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Abstract This work investigates robots’ perception in
underground terrains (mines and tunnels) using statistical
region merging (SRM) and the entropy models. A
probabilistic approach based on the local entropy is
employed. The entropy is measured within a fixed
window on a stream of mine and tunnel frames to
compute features used in the segmentation process, while
SRM reconstructs the main structural components of an
imagery by a simple but effective statistical analysis.
An investigation is conducted on different regions of
the mine, such as the shaft, stope and gallery, using
publicly available mine frames, with a stream of locally
captured mine images. Furthermore, an investigation
is also conducted on a stream of dynamic underground
tunnel image frames, using the XBOX Kinect 3D sensors.
The Kinect sensors produce streams of red, green and blue
(RGB) and depth images of 640 x 480 resolution at 30
frames per second. Integrating the depth information into
drivability gives a strong cue to the analysis, which detects
3D results augmenting drivable and non-drivable regions
in 2D. The results of the 2D and 3D experiment with
different terrains, mines and tunnels, together with the
qualitative and quantitative evaluations, reveal that a good
drivable region can be detected in dynamic underground
terrains.

Keywords 3D kinect Sensors, Entropy, SRM, Underground
Terrains, Drivable Region Detection, Autonomous Robots

1. Introduction

The mining industry forms a crucial part of the South
African economy. In 2009, according to the Chamber of
Mines of South Africa [1], the industry contributed:

• 93% of the country’s electricity generating capacity.

• about 18% of gross investment (10% directly).

• over 50% of merchandise exports.

• about one-million jobs (500 000 directly).

• approximately 30% of capital inflows into the country’s
economy.

• 8.8% directly, and 10% indirectly, to the country’s gross
domestic product (GDP).

• about 30% of the country’s liquid fuel supply.

• between 10% and 20% of direct corporate tax receipts
(worth R10.5-billion).
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Thus, mining remains crucial for the country’s economy.
However, the twin needs for safety and efficiency in
the mining industry have called for the serious attention
of researchers and practitioners in recent times. Figure
1 shows the death rate of miners, per million hours
worked. According to a report in 2011 [2], fatalities are
still unbearable in line with the trend experienced in the
recent past. Much effort has been directed to mine safety
in the past decade as the consensus is that one death is one
too many.

Figure 1. Fatality Rate of Miners Per Million Hours Worked

In the quest to address safety issues in mines, it is
widely recognised that autonomous robots could play a
key role. Robots can be used for checkpoint and safety
inspection tasks [3] in a mine. This information would
serve as cautionary or danger information for situation
awareness and decision-making purposes in mines. Figure
2 shows a general overview of what robots can achieve
in underground mine safety. However, an effective vision
model (robots’ perception) is critical for safe autonomous
navigation within an underground terrain.

Figure 2. Overview of Robotics Potential in Underground Mine
Safety

1.1. Robots’ Perception

A good perception of robots is part of the critical
ingredients that often formulates safe autonomous
navigation. How the robot perceives and interpret
its immediate environment is crucial [4]. However,
several research efforts have been directed towards
autonomous navigation in underground environments
and research continues in this area. The use of sensor
fusion in 3D visualisation of underground terrains is
currently gaining much attention from researchers [3].
Figure 3 depicts a robot navigating a mine environment.
This research focuses on the perception module (which
comprises sensors with high-quality visual capabilities),
a critical component in autonomous navigation, while

the mechanical and control modules fall beyond the
scope of this study. The perception module aims to
capture observations of the environment (standard and
high-resolution imagery), based on the robot’s current
position (x, y, z), and to specify which region is safe for
the robot’s navigation. A major focus in this research is the
enhancement of robots’ capability of identifying drivable
regions in underground terrains.

Figure 3. Overview of Autonomous Robot Navigation in a Mine

1.2. Contributions and Outline

Robots’ ability to perceive and interpret its immediate
environment adequately is central to an effective and safe
autonomous navigation. However, drivability analysis
of underground environments, with visualisation results
in 3 dimensional view is still an ongoing research. In
this work, we conducted an experiment using publicly
available underground mine images with images captured
in a local mine and on a stream of dynamic and rough
underground tunnel images captured with the aid of the
3D XBOX kinect sensor device. Using the SRM and
entropy models together with data fusion from the two
kinect (laser and infrared) sensors, we obtained promising
results where drivable region and non-drivable region are
clearly distinguished. Evaluation is also carried out for
useful qualitative and quantitative conclusions and future
adoption. The major goals of this paper are as follows:

1. Modelling and application of the entropy and SRM
in drivability analysis of underground terrains using
publicly available mine images with a stream of images
captured locally in an underground mine. Experiment
is also conducted on a stream of dynamic underground
tunnel images captured with an XBOX 3D Kinect
sensor.

2. The augmentation of 2D results with 3D drivability
maps for autonomous robots, which would need to
climb steps in the mines, and benchmarking the
proposed model with related methods and images.

