
A GPU-Based Level of Detail System for the Real-Time
Simulation and Rendering of Large-Scale Granular Terrain

Craig Leach
University of Cape Town

craigleach007@gmail.com

Patrick Marais
University of Cape Town

patrick@cs.uct.ac.za

ABSTRACT
We describe a system that is able to efficiently render large-scale particle-based granular terrains in real-time.
This is achieved by integrating a particle-based granular terrain simulation with a heightfield-based terrain system,
effectively creating a level of detail system. By quickly converting areas of terrain from the heightfield-based
representation to the particle-based representation around dynamic objects which collide with the terrain, we are
able to create the appearance of a large-scale particle-based granular terrain, whilst maintaining real-time frame
rates. The system presented is a proof of concept, to show that such a system may be viable for use in real-time
applications in the future, but initial results are encouraging.

Keywords
Level of Detail, Terrain, Rendering, Simulation

1 INTRODUCTION
Real-time computer games and simulations often con-
tain large virtual terrain environments. This terrain may
consist of various granular materials, such as sand, rub-
ble and rocks. Granular terrain displays many complex
interactions, both between the constituent granules, and
with objects. Previous approaches to rendering such
terrains rely on simple textured geometry, with little to
no support for dynamic interactions.

Recently, particle-based granular simulations, such as
that of Bell et al.[Bel05] have emerged as an alternative
method for simulating volumes of granular materials.
These systems simulate granular materials by using par-
ticles to represent the individual granules, and exhibit
realistic, physically correct interactions with dynamic
objects.

Longmore et al.[Lon13] extended the work of Bell et
al. with a GPU-based implementation, in order to im-
prove the simulation performance. However, the re-
sulting system remains computationally expensive, and
only small volumes of granular material cane be simu-
lated in real time.

In order to overcome this limitation, we extend Long-
more’s system, by integrating it with a heightfield-
based terrain system to create a level of detail system

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

for simulating large-scale granular terrain. The particle-
based terrain system is used to represent areas of terrain
around dynamic objects, whereas the heightfield-based
terrain is used elsewhere. This allows large-scale gran-
ular terrain to be simulated in real-time, with physically
correct dynamic interactions. This is made possible by
a novel system, which allows for terrain to be converted
from one representation to the other in real-time, while
maintaining changes made to the particle-based system
in the heightfield-based system. We use a GPU geome-
try clip maps implementation for our heightfield-based
terrain system, which is very efficient. This frees up
GPU resources for the particle-based simulation.

The system presented is an initial attempt to create a
system capable of simulating and rendering large-scale
particle-based granular terrains. While many issues
still remain, the initial results are promising. We show
that the system is capable of simulating and rendering
multiple particle-based simulations across a large-scale
terrain, whilst maintaining real-time performance. In
one scenario, 10 high-fidelity simulations are run at the
same time, whilst maintaining 30 frames per second.
However, the number of active simulations is limited
by the computational resources of the GPU. Stuttering
during terrain representation conversions has been re-
duced, but unfortunately, still remains. Additionally,
the particle sizes don’t allow for sand to be realistically
simulated on current GPUs. However, other granular
materials may still be simulated.

We make the following contributions: a technique for
scaling particle-based terrain simulations to achieve
finer grained interactions, and a system which is able to
convert between particle-based and heightfield-based
terrain representations in real-time.

The remainder of the paper is organised as follows: We
begin by exploring related work in the field. We then
introduce our system, giving a broad overview of how
it works. Each individual contribution is then analysed,
before we present our results. Finally we draw conclu-
sions, and present possible future research in this field.

2 RELATED WORK
Terrain forms an important part of virtual environments,
and the efficient creation and rendering of terrain has
thus been an active area of research for many years.
Heightfield based terrains have become popular in mod-
ern games and visual effects simulations. However,
these terrains display little to no dynamic interactions
with dynamic objects. Recently, particle-based granu-
lar terrain simulations have emerged as an alternative to
these techniques. These systems display realistic inter-
actions, but are computationally expensive.

2.1 Heightfield-Based Terrain
Heightfields represent a terrain as a grid of regularly
sampled points, with each point in the grid storing
the elevation at the corresponding point on the terrain.
Heightfields are often stored as greyscale images, al-
though other formats also exist. This makes them com-
pact and highly portable. Dynamic terrain is easily sup-
ported, as one only need alter the values stored in the
grid. However, as there is only one height associated
with any point on the terrain, complex structures such
as overhangs cannot be represented. This may be over-
come by adding static geometry at points on the terrain
where these structures are required.

