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Abstract

The development of algorithms to efficiently determine an optimal path through a complex environ-

ment is a continuing area of research within Computer Science. When such environments can be

represented as a graph, established graph search algorithms, such as Dijkstra’s shortest path and A*,

can be used. However, many environments are constructed from a set of regions that do not conform

to a discrete graph. The Weighted Region Problem was proposed to address the problem of finding the

shortest path through a set of such regions, weighted with values representing the cost of traversing

the region.

Robust solutions to this problem are computationally expensive since finding shortest paths across a

region requires expensive minimisation. Sampling approaches construct graphs by introducing extra

points on region edges and connecting them with edges criss-crossing the region. Dijkstra or A* are

then applied to compute shortest paths. The connectivity of these graphs is high and such techniques

are thus not particularly well suited to environments where the weights and representation frequently

change.

The Field D* algorithm, by contrast, computes the shortest path across a grid of weighted square

cells and has replanning capabilites that cater for environmental changes. However, representing an

environment as a weighted grid (an image) is not space-efficient since high resolution is required to

produce accurate paths through areas containing features sensitive to noise.

In this work, we extend Field D* to weighted simplicial complexes – specifically – triangulations in

2D and tetrahedral meshes in 3D.

Such representations offer benefits in terms of space over a weighted grid, since fewer triangles can

represent polygonal objects with greater accuracy than a large number of grid cells. By exploiting

these savings, we show that Triangulated Field D* can produce an equivalent path cost to grid-based

Multi-resolution Field D*, using up to an order of magnitude fewer triangles over grid cells and

visiting an order of magnitude fewer nodes.

Finally, as a practical demonstration of the utility of our formulation, we show how Field D* can

be used to approximate a distance field on the nodes of a simplicial complex, and how this distance

field can be used to weight the simplicial complex to produce contour-following behaviour by shortest

paths computed with Field D*.
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Chapter 1

Introduction

Navigation through an environment is a skill that human beings learn as they grow and explore the

world. Experienced travellers, who know the terrain they are navigating, will avoid dangerous and

difficult terrain to make their journey safer and more predictable. With the advent of increasingly

sophisticated navigation systems, there is a growing need to codify these human intuitions in soft-

ware systems that can adapt to changing environments and circumstances. A navigator’s behaviour is

influenced by their objectives while traversing the terrain and the characteristics of the terrain. Conse-

quently, an understanding of the space is important to facilitate travel through safe and advantageous

regions and to avoid dangerous or difficult terrain.

Navigation routes can be represented as a mathematical graph, a representation consisting of a set

of nodes and edges connecting these nodes. Graph theory is a fundamental area of mathematics, and

powerful algorithms exist that operate on graphs. Specifically, the Shortest Path Problem is an area

of graph theory where algorithms are developed to find the shortest path through a graph of weighted

edges, such that the summed weight of the edges on the resulting path is minimal. By weighting differ-

ent edges expensively or inexpensively, these algorithms can be made to select different routes based

on characteristics within an environment. A common example is that of a road network: edges repre-

senting roads with congested traffic can be expensively weighted, while roads with free-flowing traffic

can be weighted inexpensively. Such a formulation results in shortest path algorithms optimising the

final route to avoid roads with congested traffic. Prominent examples include the Floyd-Warshall

[50, 147, 114], Bellman-Ford [10], Dijkstra, [37] and A* [61, 101] algorithms.

The above-mentioned algorithms assume a complete understanding of the weighting and structure of

the environment. In practice, a priori conditions are not always known and can only be discovered

and updated during navigation of the environment. Such requirements motivated the development

of dynamic replanning algorithms that replan routes when new information about the environment is

discovered during navigation. D* Lite [86] is an algorithm that can handle replanning requirements

efficiently.
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In the road example above, the decision of which route to take is based on a changing representation of

physical conditions within the environment. Thus, behaviour emerges in a bottom-up manner from the

weighting system, rather than being decided upon in a top-down manner by a controlling intelligence.

Due to this bottom-up approach, shortest path planning can be said to fall within the area of Nouvelle

AI [21] where the Physical Grounding Hypothesis states that to produce intelligence, systems must be

grounded in the physical world, able to sense and respond to changing conditions.

These algorithms, in combination with graphs, provide elegant solutions to the shortest path problem,

when the routes in the environment can logically be reduced to nodes and edges. While structures

such as roads map very well to this requirement, finding shortest paths through weighted regions is

a more difficult problem. The Weighted Region Problem has been posed as the task of finding the

shortest path through a set of weighted polygons within a plane, where each polygon is weighted with

the cost of travelling through it.

Finding shortest paths through weighted regions is important because representing an environment

as a collection of regions is both convenient and compact. For example, in the field of Geographic

Information Systems, terrain data is frequently represented as a Triangulated Irregular Network (TIN),

since the representation of a set of triangles is far more compact than an image-based Digital Elevation

Model (DEM) represented by height values on a regular grid. A compact terrain representation is not

only desirable but critical in scenarios where computer memory is limited. Autonomous Robots for

example, are required to operate with both limited power supply and memory resources that must be

shared amongst other critical components. As a concrete example, the Mars Opportunity Rover has a

main memory of 128MB of DRAM and 256 MB of secondary flash memory, which is also used for

taking high-resolution photographs and operating scientific instruments.

Exact solutions to the Weighted Region Problem are computationally expensive. An alternative, inex-

act approach introduces extra points on region boundaries and links these points with edges through

the region interior. This creates a searchable graph which graph algorithms can operate on, and also

allows the specification of an error bound related to the degree of sampling. However, this approach

is expensive in terms of memory due to the region sampling strategy.

The need for more efficient solutions motivated the introduction of approximate Weighted Region

algorithms most notably the Field D* algorithm. Field D* [49] operates on a grid of weighted cells,

essentially an image. While graph-based algorithms compute the cost of travelling across a weighted

edge to a node, Field D*, by contrast, computes the cost of travelling across a weighted cell to a node.

This formulation requires minimising a cost function expressing the costs of a continuous range of

paths across a cell. The basic Field D* algorithm suffers from the storage issues related to resolution,

since the data that it operates on is an image. Further work on Field D* [47] extends the algorithm

to multi-resolution grids to increase computational efficiency and decrease space requirements, with

minor reductions in accuracy. Experiments show that this representation can halve the time taken by

Field D* to find a path, while only at 13% of the resolution of a uniform grid.
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The core contribution of this thesis is an extension of Field D* to weighted simplicial complexes. A

simplex is the general term for a triangle in 2D and a tetrahedron in 3D, and a simplicial complex is

a collection of these structures linked together at their vertices. They may also be called triangle or

tetrahedral meshes. 2D Polygons can be exactly decomposed into triangles and their generalisation

in higher dimensions, the polytope, can be exactly subdivided into simplices. By contrast, an exact

subdivision of polytopes by finite numbers of hypercubes is not generally possible. Therefore, in

practice, a grid representing a planar polygonal subdivision will always contain a degree of geometric

error due to its approximation of these structures. However, extending Field D*’s cost functions to

simplices elimates geometric error from Field D*’s approximation of the Weighted Region Problem.

Additionally, simplicial complexes offer advantages over grid-based, and even multi-resolution grid-

based representations since simplices can represent irregular features with greater accuracy and fewer

elements compared to a grid. These advantages in representation lead to time and space improvements

over multi-resolution Field D* in environments where features are irregular and not grid-aligned by

reducing the number of elements considered by the algorithm.

Our development of Field D* arose from an exploration of a novel Spatial Awareness Framework

codifying information about the width, curvature and logical connections within polygonal regions

along either side of a skeleton, or medial axis. As we were interested in providing this information to

autonomous agents in a bottom-up manner, the requirement for a pathfinding algorithm to navigate an

environment of weighted regions naturally arose from the need for agents to favour or avoid specific

areas.

To demonstrate the utility of our extensions, we show how Field D* can be used to compute an

approximate distance field on the vertices of a simplicial complex. A distance field describes the

distance at a particular point from important features in an environment and was first represented

with 2D pixel or 3D voxel grids. These structures typically require high resolution to represent an

environment and a simplicial complex offers a space efficient alternative. We show how this distance

field can be used to induce contour-following, obstacle avoidance behaviour when finding paths with

Field D*.

1.1 Contributions

The contributions of this thesis are four-fold:

• An extension of Field D* to 2D weighted triangulations based on a linear algebra formulation.

We show how our extension improves upon a previous triangle implementation and how using

a simplicial complex as a representation offers significant benefits over a multi-resolution grid

in terms of time and space.
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• An extension of Field D* to weighted simplicial complexes and 3D weighted tetrahedral meshes

in particular. Our extension is expressed using linear algebra. As examples, we show how Field

D* can find the shortest path through the vascular system of a patient, as an aid to endovascular

surgical planning, as well as establishing the best path through a complex oceanic environment.

We also perform experiments showing how many of Field D*’s side cases do not contribute

significantly to the final path cost.

• A novel technique for calculating an approximate distance field on simplicial complexes using

Field D*. This offers space benefits over voxel grid or octree techniques.

• A novel Spatial Awareness Framework for providing autonomous agents with information about

the intrinsic qualities of the space that they navigate in.

1.2 Thesis Structure

This thesis is structured as follows:

• Chapter 2 surveys pathfinding literature, describing basic pathfinding on graphs using algo-

rithms such as Dijkstra and A*, and the use of dynamic replanning on these structures to ac-

commodate changes within the environment as a robot or agent travels along a path. A discus-

sion of the Weighted Region Problem follows, describing the various approaches and algorithms

proposed to solve it. We contrast these approaches and algorithms, showing how they are useful

in different circumstances, before motivating our reasons for extending the Field D* algorithm.

• Chapter 3 documents the foundations of the Field D* algorithm, describing how it evolved from

basic path-planning algorithms such as Dijkstra, A* and D* Lite. The Field D* algorithm itself

is described in detail, showing how the Field D* cost functions can be developed from a simple

summation of edge weights in algorithms such as A*, to finding a path that minimises the cost

of travelling across a weighted grid cell. Algorithms that build on Field D*, such as Multi-

resolution Field D* and an approximate extension to 3D grids, 3D Field D* are also described.

• Chapter 4 describes our extension of Field D* to 2D triangulations using linear algebra and

shows how all the Field D* cost functions can be expressed in terms of a general cost func-

tion, which can be efficiently minimised. Our approach is compared with an existing extension

of Field D* to triangulations, Generalized Field D* [119], and we show that our formulation

provides performance benefits. We demonstrate how a triangulated version of Field D* re-

quires an order of magnitude fewer triangles compared to the number of grid cells required by

Multi-resolution Field D* to produce a similar path cost, documenting the time and space im-

provements. Some of the cases of the Field D* cost functions can be cached and we show how

these offer modest performance gains.
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• Chapter 5 describes our extension of Field D* to simplices in 3D and higher dimensions using

linear algebra. We show how Field D*’s cost functions separate into different cases. Similarly

to the 2D case, we present a general cost function, as well as more expressive version that can

represent more complex cases. An analyic solution is provided for the general cost function and

we show how Field D*’s various cost functions in 3D and higher dimensions can be expressed

in terms of this general cost function. We perform experiments in 3D, running pathfinding

queries through 3D medical data and a simulated ocean environment. Findings are presented

which show that many of the Field D* cost functions do not signicantly contribute to the final

path cost in 3D, which is significant to those seeking performance benefits.

• Chapter 6 describes how Field D* can be modified to create a distance field on the nodes of a

simplicial complex. We identify features for which a distance field is to be computed and extract

an initial set of nodes. Field D* is adapted to perform a Dijkstra’s shortest path expansion on

this set. Path extraction is then performed to connect each node in the simplicial complex with

a point on the feature boundary. This distance field is used to weight the simplicial complex to

enable contour-following behaviour by Field D*.

• Chapter 7 concludes this work as well as listing areas of Future Work.

• Appendix A describes our exploratory Spatial Awareness Framework, detailing its construction

and describing experiments that show how autonomous agents using this framework can im-

prove their behaviour. The need to develop a pathfinding component motivated our extension

of the Field D* algorithm.

• Appendix B develops the mathematics and analysis surrounding the cost functions presented in

Chapter 5.
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Chapter 2

Pathfinding Literature Survey

Pathfinding is an important application of graph theory which aims to provide computers with rep-

resentations for comprehending an environment and algorithms for navigating within it. Computers

are by their very nature designed to perform logical and arithmetic operations, and thus knowledge

of the environment must be distilled into a numerical representation, and the task of navigating that

environment into a sequence of logical operations.

Graphs are often used to formally model such environments. A graph is a mathematical abstraction

modelling the relations between a set of nodes, or vertices. Relations are modelled as edges connecting

two vertices together. A numeric value may be associated with edges, expressing the cost of travelling

on them. Similar values may also be associated with nodes, to represent the cost of travelling through

them. A typical example is a road network, where graph edges represent roads, and graph nodes

represent road intersections.

Once this graph has been constructed, an algorithm can be designed to find paths within it. While it

is possible for an arbitrary path to be chosen through the graph, it is usually more advantageous to

select a path that optimises some metric. The shortest path is frequently chosen since it is generally

desirable to save both time and energy when travelling. More formally, the shortest path between two

nodes, consisting of linked edges, must minimise the summed edge costs. The shortest path problem

is often divided into four separate cases:

• single-pair shortest path problem (SPSP). Find the shortest path between a vertex v and one

other vertex v′.

• single-source shortest path problem (SSSP). Find the shortest path between a vertex v and all

other vertices. Dijkstra’s algorithm [37] solves this problem for graphs with positive edge-

weights, while the Bellman-Ford algorithm [10] caters for graphs which contain negative edge-

weights.
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• single-destination shortest path problem (SDSP). Find the shortest paths to one vertex v from

all other vertices. This is a reversal of the single-source shortest path problem.

• all-pairs shortest path problem (APSP). Find the shortest path between every pair of vertices in

a graph.

We only consider the single-pair shortest path problem. Graphs are appropriate for representing struc-

tures that map easily onto the node and edge concept. Edges can be weighted with some cost associ-

ated with travelling along the road. However, when the environment consists of weighted regions, the

mapping to nodes and edges is no longer self-evident. Moreover, algorithms designed to find shortest

paths on graphs may need to be adapted to operate on weighted regions.

In this chapter we begin by briefly describe mathematical graphs, followed by a summary of search

strategies outlined in [116]. Next, we describe basic pathfinding algorithms that operate on graphs:

Dijkstra’s shortest path and A*. Additionally we describe dynamic replanning algorithms – Lifelong

Planning A* and D* Lite – which replan paths when dynamic changes to the underlying graph occur.

The Weighted Region Problem [93] specifically poses the challenge of finding the shortest path across

a weighted planar subdivision. We proceed to describe algorithms which solve this problem:

• The Continuous Dijkstra Method [92], a Dijkstra-like algorithm that considers distance func-

tions between edges of the planar subdivision. Edges are placed on a priority queue and distance

functions on an edge are propagated to other edges.

• Steiner point techniques discretise the planar subdivision into triangles. Extra vertices – Steiner

points – are introduced along the triangle edges and connected to produce a graph on which

graph-based path-finding algorithms can be applied.

• The Field D* algorithm [49] discretises the planar subdivision into a weighted grid. The path

cost at a grid point is evaluated by minimising cost functions incorporating the cost of cell

traversal and the interpolated path costs of neighbouring grid points.

Next, we describe Finite Element Methods (FEM) a powerful technique for solving Partial Differential

Equations (PDE) over domains discretised into triangle and tetrahedral elements. Numeric techniques

approximate the PDE’s within elements, building a solution to a PDE over the whole domain. We also

briefly discuss algorithms and pathfinding techniques that rely on interpolation as well as algorithms

that solve the special case where weighted regions are either traversable or non-traversable.

Finally, we compare and contrast the three main techniques for solving the Weighted Region Problem.

Note that when discussing algorithmic computation complexity within this chapter, we use n to refer

to the number of vertices considered by the algorithm and k to refer to the degree of subdivision

introduced by Steiner point techniques.
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2.1 Graph-based pathfinding algorithms

This section describes pathfinding algorithms that operate on graphs with weighted edges. A brief

overview of mathematical graphs is followed by descriptions of Dijkstra’s shortest path, A*, Lifelong

Planning A* and D* Lite.

2.1.1 Graphs

A graph is a mathematical abstraction modelling the relationships between vertices or nodes. Prac-

tically, graphs can be used to model structures and problems in diverse domains such as Linguistics,

Chemistry, Physics, Biology, Mathematics and Computer Science. In this section we describe some

basic types and some concepts associated with them. For a more in-depth look at graphs, readers may

wish to consult [6].
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(a) Undirected Graph
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(b) Directed, Symmetric Graph

a

b

c

d

e

f

5

4

8

2

10

15

2

(c) Weighted, Undirected Graph

Figure 2.1: Three graph types.

A graph, G is composed of a set of vertices V , and a set of edges E, connecting the vertices together.

The graph may be referred to as an ordered pair G = (V,E).

If the edges of a graph have no orientation, connecting vertices in both directions, the graph is

said to be undirected. Figure 2.1a is an undirected graph. It consists of a set of six vertices V =

(a, b, c, d, e, f) and six edges E = ({a, b}, {a, c}, {b, d}, {c, d}, {d, e}, {c, f}, {e, f}).

A directed graph, also called a digraph, is an ordered pair D = (V,A) of a set of vertices V , and A, a

set of directed edges or arcs. An arc a = (x, y) connects x to y, but not y to x. A directed graph can

be symmetric if, for every arc a = (x, y) in D, a corresponding, inverted arc a′ = (y, x) also exists in

D. An example of a symmetric digraph is shown in Figure 2.1b.
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A weighted graph assigns numeric values to each edge. These weights describe the values of a prob-

lem represented by the graph. For example, weights may describe the cost of travelling along an edge,

the length of an edge, or an edge’s capacity to handle traffic.

Two vertices x, y ∈ V are said to be connected if G contains a path from x to y. If this holds for every

pair of distinct vertices, then G is said to be connected.

Graphs can be embedded onto surfaces in such as a way that edges do not cross nodes or other edges.

The intuition is that edges can only intersect at their endpoint nodes. A graph embedded on a plane

is called a planar graph. Euler’s formula describes a relation between the number of nodes V , the

number of edges E and the number of regions bounded by edges F as follows:

V − E + F = 2

A maximal planar graph is a graph that is planar, but to which it is impossible to add further edges

without violating its planar property. This is also referred to as a plane triangulation since each region

is bounded by three edges. Then, the number of edges and regions can be expressed in terms of V by

E = 3V − 6 and F = 2V − 4, respectively.

The graphs that we refer to in this work are undirected, weighted and connected.