To the best of the researchers’ knowledge, though being
widely used in computer vision, the entropy and SRM
models have never been applied to underground terrains.

The rest of the paper is organised as follows: Section 2
presents some related work. In section 3, the methodology
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and framework is presented in detail. Section 4 follows
with experimental results and a review of the outcome
measures for qualitative and quantitative performance
evaluation. Section 6 concludes the paper and future work
is also presented.

2. Background Studies

2.1. Related Work

The problem of improving the vision of robots for
autonomous navigation has gained significant attention
over the years [5]. Notably is the DARPA grand challenge
[4] which is intended to spur innovation in unmanned
ground vehicle navigation. The goal of the challenge was
to develop an autonomous robot capable of traversing
unrehearsed off-road terrain. Several approaches have
been adopted to address the aforementioned problem,
most of which are domain-specific. However, research
on autonomous navigation in underground environments
continues. Underground mines, which present unique and
terrain-specific human hazards, still call for the serious
attention of researchers.

Joaquin et al. [6] propose an approach to a visual-based
sensory system for an autonomous navigation through
orange groves. They used colour camera with auto iris
and VGA resolution for the image capture and a neural
network (multilayer feedforward network) to classify the
ensembles together with hough transform. The aim of
their work is to establish the desired path for autonomous
robot within an orange grove. For example, in agricultural
robotics where autonomous robots are used for weed
detection or spraying fungicides. The findings from
their research show promising results that could assist
autonomous navigation.

Derek et al. [7] address the issue of recovering surface
layout from an image. Their work presents a partial
solution to the spatial understanding of the image scene
(environment), which aim at transforming a collection of
an image into a visually meaningful partition of regions
and objects. Using statistical learning based on multiple
segmentation framework they constructed a structural
3D scene orientation of each image region. They went
further to conduct experiments on indoor scenes which
correspond to underground tunnel images in this research.

Zhou et al. [8] put much effort into road detection
using a support vector machine (SVM) based on online
learning and evaluation. The focus in their work is on
the problem of feature extraction and classification for
front-view road detection. According to Jian et al. [9],
the SVM is defined as a technique motivated by the
statistical learning theory, which has shown its ability to
generalise well in high-dimensional space. SVM attempts
to separate two classes by constructing an N-dimensional
decision hyper-plane that optimally maximises the data
margin using the training sample. In the problem of
road detection, the SVM classifier is used to classify each
image’s pixel into road and non-road classes based on the
computed features.

Angelova et al. [10] put much effort into fast terrain
classification by using a variable-length representation

approach to build a learning algorithm that is able to
detect different natural terrains. They used a hierarchy of
classifiers to classify different natural terrains, such as the
sand, soil and mixed terrain. Their ultimate goal was to
classify different terrains for autonomous navigation.

One of the few studies on 3D imaging is the work of
Andreasson et al. [11] They focus on methods to derive
a high-resolution depth image from a low-resolution 3D
range sensor and a colour image. They use colour
similarity as an indication of depth similarity, based on the
observation that depth discontinuities in the scene often
correspond to colour or brightness changes in the camera
image. This work hinges on the work of Thrun et al. [12],
which deals with acquiring accurate and very dense 3D
models in excavation sites and mapping of underground
mines using laser range finders.

From the literature, it is observed that much
research on improving robots’ vision in different
scenarios/environment has been conducted.
However, Underground terrains have received little
attention, probably owing to their roughness and
environmental/technological constraints [13], compared
to structured and unstructured surface terrains. Thus
research on the topic continues.

In this work, we aim to enhance robots visual capability
in an underground mine by exploring drivability analysis
of the mine in dynamic scenarios. The entropy and
SRM models are used for extracting features (colour
and texture), thereafter image region segmentation
and classification is carried out. The goal is to
accelerate autonomous mine safety inspection tasks and
consequently improve mine productivity.

While autonomous navigation in an underground mine
environment has been studied for more than twelve years
[14], a robust algorithm that is applicable in different
terrains is yet to emerge. Thus, it remains an ongoing key
challenge. Several segmentation algorithms exist, such as
the k-means, entropy and edge detection based methods,
but in this research a statistical approach based on the
entropy and SRM models is adopted. Our choice of the
entropy and SRM models is motivated by the existence
of interesting statistical and probabilistic properties, such
as separability, homogeneity and measure of randomness,
in the models. The aforementioned properties appear
promising for the segmentation task in this research.

2.2. Entropy Model

Entropy is defined as the number of binary symbols
needed to code a given input given the probability of
that input appearing on a stream. Entropy of an image
is a statistical measure of randomness that can be used
to characterise the texture of the input image [15, 16].
High entropy indicates a high variance in the pixel values
while low entropy is associated with fairly uniform pixel
values. Since entropy is a measure of randomness, it
provides a way to compare different regions (drivable and
non-drivable regions) of the mine frames. The entropy
of the mine images is computed using Equation (1) such
that every pixel in the entropy filtered image (EFI) is
measured within a fixed window (9 × 9 window in our
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case) which accounts for a reasonable percentage of the
textural distribution of each pixel region [17].