In order to render a heightfield, a mesh is created that
links each node to its adjacent nodes using triangles.
However, for large terrain such a naive approach
produces too many triangles. Level of detail (LOD)
schemes can be used to overcome this limitation. Such
schemes use different representations of an object, with
a simplified geometric structure, in order to manage
rendering efficiency [Lue02].

GPU geometry clipmaps[Asi05] is a level of detail
technique for rendering heightfield-based terrains. The
technique represents a terrain using a set of concentric
regular grids, or “clipmap levels”, of increasing sizes,
centred about the viewer. The terrain is then rendered
by translating and scaling this grid structure in the ver-
tex shader, displacing the vertices in Y-dimension to
correspond with the clipmap heightfield. The technique
is capable of rendering large-scale terrains in real-time,
with minimal overhead.

The original GPU geometry clipmaps implementation
did not provide a method for texturing the resulting ter-
rain. Torchelsen et al.[Tor08] introduced a texturing
technique which assigns a texture coordinate to each

vertex within the grid. A value is obtained, which de-
fines how many times the texture is repeated between
vertices in the grid. This then allows the correct texture
coordinate to be inferred for each fragment, allowing
texturing of the GPU geometry clipmap based terrain.

2.2 Particle-Based Granular Terrain
Bell et al.[Bel05] created a system to simulate a vol-
ume of granular material. The system uses particles to
represent the volume. The particles collectively form
a volume, in the same way grains of sand form a pile
of sand. Granular materials behave differently to fluids
and require a unique set of algorithms to model their
characteristics. Granular materials may flow down a
slope, like fluid, or form a static volume, like a solid.
The system thus uses specialised granular equations to
model the particle interactions.

The sand created using this system is very high fi-
delity, and allows for realistic, physically correct in-
teractions to occur with dynamic objects. The system
simulates the natural interactions of sand using rigid
bodies, which are made up of groups of four particles,
in a tetrahedral structure. Shear, normal and frictional
forces are modelled for both collisions between the var-
ious particles in the system, and the collisions of par-
ticles with dynamic objects. Each individual particle
need only check for collisions within its local neigh-
bourhood, and thus exhibits O(n) complexity. Unfortu-
nately, since a large number of particles are required to
represent even a small volume of sand, it is infeasible
to use such a system to represent a large area of terrain.

Longmore[Lon13] extends this approach to leverage
the parallel processing capabilities of modern GPUs.
Grids are used to represent the sand particles within the
system; one grid stores the positions of the particles,
whilst another grid stores their momentums. These
grids are used to create a 3D texture, which is passed
to the GPU fragment shader, which performs the par-
icle simulation. The system first calculates the forces
applied to each particle, then applies these forces to up-
date the rigid body attributes. The particles are then
updated to match the rigid bodies. Finally, the particles
are rendered using a splat-based rendering technique.

While more efficient than a conventional CPU-based
implementation, the system may still only be used for
smaller-scale granular volumes, as the simulation re-
mains computationally expensive. Additionally, due to
the size of the 3D texture, memory usage is a major
concern, and limits the volume of sand that can be sim-
ulated.

In order for the particle system to interact with a model,
the model must be converted to a particle-based repre-
sentation. This is achieved by creating a signed distance
field[Sig03] for each model. Computing a signed dis-
tance field is expensive, so this conversion is performed

(a) Barrel Model (b) Density of 0.25 (c) Density of 0.5 (d) Stanford Bunny (e) Density of 0.25 (f) Density of 0.5

Figure 1: Two models are converted to a particle-based representation. (a) barrel model. (d) Stanford bunny. The
particle-based representation for two different particle scales is presented, corresponding to two differently scaled
particle systems.

as a pre-processing step. Once the signed distance field
has been generated, particles are created at any nega-
tive value in the distance field, which lies adjacent to a
positive value (i.e. at each point on the border of the
object). The particles together form a single rigid body
within the system, in the same way that multiple parti-
cles constitute a granule. This creates a surface layer of
particles which represent the object. This is sufficient,
as even if we added particles throughout the body of
the model, collisions with external particles would first
occur with these surface particles, therefore preventing
the internal particles from colliding with external parti-
cles. In fact, by using a single outer layer of particles to
represent the objects, both memory and computational
resources are saved. Whilst the particle-based represen-
tation should interact with the terrain, the model should
still be rendered in its original form.