2.2 Search Strategies

The single-pair shortest path problem finds the least cost path between two nodes on a weighted,

undirected graph. Finding this path requires an algorithm, or search strategy. In this section, we sum-

marise search strategies described by Russell and Norvig [116] that relate to pathfinding algorithms

we describe later. In particular we focus on breadth-first search, uniform-cost search and A*.

The authors discuss search strategies in terms of a complete search tree, a tree of depth m where each

tree node has exactly b children (the branching factor). They are evaluated in terms of four criteria:

• Completeness: Does the strategy find a solution if it exists?

• Time Complexity: How long does it take to find a solution, in terms of the parameters of the

search space.

• Space Complexity: How much memory is required to find a solution, in terms of the parameters

of the search space.

• Optimality: Will this strategy find the best solution if several different solutions exist?

The search strategies are further classified into two categories:
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• Uninformed: These strategies have no clear conception of the location of goal nodes relative

to the current node. As such, they blindly visit various branches of the search space until a

goal is reached. Examples include breadth-first search (BFS), uniform cost search (UCS) and

depth-first search.

• Informed. By contrast, informed strategies are provided with information about relative goal

positioning and use this information to move towards it. Examples include greedy search and

A*.

Breadth-first search visits nodes in order of their depth from the root, breaking ties arbitrarily, until a

goal node is found at depth d. Each node s is assigned a path cost g(s), and c(s, s′) is the assigned cost

of travelling to child node s′. If the goal node exists at the deepest level of the tree, BFS will consider

all possible paths. BFS is complete because it is guaranteed to find a goal. However, this strategy has

an expensive worst-case time and space complexity of O(bd). BFS is optimal if c(s, s′) = a ∀s, s′
and a ≥ 1, because g(s) becomes a non-decreasing function of node depth.

Uniform-cost search is a variant of BFS that allows the search problem to be specified as finding a goal

with the least-cost path from the root. UCS maintains a set of nodes from which further explorations

of the tree will be mounted. If the set’s least cost node is a goal, the search terminates, otherwise its

children are added to the set and the search continues. When c(s, s′) is positive, UCS is guaranteed to

find the cheapest solution first, and is optimal. As a variant of BFS its time and space complexity is

still O(bd).

Greedy search seeks to minimise the estimated cost of reaching a goal node. While UCS considers

the node with the least cost, greedy search always considers the node whose cost-to-goal estimate is

minimal. The function estimating this cost is called a heuristic function, usually denoted by h(s).

Greedy searches are useful because they often find goal states quickly, although the route taken to the

goal may not be optimal in terms of path cost. They also tend to search down to the maximum depth

of the tree m and therefore their time and space complexity is O(bm). They may also recurse down

infinite search trees and are therefore not complete.

A* [61] combines both the optimality and completeness provided by UCS, with the potential efficiency

of a greedy search. This is accomplished by combining the path cost and heuristic functions into a

directed function f(s) = g(s)+ h(s). By combining the path cost with an estimate, f(s) becomes an

estimate of the cost of a path to the goal travelling through s. Then, A* always searches the node with

the lowest total path estimate, f(s), in a manner similar to UCS. For A* to be complete and optimal,

h(s) must be admissable. This means that h(s) is restricted so that it never overestimates the cost to

the goal. An admissable h(s) confers admissability to f(s), so that f(s) in turn never overestimates

the total path cost.

A*’s time and space complexity depend on how well the heuristic, h(s), estimates the cost to the goal

from s. It can be shown that they are exponential unless the error in the heuristic function grows no
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faster than the logarithm of the actual path cost to the goal, h∗(s). Mathematically, this is expressed

as:

|h(s)− h∗(s)| ≤ O(logh∗(s))

In practice, most heuristics are proportional to h∗(s) and therefore A*’s time and space complex-

ity is usually exponential O(bd). However, the use of a good heuristic with A* offers far superior

performance over an uninformed search.

The discussion so far has dealt with search strategies on a complete tree, but they also can be applied

to undirected, weighted graphs. Similarly to the root tree node, a graph node can be selected as the

starting node of the search. The degree, or number of edges incident to a graph node is similar to a

tree node’s number of branches b, while the depth of the solution d is similar to the number of nodes

between the starting node and the goal. Then a BFS, for example, expands outward visiting nodes

until the goal is discovered. Since such a search may have to visit all nodes in the graph, the time and

space complexity is O(n) where n is the number of nodes or vertices in the graph.

2.2.1 Dijkstra’s Shortest Path Algorithm

The single-pair shortest path problem (SPSP) problem of graph theory poses the challenge of finding

the least cost path between two nodes in a graph of weighted edges. The resulting path, a consec-

utive list of edges proceding from the start node to the goal node, should minimise their summed

weights. Dijkstra’s Algorithm [37] solves the SPSP problem using a uniform cost-search strategy on

an undirected, connected graph with positive edge weights.

For each node s, the algorithm maintains the cost of travelling to that node from the start node, g(s).

Additionally, two sets of nodes are maintained, the CLOSED and the OPEN set. The cost of nodes in

the CLOSED set are considered to be final, while those in the OPEN set are still subject to change.

All nodes are initially placed in the OPEN set, with a cost of∞, except for the start node sstart which

is assigned a path cost g(sstart) = 0.

During the node expansion phase of the algorithm, the node s with the lowest path cost, g(s) is

removed from the OPEN set and its cost is propagated to its neighbours. In Algorithm 1, this takes

place in the UpdateNode function. The cost, g(s′), of each node s′ neighbouring s, is calculated by

adding g(s) to the cost c(s, s′) of travelling along their connecting edge. This new cost, g(s)+c(s, s′)

replaces g(s′) if it is smaller, and s is set to be the predecessor pred(s′) = s of s′. One iteration of

this process is referred to as a node expansion.

Once node expansion has occurred, s is transferred to the CLOSED set and will never again be placed

in OPEN. Then, the node in the OPEN set with the least path cost is removed and chosen as s. If

s = sgoal, or there are no more nodes in the CLOSED set, this phase of the algorithm terminates.

Figure 2.2 illustrates three iterations of the algorithm.
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Algorithm 1 Dijkstra’s Algorithm. g(s) is the path cost at node s, while c(s, s′) is the cost of travelling

the edge between nodes s and s′. pred(s) returns the node from which s derives its cost, while nbrs(s)

is the set of nodes neighbouring s. OPEN is the priority queue of non-finalised nodes, ordered by path

cost, while CLOSED is the set of nodes whose path cost is finalised.

1: function UPDATENODE(s, s′) ⊲ Update the s′ cost and insert on the priority queue

2: if g(s) + c(s, s′) < g(s′) then ⊲ Can the current path cost g(s′) be improved?

3: g(s′)← g(s) + c(s, s′) ⊲ Yes, assign the new path cost.

4: pred(s′)← s ⊲ Set s to be the predecessor of s′

5: OPEN.Insert(s′, g(s′)) ⊲ Insert s′ into OPEN with priority g(s)
6: end if

7: end function

8: function DIJKSTRA(sstart, sgoal)

9: g(sstart)← 0 ⊲ Path cost of the start node is zero

10: pred(sstart)← sstart ⊲ Predecessor of start node is itself

11: OPEN← ∅ ⊲ Initialise the OPEN set

12: OPEN.Insert(sstart, g(sstart)) ⊲ Insert sstart with priority g(sstart).
13: CLOSED← ∅ ⊲ Initialised the CLOSED set

14: while OPEN 6= ∅ do ⊲ Node Expansion Phase

15: s← OPEN.Pop() ⊲ Pop node with lowest path cost

16: CLOSED← CLOSED ∪ {s}
17: if s = sgoal then

18: break ⊲ The goal has been found

19: end if

20: for each s′ ∈ nbrs(s) do ⊲ Iterate over the neighbours of s
21: if s′ /∈ CLOSED then ⊲ Ignore nodes in the CLOSED set

22: if s′ /∈ OPEN then ⊲ Initialise any unexplored nodes

23: g(s′)←∞
24: parent(s′)← NULL
25: end if

26: UpdateNode(s, s′)
27: end if

28: end for

29: end while

30: PATH = {sgoal }
31: s← sgoal

32: while s 6= sstart do ⊲ Path Extraction Phase

33: PATH = PATH ∪ {s}
34: s← pred(s)
35: end while

36: end function

If the goal has been found, the path extraction phase can take place. Starting at the goal node, the

path back to the start node is found by selecting the predecessor of the current node. Space-efficient

implementations may wish to avoid the space used to store a predecessor. In this case, the path may

be extracted by, starting with the start node, recursively selecting the cheapest neighbouring node as
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(a) First Iteration: A popped, moved to CLOSED. B,C, F added to

Priority Queue.
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(b) Second Iteration, B popped, moved to CLOSED. D,E added to

Priority Queue.
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(c) Third Iteration, C popped, moved to CLOSED. M added to Prior-

ity Queue.

Figure 2.2: Three Iterations of Dijkstra’s algorithm. The lowest priority node on the queue is popped and

moved to the CLOSED set. Neighbours of the popped node have their path costs/priorities updated and are

moved from the OPEN set to the priority queue.
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the next node on the path until the goal node has been reached. If multiple neighbours share the same

cost, implying that there are multiple shortest paths to the goal, the tie may be broken arbitrarily.

The original algorithm did not order OPEN, yielding O(V 2) computational complexity, where V is

the number of nodes in the graph. Fredman and Tarjan [51] introduced a priority queue to sort nodes

on OPEN, yielding a running time of O(E + V logV ), where E is the number of edges in the graph.

On a planar graph, we can re-express this complexity in terms of the number faces F bounded by

the edges, through the use of Euler’s formula. Re-arranging so that we have E = V + F − 2, and

substituting yields O(V + F − 2 + V logV ) which simplifies to O(F + V logV ). If the graph is a

maximal planar graph, or a grid, E and F are linear in terms of V and the complexity expressed as

O(V logV ), or O(n logn).

2.2.2 A*

A* [61] is a best-first search algorithm that combines Dijkstra’s algorithm with a heuristic function.

The heuristic, h(s), estimates the costs of travelling from s to the goal node. Then, a directed cost

function f(s) = g(s) + h(s), illustrated in Figure 2.3, sums the path cost g(s) and heuristic h(s) at

node s. As mentioned earlier, f(s) estimates the cost of a path to the goal through node s.

Nodes are ordered in a priority queue in a manner similar to Dijkstra’s algorithm. However, they

are ordered by f(s) rather than their path cost g(s). By incorporating the heuristic into the priority

ordering, nodes with a cheaper heuristic gravitate towards the front of the queue and are considered

earlier than other nodes. Therefore, the heuristic focuses the direction of the search towards the goal.

The A* algorithm documented in Algorithm 2 differs from Dijkstra in the ordering of the priority

queue by f(s).
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Figure 2.3: In this example, the A* algorithm finds a shortest path between A and K. The priority of node G,

f(G) is the sum of its path cost along ABEG, g(G) and a heuristic estimate of the path cost between G and

K, h(G). The heuristic estimate must be shorter than the actual path cost from G to K, for instance the path

cost of travelling along GHK.
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A*’s behaviour depends on the heuristic that it uses. A* is optimal if the heuristic is admissable. This

means that the heuristic must underestimate the distance to the goal. Thus, if c∗(s, ggoal) is the actual

cost of travelling from s to the goal, then the following must hold for all s: h(s) ≤ c∗(s, ggoal). By

contrast, an inadmissable heuristic overestimates the h(s) term and, as the g(s) term is exact, this

has the effect of encouraging the algorithm to consider nodes with low h(s) values. This forces the

algorithm towards the goal, ignoring side paths that may contain the shortest path. Consequently, an

inadmissable heuristic may result in a sub-optimal path, but this situation may be useful when a fast,

instead of an optimal solution, is required.

An important class of heuristic function are the consistent heuristic functions. These satisfy the fol-

lowing criterion: h(s) ≤ c(s, s′) + h(s′) where s is closer to sgoal than neighbour s′. This implies

that the estimated cost of reaching sgoal from s is not greater than the estimate cost from s′, added to

the cost of travelling between s and s′. Consistent functions are also called monotonic. Consistency

implies admissability, but the reverse does not necessarily hold.

If A* uses a consistent heuristic, it will never consider a node more than once. This means that,

once a node has been placed in the CLOSED set, it need never be considered again. This property

can be used to optimise the implementation. Line 24 of Algorithm 2 discards neighbours that are in

the CLOSED set for example, but should be removed if the heuristic is not consistent. Additionally,

A* can be transformed to a Dijkstra’s shortest path algorithm with reduced cost function c′(s, s′) =

c(s, s′)− h(s) + h(s′).

Thus, the time complexity of A* depends on the heuristic. A pathalogical heuristic can result in

an exponential worst-case complexity. By contrast, a heuristic which estimates the distance to goal

perfectly, can produce O(V ) worst-case complexity, although is is not usually possible to construct

a perfect heuristic. A zero-heuristic h(s) = 0 ∀s reduces A* to Dijkstra’s algorithm with O(E +

V logV ) worst-case complexity. Additionally, a consistent heuristic allows A* to be transformed to a

Dijkstra’s shortest path, also with O(E + V logV ) worst-case complexity.

A popular heuristic is the Euclidean distance between the current and goal node: h(s) = α‖s−goal‖
where α is a scaling constant, set to the cost of the most minimally weighted edge, divided by its

length. This heuristic results in the algorithm favouring nodes that are physically closer to the goal

during node expansion. When s is closer to the start node, the heuristic dominates f(s) since g(s) is

smaller and h(s) larger, but as the search gets closer to the goal, g(s) becomes dominant.

Other distance heuristics may be more appropriate to the underlying graph. If the graph is a grid, the

Manhattan distance, which sums distances between vertical and horizontal coordinate components is

better, as it is only possible to travel along vertically and horizontally oriented edges. The Manhattan

distance is formulated as h(s) = |sx−goalx|+|sy−goaly|. Both Euclidean and Manhattan heuristics

are consistent.

A particularly strong property of A* is that it is optimally efficient. This means that, given a heuristic

h(s), there is no other algorithm that expands fewer nodes. For this reason, A* is a popular, widely
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Algorithm 2 The A* algorithm

1: function UPDATENODE(s, s′)
2: if g(s) + c(s, s′) < g(s′) then

3: g(s′)← g(s) + c(s, s′)
4: pred(s′)← s
5: if s′ ∈ OPEN then

6: OPEN.Remove(s′)
7: end if

8: OPEN.Insert(s′, g(s′) + h(s′))
9: end if

10: end function

11: function A*(sstart, sgoal)

12: g(sstart)← 0
13: pred(sstart)← sstart

14: OPEN← ∅ ⊲ Initialise the OPEN set

15: OPEN.Insert(sstart, g(sstart) + h(sstart))
16: CLOSED← ∅ ⊲ Initialised the CLOSED set

17: while OPEN 6= ∅ do

18: s← OPEN.Pop()
19: CLOSED← CLOSED ∪ {s}
20: if s = sgoal then

21: break ⊲ The goal has been found

22: end if

23: for each s′ ∈ nbrs(s) do

24: if s′ /∈ CLOSED then

25: if s′ /∈ OPEN then

26: g(s′)←∞
27: parent(s′)← NULL
28: end if

29: UpdateNode(s, s′)
30: end if

31: end for

32: end while

33: end function

used algorithm.

The disadvantage of A* is that, as an adaption of BFS it can use large amounts of space, exhausting

available memory long before an actual solution is found. Iterative Deepening A* (IDA*) [75] and

Simplified Memory Bounded A* (SMA*) [115] both attempt to bound A*’s memory use, at the cost

of computational complexity.
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Algorithm 3 Lifelong Planning A* supporting functions

1: function CALCULATEKEY(s)

2: return [min(g(s), rhs(s)) + h(s);min(g(s), rhs(s))]
3: end function

4: function INITIALISE

5: U = ∅
6: for all s ∈ S rhs(s) = g(s) =∞
7: rhs(sstart) = 0
8: U.insert(sstart, [h(sstart); 0])
9: end function

10: function UPDATENODE(u)

11: if u 6= sstart then

12: rhs(u) = mins′∈pred(u)(g(s
′) + c(s′, u))

13: end if

14: if u ∈ U then

15: U.Remove(u)
16: end if

17: if g(u) 6= rhs(u) then

18: U.Insert(u,CalculateKey(u))
19: end if

20: end function

21: function COMPUTESHORTESTPATH(sstart, sgoal)

22: while U.TopKey() < CalculateKey(sgoal) OR rhs(sgoal) 6= g(sgoal) do

23: u = U.Pop()

24: if g(u) > rhs(u) then

25: g(u) = rhs(u)
26: for all s ∈ succ(u) UpdateNode(s)
27: else

28: g(u) =∞
29: for all s ∈ succ(u) ∪ {u} UpdateNode(s)
30: end if

31: end while

32: end function

2.2.3 Lifelong Planning A*

Lifelong Planning A* (LPA*) [73] is an incremental version of A* that allows A* to replan the shortest

path when changes in graph topology and cost occur. This is important because, in real-life scenarios,

environments often do not remain static. While it is possible to replan a path when the environment

changes, this is expensive if the environment changes continually. Also, if only parts of the environ-

ment are changing, it would be more efficient to recalculate only those parts of the shortest path that

have been affected by the environmental changes. Lifelong Planning A* (LPA*) solves this problem.

LPA* differs from A* in a number of ways and new notation must be introduced to explain it. S is the

set of nodes in the graph and sstart ∈ S and sgoal ∈ S are the start and goal nodes of an LPA* search.
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Algorithm 4 Lifelong Planning A* main function

1: function LPA*(sstart, sgoal)

2: Initialise()

3: while true do

4: ComputeShortestPath(sstart, sgoal)

5: Wait for changes in edge costs

6: for all directed edges (u, v) with changed edge costs do

7: Update the edge cost c(u, v)
8: UpdateNode(v)
9: end for

10: end while

11: end function

succ(s) ⊆ S is a set denoting the successors of s ∈ S, while pred(s) ⊆ S denotes the predecessors

of s ∈ S. The terminology of successors and predecessors is utilised to distinguish the incoming and

outgoing edges on a directed graph, but for the undirected graphs, they can be considered the same.

c(s, s′) is the cost of moving from node s to s′ ∈ succ(s). g∗(s) denotes the start distance of node

s ∈ S, which is the cost of the shortest path from sstart to s. g∗(s) satisfies the following relationship:

g∗(s) =

{

0 if s = sstart

mins′∈pred(S)(g
∗(s′) + c(s′, s)) otherwise

LPA* maintains two estimates of the start distance of a node s, g(s) and rhs(s). When LPA* first

calculates the shortest path, the g-values of nodes are calculated in precisely the same order as those

of an A* search. However LPA* utilises the relation between these values in subsequent replanning

searches. rhs(s) is a lookahead value that is used to determine whether g(s) must be updated. All

rhs(s) values must satisfy the following relationship:

rhs(s) =

{

0 if s = sstart

mins′∈pred(S)(g(s
′) + c(s′, s)) otherwise

The purpose of the lookahead is to detect if structural changes have been made in the surrounding

topology that invalidate the g(s) estimate. If g(s) = rhs(s), node s is said to be locally consistent,

if g(s) > rhs(s) it is overconsistent and if g(s) < rhs(s) it is underconsistent. When nodes are

inconsistent, it means that the lookahead has found an updated path to node s. If overconsistent, it

implies that the path to s has become cheaper, while underconsistency implies that the path to s has

become more expensive.