The entropy for the pixel neighbourhood window is
computed as shown in Equation (1).

ki = ∑
v
−qv × log2(qv) (1)

where qv represents the probability that a random pixel,
say p, chosen from the window centered at pv will have
intensity i. The computation is done using the non-zero
values of the histogram samples probability, say qv, for
every point, say h, in the sample histogram as shown in
Equation (2).

samples-probability (qv) =
h

length of histogram
(2)

The entropy filter measures the relative change of entropy
in a defined or sequential order [18]. For each pixel p(i, j)
in the EFI, there exists corresponding pixels p1, p2, ..., pN ,
(N = 9, in our case), for each mine image. The local
entropy ki measured within a fixed window, for each pixel
pi in each image, is computed and the weighted average p
is computed as shown in Equation (3).

p =
∑N

i=1 piki

∑N
i=1 ki

(3)

2.3. Statistical Region Merging (SRM) Model

A region is a group of connected pixels with some
homogeneity in feature property. Image segmentation
refers to the process of partitioning a digital image into
multiple regions (sets of pixels). Segmentation is a
collection of methods allowing to interpret parts of the
image as objects by transforming the pixels into visually
meaningful partition of regions and objects. The object is
everything that is of interest in the image and the rest of
the image is considered as the background. For an image
I and homogeneity predicate Hp, the segmentation of an
observed image I is a partition K of I into a set of G regions,
R1, R2, . . . RG, such that the following conditions hold [19]:

a. Hp(Rg) = true ∀g

b. Hp(Rg ∪ Rh) = f alse ∀ adjacent(Rg, Rh)

c.
⋃G

g=1 Rg = I with g �= h and Rg ∩ Rh = ∅

Statistical region merging (SRM) models segmentation
as an inference problem by performing a statistical test
based on a merging predicate and has been widely used
in medical imaging and remote sensing imagery [20–23].
Nock et al. [21] present an elaborate theoretical analysis
of the SRM algorithm in order to analyse the underlying
principles. SRM is applied to skin imaging technology in
[22] so as to detect borders in a dermoscopy image, in an
attempt to analyse a skin cancer (melanoma).

In region merging, regions are iteratively grown by
combining smaller regions or pixels. SRM uses a
union-find data structure or merge-find set that is defined
as follows:

• Find: Determines if two elements (pixels) are in the
same subset.

• Union: Merges two subsets (sub-region) into a single
subset (region) based on some criteria.

A major limitation of SRM is overmerging, where an
observed region may contain more than one true region.
It has been shown that the overmerging error is more or
less insignificant as the algorithm manages an accuracy
in segmentation close to optimum [21]. The idea is
to reconstruct the statistical (true-similar) regions of an
observed image instance.

The algorithm relies on the interaction between a merging
predicate and the estimated cluster, Q, specified. The
merging predicate, P(R, R′), on two candidate regions,
R, R′, is depicted in Equation (4) with an extension in
Equations (5) and (6).

P(R, R′) =

{
true if ∀c ∈ (R,G,B), |R̄′

c − R̄c| ≤ T
false otherwise

(4)

T =

∣∣∣∣
√

k2(R) + k2(R′)

∣∣∣∣ . (5)

k(R) = g

√
1

2Q |R| ln(6|I|2R|R|). (6)

Rc is the observed average colour channel c in region R
and R|R| represents the set of regions with R pixels.

Let I be an observed image with pixels |I| that each
contains three (R, G, B) values belonging to the set
{0, 1, · · · , g − 1 pixels} where g = 256. The observed
image I′ is generated by sampling each statistical pixel for
the three RGB channels. Every colour level of each pixel
of I′ takes on value in the set of Q independent random
variables with values of [0, g/Q]. Q is a parameter that
describes the statistical complexity of I′, the difficulty of
the problem and the generality of the model [23]. The
optimal statistical regions in I′ satisfy the property of
homogeneity and separability.

• Homogeneity property: In any statistical region and
given any colour channel, the statistical pixels have the
same expectation value.

• Separability property: The expectation of any adjacent
statistical region differ in at least one colour channel

Equation (7) defines the sort function [21], where p′a, pa
represent pixel values of a pair of adjacent pixels of the
colour channel.

f (p, p′) = max
a∈R,G,B

|pa − p′a|. (7)
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Figure 4. Depiction of the Proposed System Model (Perception
Module) for Robot’s Drivability

3. The Proposed Methodology

3.1. Proposed System Model for Drivability Analysis

This work conducts a drivability analysis of underground
terrains for autonomous robots by devising means through
which drivable regions can be identified in underground
terrains. This consequently improves the vision of a robot,
allowing it navigate only on drivable regions in a mine
frame, thereby minimising accidents while executing its
tasks. Figure 4 depicts the proposed system model for
robots’ perception.