O’Brien et al.[Obr01] introduce a system which allows
for a simplified motion model to be used for particle
simulation, which effectively creates an LOD system
for particle based simulations (or “SLOD", using the
papers nomenclature). Under their system, the particle
based simulation is subdivided into groups of particles.
Each group of particles is treated as a single granule,
and the result of the interaction of this granule is ap-
plied to each of its constituent particles. However, the
particle systems for which it has been implemented are
rather simple, and it has not been shown that this system
can be extended for use with granular terrain. Further-
more, the speed up from this form of LOD would not
be sufficient to allow simulation of a complete terrain.
Solenthaler and Gross[Sol11] use two discreet particle
resolutions to perform fluid simulations. The coarser
resolution simulates the fluid as a whole, whilst the finer
resolution is only used in areas where complex interac-
tions occur. Their system produces high quality results,
while simultaneously reducing simulation complexity.
However, the increase in performance is proportional
to the reduction in particle count, and thus, such a sys-
tem could not be adapted to simulate entire terrains, as
even smaller terrains would still require far too many
particles to simulate in real-time.

3 SYSTEM OVERVIEW
Our system is composed of three major components:
a GPU particle-based granular terrain system, a
heightfield-based terrain system, and the terrain man-
ager (Figure 2). The terrain manager lies at the heart
of our LOD system. This component is responsible for
converting between the two terrain representations, in
both directions, and converting models to a particle-
based representation, so that they may interact with
the terrain. It also holds preinitialised particle-based
simulations, so they may be quickly inserted, without
worrying about the cost of initialisation.

Figure 2: The basic system architecture.

The idea behind our LOD technique is fairly simple; we
convert areas of terrain around collisions to the particle-
based representation, so that the object may interact
with the terrain in a realistic and believable fashion.
This creates the illusion of an entire particle-based ter-
rain. Once the object has come to rest, updates for that
particular particle-based simulation are disabled, until
another collision occurs with it, which helps to limit
the overall number of active particle systems. It is still
rendered as the particle-based representation though,
which creates the illusion that there are more active
particle systems than there actually are. Finally, if no
further collisions occur with the simulation after a pe-
riod of two minutes, the area of terrain represented by
the particle system is converted back to the heightfield-
based representation, preserving any changes made to
the terrain in the particle-based simulation. The parti-
cle simulation is then returned to the pool of inactive
simulations, so that it may be reused for further interac-
tions.
The system is currently not very robust. For instance,
if an object is about to leave the current area covered
by the current particle simulation, a new particle system
must be added for the object to move into. Also, the res-
olution of the particle system is locked at initialisation.

This means that if the camera moves closer towards a
particle system, the particle system will not be refined
to adjust for this change. We have chosen to focus on
the conversion between the two terrain representations,
and have left these issues for future work.

Our heightfield-based terrain system is based directly
on the work by Asirvatham and Hoppe[Asi05]. Below,
we analyse the other two components of the system:
the particle-based terrain simulation, and the conver-
sion process.

4 PARTICLE-BASED GRANULAR
TERRAIN

The particle-based terrain system developed by Long-
more et al.[Lon13] forms the basis of our particle-based
terrain level of detail. In this section we provide a brief
description of the system. Additional details may be
found in the original paper.

The system simulates the natural interactions of sand
using rigid bodies, which are made up of groups of four
particles, in a tetrahedral structure. The particles then
interact with particles from other rigid bodies, which
applies a force to the rigid body. The system produces
realistic particle-based terrain, which exhibits physi-
cally correct interactions. The particle system lever-
ages the computational power of modern GPUs, while
remaining hardware agnostic.

Figure 3: Granules are made up of four particles. The
corresponding particle and rigid body attributes are
stored in textures[Lon13].

The data required for the particles and rigid bodies is
stored in a collection of textures. Textures may be used
as a data source, or a data target, and thus present an
attractive method to store this information. Addition-
ally, texture caching allows extremely fast access to
data which is accessed in spatially local area. Each tex-
ture is a four channel floating point texture, and repre-
sents a property of the group of particles or rigid bodies.
These properties are position, orientation, momentum,
and angular momentum for the rigid bodies, and posi-
tion, momentum, force and offset for the particles.

The particles are linked to the rigid bodies using unique
identifiers. Each particle is allocated an identifier, based
on its position within the texture. This identifier is
stored in the alpha channel of the position texture. The

rigid body then stores the identifier of its first con-
stituent particle. As each rigid body is made up of a
known number of particles, it is then simple to retrieve
the other constituent particles.