In a similar fashion to A*, LPA* maintains a priority queue of nodes that must be expanded and their

path costs calculated. The set of nodes that are locally consistent are similar to the nodes in A*’s

CLOSED set in the sense that their values are considered to be final and require no further processing.

Thus, the OPEN priority queue contains all overconsistent and underconsistent nodes.
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Similarly to A*, LPA* recalculates the path cost g(s) of the priority queue node s with the minimum

key. The keys that order nodes in the LPA* priority queue are a tuple that bear similarity to the f(s)

used to order A*’s priority queue. The key of a node s is

k(s) = [k1(s), k2(s)] (2.1)

where k1(s) = min(g(s), rhs(s)) + h(s)

k2(s) = min(g(s), rhs(s))

Keys on the priority queue are ordered lexicographically. Thus k(s) ≤ k(s′) iff either k1(s) < k1(s
′)

or (k1(s) = k1(s
′) and k2(s) ≤ k2(s

′)). The first key component, k1(s) directly mirrors A*’s f(s)

values, since both g(s) and rhs(s) estimates correspond with A*’s g(s). The second tuple component

serves to break ties when the first tuple components are equal in favour of the tuple with the lowest

estimate.

The LPA* algorithm is shown in Algorithm 3 and 4. The Initialise function empties the priority queue

U and initialises the g(s) and rhs(s) of all nodes to infinity. It also inserts the start node sstart onto the

priority queue in an inconsistent state.

After initialisation, LPA* waits for changes in the underlying graph costs. The nodes affected by

these changes are modified by the UpdateNode function, which updates their rhs-values and key-

values. It also removes the nodes from the priority queue, and reinserts them if they are inconsistent.

The shortest path is then recalculated by calling ComputeShortestPath(), which expands nodes on the

priority queue according to the ordering of their keys.

If ComputeShortestPath() encounters a locally overconsistent node, the implication is that a new short-

est path to this node has been discovered and thus g(s) is set to be equal to the lookahead value rhs(s).

The neighbouring nodes then update their rhs(s) and key values, via the UpdateNode function, since

their consistency may be affected by the new value of g(s).

If ComputeShortestPath() encounters a locally underconsistent node, the implication is that the short-

est path to this node has somehow become more expensive since the lookahead is less expensive. In

this case, g(s) is set to ∞ to make it either consistent or overconsistent. UpdateNode instructions

are issued to the surrounding nodes, as well as the previously underconsistent node to restore their

consistency.

The LPA* algorithm continues until two conditions hold: sgoal is locally consistent and the key of

the next node for expansion is greater than the key of sgoal. Similar to A* one can trace the shortest

path, starting with s = sgoal back to sstart by moving from current vertex s to the predecessor s′ that

minimises g(s′) + c(s′, s). Ties may also be broken arbitrarily.
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2.2.4 D* Lite

D* Lite [86] extends Lifelong Planning A* to perform dynamic path replanning in environments

where costs for large portions of the environment are unknown. As the agent or robot explores the

environment, these costs are discovered and require replanning of existing paths. This problem was

originally solved by D* or Dynamic A* [130], but D* Lite’s solution is regarded as simpler to under-

stand and implement.
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Figure 2.4: D* Lite initially finds a path KHDBA from goal K to start node A. In this example, an agent

then travels along the path ABD, examining the immediate environment for changes in cost, in this case edges

DG and DM . If node inconsistency results, D,G or M may be placed on the priority queue after which D*

Lite replans the path from K to D. As only a few nodes towards the end of the path are inconsistent, replanning

is a cheap operation.

The first major difference between D* Lite and LPA* is that D* Lite replans the path from the goal

to the start node, rather than from the start to the goal node in LPA*. The reason is that an initial

shortest path is calculated, the agent moves along that path and in doing so encounter changes in the

environment, as shown in Figure 2.4. When this occurs, a replan is initiated and the current node

becomes the start node.

Therefore the reversal of seach direction avoids replanning of sections of the path that have already

been travelled. Additionally, since only local changes to the environment near the start node are

applied, the algorithm need only recalculate the priority of nodes towards the end of the path. Conse-

quently, only a small section of the path needs replanning and replans become efficient.

Due to this change, successor nodes become predecessor nodes and vice versa. As the agent may start

with minimal information about the environment, the cost of travelling along unknown edges can be

set to some constant. These initial estimates of the edge costs may be naı̈ve, but the agent assigns

more realistic estimates as it travels to and encounters previously unknown parts of the environment.

The change in direction requires the heuristic to estimate the cost of travelling between a node and

the start node, instead of the goal node. Also, since the start node may change when replans occur,
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Algorithm 5 D* Lite supporting functions

1: function CALCULATEKEY(s)

2: return [min(g(s), rhs(s)) + h(sstart, s) + km;min(g(s), rhs(s))]
3: end function

4: function INITIALISE

5: U = ∅
6: km = 0
7: for all s ∈ S rhs(s) = g(s) =∞
8: rhs(sstart) = 0
9: U.insert(sgoal, [h(sgoal); 0])

10: end function

11: function UPDATENODE(u)

12: if u 6= sgoal then

13: rhs(u) = mins′∈succ(u)(g(s
′) + c(s′, u))

14: end if

15: if u ∈ U then

16: U.Remove(u)
17: end if

18: if g(u) 6= rhs(u) then

19: U.Insert(u,CalculateKey(u)
20: end if

21: end function

22: function COMPUTESHORTESTPATH(start, goal)

23: while U.TopKey() < CalculateKey(sstart) OR rhs(sstart) 6= g(sstart) do

24: kold = U.TopKey()

25: u = U.Pop()

26: if kold < CalculateKey(u) then

27: U.Insert(u,CalculateKey(u))
28: end if

29: if g(u) > rhs(u) then

30: g(u) = rhs(u)
31: for all s ∈ pred(u) UpdateNode(s)
32: else

33: g(u) =∞
34: for all s ∈ pred(u) ∪ {u} UpdateNode(s)
35: end if

36: end while

37: end function

the priority of nodes on the priority queue may be incorrect as the heuristic values involved in their

calculation are no longer valid.

To solve this, D* Lite recognises that when an agent has moved along a path from node s to s′, the

priorities of existing elements on the queue can be decreased by h(s, s′) to ensure that they will be

consistent with the new heuristic values used to calculate queue priorities. To allow this, a consistent
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Algorithm 6 D* Lite Main Function

1: function D*LITE(start, goal)

2: slast = sstart

3: Initialise()

4: while sstart 6= sgoal do

5: sstart = arg mins′∈succ(sstart)c(sstart, s
′) + g(s′)

6: Move to sstart

7: Scan graph for changed edge costs

8: if Any edge costs have change then

9: km = km + h(slast, sstart)
10: slast = sstart

11: for all directed edges (u, v) with changed edge costs do

12: Update the edge cost c(u, v)
13: UpdateNode(v)
14: end for

15: ComputeShortestPath(sstart, sgoal)

16: end if

17: end while

18: end function

heuristic is required. h(s, s′) must now always be positive and satisfy the following

h(s, s′) ≤ c∗(s, s′)

h(s, s′) ≤ h(s, s′) + h(s, s′′)

where s, s′, s′′ ∈ S and c∗(s, s′) is the shortest path between nodes s and s′. However, rather than

subtracting this value from existing queue elements, it is added to new elements when they are placed

on the queue via the use of variable km (Algorithm 5 Line 2, Algorithm 6 Line 9), which contains the

accumulated h(s, s′) values from replans as the agent moves towards the goal.

D* Lite therefore plots an initial naı̈ve estimate of the path from the start node to the goal node. As

the algorithm moves away from the start node and detects the actual costs within the environment,

the path is replanned and the current position is set to be the start node. This process continues until

the goal node is reached or another goal is selected. Alternatively, if D* Lite is provided with correct

environment costs, it performs a path planning operation equivalent to A*.

2.3 Region-based pathfinding algorithms

Here, we describe pathfinding algorithms designed to find shortest paths between two points in a

collection of weighted regions. We begin by presenting the Weighted Region Problem which describes

this challenge formally, followed by a discussion of Steiner point techniques which discretise regions

into graphs and apply standard graph-based pathfinding algorithms. Lastly, we discuss the Field D*
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algorithm, which uses interpolation to specify cost functions over weighted grid cells.

2.3.1 The Weighted Region Problem

The Weighted Region Problem (WRP) [93] poses the problem of finding a least cost path between

two points in a plane, subdivided into weighted polygons. In a general sense, a path through this

environment consists of a number of line segments. The cost of travelling along these line segments is

their length multiplied by the weight of the polygon that they are travelling through. To find the least

cost path, one must find the set of line segments connecting the start and goal whose summed cost is

minimal.

One of the earliest solutions for the WRP was the Continuous Dijkstra Method [92]. The Continuous

Dijkstra Method is conceptually similar to a Dijkstra search on a graph. However, instead of main-

taining the path cost at nodes in a graph, Continuous Dijkstra maintains distance functions over edges

within a graph which model how the distance to other edges changes. The algorithm also maintains an

“event” queue, equivalent to the priority queue in Dijkstra, in which optimal edge intervals are placed

for consideration. When “events” are removed from the queue, the optimal intervals are propagated

to other edges. Thus, it conceptually behaves as a wavefront that propagates continuous fields of cost

outwards from a source node.

θ1

θ2

u1

u2

Figure 2.5: Snells law states that u1 · sin(θ1) = u2 · cos(θ2) where θ1 and θ2 are the angles the rays make with

the edge, and u1 and u2 are the different medium densities.

This algorithm is guaranteed to find a path whose cost is within (1 + ǫ) of the actual least cost path

where ǫ is the level of the algorithm’s precision. The authors show that the time complexity of the

algorithm is O(E · S), where E is the number of “events” in the Continuous Dijkstra Method and S

is the complexity of a numeric search to find a (1 + ǫ) shortest path from the start to the goal through

a sequence of edges within the triangulation.

The authors exploit the fact that an optimal path will bend according to Snell’s Law of Refraction
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when the path exits one polygon and enters another. This law states that the direction of a ray of light

travelling through a medium of some density will change direction in a predictable manner when it

enters another medium of differing density (see Figure 2.5). The above-mentioned numerical search

utilises a form of binary search in conjunction with Snell’s Law of Refraction to find a shortest path

through the triangulation. The authors evaluate the time complexity of E and S and show that the

total time complexity of the algorithm is O(n8L), where L is the related to ǫ and defines the precision

required of the solution.

(a) (b)

Figure 2.6: The propagation of pathnet rays, represented by dashed edges result in node connections repre-

sented by dotted edges. (a) Pathnet rays that pass on either side of a node result in that node being connected to

the node the rays emanated from. (b) If both rays intersect the same edge, but the angle of one ray is too steep,

a node is created between the ray intersections and connected to the emanating node.

The Pathnet [90] algorithm adapts The Weighted Region Problem [93] by constructing a graph G =

(V,E) on the vertices V of a triangular subdivision of a plane S. The angle range around a node v ∈ V

is discretized into k evenly-spaced directional cones. Ray pairs, corresponding to the cone boundaries

are projected outwards from a node, using Snells’s Law to modify their direction whenever a triangle

boundary is crossed. This projection continues until one of three conditions is met:

• The rays flow around a graph node, in which case an edge is created between this node and the

node from which the rays emanated (Figure 2.6a).

• The rays intersect the same edge, but one of them intersect the edge at too steep an angle. A

node is created between the ray edge intersections and connected to the original node with an

edge (Figure 2.6b).

• The rays encounter the environment’s boundary. No action take place in this case.

A Dijkstra or A* search is then constructed on the resulting pathnet. O(kn3) time is required to
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construct the pathnet with O(kn) space needed for the representation. An A* search on the resulting

pathnet would take O(kn log kn) time. The pathnet must also store the refracting paths in the edge

connecting two nodes.

2.3.2 Steiner Point Techniques

(a) (b)

Figure 2.7: Basic Steiner point subdivision schemes: (a) four points are distributed along each edge. (b) Shorter

edges are assigned fewer points compared to longer edges.

A simple and useful approach to the Weighted Region Problem is to subdivide the environment to

a particular resolution and use existing search algorithms on the subdivided representation. In this

section, we discuss techniques that introduce Steiner points, vertices not present in the original tri-

angulation, along triangle edges. These Steiner points are connected to adjacent nodes with edges

and pathfinding algorithms are invoked on the new graph. The Weighted Region Problem [93] per-

mits the specification of an error tolerance ǫ in the solution. Steiner point techniques also allow the

specification of an error tolerance ǫ that governs the number of points introduced along each edge.

Approximating weighted shortest paths on polyhedral surfaces [80] detail a number of strategies for

distributing points along triangle edges. The simplest strategy, called a fixed strategy, involves dis-

tributing k evenly spaced points along the edge (Figure 2.7a). This may provide too much resolution

in the case of small triangles. An interval scheme can improve upon the simple distribution by spacing

points along regular intervals. The authors suggests that the interval be |le|/(k + 1), where le is the

longest edge in the triangulation. In the case of small triangles (Figure 2.7b), this can reduce the num-

ber of points, thus reducing the time complexity, with minimal impact on accuracy. The third scheme

they propose is to use β-spanners to reduce the number of edge connections to individual Steiner

point in a bid to reduce the time complexity at the cost of accuracy. A β-spanner subdivides the space

around a Steiner point into cones. The Steiner points along adjacent triangle edges that lie within the

cone are considered and only the one that produces the least-cost path has an edge connected to the

original Steiner point.

Once the subdivision is complete, a Dijkstra can be run on the resulting graph. Depending on k, the

number of the Steiner points introduced, the running time will then be O(kn log kn). The error, ǫ, is

related to k, ǫ ∝ 1
k and thus the complexity can also be expressed as O(nǫ log n

ǫ ).
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Approximation algorithms for geometric shortest path problems [3] suggest a scheme for spacing

Steiner points along an edge based on the maximum distance from the edge to edges of incident faces.

The Steiner points are also prevented from being placed within a weighted radius of each node. This

radius is dependent on the maximum and minimum weights within the triangulation. They show that

this placement of Steiner points produces time complexity of O(nǫ log1
ǫ (

1√
ǫ
+ logn)).

The BUSHWHACK algorithm [134] uses a similar idea to the β-spanner to reduce the number of

edges in a graph. It uses a property of shortest paths within a triangular region, namely that two

shortest paths travelling through different faces will not intersect each other within the face interior.

Due to this it is possible, for any two consecutive Steiner points along an edge for which the path

distance from the start node is known, to constrain the possible edge connections to an opposing edge

to a defined range. BUSHWHACK maintains a dynamic interval Iv,e,e′ which is defined by a node v

on edge e and another edge e′ within a triangle. For every Steiner point v ∈ e that has been discovered

(assigned a path cost representing the distance from the starting node to v), Iv,e,e′ contains an interval

of Steiner points v∗ ∈ e′ that produce the least-cost path from the start node through v. Steiner

points that are not in this interval need not be considered and this reduces the overall connectivity

of the graph. The resulting time complexity is O(nǫ (log1
ǫ + logn)log1

ǫ ), improving upon the time

complexity of O(nǫ log1
ǫ (

1√
ǫ
+ logn)) in [3].

The BUSHWHACK algorithm is further refined here by Sun et. al [135] where the authors note

that the algorithmic time complexities presented in [93], [90], [3] and [134] all depend on constants

related to the geometric configuration of the problem. They present an adaptive discretisation scheme

that places Steiner points in such a way that the resultant time complexity is independent of the ratio

between the maximum and minimum triangle weights and also improve BUSHWHACK’s heuristics.

The techniques presented up until this point have focused on improving the running time by reducing

the log kn term of the O(kn log kn) time complexity. Approximate shortest path queries on weighted

polyhedral surfaces [2] improves these time complexities by introducing data structures that cache

path queries for both single-source queries (SSQ) and all-path queries (APQ). If it is known that only

paths from a single node will be calculated, an SSQ structure is created that can return the shortest path

in O(log1
ǫ ) time by using O( n√

ǫ
log1

ǫ ) space. An APQ structure can also be created from embedded

SSQ structures, returning the shortest path in O(q) time for O( (g+1)n2

ǫ3/2q
log4 qǫ ) space, where g is the

genus of the graph and q is some parameter acting as an upper bound on the query time.

Querying approximate shortest paths in anisotropic regions [25] note that the data structures pre-

sented in [2] depend on geometric parameters. They present a data structure independent of geo-

metric parameters that can return a shortest path from a fixed source in O(logρn
ǫ ) time in return for

O(ρ
2n4

ǫ2
(logρn

ǫ )
2) space, where ρ is used to parameterise a distance function.
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(a) Field D* (b) Multi-resolution Field D*

Figure 2.8: Examples of (a) Field D* and (b) Multi-resolution Field D*

2.3.3 Field D*

Field D* [48] is presented as an approximate solution to the Weighted Region Problem which finds

shortest paths on weighted grids. While graph-based algorithms only consider paths that traverse

across weighted graph edges, Field D* is able to consider paths that travel through grid cells.

Algorithms such as Dijkstra and A* operate on graphs consisting of edges and nodes. Node path costs

are calculated by adding adjacent node path costs to the traversal costs of the connecting edge. As

Field D* operates on a weighted grid, the traditional graph cost function is adapted to calculate the

cost of travelling to a node through a weighted grid cell or square. The Field D* cost function splits

into three cases, but the case providing the least cost can always be selected, based on the relative size

of cell surrounding weights.

Since the path can now originate from a continuous range of headings, the origin of such paths may not

lie on grid nodes, but rather a continuous range of points along a grid edge. Since path costs are only

stored at grid nodes, the path cost along a grid edge must be estimated, and Field D* accomplishes

this by interpolating the path costs of the nodes adjacent to an edge. Field D*’s operation is still based

on the traditional pathfinding techniques developed from Dikjstra and A*, but provides a way for

these algorithms to operate on a different underlying structure. Paths produced by Field D* can travel

through cells,as shown in Figure 2.8a. Therefore they are smoother and shorter than paths produced

by A* on grid edges, for example.