3.2. Underground Terrain Image Acquisition

In this work, the tested mine frames are a combination of
those captured from a local mine, as well as those available
on public online repositories [24]. The underground tunnel
image frames are captured with the 3D XBOX kinect sensor
device as shown at the top left of Figure 6. Figure 5 shows
the general layout of the capturing cycle.

3.2.1. Operation of the 3D Kinect Motion Sensing Device

The 3D kinect sensor device, with the XBOX 360 console,
consists of two major sensors, which are the RGB sensor
and the Depth sensor. The RGB sensor produces RGB
images while the depth sensor produces the corresponding
depth information/images as shown in Figure 6. The
depth sensor consists of the infrared laser projector and
an infrared sensor. The laser projector projects the data
while the infrared sensor calculates the time taken for the
laser rays to hit the target environment. The experimental
setup is moved along the underground pathway for image
capture as perceived by an autonomous robot. To capture
underground surface environment, the sensor is mounted
with a small tilt angle θ.

The XBOX kinect sensor simultaneously produces depth
and RGB images of 640 x 480 resolution at 30 frames per
second (fps). The depth data from the device calculates,

Figure 5. Overview of the Kinect Frames Capturing Cycle.

Figure 6. Experimental Setup - Robot Sensor Data Capturing
Platform

in millimeter (mm), the distance of each pixel’s location
relative to the sensor device. We might also get unknown
depth pixels especially if the rays from the sensor are
hitting a shadow, window etc, the depth data returns
zero under such situation. Furthermore, unknown depths
may be partly due to the limitation in the precision or
accuracy of the depth sensor. The depth images indicate
how far or near each pixel’s region is perceived by the
sensor in the target underground environment. The fusion
of the multi-sensory data (RGB & Depth) enhances our
knowledge of the image structure and allows our system
to obtain an additional information about the vanishing
points which might have occurred as a result of the
perspective effect [25].

3.3. Entropy Approach to Drivability

Figure 7 describes the interlinked streams of the entropy
approach used in this work.

3.3.1. Image Initialisation and Preprocessing

Image downsampling has become a regular operation
during image processing for computational efficiency.
However, conventional image downsampling methods do
not accurately represent the appearance of the original
image, and the perceived appearance of an image is
altered when the resolution is lowered [26]. An image
downsampling filter that preserves the appearance of
blurriness in the lower resolution image is needed.
Several downsampling options exists and the choice of
downsampling varies for different applications but in this
work, we use an appearance preserving downsampling
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Figure 7. Sequential Block Diagram of the Entropy Model

filter called spatial antialias. Spatial anti-aliasing is the
technique of minimising the distortion artifacts known as
aliasing when representing a high-resolution image at a
lower resolution. The choice of resolution for an image
depends on the application at hand. The images used in
this work were down-sampled to 300 × 225 resolution as
part of the pre-processing stage.

Initial processing is usually carried out on raw data prior
to data analysis. This is necessary to correct any distortion
due to the characteristics of the imaging conditions and
imaging system. The grayscale image used as the input
is obtained by averaging the three RGB (reg, green, blue)
colour channels for each pixel p in image I. In order to
aid visual interpretation, the image contrast is enhanced
with a histogram equalisation as shown in Figure 8 and
features were computed at each pixel location, Pi. Figure 8
shows the graphical representation of the number of pixels
in an image as a function of their intensity. The x-axis are
the pixel intensity levels while the y-axis represents the
number of pixels corresponding to each intensity level.

Let I be a given image represented as a Pr by qr matrix of
integer pixel intensities ranging from 0 to L − 1, where L is
the number of possible intensity values, often L = 256. Let
k denote the normalised histogram of I. Then

kn =
number of pixels with intensity n

total number of pixels
n = 0, 1, ..., L − 1

(8)
The histogram equalised image, say k

′
, will be defined as

k
′

i,j = floor((L − 1)
fi,j

∑
n=0

kn) (9)

The floor of x depicted �x� is defined as the nearest integer
≤ x. Equation (9) is equivalent to transforming the pixel
intensities, p, of I by the function

T(p) = floor((L − 1)
p

∑
n=0

kn) (10)

3.3.2. Image Segmentation

In this research, the purpose of segmentation is to identify
the navigation area in the mine images, that is, the
image classification in two types of objects: drivable and
non-drivable areas. Figure 9 shows a mine frame and the

Figure 8. Image histogram and the Corresponding Transformed
Histogram

Figure 9. Original Frame and the Corresponding Entropy Filtered
Image

corresponding entropy filtered image obtained according
to the description in Section 2.2. One way to apply the
entropy concept to image segmentation is to calculate
the gray-level transition probability distributions of the
co-occurrence matrices for an image and a thresholded
bilevel image, respectively, then find a threshold which
minimises the discrepancy between these two transition
probability distributions, i.e. their relative entropy. The
threshold rendering the smallest relative entropy will be
selected to segment the image.