4.1 Updates
The system maintains two textures for each property
that is stored for the particles/rigid bodies. Each frame,
one texture acts as the data source, and one texture
acts as the data target. The data is processed by the
GPU, and the results are written to the target texture,
which then becomes the source texture for the follow-
ing frame. The advantage here is that because the re-
sult is written to a different texture, the source data re-
mains intact, so the result for each particle is based on a
constant, non-varying set of data. The system uses the
fragment shader to process the updates, which allows
the system to remain hardware agnostic, as it does not
require any hardware specific third party libraries.

Figure 4: The 3D grid is represented by a 2D texture.
Each slice in the 3D grid is stored as a tile within the
2D texture. Each texel represents a voxel within the
3D grid, and can store up to 4 particles (one per colour
channel). This diagram, from Longmore et al.[Lon13],
shows the layout for a 5×5×5 voxel area of space.

In order to detect collisions between the various parti-
cles in the simulation, a texture representing a 3D grid
is used. An example of this texture can be seen in Fig-
ure 4. This 3D grid represents the volume in which the
particles and rigid bodies exist, effectively discretising
the space into a voxelised format. The ID of each par-
ticle is added to the grid node which corresponds to it’s
position in 3-dimensional space. As each texel within
the texture is composed of four values, a maximum of
four particles may translate to a single grid node. Col-
lisions with adjacent particles are detected by sampling

neighbouring voxels in the grid. This requires 27 tex-
ture lookups (i.e. a 3× 3× 3 cube). If a particle from
another rigid body is found in an adjacent node (includ-
ing its own grid node), we then perform a collision be-
tween the particles. The resultant force of the collision
is calculated using the formulas from Bell et al.[Bel05].
Particle systems are sensitive to the time step used. The
simulation uses a constant time step of 20 milliseconds.

4.2 Rendering
A splatting technique is employed to render the parti-
cles. Splatting is a technique which renders objects us-
ing points. This is usually used to render volumetric ob-
jects, but has also been adapted to render objects with a
large number of vertices[Rus00].

In order to perform the rendering, a vertex buffer ob-
ject (VBO) is generated. One vertex is added to the
VBO for each particle within the simulation. Its posi-
tion is the texture coordinate which corresponds to the
particle within the particle position texture. The ver-
tices are then rendered using the glDrawArrays call,
with the rendering mode set to GL_POINTS. The ver-
tex shader reads the position of the particle from the po-
sition texture, and sets the position of the resulting point
to that position. The points produced by GL_POINTS
are square, and thus need to be trimmed by the fragment
shader. Any fragments which lie outside of a circle are
simply discarded. This method is very efficient, and
allows the entire particle system to be rendered with a
single call.

However, there are a few downsides to this method.
Firstly, the particles each appear spherical, giving the
system a uniform look. However, the larger problem
for our scenario is that it doesn’t integrate well with
heightfields. We alpha blend between the two repre-
sentations, but the difference is still quite obvious. In
order to overcome this, a different visualisation is re-
quired, which more closely matches the regular struc-
ture of heightfields. However, we have chosen to focus
on localised particle-based simulation and conversion
techniques, and have thus left this as future work.

4.3 Scaling of Particle-Based granular
terrain

One of the features of the LOD system is the ability to
use coarser particle simulations further away from the
observer, and finer grained, more detailed particle sim-
ulations closer to the observer. However, Longmore’s
particle system lacks the ability to scale the particle
sizes. Thus, the particle system was adapted to support
particles of different sizes. We found that scaling the
equations within the updates step tended to introduce
instability to the system.

The alternative method we devised is simple and fast.
The updates and collisions are processed with particles

of the regular size. The renderer then scales the particle
sizes and positions, creating the appearance of a larger
or smaller particle size. This works well, as the parti-
cles are in a stable configuration at the default particle
scale. The velocity of the objects need not be scaled,
as this is already scaled by the scaling of the position.
Only forces external to the terrain must be scaled. The
only force that needs to be scaled is thus gravity. This is
because the distance covered by a falling object in the
virtual world should remain constant, regardless of the
scale of the particle system. As gravity results in a con-
stant acceleration, it can be scaled linearly. Addition-
ally, the velocity of objects entering the system should
be scaled. This scaled velocity results in appropriately
scaled forces when it collides with the terrain, and thus
the underlying algorithms can be left untouched. Al-
though smaller particles would usually dictate smaller
time steps, in practice we had no problems with insta-
bilities, as the scaling of these velocities did not intro-
duce enough energy into the system to cause any insta-
bilities.