Field D* is an approximate solution to the WRP for two reasons. Firstly, the underlying weighted grid

representation can, in general, only approximate polygon regions, since an infinite number of grid

cells may be required to represent a polygon exactly. Therefore, Field D*’s solution to the WRP is
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subject to geometric error since grid cells will lie across polygon boundaries. An extended discussion

of this error is presented in Chapter 4. Secondly, Field D* linearly interpolates path costs along

grid cell edges and is therefore subject to interpolation error, the difference between the actual and

interpolated path cost at a point on a grid edge.

Field D* inherits from D* Lite [86], which in turn is derived from A* [61]. In Section 2.2.2 we

explained that A* with a consistent heuristic can be transformed into a Dijkstra’s shortest path algo-

rithm, with O(E+V logV ) worst-case time complexity where V and E are the number of nodes and

edges in a graph. As Field D* is built on A*, it also has this complexity, which can be re-expressed

as O(F + V logV ) where F are the regions in a planar graph. The planar graph in this case is a grid

and, since the number of cells F are linear in the number of nodes V , the complexity can be more

compactly expressed as O(n logn) where n = V . Field D* requires O(F + V ), or O(n), space to

represent the grid.

Large, uniform regions take up many grid cells, requiring space to represent and computational time

to evaluate their traversal costs. Field D* as a variant of A*, is inherently subject to the A*’s space

problems and highly sampled grids exacerbate this. Multi-resolution Field D* [47] aims to reduce

these time and space requirements by adapting Field D* to multi-resolution grids. Instead of a uniform

grid, the environment is represented with a region quadtree [118]. Large uniform regions can be

represented with large quadtree cells, while regions containing much variability can be represented

with the finer resolution of smaller quadtree cells, as shown in Figure 2.8b. Algorithms are presented

for propagating path costs between nodes that lie on cells of different resolution. In their experiments,

the authors show cases where Multi-resolution Field D* can improve performance over basic Field

D* by 1.8 times when the resolution of the underlying quadtree is 13% of that of the grid.

3D Field D* [23] extends Field D* to 3D weighted grids. One of Field D*’s’ cases is adapted to

operate on cube faces. The minimum of the function representing this case is approximated from

boundary conditions on face edges. The authors also integrate global scale costs into this cost function.

Generalized Field D* [119] extends Field D*’s cost function to arbitrary triangles. The triangles and

cost functions are defined in terms of their edge lengths and internal angles. The size of each triangle

can be arbitrary, so it is no longer possible to select which of the three cases to use beforehand. This

means that each case must be minimised, its cost evaluated and compared to the other cases before a

least-cost path to a node from across a triangle can be selected.

The extension to triangles is useful as the authors show that large areas in a grid can be represented

with a small number of triangles, as opposed to a large number of grid cells, with comparable accuracy

in path cost. However, this is only shown in one experiment which subdivided a uniform grid into

triangles and no comparison against Multi-resolution Field D* was performed. Each minimisation

produces two roots and the only presented technique for determining which root is the minima is

to evaluate the cost function with both roots. A naı̈ve implementation of the cost functions requires

trigonometric functions due to the use of internal triangle angles, therefore finding the least-cost path
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across a triangle requires much computation.

2.4 The Finite Element Method

Figure 2.9: A finite element domain Ω, consisting of the space between the outer boundary and a circular hole,

is partitioned into triangles by a Delaunay Triangulation. Functions defined over Ω are approximated over the

triangular subdomains with polynomial functions.

The Finite Element Method [149] (FEM) is a powerful technique for numerically solving boundary

and initial-value problems defined by partial differential equations (PDE). A distinctive feature of this

method is that the bounded domain Ω ∈ R
n over which the problem is solved is partitioned into many

smaller, non-overlapping subdomains, called finite elements. An example of a partitioned domain is

shown in Figure 2.9. Functions defined over Ω are locally approximated within these elements by

interpolation, typically using polynomial functions. These local approximations can also be said to be

piecewise approximations.

PDEs to which the method is applied are weakly formulated, by which it is meant that linear algebra

techniques are used to approximate the PDEs. A weak formulation does not require the PDE to hold

absolutely and this allows weak solutions to be obtained in cases where the PDE itself does not admit a

sufficiently smooth, differentiable solution. Additionally, a weak formulation allows the contribution

of each element to be summed to produce an integral representing the problem over the entire domain

Ω.

FEM has interesting parallels with the work in this thesis. Firstly, our extension of Field D* requires

partitioning environments into triangles and tetrahedra, similar to the way FEM partitions a domain

into elements. This is an important topic in FEM since “good” finite elements are required to generate

accurate solutions, especially when piecewise linear interpolation is performed over an element [122].

Delaunay triangulations and tetrahedral meshes are considered desirable [122, 124] since they ensure

that no point in the mesh is inside the circumcircle of any simplex. In practice, this means that a

Delaunay triangulation is unlikely to contain near degenerate (skinny) triangles.

Secondly, FEM and our implementation of Field D* both focus on solving local problems inside a

triangle or tetrahedron, while ultimately solving a problem in the original domain, or environment.
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In the case of FEM, a PDE is sampled at element nodes and these values are interpolated over the

element using polynomial functions. In this way, properties such as the stress or strain are evaluated

over the element via integration. While Field D* does interpolate path costs over an edge, it seeks to

find a least-cost path from this edge, over a uniformly weighted region, to a node: the cost function

attempts to find the minimum path that accomplishes this.

Furthermore, at the original domain level, FEM aims to evaluate a function over the domain. Field

D*, however, aims to optimise a path across a subset of the domain. Indeed, since it is a best-first

search algorith, Field D* attempts to visit as little of the domain as possible in order to obtain good

performance.

The mature mesh generation techniques FEM uses to partition domains are relevent to this work.

However, FEM element interpolation techniques are not applicable to Field D*, since their purpose is

to approximate a function over an element, rather than find a least cost path through it. Indeed, since

Field D* solves the Weighted Region Problem, a uniform cost is associated with a triangle region, for

instance. Also, since FEM evaluates the entire domain, it would require adaptation to function as a

single-pair shortest path algorithm, whereas Field D* already contains this capability.

2.5 Other algorithms of interest

In this section, we describe some other algorithms of interest. We begin by describing the Fast March-

ing Method class of algorithms, which approximate the Eikonal equation’s wavefront model over a

grid. Next, we describe algorithms that aim to solve the Weighted Region Problem over regions that

are either open or occupied.

Fast Marching Methods: Fast Marching Methods (FMM) are a group of algorithms that propagate

costs in a wavelike fashion over a discretised domain of points. They are derived from Classical

Hamilton Mechanics, and the Hamilton-Jacobi equation (HJE) [54], a partial differential equation

whose solution describes a trajectory requiring the least of amount of energy through a mechanical

system. The Hamilton-Jacobi-Bellman equation (HJB) [9] of optimal control theory [70] is a variant

which seeks to find a set of control laws, or actions changing the state of a system, satisfying some

optimality criterion.

Exact solutions to these equations are usually impossible. Therefore, they are discretised and solved

numerically, specifically with finite-difference methods, and more generally with finite-element meth-

ods [8, 38, 39, 45, 56, 79, 129].

Tsitsiklis [141] presents a technique for approximating the HJB, whereby the domain of the problem is

sampled as a grid. A value V (x) is associated with each grid node x. Values for V (x) are obtained by

evaluating an approximation function which interpolates the values of neighbouring grid nodes and,

incorporates the cost of travelling through x. Since V (x) is defined in terms of V (y) of neighbouring
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grid nodes y, an ordering exists between grid nodes and using this property, a Dijkstra-like algorithm

can be constructed. Numerical minimisation of the approximation function produces optimal values

for V (x).

The Fast Marching Method [121], a special case of Level Set Methods [105], is a numeric technique

approximating the Eikonal equation which describes how the boundary of a shape expands over time.

Tracking a moving boundary is complex, especially in higher dimensions. Therefore, the problem is

converted into a stationary problem by discretising the domain with a grid storing the time T (x) at

which the moving boundary intersects grid nodes x, and F (x), the speed of the boundary at x. T (x)

is calculated using upwind difference operators which interpolate the T (y) of neighbouring points y

and incorporate the speed F (x) of travelling through x. FMM [121] and Tsitsiklis’ approach [141]

are considered to be equivalent methods.

E* [109, 108] is a path planning algorithm based on FMM that is capable of finding smooth interpo-

lated paths over a time-crossing grid. A wavefront is propagated outwards from a goal node to the

entire grid using an upwind operator, thereby forming a navigation function [81]. Gradient descent is

used on the navigation function to follow the steepest, and therefore optimal, path to the goal. Simi-

larly to [141, 121], E* associates an effort or cost with travelling through a grid node, rather than a grid

cell or region. Consequently, the cost of travelling through a particular region or grid cell is dependent

on the node under consideration, rather than properties of the cell. As such, FMM formulations of the

path planning problem are related, but do not correspond to, The Weighted Region Problem. [108]

notes the existence of similarities and differences between E* and Field D* for example.

Konolige’s Gradient Method [74] uses classic grid-based planning to propagate costs over a grid and

then uses a function to interpolate between grid values and calculate the shortest path from start to

goal. While the resulting path is shorter than that on a grid, the initial node values are not as accurate

as they could be since the costs are calculated from travelling along grid edges, but not through grid

cells. The algorithm also has no replanning capability.

Path planning through open/closed space: Other algorithms exist that plot paths through environ-

ments composed of open space and obstacles. An environment consisting of polygonal obstacles

can be represented with a Visibility Graph [88], where edges are constructed between vertices unob-

structed by polygons. A Dijkstra or A* search can then be executed on the resultant graph. However,

the number of edges in the environment can grow quadratically with the number of vertices [98].

Path planning in Triangulations [68] represents an environment with a Constrained Delaunay Tri-

angulation, initially calculating the shortest path on the adjacency graph of the triangulation. The

connected triangles of this path form a channel which is employed in a funnel algorithm [24] to find

the actual shortest path within the channel.

Near optimal hierarchical pathfinding [19] smooths the path produced by an A* search on a grid by

iteratively examining a node and removing the node’s parent from the path if the node has line-of-sight
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Figure 2.10: In the Theta* algorithm, a parent node does not need to be connected to the child node, it must

merely be visible. For example A1 can be a parent of D5, while A3 cannot be a parent of D6 because there is

a CLOSED cell between them.

to the node’s grandparent. This can still be suboptimal if a node has visibility of another ancestor that

is further away.

Theta* [98] is an extension of A* that provides any-angle path-planning on grids consisting of OPEN

and CLOSED cells. Previous extensions of A* use visibility graphs on environments consisting of

open space and obstacles. In these algorithms, heading changes of the path occur on the corners of

obstacles. Visibility graphs can be expensive as they can grow quadratically with the number of cells

in the environment. Theta* combines the visibility graph ideas with implementations of A* in a grid

environment.

Theta* allows any visible node to be the parent of a node (there are no CLOSED cells between a node

and the parent). For example, in Figure 2.10, the parent of D5 can be A1 because the nodes have

visibility of each other, while A3 and D6 do not. Consequently, each node expansion performed by

Theta* is linear in the number of grid cells due to line-of-sight checks, yielding O(n2) time complex-

ity. The resulting path segments can span many grid cells. Any-angle Theta* [98] reduces this to a

constant factor by propagating the visible angle range from a node’s parent, but the actual time and

path cost are slightly higher than basic Theta*.

Nash et. al also compare Basic Theta* to Field D* on uniform grids. In their experiments on environ-

ments composed of OPEN and CLOSED cells in a 500x500 grid, Field D*’s runtime is between three

and 1.7 times greater than Basic Theta* when the environments are 0% and 30% blocked respectively.

Also, Field D* requires between ten and 1.4 times as many node expansions when environments are

0% and 30% blocked, but it must firstly be noted that in the 0% case, many cells are considered

by a single Theta* node expansion, and secondly the authors do not optimise their implementations.

Theta* also manages to avoid the “jitter” that Field D*’s path direction’s experience as they transition

between cells, an artifact produced by Field D*’s linear interpolation assumption.

These techniques find smooth shortest paths, but the environments in which they operate lack the

richness of a weighted region representation.

A subsequent development of Theta* [35] describes an extension of Basic Theta* to non-uniformly
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weighted grids based on accumulating grid cell costs along rays cast between the current node and

all possible parents – once again this implies that a node expansion may be linear in the number

of cells. Their work shows that in randomly weighted environments Field D* finds shorter paths

in 78% of Theta*’s time, while in environments where 50% of the cells are randomly weighted,

the other 50% are weighted with the cheapest cost and there are large regions of contiguous cost,

Field D* produces equivalent path costs to Theta* in slightly shorter time. Unfortunately, the values

provided are averaged over 100 random environments and paths, with no indication of variability,

so it is difficult to make an informed comparison. It would be interesting to see Theta* extended to

triangulations, along with more extensive benchmarking.

Any-angle path planning on non-uniform costmaps [27] incrementally extends Theta*’s non-uniform

weighted grid extension by calculating both an arithmetic mean and weighted over the ray cast by

Theta*. The arithmetic mean averages the grid cell costs encountered by the ray, while the weighted

mean accumulates the horizontal or vertical contribution – depending on a Bresenham-style decision

– of a cell’s cost to the overall ray cost. Unfortunately, the authors do not perform a comparison with

non-uniform Theta* mentioned above. The path costs produced by the weighted mean are equivalent

to those produced by arithmetic mean and require 10% more time to calculate.

2.6 Discussion

The time and space requirements of the algorithms discussed in this section are tabulated in Table 2.1.

Traditional graph-based pathfinding algorithms such as Dijkstra and A* are well understood and ef-

ficiently find shortest paths. However, they are designed to operate on graphs and the paths that they

produce are constrained to graph edges. If the underlying environment is not fully represented by the

graph then the resultant path will, firstly, be longer than it should be and, secondly, the path will make

sharp heading changes when following graph edges.

The algorithm for solving the Weighted Region Problem presented in [93] is a theoretically rigorous

contribution and lays the foundation for later work, especially in recognising the usefulness of Snell’s

Law of Refraction in solving the problem. This solution also allows the specification of an error

tolerance, ǫ, that the solution must adhere to. Unfortunately, the algorithm’s time complexity of

O(n8L) precludes a practical implementation.

The strategy employed by the Steiner point techniques [80] presented in Section 2.3.2 is to discretise

a triangle face by introducing extra graph nodes along edges and graph edges across the face as a

pre-process. These techniques also allow the specification of an error tolerance ǫ which is related to

the number of Steiner points introduced along each edge. In general the time complexity of an A*

search on the resultant graph is O(kn log kn) where k ∝ 1
ǫ

The advantage of the Steiner point techniques in their original presentation [80], is the simplicity in

creating and searching on the graph, and the fact that the resultant path will conform to an error tol-
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Algorithm Time Complexity Space Requirements

Weighted Region Problem [93] O(n8L) O(n4)

Pathnet [90] O
(

n
ǫ log n

ǫ

)

O
(

n3

ǫ

)

Approximating weighted

shortest paths on [80] O
(

n
ǫ log n

ǫ

)

. O
(

n2

ǫ

)

polyhedral surfaces

Approximation algorithms

for geometric shortest [3] O
(

n
ǫ log1

ǫ (
1√
ǫ
+ logn)

)

. O
(

C nǫ log2
2
ǫ

)

path problems

Bushwhack [134] O
(

n
ǫ (log1

ǫ + logn)log1
ǫ

)

Approximate shortest path O
(

log1
ǫ

)

O
(

n√
ǫ
log1

ǫ

)

queries on weighted [2]

polyhedral surfaces O(q) O
(

(g+1)n2

ǫ3/2q
log4 qǫ

)

Querying approximate

shortest paths in [25] O(logρn
ǫ ) O( (g+1)n2

ǫ3/2q
log4 qǫ )

anisotropic regions

Weighted Theta* [35] O
(

n2
)

O (n)

Field D* [49] O (n logn) O (n)

Table 2.1: Comparison of the time and space requirements of the various algorithms that solve The Weighted

Region Problem.
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erance. One disadvantage is that decreasing the error tolerance, and by implication k, increases both

the time and space complexity of the algorithm. Thus, [80, 3] present point placement techniques that

reduce the number of introduced points while still maintaining the error bounds. [80] also identifies

ways in which the number of edge connections to a particular node can be reduced without affect-

ing the accuracy of the resultant solution. [134, 135] exploit this concept of edge reduction in their

BUSHWHACK algorithm, which modifies Dijkstra’s algorithm to limit the number of edge connec-

tion choices across a triangle face. [2] and [25] present data structures that can answer an all-path

query in constant time, but these require substantial increases in space requirements.

Thus, much of the subsequent work on Steiner point techniques has been involved in reducing the

computational expense of reducing the allowed error. This often increases either the complexity of

the underlying discretisation [80, 3], the complexity of implementation [134, 135] or the space re-

quirements [2, 25].

The Pathnet algorithm [90] shares some similarities with the Steiner point techniques in that it con-

structs a graph by sampling paths through a weighted triangulation and then performs a Dijkstra or A*

search upon the resultant graph. Interestingly, [80] claim that Pathnet has O(kn3) time complexity,

where k is the number of sampling cones around a point when constructing the graph. This is not

correct: The graph is constructed in O(kn3) time, but an A* search would take O(kn log kn) time

complexity, and consequently, would have a similar time complexity to the Steiner point techniques.

The majority of Steiner point techniques operate on a weighted triangulation operating on a 2D plane,

or weighted polyhedral surfaces. [3] also presents a placement algorithm for weighted tetrahedra.

This placement yields a running time of O( n
ǫ3

log1
ǫ (

1√
ǫ
+ logn)). The n

ǫ3
term makes this discretisation

expensive in terms of time and space.

By contrast, Field D* [49] operates on a weighted grid and provides new cost functions to calculate the

cost of travelling across the cells of this grid. An A* or Dijkstra algorithm can then use these new cost

functions to perform a shortest path search in O(n logn) time. Field D* interpolates the path costs of

adjacent nodes to approximate the path costs of points on the connecting edge. Field D* is therefore

subject to interpolation error and may not always find the shortest path, but in practice finds paths

that are at least as short as those of an A* search on the weighted cell edges. Multi-resolution Field

D* [47] aggregates grid cells with the same weight together into one cell, reducing the computation

required when evaluating a shortest path. 3D Field D* [23] provides a partial extension of the Field

D* cost equations to 3D, while Generalized Field D* [119] extends Field D* to arbitrary triangles.