In this work, after pre-processing the image and
computing colour and texture features, we begin the
search for an ideal threshold using a segmentation
technique proposed by Otsu [27].

In general, the thresholding process is seen as the
partitioning of pixels of an image in two classes: P1
(object) and P2 (background). This method is recursive and
searches the maximization for the cases: P1 (0,1,..., T) and
P2 (T + 1, T + 2, ..., L − 1), where T is the chosen optimal
threshold and L the number of intensity levels of the
image. Otsu thresholding method exhaustively search for
the threshold that minimises the intra-class variance σ2

ω(t)
defined in Equation (11) as a weighted sum of variances of
the two classes.

σ2
ω(t) = ω1(t)σ2

1 (t) + ω2(t)σ2
2 (t) (11)

3.3.3. Morphological Operations

Morphological operations are often used to understand
the structure of an image. In this work, the main
morphological operation utilised can be likened to
flood-filling which are referred to as erosion and dilation.

The initial assumption is that the entropy would return
similar probabilistic distribution for pixel regions sharing
the same textural properties (i.e. drivable area) within a
mine frame. However, this cannot be guaranteed in its
entirety as there could be some interference (noisy pixels)
in the processed mine frame. Morphological operations
help in reducing such interference by removing isolated
blocks within a mine image and thereafter revealing large
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area of connected pixels. The erode/dilate filter helps
to remove small wrong areas (areas with some noise).
Figure 10 shows an example of the effect of morphological
operation on a mine frame.

Figure 10. Morphological Operation on Image Classification

(a) Mine-frame (b) Q=512 (c) Q=256

(d) Q=128 (e) Q=64 (f) Q=32

(g) Q=16 (h) Q=8 (i) Q=4

Figure 11. Stages of Region Merging/Segmentation on a Mine
Frame at Different Q Levels.

3.4. SRM Approach to Drivability Analysis

The SRM algorithm has two important criteria: the
merging predicate and specified cluster Q, which
determines the number of segments/regions, for the
input image. SRM is noted for its computational
efficiency, simplicity and good performance as seen in
Section 4.1. The flexibility of Q is a major advantage
as a trade-off parameter that is adjusted to obtain a

compromise between the observed results and the strength
of the model. In our experiment, after testing with
different values of Q, the value Q = 32 gave the optimal
result for the image classification. Figure 11 presents the
segmentation results of a mine frame at different Q levels.
Q is a parameter that controls the coarseness and busyness
of the classification.

The algorithm uses a 4-connectivity scheme to determine
adjacent pixels relative to the center pixel (in green)
as shown in Figure 12. The pixels are sorted in
ascending order based on the sort function in Equation
(7). Thereafter, the algorithm considers every pair of pixels
(p, p′) of the set DI , which is the set of 4-connectivity
adjacent pixels, and performs the statistical test based on
the merging predicate. If the regions of the pixels differ
and the mean intensity are sufficiently similar enough to
be merged, then the two regions are merged.

The SRM method presents the list of pixels belonging
to each segmented region with their average mean
intensities. We focus on the pixels region which forms
clusters at the base of each observed image I towards the
midpoint when scanning from the left. This forms the pixel
region closer to the robots view and thus, the drivable part
as can be seen in the test cases presented.

Figure 12. Depiction of the Four-Connectivity Scheme

Pseudocode for SRM Algorithm

Step 1: Initialise image I and estimated segments Q
Step 2: DI = {the 4-connectivity adjacent pixels}
Step 3: D̄I = sort(DI , f )
While D̄I �= ∅
for i = 1 to |D̄I | do
Step 4: if (((P(R(p′i)

, R(pi)) == true) and (R(p′i)
�= R(pi)))

then merge regions (R(p′i)
, R(pi))

3.5. Evaluation Mechanism

We give a qualitative and quantitative (confusion matrix)
evaluation approach as a measure of performance of the
two methods described in this work. The qualitative
evaluation which is the visual comparison is presented
in Sections 4.1 and 4.2. The quantitative evaluation is
presented in Section 4.3. In this work, we considered
the confusion matrix validation technique. We repeated
the confusion matrix procedure n times, with n ∈ {3, 5},
where each n subsamples are used exactly once as the
validation data [28]. The idea is to evaluate the accuracy
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Accordingly, this step can only be carried out if the
matching procedure was already performed for the first
error image. Therefore, only areas that were not removed
during the first matching procedure are extended by
corresponding areas of the subsequent error images.
Otherwise, the noise (falsely detected areas) would cause
an enlargement of incorrectly detected areas. The red short
dashed rectangles in Figure 8 mark 2 examples of such
corresponding areas. Resulting areas that are too large
are removed from the error images In and In+1. This is
indicated by the areas in the right lower corner of error
image In in Figure 8. As can be seen, the resulting error
image In from Figure 8 is used as input (error image In) in
Figure 7. Without the extension of the areas, the midmost
candidate in Figure 7 would have been rejected.