5 CONVERSION
The terrain manager is responsible for switching be-
tween the heightfield-based terrain and the particle-
based, in both directions, and converting models to a
particle-based representation, so that they may interact
with the terrain.

5.1 Heightfield to Particle System
In order to convert from a heightfield to the particle-
based terrain representation, the system needs to create
a volume of particles. The height of the volume at each
point on the x-z plane must correspond to the height
stored in the heightfield. Thus, the first step in the con-
version is dividing up the area covered by the particle
system into a grid. The size of each unit in the grid
corresponds to the particle system scale. The height-
field is then sampled at each point on this grid. Bilin-
ear interpolation[Len12] is used to infer to the height
at points which fall between texels in the heightfield.
This height is used to deduce the number of rigid bod-
ies which must be stacked at that point in order to reach
that height on the terrain.

Arrays are created to store the rigid body and parti-
cle attributes. The grid is iterated over, and at each
grid point rigid bodies and their corresponding parti-
cles are inserted into the arrays, until the height of the
terrain at that point in the grid is reached. Each rigid
body and particle is assigned an index, leaving us with
the required arrays of particle and rigid body attributes,
which are ready to be inserted into the particle system.
The topmost particle in each stack is assigned a random
orientation, which helps create a more natural looking
surface.

(a) (b)

Figure 5: An example terrain with a converted particle system inserted. The inset shows a zoomed in view. (a)
Shows the result of the injected heightfield, with no filtering applied. This results in an obviously bumpy surface.
(b) Shows the same section, but with Gaussian filtering applied. No discernible discontinuities are present.

These attribute arrays are passed to an inactive particle
simulation. However, uploading all this data to the GPU
at once results in the CPU – GPU bus becoming bottle-
necked, resulting in a noticeable stuttering effect. In-
stead, the data is uploaded over multiple frames, which
significantly reduces the stuttering.

The particle system is then left to settle. Once injected
into the system, the rigid bodies shift from their initial
positions. This appears unnatural, as the particle sys-
tem should be representing terrain at rest. Introducing
a settling period effectively negates this issue. How-
ever, depending on the terrain, particles may continue
to move after this settling period, thanks to the “cas-
cading" property of sand. Additionally, in some cases,
such as objects moving quickly across the terrain, we
cannot afford to wait for the system to settle first be-
fore displaying the terrain. Both of these issues could
potentially be solved by precalculating various stable
particle configurations, and combining them to match
the outline of the terrain.

Once the particle system has settled, the particle-based
terrain manager alpha blends in the particle system over
the course of one second. However, rendering order is
an issue. If the terrain is rendered first, particles which
lie beneath the level of the terrain will be discarded,
yet they will be visible once the blending is complete,
which will lead to a noticeable popping effect. Addi-
tionally, particles which intersect with the terrain will
only be partially rendered, resulting in unsightly arte-
facts. If the particle system is rendered first, then the
terrain will not be rendered behind the particles, and the
particles will appear to pop in, and blend between black
and their resulting colour. We use the following solu-
tion. First, the terrain is rendered as a first pass. The
depth buffer is then cleared, and the particle system is
rendered. The particles will thus be correctly blended
with the underlying terrain. However, particles which
should not be visible will be rendered. To address this,
the terrain is rendered again, thus occluding particles
which should be occluded.

5.2 Conversion from Particle System to
Heightfield

In order to convert the terrain from the particle-based
representation to the heightfield-based representation,
a method is required which is capable of quickly con-
verting the volume of particles to a heightfield. Sur-
face extraction from a set of points is a difficult prob-
lem, and many techniques have been developed to solve
it, such as Gumhold et al.[Gum01], and Rosenthal et
al.[Ros08]. However, these techniques typically take a
few seconds, to minutes to complete, and thus are not
suitable for real-time applications.
We note that a useful feature of the particle system is
that while dynamic updates are expensive, the render-
ing of the system is comparatively cheap. Also, the
particles form a single volume of sand. Based on these
two observations, we have developed a novel rendering
based technique to perform this conversion. By per-
forming a top-down orthographic projection of the par-
ticle system, and extracting the depth buffer from the re-
sulting image, a depth map of the terrain is obtained. As
the position of the camera above the terrain is known,
it is fairly simple to convert this resulting depth map
into a heightmap. As the z-buffer sampling for an or-
thographic projection is linear, the following formula is
used to convert the depth value to a height value:

