows the memory requirements for each ad-
ditional tree in the forest. Memory usage grows ap-
proximately linearly. The memory usage metric is the
sum of the instance cache size, the size of all render-
able trees and the size of all textures in the trees. The
graph shows that, even up to a million trees, the mem-
ory requirements are dominated by the cache size. The
memory requirements grow very slowly with the num-
ber of trees in the forest, which highlights an important
advantage over the uninstanced approach. Without in-
stancing, each additional tree consumes a large amount
of graphics memory, which can be severely limiting on
all but the most recent hardware. In our approach, how-

130

140

150

160

170

180

190

200

210

220

0 100 200 300 400 500 600 700 800 900 1000

Si
ze

(M
B

)

Thousands of Trees

Forest Creation Memory

Forest Creation Memory

Figure 4: Memory (in megabytes) required to create a
forest for a cache size of 128MB.The instance cache ac-
counts for most of the memory usage. Each individual
tree typically requires an average of only 100 bytes.

ever, each additional tree consumes less than 100 bytes,
on average.

The effect of instancing changes with cache size: for a
small cache far more instancing takes place. Figure 5
shows a forest with 100,000 trees and a cache size of
32MB (left) and 128MB (right). The shade of red in-
dicates the extent to which branch instances occurred
in the forest, with grey indicating that branch/part of
the tree was not instanced at all. Note that the shading
does not indicate spatial proximity or branch indices,
but simply the degree of instancing. It is readily appar-
ent that the larger cache size dramatically reduces the
amount of instancing. For the 128MB cache, no more
than 4 instances of any branch were used, while for the
32 MB cache, no more than 27 instances of any branch
structure were re-used throughout the forest.

In the next section, we will discuss some of the disad-
vantages of our approach, in particular, the visual arti-
facts that can occur when using random instancing.

7.1 Limitations
Using instancing for procedural forest generation is not
without its drawbacks. An important criticism is the
possible reduction in visual quality due to excessive re-
use of tree geometry. We attempt to reduce the effect
on appearance by letting the non-deterministic nature
of the L-systems decided where instances should be
placed. This can still lead to problems: the L-system
could randomly decide two trees that are near to each
other should use the same instances, or, even worse, be
constructed entirely from the same instance.

Although identical trees are unavoidable due to the ran-
dom nature of L-systems, certain steps can be taken to
mitigate this effect. The first is to use L-systems which
are markedly non-deterministic, in that they are able to
produce a large number of varied trees. The second ap-
proach is to detect when we are about to place an of-

Figure 5: The effect of instancing for a forest of 100,000 trees. The shade of red indicates how frequently that
branch structure was re-used in the forest. For the small cache (32MB, left) much more instancing is evident, as
one would expect. However, no more than 27 instances were used for any branch structure. For the large cache
(128MB, right) the number was only 4, as shown by the much lighter shading of red.

fending instance, one which is too close to another in-
stance of the same type, and replace it with another in-
stance. This second approach is made more difficult by
the random nature of L-systems. The L-system could,
for example, decide to add multiple instances to the
cache which all represent the same geometry. In this
case we would not even be aware that we are using the
same geometry when using different instances.

Fortunately, the visual artifacts arising from instancing
are not necessarily a problem. Informal user tests (a
user-guided fly-through of the forest) revealed that most
users do not notice that instances existed. Indeed, iden-
tical trees that are nearby often go unnoticed if oriented
at a random angle and branches that are identical can
appear at different levels of the tree which further masks
their similarities.

8 CONCLUSIONS
We present a new scheme which significantly acceler-
ates L-system tree creation and reduces memory over-
heads. By dynamically modifying the tree L-systems
and making careful use of instancing, we can create
large and varied forests quickly whilst using a bounded
amount of memory. This is accomplished by filling a
special fixed-size instance cache with sub-branch ge-
ometry derived from a much smaller set of ‘hero’ tree
templates. Rendering is accomplished by looking up
the appropriate geometry buffers in the instance cache
and issuing draw calls using the associated transforma-
tion and texture metadata. Each new tree requires less
than a 100 bytes of storage on average and takes less
than 0.1 milliseconds to create. During our tests, we
were able to create a forest of one million trees us-
ing approximately 350MB of memory in under 4.5 sec-
onds. By contrast, the naïve algorithm was only able to
generate 300 trees in the same amount of time.

There are several avenues for future work. Instanc-
ing improves memory requirements but may give rise
to visually jarring repetition. In order to correct this
behaviour we would need to scan the instance cache
to detect when duplicate geometry is added so that

we could ignore it. This is not an easy task since it
requires complicated matching on the geometry and
would likely slow the system down significantly. Al-
ternatively, one could make the simplifying assumption
that the same substring (the part of the string that repre-
sents the branch) represents the same geometry. Com-
paring strings instead of geometry is significantly easier
(and more efficient).
Finally, while we have demonstrated our technique at
work with L-systems, it is possible that other procedu-
ral tree generation algorithms could also benefit from
our instance cache scheme.

9 ACKNOWLEDGEMENTS
This research was supported by an NRF/THRIP grant
and the Centre for High Performance Computing.

10 REFERENCES
[1] Deussen, O.,Hanrahan, P., Lintermann, B., Měch,

R., Pharr, M., and Prusinkiewicz, P. Realistic
modeling and rendering of plant ecosystems, In:
SIGGRAPH ’98, p. 275-86, 1998.

[2] Deussen, O., Colditz, C., Stamminger, M., and
Drettakis, G. Interactive visualization of complex
plant ecosystems, In: Proceedings of the confer-
ence on Visualization, p. 219-26, 2002.

[3] Eichhorst, P., and Savitch, W. Growth functions
of stochastic Lindenmayer systems, Information
and Control, 45(3), p.217-28, 1980.

[4] Müller, P., Wonka, P., Haegler, S., Ulmer, A., and
Van Gool, L. Procedural modeling of buildings,
In: SIGGRAPH ’06, p. 614-23, 2006.

[5] Prusinkiewicz, P., Lindenmayer, A., and Hanan,
J. The algorithmic beauty of plants, The Virtual
Laboratory, 1991.

[6] Prusinkiewicz, P. Graphical applications of L-
systems, In: Proceedings of Graphics Interface,
1986.

[7] Salomaa, A., and Rozenberg, G. Handbook of
Formal Languages, 1997.

