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Abstract

Real-time computer games and simulations often contain large virtual outdoor environ-

ments. Terrain forms an important part of these environments. This terrain may consist

of various granular materials, such as sand, rubble and rocks. Previous approaches to ren-

dering such terrains rely on simple textured geometry, with little to no support for dynamic

interactions.

Recently, particle-based granular terrain simulations have emerged as an alternative

method for simulating and rendering granular terrain. These systems simulate granular

materials by using particles to represent the individual granules, and exhibit realistic,

physically correct interactions with dynamic objects. However, they are extremely com-

putationally expensive, and thus may only feasibly be used to simulate small areas of

terrain.

In order to overcome this limitation, this thesis builds upon a previously created

particle-based granular terrain simulation, by integrating it with a height�eld-based ter-

rain system. In this way, we create a level of detail system for simulating large-scale

granular terrain. The particle-based terrain system is used to represent areas of terrain

around dynamic objects, whereas the height�eld-based terrain is used elsewhere. This

allows large-scale granular terrain to be simulated in real-time, with physically correct dy-

namic interactions. This is made possible by a novel system, which allows for terrain to

be converted from one representation to the other in real-time, while maintaining changes

made to the particle-based system in the height�eld-based system.

We show that the system is capable of simulating and rendering multiple particle-

based simulations across a large-scale terrain, whilst maintaining real-time performance.

In one scenario, 10 high-�delity simulations were run at the same time, whilst maintaining

30 frames per second. However, the number of particles used, and thus the number of

particle-based simulations which may be used, is limited by the computational resources of

the GPU. Additionally, the particle sizes don’t allow for sand to be realistically simulated,

as was our original goal. However, other granular materials may still be simulated.
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Chapter 1

Introduction

Modern computer games and simulations feature virtual environments with hundreds of

complex objects. Physics systems, such as PhysX[9], Havoc[32] and Bullet Physics[1], add

realism to the scenes by allowing physically correct simulation of the interactions between

these various entities. However, terrain, which represents the largest object in many of these

virtual environments, has been overlooked. Terrain is often represented by static textured

geometry, with no deformations taking place in response to interactions with dynamic

objects. Even when deformations are supported, these interactions are low �delity and

physically implausible, relying on simple �lters to modify the underlying terrain. This is

particularly apparent with sandy, or granular terrain, which is extremely easy to deform

in real-life, and exhibits �ne grain interactions with objects.

Granular terrain displays many complex interactions, both between the constituent

sand grains, and with objects. Many materials exhibit granular properties. Common

examples include sand, salt, wheat and our. Simulating granular material interactions has

thus been an active area of research for many years. Particle-based granular simulations,

such as that of Bell et al.[5], have been used to model complex granular interactions for

industrial purposes. These simulations are extremely computationally expensive, and are

often run on large computational grids. Furthermore, they lack real-time performance.

Modern consumer class graphics processing units (GPUs), have been adapted to per-

form generalised computations. These processors are capable of processing large amounts

of data in parallel, and when utilised correctly, provide far more processing power than

modern CPUs. Longmore et al.[29, 30] extended the work of Bell et al. with a GPU-

based implementation, in order to create a system capable of simulating volumes of sand

in real-time, on a desktop computer with a modern GPU. The resulting system is capa-

1



2

ble of simulating realistic, physically correct interactions with objects, and is capable of

rendering the individual particles with realistic shading and shadowing.

Whilst this initially appears to be an attractive solution to the problem of modelling

sandy terrain for games and simulations, several problems remain which limit its utility.

The most important of these is computational complexity: although the system has been

optimised to perform the granular simulation in real-time, it remains computationally

expensive. When used with a modern nVidia GTX 770, the system is capable of simulating

up to 650,000 particles in real-time. However, this represents a fairly small area of terrain.

Thus, using the system to represent large-scale granular terrain, such as beaches or deserts,

remains infeasible.

Height�elds are the most common form of terrain representation in modern games and

simulations. Height�elds sample the terrain on a uniform grid. Each point in the grid

stores the height at the corresponding point on the terrain, and represents a vertex in the

corresponding terrain mesh. The terrain mesh is constructed by forming triangles between

adjacent vertices. Height�eld-based terrains produce many geometric primitives. Thus,

level of detail (LOD) techniques, such as geometry clipmaps[31] and ROAM[14] have been

developed to reduce the number of geometric primitives required to render these terrains,

thereby increasing rendering performance. Using these techniques, it is possible to render

very large terrains e�ciently in real-time.