The main disadvantage of the Steiner point techniques is their pre-processing and space requirements,

since, to reach a specified error tolerance, an environment must be sampled as a pre-process before a

search can be performed. In contrast, Field D* can perform a search on the underlying weighted grid

without the need for pre-processing. The path produced by Field D* is approximate, as is the path

produced by Steiner point techniques, but Steiner point techniques have the advantage of being able

to place an upper bound on the error in the shortest path. Field D* also finds points on the boundaries
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of triangles to travel from, but this is achieved by minimising a cost function that interpolates the

path costs between nodes. Thus, Field D* achieves by computation what the Steiner point techniques

achieve by node placement, or extra space. This is desirable, given that memory access in modern

CPU’s is expensive compared to computation.

The fact that Field D* is built on D* Lite is another advantage in that the algorithm is specifically

designed to cater for scenarios where replanning occurs due to changes in the environment. Multi-

resolution Field D* was, in fact, created to cater for the limited memory available on robots by main-

taining a high-resolution environment in the robot’s immediate vicinity, and a low-resolution repre-

sentation further away. Therefore, Field D* is useful in cases where the underlying representation is

changing. The difficulty that Steiner point techniques face in these cases is that the graph on which

the search is performed must be resampled. It may be possible to only resample the parts of the envi-

ronment that change, but these techniques depend on geometric parameters such as the smallest angle

between adjacent boundary edges or the maximum integer coordinate of a vertex. To our knowledge,

no work has yet been performed on adapting Steiner point techniques to dynamic environments.

Field D* thus provides a useful alternative to Steiner point techniques in cases where memory is

constrained, precise error bounds are not required and the underlying representation is dynamically

changing.

2.7 Conclusion

This chapter describes the literature for finding shortest paths through graphs and weighted regions.

Graph-based search algorithms, while suitable for searches on graph structures, do not adapt directly

to weighted regions. The Weighted Region Problem [93] was posed specifically for the purposes of

finding shortest paths across a weighted planar polygonal subdivision. We classified the approaches

to solving this problem into two different categories: Steiner point and Field D* techniques. Steiner

point techniques discretise weighted regions by introducing extra nodes and edges. Field D*, in

contrast, introduces cost functions for finding the shortest paths across the cells of a weighted grid.

Steiner point techniques are able to place a bound on the error in their shortest path approximation,

but this requires a pre-process and varying degrees of extra space. While Field D* places no such

theoretical bounds on its shortest path, the resultant path is at least as short as that produced by an

A* search on the weighted cell edges and is able to pass through these cells. Field D* has also

been developed to operate on dynamically changing and multi-resolution environments. This makes

it an appropriate solution to the Weighted Region Problem in cases where space is at a premium, a

theoretical bound is not required, and the environment may be changing dynamically.

In the following chapter, we describe the foundations of the Field D*, the algorithm itself, and some

variants.
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Chapter 3

Field D* Foundations and Variants

In this chapter we present the foundations of the Field D* algorithm and also describe relevent tech-

niques that build on Field D*. As is the case with most path-planning algorithms, Field D* has its

original basis in Dijkstra’s algorithm [37]. It incorporates the heuristic developed for A* [61], as well

as the replanning capabilities of Lifelong Planning A* [73] and D* Lite [86].

The Field D* algorithm [48] is described by showing how Field D* adapts traditional edge-based cost

functions to those operating across the faces of a weighted grid. Next, Field D*’s path-extraction

process is explained in detail, expanding the condensed description given here [48] and here [49].

A number of algorithms derived from Field D* are also covered. Multi-resolution Field D* [47] ex-

tends Field D* to multi-resolution grids while 3D Field D* [23] is an extension to 3D unit grids.

We note some of the problems that Field D*, Multi-resolution Field D* and 3D Field D* may en-

counter through their use of interpolation in Section 3.5. Finally, we describe Generalized Field D*,

an extensions of Field D* to arbitrary triangles.

3.1 Field D*

Graph search algorithms are appropriate when the search problem can be mapped to a graph structure.

This becomes more difficult when the problem is extended to finding the shortest path through a set of

weighted regions. Steiner point techniques, described in Section 2.3.2, address this problem by sam-

pling: Extra nodes are introduced within the weighted regions and new edges are introduced to con-

nect the additional nodes. This raises the computational complexity of the problem from O(n log n)

to O(k n log k n), where n is the number of original nodes and k relates to the degree of sampling.

The spatial complexity also increases due to the additional nodes and edges.

Field D* [49] adopts a different approach to the weighted region problem. Firstly, the problem is

restricted to finding a shortest path through a weighted uniform grid. The underlying structure, instead
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of being a mathematical graph is a weighted grid consisting of grid nodes and cells. Thus, instead of

being connected to each other through edges, nodes are connected to each other via adjacent, weighted

grid cells. Field D* calculates a shortest path through this grid structure, and while information about

the cost of the path is propagated and stored within the grid nodes, the path may travel through the

edges and interior of a grid cell.

3.1.1 Field D* Cell Cost Function

Field D* adapts the search algorithm in D* Lite [86] to operate on a weighted grid. In D* Lite, itself

derived from A* and Dijkstra’s algorithm, the path cost g(s) for a node s is derived from the path cost

g(s′) of its surrounding nodes s′ ∈ nbrs(s) and the cost of the connecting edge c(s, s′). This type of

configuration is show in Figure 3.1a and is expressed as:

g(s) = min[c(s, s′) + g(s′)] where s′ ∈ nbrs(s) (3.1)

s1s2s3

s4

s5 s6 s7

s8s

(a) Traditional

s1s2s3

s4

s5 s6 s7

s8s

sy

(b) Field D*

Figure 3.1: (a) In graph-based pathfinding, paths only travel along grid edges, while for (b) Field D*, the path

may originate on an edge and travel through a neighbouring cell

Field D* modifies the derivation of the cost. Instead of calculating the cost from a weighted edge,

it must calculate the cost of travelling through a weighted cell and thus the cost function becomes

more complicated. Two factors come into play here. Firstly, instead of travelling to the node across

a discrete edge, it is now possible to travel to the node from any point on the grid cell boundary, as

shown in Figure 3.1b. Secondly, since it is possible to travel from any point on the grid cell boundary,

the accumulated path cost g(sy) for some boundary point sy must be estimated from the values of the

surrounding nodes. Field D* accomplishes this by interpolating the path cost values of the two nodes

on either side of the boundary. So if s1 and s2 are the nodes on either side of the boundary, the path

cost for some point g(sy), 0 ≤ y ≤ 1 is estimated by linear interpolation as:

g(sy) = (1− y)g(s1) + yg(s2) (3.2)
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Thus, instead of iterating over graph edges adjacent to a node and choosing the edge that produces the

minimum cost, Field D* now needs to iterate over grid cells adjacent to a node, evaluating the least

cost path within each cell and the minimum cost overall. Function 3.1 then becomes:

g(s) = min
x,y

[bx+ c
√

(1− x)2 + y2 + (1− y)g(s1) + yg(s2)] (3.3)

where c is the weight of the cell, b is the weight of the adjacent cell and s1 and s2 are neighbouring

nodes of s that are adjacent to each other. A visual configuration of this function is shown in Figure

3.2a. Variables x and y parameterise vectors −→ss1 and −−→s1s2 respectively. Note that the cell is a unit

square and thus |s − s1| = |s1 − s2| = 1 and |s − s2| =
√
2. This function generalises the cost of

travelling across one half of the cell. The same function must be applied to the other half of the cell

to fully consider all least cost paths across the cell.

b

c

s s1

s3 s2

sy

sx

x
y

(a) General

b

c

s s1

s3 s2

(b) Trivial

b

c

s s1

s3 s2

sx

x

(c) Indirect

b

c

s s1

s3 s2

sy

y

(d) Direct

Figure 3.2: The (a) Field D* cost equation and its three sub-cases (b) Trivial (c) Indirect and (d) Direct
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The authors show in [49] that it is possible to eliminate a variable from Function 3.3 to produce three

sub-cases of the function. The first is the Trivial case, so named because the path travels directly

between nodes, does not require any minimisation of a variable to calculate the least cost path, and

produces paths similar to pathfinding algorithms on edge-based graphs. From the configuration in

Figure 3.2b these functions can be expressed as:

g(s) = min(b, c) + g(s1) (3.4)

g(s) = c
√
2 + g(s2) (3.5)

In the above functions, the first trivial path travels either from node s1, along the edge shared by the

cells with weight b and c to node s. The second travels from node s2 through the cell with weight c.

The second sub-case is the Indirect case, so named because the path starts at a node, then cuts across

the cell to the cell boundary before travelling to the destination node. They are expressed as:

g(s) = c
√

1 + (1− x)2 + bx+ g(s2) (3.6)

In the above function the indirect path travels from node s2 to some point on vector−→ss1, parameterised

by variable x. This configuration is shown in Figure 3.2c. The parameterisation of −→ss1 that produces

shortest cost path across the cell for this case depends on the differences between the weight c of the

cell being considered, and the weight b of travelling along the edge ss1 shared with the adjacent cell.

Minimising equation 3.6 in terms of x yields:

x = 1−
√

b2

c2 − b2
(3.7)

Note that Function 3.7 requires b < c to produce a real value for x. If b ≥ c, it would be cheaper to

travel directly throught the cell with weight c to node s and would devolve into the following case.

The third sub-case is called the Direct case, because the path travels from a point on the cell edge

directly across the cell in question. It is also the case in which the interpolation assumption of Field

D* is exercised since the cost of the point on the cell edge must be estimated. Setting f = g(s1)−g(s2)
to be the relative difference in node costs between s1 and s2, the function for this path is expressed as:

g(s) = c
√

1 + y2 + f(1− y) + g(s2) (3.8)

The path cost of a point sy on vector −−→s1s2 is estimated by linearly interpolating the values of g(s1)

and g(s2) along the vector with variable y. Thus, the function must be minimised in terms of both this

linear interpolation and the cost of travelling through the cell with weight c. Minimising Function 3.8
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in terms of y yields

y =

√

f2

c2 − f2
(3.9)

Algorithm 7 Field D*’s cost function. It can be used in any node-based planning and replanning

algorithms as long as the underlying data structure is a weighted grid.

1: function COMPUTECOST(s, sa, sb)
2: if sa is a diagonal neighbour of s then

3: s1 = sb; s2 = sa;

4: else

5: s1 = sa; s2 = sb;
6: end if

7: c is traversal cost of cell with corners s,s1,s2
8: b is traversal cost of cell with corners s, s1 but not s2
9: if min(c, b) =∞ then

10: vs =∞
11: else if g(s1) < g(s2) then

12: vs = min(c, b) + g(s1)
13: else

14: f = g(s1)− g(s2)
15: if f ≤ b then

16: if c ≤ f then

17: vs = c
√
2 + g(s2)

18: else

19: y = min(
√

f2

c2−f2 , 1)

20: vs = c
√

1 + y2 + f(1− y) + g(s2)
21: end if

22: else

23: if c ≤ b then

24: vs = c
√
2 + g(s2)

25: else

26: x = 1−min(
√

b2

c2−b2
, 1)

27: vs = c
√

1 + (1− x)2 + bx+ g(s2)
28: end if

29: end if

30: end if

31: return vs
32: end function

Similar to the indirect case, f < c must hold to produce a real value for y. Thus, Function 3.3 has

been reduced to three cases: Trivial, Indirect and Direct. The appropriate case depends on the relative

sizes of c, b and f and the pseudo-code for this is shown in Algorithm 7.

It is simple enough to know when to use the trivial case. If f ≤ 0 then the optimal path always travels
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from s straight to s1, because g(s1) ≤ g(s2) and |s− s1| < |s − s2| by Pythagorus. The cost of this

path will be min(c, b) + g(s1).

It requires more effort to determine when to choose the other two cases. In the direct case when f > 0,

g(s1) > g(s2). Thus, as f increases g(s1) increases relative to g(s2) and it becomes cheaper for the

path to travel from a point on the vector−−→s1s2 that is closer to s2. Indeed, if one examines Equation 3.9

it can be see that y, the value parameterising this vector increases as f increases since the denominator

decreases with increasing f .

In a similar manner for the indirect case, as b increases the value of x produced by Equation 3.7

decreases, since it becomes more expensive to travel along the bottom edge before cutting across the

cell to s2.

To choose between the indirect and direct cases, the authors begin by generalising Functions 3.6 and

3.8 to the form:

g(s) = c
√

1 + y2 + k(1− y) + g(s2) (3.10)

When attempting to solve Function 3.6, b is substituted for k and 1−x for y and for Function 3.8, f is

substituted for k. Note that when k = f = b, the costs produced by the two sub-cases are equivalent.

Thus, since the same equation is being solved for both cases, it is only necessary to solve for the edge

with the cheapest cost. If f < b then Function 3.8 will produce the cheapest cost, and vice versa.

Figure 3.3 illustrates this relation.

b

c

s s1

s3 s2

sy

sx

f
=

g
(s

1 )−
g
(s

2 )

y1− y
x1− x

Figure 3.3: Choosing between the Indirect and Direct sub-case depends on the relative sizes of b and f . If

b < f then it is cheaper to choose the bottom edge and the reverse holds if b > f .

In the case where b > c, Function 3.7 produces a complex root. Physically this means that there is no

point on the bottom edge that will produce a minimum cost, since it will always be cheaper to directly

travel through the cell and thus the cost for this case can be set to g(s) = c
√
2 + g(s2). The same

applies when f > c for Function 3.9.

42



3.1.2 Main Algorithm

The authors use D* Lite, described in Section 2.2.4 as their basic planning algorithm. The major

difference between the two algorithms is that the ComputeCost Function is used in D* Lite’s Up-

dateNode Function when iterating around a node and computing the least cost path to it. Field D* is

shown in 8.

Thus, Field D* is also based on a priority queue containing nodes. The node with the least cost

is popped from the queue and the cost of its children calculated via the use of the ComputeCost

Function. The children are then placed on the priority queue. This continues until the start node 1 is

reached.

3.1.3 Path Extraction

Once the start node has been reached, Path Extraction must be performed. In traditional pathfinding

algorithms based on node and edge graph structures, this can be accomplished by storing the prede-

cessor of a node within the node itself and iterating backwards over the predecessors until the entire

path has been extracted. In another sense, the predecessor node represents the node from which the

current node derived its cost. One can also begin with the start node, and transition to the cheapest

adjacent node until the goal node is reached.

Field D*’s path extraction process is more complicated since it is now possible for path points to

occur on cell boundaries. The authors explain their path extraction process using the concept of

predecessors, but a predecessor now refers to a point on an edge between two nodes. This predecessor

edge for a node s, bptr(s) = s′ is stored as most clockwise node s′ on the edge s′s′′ as shown in Figure

3.4a.

The exact predecessor point p for a node s can then be determined firstly by retrieving s′ from

bptr(s) and then determining the counter-clockwise node s′′, relative to s and s′ in the weighted

grid. ComputeCost(s, s′, s′′) can then be calculated and the resulting point p used as the next point in

the path. cknbr(s, s′) and ccknbr(s, s′) are the names of the functions used to retrieve the clockwise

and counter-clockwise nodes, respectively.

If the predecessor point p for s lies on either s′ or s′′, then the same process can be used to find the

predecessor point for these nodes. However, if p is an interpolated point on the edge between s′ or s′′

then there is no predecessor or connectivity information stored for this point. Unfortunately, it is not

made entirely clear in previous work how the next point on the path from an interpolated point p, is

computed. Section 4 of [49], which describes the main Field D* algorithm states:

Once the cost of a path from the initial node to the goal has been calculated, the path can

be extracted by starting at the initial position and iteratively computing the cell boundary

1Recall that Field D* is based on D* Lite and searches from the goal to the start node.
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Algorithm 8 The Field D* algorithm. nbrs(s) denotes the neighbouring nodes of u, while connbrs(s)
denotes the set of neighbouring node pairs surrounding u, {(s1, s2), (s2, s3), · · · , (s8, s1)}.

1: function KEY(s)

2: return [min(g(s), rhs(s)) + h(sstart, s);min(g(s), rhs(s))]
3: end function

4: function UPDATENODE(u)

5: if u was not visited before then g(u) =∞
6: end if

7: if u 6= sgoal then

8: rhs(u) = min(s′,s′′)∈connbrs(u)ComputeCost(u, s′, s′′)
9: end if

10: if u ∈ U then U.Remove(u)
11: end if

12: if g(u) 6= rhs(u) then U.Insert(u,Key(u))
13: end if

14: end function

15: function COMPUTESHORTESTPATH

16: while U.TopKey() < Key(sstart) OR rhs(sstart) 6= g(sstart) do

17: u = U.Pop()

18: if g(u) > rhs(u) then

19: g(u) = rhs(u)
20: for all s ∈ nbrs(u) UpdateNode(s)
21: else

22: g(u) =∞
23: for all s ∈ nbrs(u) ∪ {u} UpdateNode(s)
24: end if

25: end while

26: end function

27: function MAIN

28: g(sstart) = rhs(sstart) =∞; g(sgoal) =∞
29: rhs(sgoal) = 0;U = ∅
30: U.insert(sgoal,Key(sgoal))
31: loop

32: ComputeShortestPath()

33: if any cell weights have changed then

34: for all cells x with new weights do

35: for all nodes s on x do

36: UpdateNode(s)
37: end for

38: end for

39: end if

40: end loop

41: end function

point to move to next. Because of our interpolation-based cost calculation, it is possible to
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Figure 3.4: (a) The predecessor p to node s is determined firstly by retrieving s′, the clockwise node relative

to s, of the edge containing the point, from bptr(s). The counter-clockwise node on the edge s′′ is determined

from the relative positions of s and s′ in the weighted grid. p is then calculated from ComputeCost(s, s′, s′′).
(b) If s is an interpolated point on the path, the ComputeCost function would need to operate on rectangles

in addition to unit-squares to calculate the next point on the path from s. (c) The interpolation assumption

can break down. ComputeCost(s, s′, s′′) may produce p as the next path to travel to. If the gray cell is very

expensive to travel through, it would make sense to travel around the cell to p′ via s′, in which case, one should

transition to s′ in the first place. (d) Field D* tests the accuracy of the interpolation assumption by calculating

the cost of travelling to p from all the surrounding nodes and interpolated edges.

compute the path cost of any point inside a grid cell, not just the corners, which is useful

for both extracting the entire path and calculating accurate path costs from noncorner

points.

It is possible that the authors use the ComputeCost function on the cells around an interpolated point

p in order to find the next point on the path. However, the cells adjacent to the interpolated point

would now be shaped as rectangles as shown in Figure 3.4b and the ComputeCost function operates

on a unit-square. Alternatively, the quoted statement could also mean that Function 3.2 is minimised

to find the point on edge s′s′′ where the interpolation g(p) of path costs g(s′) and g(s′′) is minimal.