height = ycamera −n− z(f −n)

where ycamera is the height of the camera, n is the dis-
tance to the near plane, f is the distance to the far plane
and z is the depth value.
Performing this rendering step with a resolution equal
to the size of the particle system produced poor re-
sults. Instead, the system renders the particle system
using a resolution of 1024× 1024. This resolution is
much higher than the number of visible particles, with
each particle covering multiple pixels. The depth map
is sampled at points which correspond to points in the
heightmap.
Although this produces better results, a stepping effect
may occur, since, depending on the positions of the

particles, the same particle may be sampled multiple
times. This is corrected by applying a 3× 3 Gaussian
filter[Sha01], to smooth out sharp transitions (Figure
5). A larger filter kernel size results in over-smoothing,
and thus the loss of subtle changes made to the terrain
in the particle system.

The resultant heightmap is inserted into the terrains
heightfield, over-writing the section of the heightfield
which corresponds to the particle system. This causes
any changes made to the terrain in the particle-based
system to persist in the heightfield-based system. How-
ever, there may be a discontinuity along the edges of
the newly injected heightmap. This is due to a sudden
transition from the original heightfield, to the height-
field representing the particle system, which may lie
slightly below or above the level of the terrain at that
point. Thus, a Gaussian filter with a 3×3 kernel is also
applied along the border of the inserted heightfield.

6 RESULTS
The system was implemented in C++, using the Mi-
crosoft Visual Studio 2010 IDE on Windows 7 (SP1)
and employs OpenGL 2.1, with GLEW 1.10.0. All re-
sults are generated at a resolution of 1920x1080. The
hardware testing platform consists of an Intel Core i7
930 processor with 6GB of DDR3 memory. Results are
presented for both an Nvidia Geforce GTX 460 with
1024 MB RAM, and an Nvidia Geforce GTX 770 with
2048 MB RAM. These two cards where chosen to rep-
resent the performance of mid- and high-end cards. The
Nvidia display driver 331.58 was used for both cards.

6.1 GPU Geometry Clipmaps
In order to evaluate the performance of the GPU Ge-
ometry clipmaps implementation, we tested the perfor-
mance across a range of different terrains. Ten differ-
ent terrains are used in total, and the results are av-
eraged, to provide a reasonable performance measure
against which to evaluate system performance. Each
terrain was run five times. Two different terrain sizes
are used: 512×512(6) and 1024×1024(4). The view
of the terrain is from the corner, and spans the entire
terrain. The 512× 512 terrains produce 79,886 trian-
gles, whereas the 1024×1024 terrains produce 103,700
triangles. The size of the terrain has a fairly mini-
mal impact on performance, as only a single additional
clipmap level is required to render the extra terrain sec-
tion in the larger terrain, due to the exponential increase
in the grid resolution.

The systems performs very well (Table 1), with both the
midrange and the high-end graphics cards. Such high
performance from the heightfield-based component of
the system is necessary, since the particle-based simu-
lation is computationally expensive (see Section 6.3).
Finally, the memory usage of the system is measured.

GTX 460 GTX 770
512×512

Average (FPS) 393 949
Std Dev (FPS) 23 72

Shadowed Average (FPS) 169 484
Shadowed Std Dev (FPS) 23 36

1024×1024
Average (FPS) 315 776
Std Dev (FPS) 12 28

Shadowed Average (FPS) 129 382
Shadowed Std Dev (FPS) 7 17

Table 1: GPU geometry clipmap performance results
for the Nvidia Geforce GTX 460 and GTX 770.

The system uses a total of 30MB of main memory and
40MB of graphics memory. A low memory footprint is
important, as it allows for other high quality assets to
be used in the game or simulation.

6.2 Particle-based Simulation
The performance of the particle-based terrain simula-
tion is of greatest importance, as the physical correct-
ness of the system has already been established[Lon13].
To test the particle-based system, particles are injected
into a 3D cuboid. Particles are injected in sets of
40,000, i.e. 10,000 granules at a time. The framerate
is measured for each set of injected particles.

Figure 6: Performance results of the particle-based sim-
ulation. Note that each rigid body, or granule, is made
up of four particles in a tetrahedral configuration.