As some real moving objects are sometimes not detected
in an error image as a result of an inaccurate optical flow
calculation or (radial) distortion, the temporal matching
would fail. This could already be the case if only one
area in one error image is missing. Thus, candidates that
were detected once in 3 temporal succeeding error images
and 4 greyscale images (original images), respectively, are
stored for a sequence of 3 error images subsequent to the
image where the matching was successful, cf. Figure 9(a).
Their coordinates are updated for the succeeding error
images by using the optical flow data. As a consequence,
they can be seen as candidates for moving objects in
the succeeding images, but they are not used within the
matching procedure as input. If within this sequence
of images a corresponding area is found again, it is

stored for a larger sequence of images (more than 3) and
its coordinates are updated for every succeeding error
image. The number of sequences depends on the following
condition:

ξ =

{
c+c̄
c−c̄ | c �= c̄
2c̄ | c = c̄,

(13)

where c is the number of found corresponding areas and
c̄ is the number of missing corresponding areas for one
candidate starting with the image where the candidate
was found again. If ξ < 0 ∨ ξ > 10, the candidate is
rejected. Moreover, the candidate is no longer stored if it
was detected again in 3 temporal succeeding images. In
this case, it is detected during the matching procedure.
An example concerning to this procedure is shown in
Figure 9(b). As one can imagine, error image In in
Figure 9(a) is equivalent (except area-extension) to In+1
in Figure 7, whereas error image In in Figure 9(b) is
equivalent to In+2 in Figure 9(a).

For a further processing of the data, only the position
(shown as small black crosses in the left lower corners of
the rectangles in Figures 7 and 9) and size of the rectangles
marking the candidates are of relevance. Thus, for every
error image the afore mentioned information is stored
for candidates that were detected during the matching
procedure, for candidates that were detected up to 3 error
images before and for candidates that were found again
(see above). On the basis of this data, candidates that are
very close to each other are combined and candidates that
are too large are rejected.
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(b)

Figure 9. Preventing rejection of candidates for moving objects that were detected only in a few sequences. (a) Storage of candidates
for which a further matching fails. These candidates are marked by a blue dotdashed rectangle. The green dashed rectangle marks a
candidate for which a corresponding area was found again and the red short-dashed rectangle marks a candidate with successful matching.
(b) Storage of candidates for which a corresponding area was found again. The 2 areas drawn with transparency in error image In indicate
the position of the candidates, but they are not part of the error image.

level (hit rate) of the algorithms (entropy and SRM) in the
following context.

• True positives (TP): The number of drivable pixels
correctly detected (correct matches).

• True Negatives (TN): The non-matches pixels that were
correctly rejected.

• False Positives (FP): The proposed pixel matches that
are incorrect.

• False Negatives (FN): The proposed pixel matches that
were not correctly detected.

Thus, the accuracy (acc %) is given as;

Acc =
TP + TN

TP + TN + FP + FN
× 100% (12)

4. Experimental Evaluation

The focus of this work is to enhance the visual capability
of autonomous robots in dynamic underground terrains,
by identifying drivable regions through cummulative
processing of mine frames.

4.1. Experiment 1: 2D Qualitative Observations on
Underground Mine Terrains

In the experiment, different test cases of mine frames
were carefully chosen from publicly available mine frames
[24] and on a stream of images captured from a local
mine using common photo cameras. The test cases are
representative of different regions, such as the shaft, stope
and gallery, in an underground mine environment.

Figure 13(a) presents the intermediate and final results
obtained using the entropy model. The first row of Figure
13(a) comprises of original mine frames, the second row
presents the observation using the entropy filter while
the third row consists of the corresponding thresholding
results using the Otsu method. The last row presents
the RGB representation of the final classification with the
upper part (red region) as non-drivable and the lower part
(green region) as the drivable part.

Figure 13(b) presents the qualitative detection results
on mine frames using the SRM algorithm. The first
row presents the original mine frames. The second
row presents the results of the clusters generated for
regions with homogeneity, with the drivable part mostly
at the base region. The third row presents the RGB
representation of the drivable regions extracted for
corresponding frames. The base (green colour) region
indicates the drivable region while the upper (red colour)
region represents the non-drivable region. It is clear from
these results that SRM has the ability to reconstruct the
structural components and retain clusters of the mine
images that are closer to the robot’s view. One can see that
pixel regions closer to the robot’s view tend to form most
of the drivable region.

Figure 13(c) presents the qualitative comparison of entropy
and SRM on some mine frames. The first row presents
the original mine frames while the second row are
the detections using the entropy model. The last row
presents the results obtained using the SRM algorithm for
corresponding mine frames.