We discuss the latter option in Section 3.5.

Later in Section 5 of [49], where the actual Path Extraction process is described, the authors explain

that there are cases where Field D*’s interpolation assumption can be incorrect. Consider Figure 3.4c,

which contains a very expensively weighted dark gray cell surrounded by inexpensively weighted

white cells. Assume g(s′) < g(s′′) and that when ComputeCost(s, s′, s′′) is invoked a Direct case is
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produced, and the linear interpolation assumption results in p as the least cost point to travel to. Now

consider the subsequent least cost point to travel to from p. Clearly the path to this point cannot travel

through the expensive cell. It would be cheaper to follow the edges of the expensive cell and travel to

s′ and then to p′, for example. This means it would be cheaper to simply travel from s to s′ in the first

place.

Thus, the linear interpolation assumption can be incorrect and Field D* checks this interpolation

assumption via the use of a one-step lookahead. From Section 5 of [49]:

. . . we calculate a more accurate approximation of the path cost of p. We do this by

looking to its neighboring edges and computing a locally optimal path from p given the

path cost of the endpoint nodes of these edges and interpolated path costs for points along

the edges . . .

The cost of travelling to p from the surrounding nodes is calculated as shown in Figure 3.4d. For

example the cost of travelling from s1 to p would be c|s1 − p| where c is the weight of the cell.

Once again, it is not clear from the text whether some modified version of ComputeCost is used when

calculating the optimal path to p from interpolated points along the edges.

Given this new improved estimate of the path cost at p, Field D* decides whether p is still the cheapest

point to transition to. If not, it will transition to the point indicated by the Trivial or Indirect sub-cases.

For instance, in our previous example, the algorithm transitioned to s′ instead of p, since it was easier

to travel to p′ around the dark cell. Curiously, having introduced the lookahead, the following is stated:

In practice it is most effective to use Field D* to compute the cost-to-goal value function

over the grid, and use some local planner to compute the actual vehicle trajectory . . .

A path produced by Field D* is shown in Figure 3.5. The path through this environment avoids the

expensively weighted squares, represented with darker shading, and interpolates through the inexpen-

sive, lightly shaded squares.

3.2 Multi-resolution Field D*

In order to accurately represent paths in a complex, detailed environment Field D* may require a

high-resolution grid. Increasing the grid resolution increases the number of cells and consequently

the number of cost equations Field D* needs to evaluate to find a shortest path. Thus, the time and

space complexity of the algorithm increases.

Since Field D* was developed to operate on the Mars Rovers [49], a high-resolution grid was not

practical, since the robot’s processing power and onboard memory were limited.
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Figure 3.5: Field D* path through a grid. Cells weighted with a darker shade of red are more expensive, while

ligher shades are correspondingly cheaper to travel through.

Multi-resolution Field D* [47] was developed to reduce these resource requirements. It adapts Field

D* from operating on a weighted grid to operating on a weighted region quadtree [118]. A quadtree is

a tree data structure that recursively divides square regions into quarters. Each tree node is associated

with a square region and has four children associated with the subdivision of the parent.

Quadtrees recursively subdivide a two-dimensional space in progressively finer quarters. Large re-

gions of constant cost can be represented as a single cell, while other regions containing smaller areas

of differing cost can be recursively subdivided. This represention is known as a nonuniform resolution

grid or multi-resolution grid.

A cell within this multi-resolution grid may be either lower or higher in resolution relative to its

neighbouring cells. In Figure 3.6a for example, the white node is adjacent to three low-resolution and

one high-resolution cell. Multi-resolution Field D* proposes using interpolation to propagate path

costs from nodes surrounding these cells.

In Field D* on a uniform grid, a node only has eight neighbours, but in the multi-resolution case,

this number may be vary, depending on the connectivity and level of subdivision within the grid. The

authors identify three separate cases that should be dealt with when propagating costs to a node.

Node is a corner of a low-resolution cell: If it is necessary to propagate costs from an edge with a
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(a)

(b) (c)

(d) (e)

Figure 3.6: (a) Three low-resolution and a greater number of high-resolution cells. The white node is the node

for which the cost is being calculated. The grey nodes are the neighbouring nodes of the white node. (b) and

(c) show the possible least cost paths to a node on a corner of a low-resolution cell. (d) and (e) show possible

least cost paths to a node on a corner of a high-resolution cell.

cell of low resolution, then the ComputeCost function developed for Field D* can be used. In Figure

3.6b for example, a Direct and two Indirect case for the top edge are illustrated. Some subtlety is

required when the edge under consideration is high-resolution, as shown in Figure 3.6c. The authors

suggest two approaches.

Firstly, they suggest that it is possible to use the interpolation techniques developed for Field D* to

compute the least cost path from a node on the high-resolution edge to the node whose cost is being

calculated. As noted in Section 3.1.3, the ComputeCost function operates on a unit square, and would

presumably need to be extended to rectangles to be applicable here. An alternative interpretation is

that Function 3.2 is utilised to estimate the point on the edge which has the minimal interpolated cost.

This approach has accuracy problems which we discuss further in Section 3.5.

Secondly, the use of interpolation is discarded and only the cost of travelling from the high-resolution

node to the low-resolution node is computed. The authors note that this sacrifices some accuracy for

simplicity of implementation. In Figure 3.6c for example, only the Direct path would be considered.

Node is a corner of a high-resolution cell: ComputeCost can once again be used to calculate the
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Figure 3.7: Multiresolution Field D* path through a weighted quadtree

costs of a path through a high-resolution cell to one of its corner nodes. This is illustrated for the

paths from the right-hand edge in Figure 3.6e.

Node is on the edge of a low-resolution cell: In this case, the authors suggest that when deriving the

cost from a high-resolution edge, then, as in the low-resolution cell corner case, either interpolation or

a direct path can be used. In Figure 3.6e, a direct path is used on the left edge for example. Otherwise,

if the cost is derived from an edge of low resolution (Figure 3.6d), the authors state that interpolation

can once again be used. Once again we note that a ComputeCost for rectangles would be required for

this to be possible.

Thus, when the algorithm attempts to calculate the path cost for a node, the cells adjacent to the node

are examined and, using the above cases, the minimum cost through the cell is calculated. The least

cost path through all the cells is then selected and used as the cost of the node. The pseudo-code for

this is shown in Algorithm 9. Pe is the infinite set of all points on the edge e, while EPe is the set

consisting of the two endpoints of edge e. gi(p) approximates the path cost at point p by interpolating

between the path cost of the endpoints for the edge containing p, while c(s, p) is the least cost path

travelling from p to s through a cell of some weight. g(p) is the path cost of an edge’s endpoint p.

Edge e is considered to be low-resolution if the cells to either side of e are low-resolution. The authors

refer the reader to the original cost functions when solving the least cost path from points p ∈ Pe.

In their experiments comparing Multi-resolution Field D* to the original Field *, the authors examine
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Algorithm 9 Multi-resolution Field D* ComputePathCost Function

1: function COMPUTEPATHCOST(s)

2: vs =∞
3: for each cell x adjacent to s do

4: if x is a high-resolution cell then

5: for each neighbouring edge e of s on the boundary of x do

6: vs = min(vs,minp∈Pe(c(s, p) + gi(p)))
7: end for

8: else

9: for each neighbouring edge e of s on the boundary of x do

10: if e is a low-resolution edge then

11: vs = min(vs,minp∈Pe(c(s, p) + gi(p)))
12: else

13: vs = min(vs,minp∈EPe(c(s, p) + g(p)))
14: end if

15: end for

16: end if

17: end for

18: return vs
19: end function

the performance and path costs of Multi-resolution Field D* operating at different levels of resolution.

They randomly generate a 100x100 environment and randomly subdivide a percentage of cells into

10x10 high-resolution cells. Thus, if the environment only consists of low-resolution cells, it is con-

sidered to be at 0% resolution, while if it consists of only high-resolution cells, it is considered to be

at 100% resolution. The authors find that in initial planning Multi-resolution Field D* offers superior

performance to Field D* when 80% or less of the environment is represented as high-resolution. Even

when the resolution is at 0% the difference in path cost is only between 1.006 and 1.008 times that of

the path cost produced by standard Field D*.

In a second experiment involving a robot traversing a terrain, Multi-resolution Field D* computes a

path through an environment at 13% of the resolution of a uniform grid, in half the time of standard

Field D*.

3.3 Optimisations

The authors also present several optimisations to the main Field D* algorithm. The main optimisation

involves reducing the number of cost equations evaluated when calling UpdateNode. In the main Field

D* algorithm, when a node s is popped off the stack, its g-values are updated and the surrounding

nodes, s′ ∈ nbrs(s) are updated so that their path costs reflect this change in relation to s’s cost. To

accomplish this, the standard UpdateNode function evaluates all the neighbouring cells of s′, even

though only the path cost of s has changed. The authors modify Field D* to only evaluate the cells
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on either side of edge ss′, as shown in Figure 3.8. Evaluating the path costs of the other cells is

unnecessary since the path costs of their nodes have not changed during this iteration of the algorithm.

s s′

Figure 3.8: Optimisation of UpdateCost, Node s was updated, and thus its neighbours, s′ ∈ nbrs(s) must also

be updated to incorporate the new path cost g(s). However, only the path costs through the cells on either side

of edge ss′ need be evaluated, since only the path cost of s has changed.

3.4 3D Field D*
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Figure 3.9: (a) Four of the eight octants adjacent to node s. (b) To calculate the least cost path from face f
to node s, the path cost values of the nodes on the face corners are bilinearly interpolated. The interpolation is

parameterised by variables t and u.

3D Field D* [23], extends the standard Field D* algorithm to operate on a three-dimensional (3D)

grid. Whereas the 2D version of the algorithm uses interpolation to estimate path costs on grid cell

edges, 3D Field D* interpolates path costs over 3D cell faces.

In 3D Field D*, each node s, is a corner node of eight neighbouring octants. Each octant contains

faces, as shown in Figure 3.9a. As each face has four nodes, the path costs of these nodes must be

interpolated over the face. Thus, Function 3.2 is modified to become:
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Figure 3.10: (a) Visualisation of Equation 3.8, parameterised by variables v and u. (b) 3D Field D* estimates

the minima along each edge, connects the opposing minima using lines, and estimates that the minimum for

this equation will be at the line intersection. This may sometimes be innacurate as in (c) and (d).

g(sf ) = [g(s1) + (g(s0)− g(s1)) · t] · (1− u)

+ [g(s2) + (g(s3)− g(s2)) · t] · u (3.11)

where t and u parametrise the position of sf in the face f defined by the four vertices s0, s1, s2, s3

with path costs g(s0), g(s1), g(s2), g(s3). This configuration is shown in Figure 3.9b. The authors
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define the path cost of travelling to a node s from the face of a node with weight c as:

g(s) = c ·
√

1 + t2 + u2+

+ [g(s1) + (g(s0)− g(s1)) · t] · (1− u)

+ [g(s2) + (g(s3)− g(s2)) · t] · u (3.12)

This function is visualised in Figure 3.10a. To calculate the shortest path from face f to node s,

Equation 3.12 must be minimised with respect to t and u. The authors claim that there is no closed

form solution to this Equation. 2 To avoid the expense of using numerical methods, the authors use

an approximation technique to estimate the minimum.

Their approximation initially finds the minima for the boundary conditions of Equation 3.12. These

boundary conditions are equivalent to the four edges forming face f . The paper text states:

Finding the minimum along each edge is straightforward. In fact, it is nearly identical to

the interpolation-based edge calculation for the two dimensional case . . . .

but does not elaborate further. As the interpolation-based edge calculation that the authors are refer-

ring to is Function 3.2, it is reasonable to assume that the authors estimate the boundary minima by

minimising Function 3.2. However, this would imply that the weight c of travelling through the cube

is not utilised, but this does not take into account the cost of travelling through the cell and would thus

not be accurate in all circumstances. We discuss the implications of this further in Section 3.5.

After calculating the boundary minima, the minima of opposing boundaries are connected by lines as

shown in Figure 3.10b, and the intersection point of these lines is examined to see if it is cheaper than

the edge minima. If so, the value at the intersection point is chosen as the path cost, otherwise the

least cost edge minimum is selected.

The values tint and uint of this intersection point are calculated as follows:

tint =
(t1 − t0) · u0 + t0

1− (t1 − t0) · (u1 − u0)

uint =(u1 − u0) · tint + u0

where t0, t1 and u0, u1 correspond to the minima pairs for the t-axis and u-axis, respectively. The

accuracy of this approximation technique may vary and no comparison with an exact solution is

performed. The intersection point in Figure 3.10b is a good estimate, but the estimate in Figure 3.10d

does not match the function’s (Figure 3.10c) actual minimum.

2In Chapter 5 we show how equations of a similar form can be solved for tetrahedra.
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Thus, 3D Field D*’s contribution extends Field D*’s Direct equation to cubes via the use of an esti-

mation technique. No extension of the Indirect case is presented, which would involve travelling from

a node, s3 for example, then some of the way across an adjacent face before cutting across the cell to

s.

The path extraction process is also not described, but we note that 3D Field D* would encounter the

same difficulties as Field D* in deciding the predecessor of an interpolated point. Since an interpolated

point on an octant face would not necessarily subdivide surrounding octants into smaller octants, but

rather rectangular cuboids, a cost function that operated on rectangular cuboids would be required to

determine the predecessor point of least cost. Alternatively, as may be the case with Field D*, the

authors may minimise 3.11 to estimate the predecessor point on surrounding faces.

The authors also expand Function 3.12 to incorporate global scaling factors cx, cy and cz , to represent

the expense of travelling in a particular direction:

g(s) = c ·
√

c2z + (cx · t)2 + (cy · u)2+
+ [g(s1) + (g(s0)− g(s1)) · t] · (1− u)

+ [g(s2) + (g(s3)− g(s2)) · t] · u (3.13)

In path-planning involving aircraft, cz could be weighted expensively to represent cost in terms of

time and fuel.

Experiments on a 1.9GHz Pentium P4 with 512MB RAM show that initial planning with 3D Field

D* takes around 20 seconds to expand all 894000 nodes in the test environment. The environment

consisted of either free or obstacle cells and does not exercise 3D Field D*’s use of a cell weight c.

3.5 Criticism of Field D*’s use of Interpolation

As we have previously noted, the authors of Field D* and its derived works suggest using interpolation

Function 3.2 to estimate the next point to travel to during Field D*’s path extraction process, to

calculate path costs for Multi-resolution Field D* and to estimate the minima for boundary conditions

in 3D Field D*. In all three cases, the requirement is to find the cheapest path from an edge to a

node. To solve this, a point on the edge must be selected as the point to travel from and this point

must minimise both an interpolation component (the interpolation of the adjacent path costs along the

edge) and, a distance component (the cost of travelling from that point to the node).

The Direct case of the ComputeCost function presented in standard Field D* solves this type of

problem as it includes a distance component (c
√

1 + y2), and an interpolation component ((g(s2)−
g(s1))y + g(s2)) as shown in Figure 3.12. However, ComputeCost only operates on perfect squares

and in the three presented cases, Field D* needs to solve the requirement for non-square cases.
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Figure 3.11: Interpolation assumption cases

When the current point in the Field D* path extraction process is an interpolated point, the algorithm

needs to decide which point on the boundary of the surrounding cells to travel to. Since the current

point is interpolated, the shapes that this point makes with surrounding edges are not squares but

triangles, as shown in Figure 3.11a. In [49], the authors suggest that using Function 3.2 is useful to

the path extraction process, but admit that it may be innaccurate without clearly explaining their use

of it, or an alternative ComputeCost that operates on a rectangle. Indeed, they suggest using a local

path planner for path extraction.

Similarly, when propagating node costs (and performing path extraction) in Multi-resolution Field D*

[47], it is both necessary to calculate the path costs of nodes that are on the edge of a low-resolution

cell (Figure 3.11b) , as well as the path costs derived from nodes on the edge of a low-resolution cell.

(Figure 3.11c). In the first case, the authors suggest that interpolation can be used to estimate the point

to travel from. In the second case, only the cost of the direct path from the grey node to the white

node is evaluated.

In the case of 3D Field D* [23], the authors suggest the use of interpolation to estimate the minima

for the four boundary conditions corresponding to the face edges (Figure 3.11d). We note that it may

be possible to use ComputeCost to estimate the minima for triangles ss0s1 and ss0s2, since they lie

on a unit face, but triangles ss1s3 and ss2s3 do not.
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Figure 3.12: The Direct Field D* cost function is composed of an interpolation component and a distance

component. If one were to only use the interpolation component to make estimates of the least cost path from

edge s1s2 to s, the estimate may be innacurate if the cell weight c is large relative to g(s1) and g(s2).

The problem with using Function 3.2 to estimate the point to derive cost from is that it only represents

the interpolation component, and does not take into account the distance component. In Figure 3.12,

for example, let p be the point that minimises Function 3.2 with respect to g(s1) and g(s2). If the

weighting c of the distance from s to p, c
√

1 + y2 is small, relative to the path costs at g(s1) and

g(s2), then this interpolation assumption may be reasonably accurate, since this distance component

contributes a small portion of the total path cost.

However, as c increases, the distance component of the path cost increases. If this distance component

is large relative to g(s1) and g(s2), it would actually be cheaper to travel from s1 to s because the dis-

tance component is now such a dominant contributor to the path cost. This is where the interpolation

assumption breaks down and may produce innacurate results.

In the case of 3D Field D*, this point is especially important to note, since the boundary minima are

first estimated using the interpolation component. These estimated minima are used to make a further

estimation of the cost function’s minimum. While Field D* inherently contains interpolation error,

only using the interpolation component and ignoring the weighted cell travel cost introduces futher

error. When this use of interpolation is used for further estimation techniques, the resultant error may

be compounded. Also, the use of scaling factors in 3D Field D* may also increase the importance of

the distance component, if the scaling factors are significant.

The problem is that the described cost functions only apply to squares or cubes, but are required

to calculate least cost paths across rectangles or rectangular cuboids. Rather than simply using the

interpolation component to make an estimate, it would be more accurate to develop cost functions
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that operate on these objects.