The system scales fairly well with the computational
power of the graphics card used, with the more power-
ful GTX 770 achieving almost double the performance
of the GTX 460. The framerate is inversely propor-
tional to the number of particles in the system.
The particle-based simulation is comprised of two pri-
mary components: the update component, and the ren-
dering component. In order to measure the performance
of these individual components, we measure the frame
time of the entire system. Then, we disable the simula-
tion, and simply render the system, while recording the

Figure 7: The GPU profiling results for the GTX 770, for a particle system with 100,000 granules, over 45 seconds.

frame time. The difference between these two frame
times corresponds to the time taken to process the up-
dates. The result is shown in Figure 8.

Figure 8: Frame time of the particle-based simulation
components, for the GTX 770. The time spent to pro-
cess updates is indicated by the red area, whereas the
time spent on rendering is shown in green.

Clearly, the updates are the major limiting factor be-
hind system performance. This is to be expected, as
the updates entail mapping the particles to a 3D grid,
then performing collisions for hundreds of thousands
of particles, and updating the rigid bodies and particles
in response to these collisions. The frame time, both
with and without updates, is linearly proportional to the
number of particles, which accords with the previous
performance results.

We used Nvidia Perfkit 3.1.0.13233 to measure the
GPU performance counters, in order to identify any po-
tential bottlenecks. As can be seen from the results
shown in Figure 7, we can see that shader usage is ex-
tremely high, and is the primary bottleneck behind GPU
performance. The next closest performance metric, tex-
ture usage, peaks at less than 10%, which means that
system performance should scale well with future in-
creases in GPU shader performance.

The system used 140 MB of main memory and 188 MB
of GPU memory. This memory usage is mainly due to

the number of textures required to store all the particle
and rigid body attributes. Fortunately, with the amount
of memory available in most modern computers and
graphics cards, this memory usage is perfectly accept-
able, and allows us to use multiple particle-simulations
concurrently, along with other graphical assets. Note,
that the number of particles added to the system does
not affect the memory usage. Textures of a set size are
used to hold the particle and granule attributes. These
textures are allocated during the system set up. Thus
the memory usage is independent of the particle count.

6.3 Integrated System
Three scenarios were developed in order to test the var-
ious facets of the LOD framework.

Figure 9: Screen shot of the first test scene. The particle
simulation can be seen interacting with a model.

The first scenario contains one very high quality par-
ticle system. This is a stress test, to test the systems
ability to render and simulate a large particle system,
while also rendering the heightfield-based terrain, all
the while maintaining real-time performance. The par-
ticle system for this scenario consists of 115,502 gran-
ules (i.e. 462,008 particles).

In addition, a barrel model is dropped onto the particle
simulation. This model is made up of 6,261 particles.
This is done to showcase the realistic interactions, and

Figure 10: Performance results from the first test sce-
nario.

puts further stress on the system. The performance re-
sults for this scenario are shown in Figure 10.

Figure 11: Screen shot of the second test scene. Three
simulations can be seen, each with a different scale.

The second scenario contains three particle systems,
with three different particle scales. Each scale repre-
sents a different distance from the camera. The aim of
this test is to verify that multiple particle simulations, of
different scales, may be used concurrently, whilst main-
taining real-time performance. This scenario represents
the general envisaged use case, with a few simulations
taking place at different distances from the user.

Figure 12: Performance results from the second test
scenario.

Each particle system in the scenario has a scale appro-
priate for the distance from the camera. The foreground
simulation contains 202,352 particles, the midrange
particle simulation contains 54,876 particles, and the
far particle simulation contains 25,776 particles. The
performance results for this scenario are shown in
Figure 12.

The final test consists of ten particle simulations. The
dynamic object for each particle system is added 10 sec-
onds after the last. This shows off the ability of the sys-
tem to handle many particle simulations, by disabling
updates once bodies have come to rest. Each simula-
tion is fairly complex, and contains between 55,000 to
75,000 rigid bodies (220,000 particles to 300,000 parti-
cles). A particle scale of 0.33 is used for each simula-
tion. The results are shown in Figure 14.

Figure 13: Screen shot of the third test scene. Ten par-
ticle simulations can be seen. Active systems are out-
lined in green, and systems at rest are outlined in red.