(a) 2D Results for Entropy Model

(b) 2D Results for SRM Model

(c) Qualitative comparison of Entropy and SRM

Figure 13. 2D Drivability Results on Underground Mine Terrain

4.2. Experiment 2: 2D and 3D Qualitative Observations on
Underground Tunnel Terrains

Experiment is conducted on a stream of underground
tunnel images captured with the aid of the 3D XBOX kinect
sensor. The underground images comprise rough and
dynamic tunnel images as presented in Figures 14 and 15
respectively. For space management, only a few frames
are presented. Figures 14 and 15 show the 2D and 3D
qualitative results of rough and dynamic tunnel images
using the entropy and SRM models.

It is important to note that when constructing 3D imagery
of a scene, the 2D information provides a valuable starting
point. The cartesian coordinate in three-dimensions
(x, y, z) helps to specify each pixel point uniquely and
reveals the ground truth of the image classification in
reality. On a three-dimensional cartesian coordinate
system, the x and y axis gives the pixel value information
while the third, z, axis depicts the depth information.
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(a) Tunnel frame (b) 2D entropy (c) 3D entropy (d) 2D SRM (e) 3D SRM

(f) Tunnel frame (g) 2D entropy (h) 3D entropy (i) 2D SRM (j) 3D SRM

(k) Tunnel frame (l) 2D entropy (m) 3D entropy (n) 2D SRM (o) 3D SRM

(p) Tunnel frame (q) 2D entropy (r) 3D entropy (s) 2D SRM (t) 3D SRM

Figure 14. 2D and 3D comparison of Entropy and SRM Models on Rough Tunnel Frames

The depth cue provides useful information about the 3D
scene of the image classification as regards the floor, wall
and roof region of the tunnel frame. Thus, it creates an
accurate understanding of where an autonomous robot
should navigate in real time.

4.3. Experiment 3: Quantitative Evaluation of Ground Truth
Obtained for the Underground Terrains

In this section, we present the quantitative results of the
two terrains (mine and tunnel), based on the applied
algorithms. We conducted experiments to evaluate
the quantitative performance of both entropy and SRM
approaches to drivability. We utilised the confusion matrix
validation process n times (n ∈ {3, 5}). In the experiment
conducted, we randomly hand-labelled pixel positions
with the aid of an automated code (10 pixels per time for
n-fold validation, making 30 pixels per frame [30 frames =
900 pixels] for 3-fold and 50 pixels per frame [30 frames =
1500 pixels] for 5-fold ). The correctness of the pixel (i, j) is
evaluated based on its current classification position(x, y)
in the detected frame relative to its position (x, y) in the
original frame. The estimated confusion matrix validation
accuracy is the overall number of correct classification
divided by number of instance in the image-data Id. Table
1 shows the quantitative performance of the algorithms
with n = 3 and n = 5. One can see that the entropy
method has a higher accuracy in underground tunnels
classification than in underground mines classification.
This is partly due to the fact that underground mines
are very unstructured compared to tunnels, which are
relatively smoother. However, one can arguably conclude
that the SRM method outperforms the entropy method in
almost all scenarios.

5. Comparative Evaluation of Drivable Detection Systems

Since there is no common set of image data of similar
terrain for the different existing techniques, comparison
between different detection approaches may be difficult.
However, we compare some existing techniques relating
to image segmentation and drivable detection systems
and explain how our proposed approach show promising
results. The detail is presented in the subsequent sections.

5.1. Experiment 1: Benchmarking the Proposed Model with
Publicly Available Images and Methods

To validate the performance of our detection algorithm,
publicly available images and methods are used as a
benchmark [7, 9]. Figure 16 shows the input images
(tunnel frames and ground based unstructured road
frames) and their corresponding detection results using
the entropy and SRM methods. It is worth mentioning
that our results for the input images, using the entropy and
SRM algorithms, provide an alternate method for drivable
region detection on the frames. Furthermore, there are
no 3D results for the tested frames as we did not have
access to depth maps of the images which provide critical
information for the 3D image visualisation.

5.2. Quantitative Comparison of Existing Approaches with the
Proposed Method

We also evaluated the quantitative performance of related
existing approaches to detection and compare with our
proposed methodology. Table 2 presents the quantitative
evaluation result of the images used for benchmarking in
Figure 16. It also shows that our proposed approach shows
improvements on the study of drivable detection systems.
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(a) Tunnel frame (b) 2D entropy (c) 3D entropy (d) 2D SRM (e) 3D SRM

(f) Tunnel frame (g) 2D entropy (h) 3D entropy (i) 2D SRM (j) 3D SRM

(k) Tunnel frame (l) 2D entropy (m) 3D entropy (n) 2D SRM (o) 3D SRM

(p) Tunnel frame (q) 2D SRM (r) 3D SRM (s) 2D SRM (t) 3D SRM

Figure 15. 2D and 3D Qualitative SRM Results on Tunnel Frames

Correctly Incorrectly Accuracy
Terrains Algorithms n-fold classified classified of

confusion matrix pixels pixels detection
validation (TP, TN) (FP, FN) (%)