3.6 Generalized Field D*

Sapronov and Lacaze present Generalized Field D* [119], which extends the Field D* cost equations

to arbitrary triangles. The authors define their triangles using point coordinates (s, s1, s2), interior

triangle angles (θ1, θ2, θ3), edge lengths (l1, l2, l3), the weight of adjacent triangles (c1, c2, c3) and

triangle weight cf . This configuration is shown in Figure 3.13.

s2

c3

s1c1
s

c2

θ2

θ1

θ3

l1

l3

l2

cf

Figure 3.13: Configuration of a Generalized Field D* triangle. A triangle is characterised by points (s, s1, s2),
interior angles (θ1, θ2, θ3), edge lengths (l1, l2, l3), weight of adjacent triangles (c1, c2, c3) and interior triangle

weight cf .
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(a) Trivial
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s1s
z1
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s1s

z3

(c) Direct

Figure 3.14: Generalized Field D*’s three cases: trivial, indirect and direct

Similarly to original Field D*, the authors break down the general case for a path across a triangle

into the three sub-cases Trivial, Indirect and Direct. These cases are shown in Figure 3.14.
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min
z1

[

c1z1 + cf

√

(l1 − z1)
2 + l23 − 2(l1 − z1)l3cosθ1 + g(sz)

]

min
z2

[

c2z2 + cf

√

(l2 − z2)
2 + l23 − 2(l2 − z2)l3cosθ2 + g(sz)

]

min
z3

[

cf
√

l21 + z23 − 2l1z3cosθ1 + g(sz)
]

c1l1 + g(s1)

c2l2 + g(s2)

(3.14)

These cost functions have some similarity to the original Field D* cost functions, but now cater

for arbitrary triangles. Thus, while distances in Field D*’s cost functions are expressed in terms of

Pythagorus on a unit square, Generalized Field D* uses the Law of Cosines to express distances within

the triangle. Thus, in the first case, cf
√

(l1 − z1)2 − 2(l1 − z1)l3cosθ1 + g(s2) represents the cost of

travelling from s2 to a point of distance z1 from s (Figure 3.14b).

In the first two cases, g(s2) and g(s1) can be substituted for g(sz) respectively, since the paths for

these cases start at these points (Figure 3.14b). In the third case, (g(s1) − g(s2))(l3 − z3) + g(s2)

should be subsituted for g(sz) (Figure 3.14c). The authors present the minimisations for z1, z2 and

z3:

z1 = (l1 − l3cosθ1)±
c1l3sinθ1
√

c21 − c2f

(3.15)

z2 = (l2 − l3cosθ1)±
c2l3sinθ2
√

c22 − c2f

(3.16)

z3 = l1cosθ1 ±
l1sinθ1 (g(s1)− g(s2))
√

(g(s1)− g(s2))
2 − c2f l

2
3

(3.17)

We note some mistakes in these minimisations: In the square root under the denominator, the com-

ponent containing c2f is always negative compared to the other positive component. Thus, the first

minimisation for example, would only return real values if cf < c1. However if cf < c1 then it would

always be cheaper to simply travel straight through the triangle with weight cf , rather than some of

the way through the adjacent triangle of weight c1 and the rest through the triangle weighted cf . Also,

the l3 variable in the third case should not be in the denominator as it would be removed when the

derivative is calculated. The corrected minimisations are:
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z1 = (l1 − l3cosθ1)±
c1l3sinθ1
√

c2f − c21

(3.18)

z2 = (l2 − l3cosθ1)±
c2l3sinθ2
√

c2f − c22

(3.19)

z3 = l1cosθ1 ±
l1sinθ1 (g(s1)− g(s2))
√

c2f − (g(s1)− g(s2))
2

(3.20)

Unlike Field D*, it is not possible a priori to choose the case in Function 3.14 that will produce the

cheapest path cost. Therefore, the minima and costs for each case must be evaluated and the cheapest

case selected at the end of this. Also, we note that both of the roots produced by each minimisation

need to be evaluated by the corresponding cost function to differentiate the point of inflection from

the actual minimum.

s2

s1

sz
s

(a)

s2

s1

sz
s

(b)

Figure 3.15: (a) Evaluation of the cost functions around s determines that the interpolated point on edge s1s2 is

s’s predecessor. (b) To find sz’s predecessor, the two surrounding triangles are subdivided into four subtriangles,

with sz at the head of each triangle. Trivial and Direct cost functions are evaluated to find sz’s predecessor.

Generalized Field D*’s extension to triangles is useful during path extraction and solves the issues

presented in Section 3.5. Consider Figure 3.15. In this diagram, evaluating cost functions at node s

indicates that sz is the cheapest predecessor point to s. sz is an interpolated point on an edge and the

algorithm must now select its predecessor point.

At a conceptual level, Field D* subdivides the two triangles adjacent to the edge containing sz into

four triangles, with sz as their base node. Thus in Figure 3.15b for example, s is connected with sz to

subdivide ss1s2 into triangles ss1sz and sszs2 and similarly for the other triangle.

Once this has been accomplished, the Direct and Trivial cost functions presented above are applied to

these sub-triangles. Each function is evaluated and the one that produces the least cost path determines
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the predecessor point. Note that while sz is an interpolated point, the other two points in the triangle,

s and s1 for example are actual graph nodes.

Thus, because (a) the Generalized Field D* cost functions operate on arbitrary triangles and (b) it

is possible to subdivide the triangles around an interpolated point into smaller triangles, Generalized

Field D*’s path extraction process is more accurate than that of Field D* since it uses both the linear

interpolation and distance components of its cost function during path extraction, as opposed to Field

D*, which can only use the linear interpolation component of its cost functions (Refer back to 3.12).

Sapronov and Lacaze perform experiments on a square grid divided into four regions. One of these

regions is composed of cells with random weights, while the other three are composed of inexpensive,

uniformly weighted cells. They use this basic grid to evaluate Field D* path costs from the random

region to a uniform region and compare this to Generalized Field D*’s path costs on a triangle rep-

resentation of the same environment. Their evaluation shows that Generalized Field D* can produce

path costs within 1% of Field D* while using fewer triangles compared to grid cells to represent the

uniform regions.

As an example of one of their specific cases, their Field D* representation consists of 625 nodes and

2304 edges while their Generalized Field D* representation consists of 252 nodes and 970 edges, yet

the path costs produced by the two algorithms are within 1% of each other.

3.7 Field D* Heuristics

Field D* uses a relatively poor heuristic function to focus the search towards a goal. [49] suggests

using:

h(x) = 0.5α‖s− sgoal‖ (3.21)

where s is the current node, sgoal the goal node and α is the minimum weight in the entire environment.

This is the heuristic that we have used in our implementation. It can be good if the range of weights

exhibited within the environment is small, but most environments will not fit this criteria.

Very recent work [22] focuses on improving Field D*’s heuristic in static environments by using stan-

dard graph-based algorithms on the graph formed by the weighted edges of a triangulation. Since the

distances are computed on a graph, these heuristics over-estimate, but the authors provides empirical

evidence that the path cost is no more than 2% of the true path cost.

In particular, the authors uses a differential heuristic [133] to improve Field D*’s running time. A

differential heuristic is part of a class of heuristics termed true distance heuristics [133] and is a

database storing a subset of the all-pairs shortest path matrix of a graph. Nodes within this subset are

termed canonical because they store the true distances to all other nodes in the environment, which

can be retrieved in constant time.
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This network of canonical nodes allows a pathfinding algorithm to find good heuristic values between

any two nodes because canonical nodes can be used to estimate the distance between any two nodes

in environment. For any two nodes, v and u, and a canonical node w, if u lies on the shortest path

between v and w, then |‖v−w‖−‖w−u‖| is the exact shortest distance between v and u. The further

u is from the shortest path, the less accurate this expression will be. Using a differential heuristic, the

authors reduce the runtime of Field D* to between 60% to 80% of Field D* with a naı̈ve heuristic.

The differential heuristic requires pre-processing of the graph in order to create the canonical nodes.

We note that during this pre-processing, it should be possible to calculate a true heuristic by perform-

ing a Field D* search from canonical nodes, rather than a Dijkstra on graph edges.

Discarding the need for pre-processing, the authors also use an A* search between the start and goal

nodes, using the propagated path costs as heuristic estimates. This approach leads to a reduction in

runtime of between 65% and 75%.

3.8 Conclusion

In this chapter we described the algorithms that Field D* is based on, Field D* itself and the work that

derives from Field D*. We also covered some of the issues associated with Field D*, most notably

the use of the basic interpolation function in Field D*’s path extraction, one of Multi-resolution Field

D*’s cases and 3D Field D*’s minimisation estimate.

Field D* was posed as a specific formulation of the Weighted Region Problem: finding the least cost

path between two points on a weighted grid. This formulation is less general than the original: finding

the least cost path between two points on a weighted planar polygonal subdivision. In the following

chapter, we describe our extension of Field D* to triangulations. This provides the algorithm with the

capability to solve the WRP on a structure conforming to the original specification of the problem.
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Chapter 4

Extending Field D* to Weighted

Triangulations

Classic shortest path algorithms operate on graphs, which are suitable for problems that can be repre-

sented by weighted nodes or edges. Finding a shortest path through a set of weighted regions is more

difficult and only approximate solutions tend to scale well. The Weighted Region Problem (WRP),

described in Section 2.3.1, poses the challenge of finding the shortest path between two points in a

weighted planar polygonal subdivision. Field D* [49] is presented as an approximate solution to a

specific formulation of the WRP: Finding the least cost path between two nodes in a weighted grid or

quadtree [47].

Field D*’s solution to the WRP is approximate for two reasons. Firstly, it uses interpolation to ap-

proximate path costs along grid edges. Secondly, while grid representations are convenient, they are,

by their nature, only capable of approximating simple polygons. Therefore, to increase the accuracy

of Field D*’s solution to the WRP, high levels of grid subdivision are required for a weighted planar

polygonal subdivision.

Due to the interpolation error inherent in the Field D* algorithm, the resulting paths are not neces-

sarily the shortest, but are reasonable approximations and provide an efficient alternative to analytic

solutions. Extensions include Multi-resolution Field D* [47], which extends Field D* to quadtrees

[118] to reduce the algorithm’s computation time and space requirements and 3D Field D* [23], an

approximate extension to 3D grids. Experimental evidence in [47] shows that Multi-resolution Field

D* can improve performance over Field D* up to a factor of 1.8 times when the resolution of the

underlying quadtree is 13% of that of the grid.

Partitioning a polygon requires an infinite number of grid cells if the polygon edges are not grid-

aligned. By contrast, a simple polygon of n vertices can always be exactly partitioned into n − 2

triangles by the triangulation theorem [95]. Indeed, the initial solution to the WRP posed in [93] used

triangles, without loss of generality. In this chapter, we extend the Field D* cost functions to triangles,
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thereby giving the algorithm the capability of solving the WRP on a triangulation. Consequently, a

source of error is removed from Field D*’s solution to the WRP.

This extension also has important practical implications which should be emphasised. Representing

an environment with a grid or quadtree is comparatively expensive in terms of storage, compared to a

triangulation. In the field of Geographic Information Systems for example, the Triangulated Irregular

Network (TIN) [107] is frequently chosen over image-based Digital Elevation Models (DEM) because

fewer triangles are required to represent regional information, compared to the grid elements of a

DEM. Consequently, less space or memory is required to accurately represent the terrain.

Similarly, triangular subdivision of an irregular object is more accurate than a subdivision with grid

or quadtree cells, since triangles can represent the boundary of the object more accurately, as shown

in Figure 4.1. This concept extends to 3D: approximating a polyhedral object with tetrahedra will

be more accurate than using cubes. Since these structures can approximate objects and environments

accurately, triangulated and tetrahedral meshes are common representations [41], especially in fields

such as Finite Element Methods [122].

This is related to the function approximation: Well-behaved functions can be approximated with

piecewise constant elements and piecewise linear elements. A single piecewise linear element can

more accurately fit a function segment than many piecewise constant elements, at the expense of a

slightly more expensive element volume calculation. However, by reducing the number of elements,

this increased expense becomes insignificant and the overall expense of computing the approximation

is also reduced.

These practical savings in space and time further motivate the extension of Field D* to triangulations

in this chapter. Our results show that a triangle implementation of Field D* is faster than a quadtree

implementation of Field D*’s, requiring fewer elements to represent the environment when it is not

grid-aligned.

This chapter is structured as follows. We present a brief overview of some standard path finding litera-

ture in Section 4.1. We then describe a general cost function in Section 4.2, conveniently expressed in

vector mathematics. The characteristics of this function can be exploited to reduce the cost of finding

a minimum and provides a basis for solving the Field D* cost functions on triangles. A description of

the actual cost functions and their solution follows, as well as details on path extraction, the capability

to cache the results of certain cost functions and a brief discussion of Field D*’s replanning ability.

Next, we present results. Section 4.6 presents results which detail a performance and space compar-

ison on triangles between Generalized Field D* [119] and our implementation, showing a 50% im-

provement in our implementation. We then show that, in environments composed of non-grid aligned

data, Multi-resolution quadtree Field D* requires an order of magnitude more faces and between 15

and 20 times more node expansions, to produce a path of similar cost to one produced by a triangle

implementation of Field D* on a lower resolution triangulation. Finally, we show how the work for

most of these functions can be precomputed and cached, producing a speedup of up to 16%.
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(a) (b) (c)

Figure 4.1: Grid subdivision of (a) a triangle at (b) and (c) different resolutions. As the triangle is not axis-

aligned, high levels of subdivision is required for a grid to represent the triangle accurately.

4.1 Related Work

Generalized Field D* [119] also modifies Field D*’s cost functions to operate on arbitrary triangles.

These cost functions are expressed in terms of the edge lengths and angles of a triangle. This approach

has a number of disadvantages. Firstly, if the angles and edge lengths are not precalculated, expensive

trigonometric and square root operations are required to calculate these angles for each cost function.

Alternatively, extra space would be required to store this data in a triangle. Secondly, an extension

of this paradigm to 3D tetrahedra and general simplices would be clumsy: Using 2D angles in a

tetrahedron quadruples the number of angles and edge lengths, and true 3D angles (solid angles) are

even more computationally expensive to calculate and maintain.

Our triangle cost functions express the mathematics in vector notation, reducing computational and

space requirements, and allows an easier extension to 3D tetrahedra. Minimising Generalized Field

D*’s cost functions requires evaluating the cost of two local minima, whereas our implementation can

decide which root to use without evaluating costs by inspecting the sign of a cost function term.

4.2 Cost Functions

In this section we describe a general cost function of one variable, and how to efficiently minimize

this function. It serves as a basis for solving triangle cost functions, since each reduce to this general

case. We show how to apply this minimization to find paths through an arbitrary triangle in section

4.2.2. Three cases are presented for triangles, Trivial, Indirect and Direct. In the triangle case, two

Trivial, two Indirect and one Direct cost functions must be evaluated. The least cost value produced

by these functions is returned by the ComputeCost function.
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4.2.1 General Cost Function

The functions described later in this work require minimisation to find the cheapest cost across a

triangle. These problems can be reduced to solving a General Cost Function, whose solution and

properties we will now describe. Let v1,v2 be non-zero, linearly independent vectors in R
n (for our

purposes, we may assume n = 2 or 3). Let λ, µ, d be constants with λ > 0 and let x be a real variable.

Let

G(x, λ,v1,v2, µ, d) = λ‖v1 + xv2‖+ µx+ d (4.1)

This is sometimes called the cost equation, but we will refer to it as the cost function, abbreviated as

G(x). In this section, we solve the problem of minimizing G(x) for x ∈ [0, 1]. Let

l(x) = ‖v1 + xv2‖

and note that

l(x) = ((v1 + xv2).(v1 + xv2))
1/2

=
(

‖v1‖2 + x2‖v2‖2 + 2xv1.v2

)1/2
.

For convenience, we let a = ‖v1‖2, b = ‖v2‖2, c = v1.v2 so that l(x) =
(

bx2 + 2cx+ a
)1/2

.

Any local minimum of G(x) must satisfy 0 = dG/dx = λ(bx + c)/
(

bx2 + 2cx+ a
)1/2

+ µ. Re-

writing this as

λ(bx+ c)/
(

bx2 + 2cx+ a
)1/2

= −µ (4.2)

and squaring both sides yields the quadratic equation

b(µ2 − bλ2)x2 + 2c(µ2 − bλ2)x+ µ2a− λ2c2 = 0 (4.3)

Note that in squaring, we may introduce extra solutions. In fact, in Equation 4.2, we necessarily have

(bx+ c)µ < 0 because µ > 0 and v1 and v2 are linearly independent. Assuming this, the solutions to

functions (4.2) and (4.3) are identical. If µ2− bλ2 = 0 then (4.3) has a solution if and only if ab = c2,

i.e. ‖v1‖2‖v2‖2 = (v1.v2)
2, which is impossible by the Cauchy-Schwartz inequality since v1 and

v2 are linearly independent. If µ2 − bλ2 6= 0 then there are two solutions:

x = −c

b
± δ (4.4)

where

δ =
µ
√

(µ2 − bλ2)(c2 − ab)

b(µ2 − bλ2)
.

For these to be real, we require (µ2 − bλ2)(c2 − ab) ≥ 0. By the Cauchy-Schwartz inequality,

c2 − ab ≤ 0, so we require µ2 < bλ2. Furthermore, as noted above we require µ(bx+ c) < 0, so that

only the smaller root (+δ) satisfies (4.2) if µ > 0, and only the larger (−δ) root does if µ < 0. We
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have the following cases.

1. If µ = 0, G′(x) has a root at x = −c/b.

2. If µ2 ≥ bλ2, G′(x) has no real root.

3. If µ2 < bλ2, G′(x) has a root at x = −c/b+ δ.

To determine whether a critical point is a local minimum, we consider the second derivative. We have

d2G
dx2 = λ

(

l(x)b−(bx+c)l′(x)
l(x)2

)

= λ
(

l(x)b−(bx+c)2l(x)−1

l(x)2

)

= λ
(

l(x)2b−(bx+c)2

l(x)3

)

= λ
(

ab−c2

l(x)3

)

= λ
(

‖v1‖2‖v2‖2−(v1.v2)2

l(x)3

)

> 0

again by the Cauchy-Schwartz Inequality. The fact that the second derivative is positive everywhere

implies that the first derivative is strictly increasing on the whole of R. There are three possibilities:

If G′(x) has a root α then G(x) has a global minimum at α; if G′(x) is positive everywhere, then

G(x) is strictly increasing; if G′(x) is negative everywhere then G(x) is strictly decreasing. The

minimum value of G(x) on the interval [0, 1] therefore occurs at 0 and 1 in the second and third

cases, respectively. Note that in the first case, the function G(x) is strictly decreasing on (−∞, α)

and strictly increasing on (α,∞).

Thus if G(x) has a global minimum α that does not lie in the interval [0, 1], the minimum on the

interval [0, 1] will occur at 0 if α < 0 and at 1 if α > 1.

4.2.2 Triangles

In this section we describe the cost functions for non-degenerate triangles. These can be thought of as

embedded in R
2 or in R

3 – the exposition is the same in both cases.