We observe that height�eld-based methods are capable of rendering large areas of low

�delity terrain, whereas particle-based techniques are capable of rendering small areas of

high �delity terrain. Therefore, in order to render large-scale granular terrains in real-time,

we propose a hybrid technique, which combines these two approaches.

By integrating Longmore’s particle-based granular terrain system with a height�eld-

based terrain system, we create a system that is capable of rendering large-scale, high-

�delity granular terrain in real-time. Interactions with the terrain take place using the

particle-based simulation. The system is capable of converting between the height�eld-

based and particle-based representations in real-time. Changes to the terrain in the

particle-based system persist in the height�eld-based system. Our results show that the

resulting system is capable of rendering large-scale granular terrain in real-time, complete

with realistic physically correct interactions. Unfortunately, we are not able to achieve the

appearance of sand, as the particle sizes are too large to represent sand realistically. How-
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ever, other forms of granular materials can still be simulated, such as rubble or pebbles.

We expect that future advances in GPU computational resources will allow �ner granular

materials, such as sand, to be simulated in a realistic manner.

1.1 Research Questions

There are two common methods for rendering granular terrain in real-time. However, each

of them is somewhat limited.

Height�eld-based terrain is capable of representing large-scale terrains in real-time. The

resulting terrain is low-�delity, and does not exhibit realistic interactions with dynamic

objects.

Particle-based granular terrain simulations are capable of simulating high-�delity sandy

terrain in real-time. These systems are computationally expensive and thus can only be

used to simulate small areas of terrain.

This thesis addresses these problems by integrating a pre-existing particle-based terrain

simulation with a height�eld-based terrain representation system. More speci�cally we

address four primary research questions:

Question 1: Is it possible to combine a particle-based granular terrain sim-

ulation with a height�eld-based terrain system, whilst maintaining real-time

frame rates?

We know from previous work that both of these systems may be run in real-time.

However, this does not necessarily mean that if we combine them, we will maintain real-

time performance. Our performance results show that this is indeed possible.

Question 2: Can we maintain changes to the terrain when converting be-

tween the two terrain representations?

We implement a top down orthographic projection to convert between the particle-

based representation, and the height�eld-based representation, thereby maintaining any

changes made to the particle-based system in the height�eld-based system.
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Question 3: Is it possible to convert between the terrain representations

without compromising the integrity of the underlying terrain?

We show in our results that the system exhibits minimal error when converting between

the two di�erent terrain representations.

Question 4: Is it possible to run multiple particle systems concurrently, of

di�erent scales, in order to simulate granular interactions at multiple points on

the terrain?

Our results show that it is possible to run several simulations in real-time, each simu-

lating a separate interaction with the terrain.

1.2 System Requirements

A set system requirements is useful in order to evaluate the resulting system, and to choose

between the various potential methods available. We specify the following requirements:

� Large-scale terrains should be supported. Sandy terrains tend to be rather large (e.g.

deserts and beaches), and thus large-scale support is an implicit requirement.

� The system should leverage the power of modern GPUs, in order to leave computa-

tional resources available for other parts of the system.

� Simulations performance, followed by visual performance are the most important

factors, followed by simulation accuracy and �nally visual accuracy.

� The system should exhibit real-time performance, so that it may be useful for games

and simulations.

1.3 Contributions

Much previous work has been done in the �elds of large-scale height�eld-based terrain

rendering and particle-based terrain simulation. We have made the following contributions
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to these �elds:

� A novel texturing technique for GPU geometry clipmaps. Geometry clipmaps have

traditionally been di�cult to texture, and previous techniques, such as that presented

by Torchelsen et al.[51], are unnecessarily complicated.

� Support for scaling of particle simulations, so that particles of arbitrary sizes may be

used. Longmores system[29] only supported a single particle size. We generalise the

particle size of the simulation, without the need for advanced parameter tuning.

� A method for converting between a height�eld-based terrain representation and a

particle-based representation. By subdividing the terrain section, and inserting

particles up to the terrain level at each point, we aim to match the height of the

height�eld-based terrain with the particle-based terrain. Particles are injected over

multiple frames, in order to prevent a noticeable stuttering e�ect.

� A method for converting between a particle-based terrain representation and a height�eld-

based representation. By performing a top-down orthographic render of the particle

system, and then extracting the depth bu�er, the particle system can be quickly

converted to a height�eld-based representation.