While both cards generally maintain real-time frame
rates, the GTX 460 falters in scenario 3. Closer inves-
tigation showed that due to the slower updates the par-
ticle system models took a longer time to come to rest.
By this time another particle system had been popu-
lated, thus competing for computational resources. This
in turn caused the updates for both simulations to slow
down, and when another simulation was added, the ef-
fect compounded, leading to a cascading drop in per-
formance. The GTX 770 on the other hand, is powerful
enough to ensure that this doesn’t occur. This suggests
that for mid-range and lower level graphics cards, the
particle systems used should not be too finely scaled,
in order to allow the dynamic objects to come to rest
quickly. Additionally, the number of concurrently ac-
tive particle simulations may also need to be limited.

While the stuttering effect has been reduced somewhat
by inserting particle data over multiple frames, it has
not been completely eliminated. This can be seen by
the downward spike after particle insertion in all the test
scenarios. However, the framerate stays high enough
that it is not too noticeable.

Figure 14: Performance results for the third test scenario.

7 CONCLUSION
In this paper, we have presented our GPU-based LOD
technique for large-scale particle-based granular ter-
rains. The resulting system can simulate large-scale
granular terrain in real-time, by seamlessly switching
between the heightfield-based and particle-based repre-
sentations. Changes to the terrain in the particle-based
simulation persist in the heightfield-based system, by
virtue of a novel rendering-based conversion technique.

Performance results are promising with both test GPUs
maintaining real-time performance, except for in one of
the three test scenarios, where the mid-range GPU pro-
duced poor results. Future advances in GPU processing
power will allow for even mid-range graphics cards to
use the system to simulate large-scale granular terrains,
even under the tough conditions of this test scenario.

However, it is important to remember that this paper
represents a proof of concept, and simply explores the
potential feasibility of such systems. Whilst this pa-
per addresses some of the issues with rendering large-
scale granular terrain in real-time, many issues remain,
and thus there are many possible avenues for future re-
search in this area. For instance, the rendering tech-
nique should be updated to a system which more closely
matches the regular grid structure of heightfields. The
heightfield to particle system conversion could be opti-
mised with pregenerated particle configurations to sta-
bilise, and allow almost instantaneous conversions, and
particle systems could be refined to finer resolutions as
the camera approaches them.

8 REFERENCES
[Asi05] Asirvatham, A., and Hoppe, H. Terrain render-

ing using GPU-based geometry clipmaps. In GPU
Gems 2, pp.27–45, 2005.

[Bel05] Bell, N., Yu, Y., and Mucha, P.J. Particle-
based simulation of granular materials In Proc. of
the ACM SIGGRAPH/Eurographics symposium
on computer animation, pp.77–86, 2005.

[Gum01] Gumhold, S., Wang, X., and Macleod, R.
Feature extraction from point clouds In Proc.
of the 10th international meshing roundtable,
pp.293–305, 2001.

[Len12] Lengyel, E. Mathematics for 3D game pro-
gramming and computer graphics, pp.171–172
2012.

[Lon13] Longmore, J.P., Marais, P., and Kuttel, M. To-
wards realistic and interactive sand simulation: A
GPU-based framework Powder Technology 235,
pp.983–1000, 2013.

[Lue02] Luebke, D., Watson, B., Cohen, J.D., Reddy,
M., and Varshney, A. Level of detail for 3D graph-
ics, 2002.

[Obr01] O’Brien, D., Fisher, S., and Lin, M.C. Auto-
matic simplification of particle system dynamics,
In Computer Animation, pp.210–218, 2001.

[Ros08] Rosenthal, P., and Linsen, L. Smooth surface
extraction from unstructured point-based volume
data using PDEs IEEE transactions on visualiza-
tion and computer graphics, pp.1531–1546, 2008.

[Rus00] Rusinkiewicz, S., and Levoy, M. QSplat: A
multiresolution point rendering system for large
meshes, Proceedings of the 27th annual confer-
ence on computer graphics and interactive tech-
niques, pp.343–352, 2000.

[Sol11] Solenthaler, B., and Gross, M. Two-scale par-
ticle simulation, ACM transactions on graphics,
pp.81, 2011.

[Sig03] Sigg, C., Peikert, R., and Gross, M. Signed
distance transform using graphics hardware In
IEEE visualization, pp.83–90, 2003.

[Sha01] Shapiro L.G., and Stockman, G.C. Computer
Vision, pp.137–150, 2001.

[Tor08] Torchelsen, R., Comba, J., and Bastos, R.
Practical geometry clipmaps for rendering terrains
in computer games In Shader X6 – Advanced
Rendering Techniques, pp.103–114, 2008.