3 520 380 57.78
Entropy

Underground 5 815 685 54.33
mines 3 745 155 82.78

(30 image frames) SRM
5 1200 300 80.00
3 2250 750 75.00

Entropy
Underground 5 3970 1030 79.4

tunnels 3 2750 250 91.67
(100 image frames) SRM

5 4480 520 89.60

Table 1. Comparing Drivability Analysis of Underground Terrains Using Entropy and SRM Algorithms

Terrain Algorithm n-fold validation Correct classification Incorrect classification Accuracy (%)
3 96 24 80.00

SVM [9]
Publicly 5 170 30 85.00

Available 3 97 23 80.83
Image SRM
Frames 5 175 25 87.50

3 90 30 75.00
Entropy

5 154 46 77.00
Multiple 3 99 21 82.50

Segmentation [7] 5 177 23 88.50

Table 2. Quantitative Results of Validating SRM and Entropy with Existing Approaches
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(a) Tunnel frame (b) Multiple segmentation result (c) Entropy result (d) SRM result

(e) Tunnel frame (f) Multiple segmentation result (g) Entropy result (h) SRM result

(i) Unstructured road (j) SVM result (k) Entropy result (l) SRM result

(m) Unstructured road (n) SVM result (o) Entropy result (p) SRM result

Figure 16. Validating our Approach with Publicly Available Image Frames and Methods

5.3. Comparison of Common Drivable Detection Systems with
Our Proposed System

We compare existing methods of detection systems
with our proposed approach. Table 3 presents the
features comparison of related detection approaches
with our proposed method. It also reveals how
our proposed approach contributes to the body of
knowledge on drivable region detection in underground
and ground-based terrain, as earlier revealed in Figure 16.

6. Summary and Conclusion

This work has demonstrated the feasibility of enhancing
robots’ capability of identifying drivable regions in
underground terrains. The statistical approaches, entropy
and SRM algorithms, are investigated as means of
identifying drivable regions in underground terrains
because they show promise in their statistical feature
property. These methods, especially SRM, exhibit a
peculiar mix of statistics and algorithmics with a low
segmentation flaw, both quantitatively and qualitatively
as revealed in the experiment. The methods also have
the tendency to offer a reasonable overhead for robots’
memory in real time. Different regions of the mines
representing a wide variety of terrains ranging from the

stope, shaft and gallery were investigated. We also
conducted an experiment on a stream of underground
tunnel image frames captured using the XBOX Kinect
sensor and further benchmarked our approach with
publicly available images and methods.

Using the entropy approach, the computed local entropy
gives useful textural information about the pixels’
distribution. The entropy returns probabilities of the
randomness of the pixel,pi, grey tone within a fixed
window. The probabilistic textural information was used
in the underground image classification together with
Otsu thresholding. The SRM algorithm, on the other hand,
is able to re-construct the main structural components of
the underground mine imagery by a simple but effective
statistical analysis. The SRM method worked well on a
variety of mine and tunnel frames tested as shown in
Figures 13(b), 14 and 15. The detection accuracy of our
approach is reliable with over 80% accuracy as shown
in Tables 1 and 2. It can be seen from the results that
the two regions (drivable and non-drivable) were most
clearly distinguished with the SRM method. Furthermore,
integrating the depth maps from the XBOX Kinect 3D
sensors in the 3D visualisation representation also reveals
the level of accuracy of the image classification as shown
in Figures 14 and 15.
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S/N Features Road Detection using Surface Layout Underground Terrain Drivable
Hybrid Features [9] Extraction[7] Detection System

1 Environment Road images Ground based Underground Terrain
2 Data used Real-life data Real-life data Real-life data
3 Vision dimension 2D 2D & 3D 2D & 3D
4 Classification algorithms SVM Multiple-Segmentation Entropy and SRM
5 Evaluation technique Qualitative Qualitative & quantitative Qualitative (visual inspection)

& quantitative
6 Nature of Terrain Unstructured Unstructured Rough and Unstructured

Table 3. Comparison of Existing Detection Systems with the Proposed Approach

The major focus in this work is feature extraction and
classification for front view drivable region detection in
2D by augmenting with 3D results. This would enhance
autonomous robots’ visual capability to identify drivable
regions in underground environments. This research work
is an advancement on an earlier conducted research [29]
in terms of 3D visualisation with the aid of the 3D XBOX
kinect sensor, usage of a better real life tunnel observations
as well as benchmarking and comparison of features in
existing detection systems.

The result of this work is a useful application that
would accelerate further motion and path planning
(control and mechanical decisions) for autonomous robot
navigation in underground environments. However,
the current classification can still be improved upon by
utilising more machine learning algorithms and more
sophisticated cameras, for example a laser scanner, for
better performance and future adoption.
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