� Support for disabling updates of particle simulations when the contained dynamic

objects come to rest. This helps to create the illusion that more particle simulations

are active than is actually the case.

1.4 Thesis Organisation

The remainder of this thesis is organised as follows: Chapter 2 reviews previous work on

level of detail systems, height�eld-based terrain systems and particle-based granular terrain

systems. Chapter 3 presents our height�eld-based level of detail implementation. Chapter

4 examines the particle-based terrain simulation system. Chapter 5 introduces the terrain

manager, which is responsible for handling the conversion between the terrain represen-

tations, and manages the dynamic objects. In Chapter 6 we present the systems results.

Chapter 7 concludes the thesis, with a short summary of the �ndings, and suggestions for

future work.



Chapter 2

Literature Survey

Terrain forms an important part of virtual environments, and the e�cient creation and

rendering of terrain has thus been an active area of research for many years. Height-

�eld based terrains have become popular in modern games and visual e�ects simulations.

However, these terrains display little to no dynamic interactions with dynamic objects.

Recently, particle-based granular terrain simulations have emerged as an alternative to

these techniques, and are aimed at simulating sandy terrain. These techniques simulate

granular terrain, using particles to represent individual granules of sand. They exhibit

realistic, physically correct interactions with dynamic objects. However, they have been

unable to simulate large scale dynamic particle-based granular terrain in real-time, due to

their computational complexity. We seek to address this by combining a particle-based

terrain system, with a height�eld-based terrain system. This chapter will cover previous

work on virtual terrain representation, level of detail (LOD) and dynamic interactions. It

also provides a detailed analysis of competing height�eld LOD techniques.

2.1 Level of Detail

Level of detail (LOD) is the use of a di�erent model representation of an object, with a

simpli�ed geometric structure, in order to manage rendering e�ciency. Leubke et al.[33]

provides an excellent survey of LOD methods. There is usually a trade o� between the

rendering speed, and the quality of the resulting image. Metrics are thus used to select

the correct LOD for an object. This is usually based on the distance of the object relative

to the viewer, but other metrics such as the object’s position in screen space may also

be used. Rendering e�ciency is increased, as less data needs to be processed in order to

6
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render the lower detailed representation. As an object gets further away from the observer,

or further away from the users point of focus, the loss of detail becomes less evident to the

user. It’s important to note that the representation used for lower levels of detail needn’t

be the same as the main object. For instance, 2D textures (also known as impostors) are

often used to represent trees in the distance.

(a) 69451 triangles (b) 1000 triangles (c) 100 triangles

Figure 2.1: The Stanford bunny rendered at 3 di�erent levels of detail[16].

LOD schemes may be either discrete, continuous or view dependant[33]. Discrete LOD

schemes rely on switching between pre-generated versions of the object. These versions

may be generated by hand, or preprocessed prior to rendering and stored in memory so

that they may be dynamically switched in as necessary, usually based on the distance to the

observer. Continuous LOD schemes constantly re�ne and update a data structure, which

represents the object. A geometric representation of the object, which corresponds to the

required LOD, is extracted from this data structure. This generally requires less memory

than a discrete LOD system, although it requires more computational resources, as the

data structure which represents the object must be re�ned whilst the system is running. A

good example of such a system is Hoppe’s progressive meshes[22]. View dependant LOD

schemes build upon continuous LOD schemes, by using view dependant metrics to select

between various levels of detail. As the metrics are view dependant, parts of the mesh

may exhibit higher values than others. View dependant LOD schemes allow for the level

of detail to vary across the surface of the mesh. This is usually used when a single object

may span multiple levels of detail, and is thus ideal for large objects, such as terrains.

As an object moves relative to the observer, the object must transition from one level of

detail to another. This may result in a \popping" e�ect, as the object is suddenly replaced
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with a higher or lower detailed version. Many solutions have been developed to reduce this

popping e�ect. One example is geomorphing[23, 56], where the vertices of the model are

interpolated from the one version to the other. Another option is alpha-blending between

the two models. However, while these methods smooth the transitions between LOD levels,

the change in representation may still be apparent to the observer.

It is also important to note that LOD systems are not limited to only reducing the num-

ber of geometric primitives used. For instance, shaders with simpli�ed shading algorithms

may be used to render the object, thereby reducing the number of operations required to

render the object. Even a completely di�erent representation of an object may be used.

For instance Maciel[34] introduced \imposters", which are texture mapped quads that are

used in place of the geometric representation of an object in the distance.

2.2 Terrain Representations

Terrain may be represented in many di�erent ways. The choice of terrain representation

a�ects the choice of LOD system. Additionally, some representations are better suited to

dynamic terrain techniques than others.

2.2.1 Static Textured Geometry

The classical approach to terrain representation in games and simulations has been that of

static textured geometry. This allows for �ne detail where required, less detail for larger

at areas, and allows for complex structures, such as overhangs or caves. However, level

of detail is not easily supported, as lower levels of detail need to be created by hand by

an artist. The di�erent levels of detail can then be alpha-blended together. However, this

means that artists require far more time to create terrains. Additionally, dynamic terrain

is not supported, as the terrain is created by an artist, and cannot be edited on the y.
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2.2.2 Height�elds

Height�elds store the height of the terrain at regularly sampled points in a grid. Thus,

height�elds are often stored as greyscale images, although other formats also exist. This

makes them compact and highly portable. Dynamic terrain is easily supported, as one only

need alter the values stored in the grid; no other post processing is required. However, as

there is only one height associated with any point on the terrain, complex structures such

as overhangs cannot be represented. This may be overcome by adding static geometry at

points on the terrain where these structures are required.

(a) Height�eld (b) Rendered Terrain

Figure 2.2: An example of a height�eld and its corresponding rendered terrain.

In order to render height�elds, a mesh is created that links each node to its adjacent

nodes using triangles. These triangles may then be textured and lit in order to create a

realistic looking terrain. However, a large amount of geometry is created, which makes

them unsuitable for very large terrains. Various LOD schemes have been created in order

to overcome this limitation. These will be discussed in detail in a later section.

2.2.3 Triangulated Irregular Network

Triangulated irregular networks (TINs)[40] model terrains by connecting irregularly dis-

tributed points on the surface of a terrain with triangles. More points are used in areas
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of the terrain with more detail, and thus one of the major problems with grid based

approaches such as height�elds, namely uniform resolution, is overcome. However, the

grouping of points to create triangles is non-trivial, unlike with regular grid structures.

Furthermore, when simplifying the triangle mesh of the surface for level of detail, deciding

which points to remove is non-trivial, and requires preprocessing. In fact, the entire surface

may need to be re-triangulated for lower levels of detail.

TINs do not adapt well to dynamic terrains. As the surface is deformed, new points

are added, which a�ects the other triangles in the nearby vicinity. The grouping of points

may need to be restructured, and preprocessing for level of detail needs to be repeated,

which introduces noticeable overhead.

2.2.4 Particles

Particles may be used to represent an area of terrain. The particles collectively form a

volume, in the same way grains of sand form a pile of sand. A number of particle based

techniques already exist to simulate uids. However, granular materials behave di�erently

to uids and require a unique set of algorithms to model their characteristics[5]. Granular

materials may ow down a slope, like uid, or form a static volume, like a solid. Traditional

particle systems thus fail to faithfully recreate the complex interactions present in granular

materials, and specialised systems such as those by Bell et al.[5] and Longmore et al.[29, 30]

are required to model such materials.

Dynamic interactions may occur between the various particles, or with external objects.

However, each individual particle need only check for collisions within its local neighbour-

hood, and thus exhibits O(n) complexity[5]. As individual sand granules are modelled

using particles, the resultant terrain has extremely high �delity. Despite its linear com-

plexity, a large number of particles is required to represent even a small volume of sand.

Thus it is infeasible to use such a system to represent a large area of terrain.
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2.3 Terrain LOD Techniques

Our technique seeks to create a level of detail system for particle-based granular ter-

rains. This is achieved by integrating a particle-based granular terrain simulation with a

height�eld-based terrain system. However, brute force approaches to rendering height�eld-

based terrains are ine�cient due to the amount of geometry which height�elds represent.

Also, due to the high computational complexity of the particle-based terrain simulation,

we seek to allocate as much computational power to this component of the system as

possible. We thus seek to implement a height�eld-based LOD technique, to reduce the

computational cost of rendering these terrains.

It is infeasible to render large terrains at full detail, due to the ammount of data and

geometry required. Terrains typically cover large areas of the virtual world, and thus

are ideal for LOD techniques, as high detail is only required in the foreground. Many

LOD systems have been created to handle the di�erent type of terrain representations.

For example, ROAM[14], geometry clipmaps[31] and geomipmaps[11] have been developed

for height�eld-based terrains, whereas techniques such as BDAM[7], have been developed

for TIN-based terrains. Recently, there has been a great focus on adapting terrain LOD

schemes to use the power of modern GPUs[45, 26, 4]. In this thesis, we will be using

height�eld-based terrains, and thus our research focuses on these techniques.

With LOD schemes for terrains, di�erent parts of the terrain exhibit higher or lower

levels of detail. This may result in a vertex in a �ner level of detail lying upon the edge of

a geometric primitive in the coarser level of detail. This is referred to as a T-vertex(Figure

2.3). This is problematic, as it may cause di�erences in shading between the primitives

along the edge. Additionally, due to rounding error, the vertex may not lie exactly on

the edge of the coarser level primitive, the result being that the mesh does not remain

\watertight" under these conditions, i.e. visible holes appear on the surface of the terrain

at these intersections.

Although height�eld-based terrains are stored in a compact manner, they create large

amounts of geometry. As noted above, a number of LOD systems have been created to

handle this. Two of the most popular algorithms are ROAM[14] and geometry clipmaps[31].

We examine these methods in more detail, as they represent good examples of two of the

most prevalent schemes for view dependant height�eld-based LOD systems: tree-based
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Figure 2.3: An example of a T-vertex appearing along the border of two di�erent levels of
detail.

data structures to allow for vertex decimation (ROAM) and re�nement of regular grids

(geometry clipmaps).

2.3.1 ROAM

ROAM[14] uses a triangular bin-tree structure to represent the terrain data, with each leaf

node representing a triangle in the terrain mesh. Two priority queues are maintained; one

for merge operations and one for split operations. An error is calculated for each leaf node

in the tree. The heuristic used in this calculation is very exible. For example, the distance

to the camera, the surface normal relative to the camera, or the position in screen space

could be used as part of the heuristic. Once the error passes a threshold, it will be added

to the split queue. Those nodes with the greatest error will be split �rst. Adjacent nodes,

which share a base edge, will �rst need to be split, until they are at the same level in the

tree. This prevents the split operation from creating cracks along the edge which is split.

When two adjacent nodes at the same level exhibit a small enough error, they may be

combined, which reduces the complexity of the terrain. ROAM allows for various error

metrics to be used, such as the distance from the viewer or whether the position lies on

the horizon of the terrain, and is thus very exible.

The frame rate is directly proportional to the number of triangles that change between

each frame, and thus consistent frame rates can be easily maintained. Furthermore, as

only a few triangles change between each frame, popping e�ects are hardly noticeable, and
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can be easily mitigated through the use of geomorphing. Dynamic terrain is supported, as

altering the data in the bin-tree requires little in the way of preprocessing.

Triangle stripping is a technique which reduces the number of vertices required to

render a set of triangles with shared vertices, by reusing previous vertices. This reduces the

number of render calls required to render the set of triangles. The structure of ROAM-based

terrain makes it a poor candidate for triangle stripping, as it doesn’t maintain a regular

grid structure. This means that many rendering calls are made, and thus the framerate is

often limited by the bandwidth available on the CPU to GPU bus. Additionally, due to

the triangular bin-tree structure, and the fact that the error metric varies on a per triangle

basis, GPU-based implementations are infeasible.

Figure 2.4: An example of a ROAM implementation

ROAM has been extended by Hwa et al.[24] to use patches of triangles, instead of

re�ning single triangles. A single call can then be used to render each patch, which reduces

the bandwidth limitation of the standard ROAM algorithm. To support this, a diamond

data structure is created which centers on one node. The children of the node are then

centered on the edges of the diamond, and overlap the adjacent diamond, so that when the

node is re�ned, the mesh remains watertight. An example of this diamond data structure

can be seen in Figure 2.5.
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Figure 2.5: An example of the diamond data structure from Hwa et al.[24]. The center of
the diamond is labelledd, whereas the centers of the children nodes are labelledc0..c2.

2.3.2 Geometry Clipmaps

Geometry clipmaps[31] uses nested regular grids to represent terrain data. The coarseness

of the grids varies depending on the distance from the viewer. An example of the grid

structure can be seen in Figure 2.6. As the observer moves around the terrain, the grids

are re�ned so that the same level of coarseness is maintainedat each relative distance from

the viewer. A blending region is used around the outer edges of each clipmap grid. This

helps to smooth the transition between the clipmap levels.

Figure 2.6: An example of 2 consecutive clipmap rings[4].
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