Figure 4.2a shows the layout. Consider a triangle ∠AB1B2. We define the weight of the triangle as

λ, the weight of the triangle opposite B1 as λ1 and the weight of the triangle opposite B2 as λ2.

66



B1

B2

A

Λ

Λ2

Λ1

u1

u3
u2

(a) Layout

B1

B2

A

Λ

Λ2

Λ1
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(d) Direct Routes

Figure 4.2: The layout of a triangle is shown in (a). The triangle is defined by three vertices, A, B1 and B2. The

triangle is weighted with value λ, while the triangles opposite B1 and B2 are weighted λ1 and λ2 respectively.

(b) (c) and (d) show the three types of path through a triangle

Unless indicated otherwise, we will denote the cost at a point X by g(X). Let the vectors correspond-

ing to the vertices A,B1, B2 be w,v1,v2 respectively and let xu1 = v1 − w, xu2 = v2 − w and

xu3 = v2 − v1.

Trivial: Figure 4.2b illustrates trivial paths which travel along the edge of a triangle. In this case there

is a unique path from B1 to A and we have

g(A) = min{λ, λ2}|u1|+ g(B1) (4.5)

Indirect: Indirect paths originate at a node and cut across the main triangle to a point on the opposite
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Algorithm 10 The UpdateNode function now iterates over the triangle neighbours of node u, repre-

sented by the set trinbrs(u) below.

1: function UPDATENODE(u)

2: if u was not visited before then g(u) =∞
3: end if

4: if u 6= sgoal then

5: rhs(u) = mins∈trinbrs(u)ComputeCost(u, s)
6: end if

7: if u ∈ U then U.Remove(u)
8: end if

9: if g(u) 6= rhs(u) then U.Insert(u,Key(u))
10: end if

11: end function

edge, and then travel along this edge to the destination node, as shown in Figure 4.2c. The intuition

is that it is cheaper to travel some of the way through the adjacent triangle, rather than travelling the

entire distance through the main triangle. We now express this problem in terms of the general cost

function. We assume that the path originates at B1, cuts across the triangle and travels along the edge

opposite B1 until it reaches A. The cost of this path can be expressed as

g(A) = λ‖u1 − xu2‖+ λ1‖xu2‖+ g(B1) (4.6)

where x minimizes g(A) and can be obtained by the method given above by noting that

g(A) = G(x, λ,u1,−u2, λ1‖u2‖, g(B1)).

Direct: Figure 4.2d illustrates a direct path, which originates on an edge between two nodes B1 and

B2 and travels straight through the main triangle to end at the destination node. It is on this path that

the linear interpolation of Field D* is exercised. While the trivial and indirect paths both originate

from a node B1, adding g(B1) to their costs, the g value for a path originating on the edge B1B2 must

be estimated via interpolation. The cost function is formulated as:

g(A) = λ‖u1 + xu3‖+ xg(B2) + (1− x)g(B1) (4.7)

This can be minimized by the method given above by noting that

g(A) = G(x, λ,u1,u3, g(B2)− g(B1), g(B1)).

Implementation Details:. The cases described above are evaluated separately and the case producing

the least cost is returned by the ComputeCost function. Our implementation of UpdateNode, shown

in Algorithm 10, differs slightly from the original Field D* in that, instead of iterating over the neigh-
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bouring edges, we iterate over the neighbouring triangles. We also find it convenient to store a back

pointer to the triangle, instead of a node.

4.3 Path Extraction

p1

p2

i

a

(a) Incorrect Interpolation Assump-

tion

p1

p2

i

a

pn

o

(b) Lookahead

Figure 4.3: (a) The interpolation cost at i may be a bad estimate since it is expensive to travel through the grey

triangle. (b) The interpolation cost estimate is tested by subdiving the two triangles sharing the edge containing

the interpolated point into four subtriangles and evaluating the cost functions originating at the surrounding

nodes and edges.

After propagating costs to the appropriate nodes, the path is extracted in an iterative process, beginning

at the start node. Firstly, the start node is added to the path. Then, the cost functions of the last node

on the path are re-evaluated to determine the point from which it derived its cost. As the cost to travel

from this point is the cheapest, it is the next point on the path. This continues until the goal node is

reached. The pseudocode for this process is shown in Algorithm 11. It is slightly more compact and

general than the path extraction pseudocode provided for Generalized Field D* [119].

If the cheapest point to travel to is produced by a Trivial cost function then the next point is a node

point. If produced by an Indirect cost function, then both an edge point and a node point are added to

the path. In the Direct case, the interpolated point lying an edge or face is added to the path. Ferguson

et. al. [49] recommend a check of the interpolated cost at this point since it may, in fact, be incorrect.

To see why this may be the case, consider Figure 4.3a. The grey triangle is expensively weighted,

while the others are weighted cheaply. At node a, an evaluation of the cost functions suggests that

the cheapest point to transition from is an interpolated point i, lying on the edge between p1 and p2.

However, at i, the cheapest point to transition from would be p1 or p2 since it would be prohibitively

expensive to travel through the grey triangle – the path from either p1 or p2 to a would be cheaper.

The interpolation assumption is incorrect because the grey triangle is expensive and therefore the path

must flow around instead of through the triangle. A better estimation of the cost at i would be derived
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Algorithm 11 Path Extraction. ComputeCost(s, a) computes the cost of travelling to node s across

cell a. The cell subdivision process in InterpolatedChild is illustrated in Figure 4.3b.

1: function INTERPOLATEDCHILD(p)

2: Subdivide cells adjacent to p into temporary cells

3: bc ←∞; bp ← NULL
4: for all temporary cells b do

5: if ComputeCost(p, b) < bc then

6: bc ← ComputeCost(p, b))
7: bp ← point associated with cost bc.
8: end if

9: end for

10: Return {bc, bp}
11: end function

12: function EXTRACTPATH

13: s← sstart; PATH={sstart}
14: while s 6= sgoal do

15: if s is an interpolated point then

16: {c, p} ← InterpolatedChild(s)
17: s← p; PATH=PATH∪{p}
18: else

19: a← arg minc∈cellnbrs(s)ComputeCost(s, c)
20: A = {a1c, · · · , akc, dc} ← costs across a
21: dc ← cost of the Direct Path through a.

22: dp ← interpolated point associated with cost dc.
23: if dc = ComputeCost(s, a) then ⊲ Direct Path is cheapest

24: {bc, bp} ← InterpolatedChild(dp)
25: Update dc ∈ A with bc ⊲ Check the estimate

26: end if

27: c← min(A)
28: s← point(s) associated with c
29: PATH=PATH∪{s}
30: end if

31: end while

32: end function

as g(i) = c‖i− p1‖+ g(p1) for example, instead of interpolating between g(p1) and g(p2).

For this reason, it is necessary to perform a lookahead operation at interpolated points that checks

the interpolated cost estimate. Firstly, the two triangles sharing the edge containing the interpolated

point are subdivided into four triangles, with the interpolated point, i, at their apex. Then, the costs

of travelling to i from the surrounding nodes and edges of the four sub-triangles are evaluated as

illustrated in Figure 4.3b. Both Trivial cost functions originating from nodes and Direct cost functions

originating from edges 1 are evaluated and the cheapest of these costs replaces the interpolated cost.

1In the 3D case Direct cost functions originating from the surrounding tetrahedra faces are evaluated. Also, interpolated

points may lie on tetrahedra edges or faces.
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Using this improved estimate, the extraction algorithm decides if the interpolated point is still the

cheapest to transition from, compared to the original Trivial and Indirect cost functions, and if so

it is added to the path. A useful side-effect of this operation is that if the lookahead confirms the

interpolated cost, the point producing the cheapest lookahead cost can be used as the next point on the

path.

An example referring to Figure 4.3b: Evaluating cost functions at node a indicates that the cost for

a is derived from interpolated point i. The two triangles are subdivided and the cost functions of the

four subtriangles triangles with apex i are evaluated. These costs are used to test the interpolated cost

at point i. If all these costs are greater than the cost at i, it is rejected as the next point and p1 or p2

are considered. However, if there are costs that are equal to or less than that at i, the interpolated cost

is confirmed, i is added as the next point on the path, and the point producing the least cost, pn, for

example, is evaluated next.

Note that a triangle and tetrahedral version of Field D* enables the subdivision of cells around an

interpolated point into triangles and tetrahedra respectively. Consequently, triangle and tetrahedral

cost functions can be used to evaluate the cost of travelling across these temporary cells. In contrast,

subdividing around interpolated points in Field D* and 3D Field D* will produce rectangles and

cuboids, but the cost functions associated with these implementations only operate on squares and

cubes respectively. It is not clear in Field D* [49] or 3D Field D* [23] whether these cost functions

are employed during path extraction. In fact, [49] suggests using a local planner to perform path

extraction instead.

4.4 Caching

In this section, we describe how the pathfinding algorithm can be made more efficient by caching

calculations that remain constant regardless of the search parameters.

We have defined the cost functions for triangles in terms of G(x). A characteristic of G(x) is that

parameter d is not utilised in finding the roots in Equation 4.4. Now, as long as parameters λ, v1, v2

and µ are calculated with constants, the roots of such functions can be cached.

If the mesh, and the weighting of the mesh remain constant, then the weights and vectors derived

from the triangles will also remain constant, regardless of the search parameters. The only values that

change are the g(p), representing the accumulated cost of the search at node p . Thus, if parameters

λ, v1, v2 and µ of G(x) do not contain g(p) values, their roots can be cached. Additionally, since d is

merely a scalar value added to the rest of the G(x), the bulk of the cost calculation can also be cached.

On examining the cost functions, it can indeed be seen that the trivial and indirect cost functions

for both triangles only have g(p) values in parameter d. Thus, their roots and the sections of G(x)

composed from λ, v1, v2 and µ can be also be cached.
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We can further exploit the fact that a pair of trivial and indirect cost functions originate from the

same node. For triangles, for example, one trivial and one indirect path originate from p1. It is only

necessary to store the root and cached cost for the least expensive path originating from p1, since

g(p1) will be added to the cost functions for both paths. The type of path can be indicated in the

cached root via the use of ranges. For example, if the cached root and cost is for an indirect path, then

0 ≤ root ≤ 1, but if they represent a trivial path, root = 2 for instance.

Thus for a triangle, two pairs of roots and costs need to be stored at each triangle vertex, resulting in

12 cached values. If each value is represented by a four byte floating point variable, 48 bytes of cache

are required per triangle.

To obtain performance gains from caching, the mesh and the triangle weights should remain reason-

ably static, since changes to these values will require recalculating cached values for the modified

triangle and its neighbours. In cases where the number of triangle weights changes are small, it may

be feasible to recalculate cached values, but the performance gained from caching would be lost if the

weighting and structure of large portions of the mesh change constantly.

4.5 Replanning

As stated earlier, Field D* is able to replan paths should grid cell weights change after a path has

been computed. In lines 24-27 in Algorithm 1, if a grid cell weight is changed, then UpdateNode is

invoked on the nodes on the corner of these cells, updating the rhs-values. Then, ComputeShortestPath

is invoked to propagate the changed node values.

Similarly, if the weight of triangles change, UpdateCost can be invoked on the nodes of these struc-

tures. Our extension to Field D*’s cost functions does not modify its basic replanning capability and

while we have not specifically investigated this part of the algorithm, this capability can be used as is

to perform replanning on weighted triangulations.

4.6 Results

In this section, we discuss results related to our Field D* implementation. Firstly, we compare the

expense of our cost functions to those of Generalized Field D*. Secondly, we show how our triangle

implementation of Field D* provides superior performance to that of a quadtree implementation, when

the world data is not grid-aligned. Thirdly, we provide results for our 3D Tetrahedral implementation

of Field D* and lastly, demonstrate the gains that can be obtained from caching.

We implemented Field D* using C++ and used a binary heap to represent the priority queue driving

the algorithm. Random deletes of priority queue elements were optimised to bubble the element out of

the queue, instead of deleting the element and shifting the array. Likewise, priority queue key updates
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were optimised to bubble the queue element to the new location. In terms of heuristics, we used the

version suggested by Ferguson et. al. whereby the Euclidean distance is multiplied by half of the

minimum weight in the triangulation: 0.5 ∗minval ∗
√

dx2 + dy2.

4.6.1 Performance comparison of Generalized Field D* and Triangulated Field D*

Vector Generalized Generalized

Field D* Field D* Field D*

(Cached)

Time 13.12s 20.53s 14.83s

106 Triangles per second 7.621 4.871 6.743

Space 28 bytes 28 bytes 64 bytes

Table 4.1: Comparison of the time and space required by our triangle Field D* cost function implementation

vs Generalized Field D*.

Generalized Field D* [119] evaluates the Field D* cost functions on a triangle using the inner angles

and side lengths of that triangle. In contrast, our implementation of the Field D* cost functions

for triangles uses vector operations on the triangle points. Thus, Generalized Field D* must either

calculate the angles and side lengths every time a triangle is processed, or store these values in addition

to the triangle points. Additionally, both implementations produce two roots when minimising the

indirect and direction cost functions, but our formulation of the general cost function presented in

Section 4.2.1 allows our implementation to predict which root to use, meaning that only the cost for

one root must evaluated. Based on this reasoning, we expect that our vector implementation of cost

functions for triangles would be less expensive than those of Generalized Field D*.

To confirm this, we created a million random triangles and compared the time taken by our implemen-

tation and Generalized Field D* to evaluate their cost functions over 100 iterations, in addition to the

space required for each implementation. Two versions of the Generalized Field D* cost function were

implemented, one where the triangle edge lengths and trigonometric angles values are calculated for

each cost function, and one in which they are cached. Note that for the same triangle, Generalized

Field D* produces the same costs as our implementation, but uses a different formulation. For this

reason, we compare the performance of the two techniques on the same triangle. Table 4.1 shows

these results.

Our vector-based implementation takes 13 seconds to evaluate the cost functions of a million triangles

100 times, requiring 28 bytes for the representation (six four bytes floats for the coordinates and one

for the triangle weight). By comparison our implementation using Generalized Field D* cost functions

takes 20.5 seconds to evaluate the cost functions, as the side lengths and trigonomentric values must

be calculated when evaluating a triangle’s costs. Caching these values (three sines, three cosines and

three edge lengths) results in a execution time of 15 seconds, which is only slightly slower than our
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implementation. This is probably because three more cost functions must be evaluated to determine

the correct root to use.

In summary, our vector-based implementation of the triangle cost functions is around 56% faster than

Generalized Field D*. Even if the various edge lengths and trigonometric values of Generalized Field

D* are cached, our implementation is faster and requires less than half the space.

4.6.2 Comparison of Multi-resolution Field D* and Triangulated Field D*

(a) Maze grid (b) Axis aligned rooms

(c) Arbitrarily aligned structures

git gitgitgit

(d) Randomly weighted Voronoi diagram

Figure 4.4: Quadtree environments used to compare Quadtree Field D* and Triangulated Field D*. (a) is a

grid-aligned maze and is designed to contrast the two implementations to a case where no geometric error is

present. (b) is a connected series of axis-aligned rooms, while (c) consists of arbitrarily aligned structures. (d)

is a randomly weighted Voronoi Diagram. Darker regions are weighted more heavily, while the lighter regions

have lesser weightings.

We have extended Field D* to triangulations since triangulations represent general polygonal objects
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Path Node Path Normalised

Cost Faces Expansions Length Time (s) L2 Error

Q T Q T Q T Q T Q T Q

Grid Maze

16.69 17.03 1682 3362 977 964 165.87 166.31 0.02 0.01 N/A

16.65 16.93 6725 12984 2929 2682 165.79 166.68 0.06 0.01 N/A

16.63 16.90 14885 13858 5840 2943 165.76 166.56 0.11 0.02 N/A

16.62 16.83 26897 25866 9685 5492 165.74 166.49 0.16 0.04 N/A

16.61 16.78 41617 41316 14464 7710 165.73 166.17 0.25 0.05 N/A

16.61 16.75 60517 61006 20155 10919 165.72 166.13 0.35 0.07 N/A

16.60 16.74 81797 82366 26762 13726 165.72 166.17 0.48 0.10 N/A

Randomly Weighted Voronoi Diagram

12537.23 1025 1089 167.22 0.02 0.210

10480.93 4076 4220 181.54 0.06 0.141

9421.86 8439.44 14405 16789 15673 9511 182.33 184.31 0.24 0.05 0.079

8938.80 8414.64 40046 41865 47669 21727 184.04 182.82 0.76 0.12 0.041

8710.31 8404.57 95780 92344 120254 47238 183.76 182.77 2.03 0.26 0.021

8570.52 8390.41 211697 219242 273470 111659 182.55 182.42 4.87 0.65 0.011

8490.43 8386.65 447932 461450 587532 234162 182.01 182.31 10.82 1.49 0.005

Axis-Aligned World

1204.32 839 944 117.40 0.02 0.537

368.68 37.31 2564 2586 2218 874 282.21 365.74 0.04 0.01 0.356

39.50 37.03 6722 6753 3922 1942 392.10 365.02 0.09 0.02 0.189

37.98 36.87 15389 15366 9417 4396 377.06 364.56 0.21 0.03 0.081

37.47 36.74 32738 32479 20884 8480 371.96 364.13 0.57 0.06 0.044

37.16 36.63 67412 68643 46424 17443 368.79 363.77 1.29 0.11 0.027

37.00 36.55 136694 135177 104728 33471 367.32 363.51 1.89 0.22 0.015

Arbitrarily-Aligned World

1081.89 39.68 899 1676 806 633 210.86 388.31 0.01 0.01 0.321

42.45 39.33 2588 2722 1848 1056 422.03 387.02 0.04 0.01 0.176

40.76 39.18 6239 6315 4360 2399 404.82 386.15 0.09 0.02 0.088

39.80 38.97 13535 13340 9959 4910 395.20 385.38 0.19 0.03 0.045

39.21 38.84 28178 28620 21904 10258 389.52 385.11 0.39 0.06 0.018

38.94 38.73 57479 57857 49487 20120 387.09 384.74 0.87 0.13 0.010

38.82 38.66 116177 115644 112041 39652 386.13 384.67 2.04 0.26 0.006

Table 4.2: The path cost, number of faces, number of node expansions, path lengths, time taken to find a path and Normalised L2 Error for Field D* implemented

on a quadtree (Q) versus a triangulation (T). The normalised L2 Error measures the geometric error in the quadtree representation. Where possible, each row

presents data for a similar number of quadtree and triangulation faces, but this is not always possible when the two structures are at low resolution. In the case of

the Voronoi Diagram for example, a minimum of around 16700 triangles is required to produce a Delaunay Triangulation. The highlighted quadtree path costs

indicate instances where, due to geometric error in the representation, the path travels through expensive cells. These data points are not plotted in the following

graphs since their magnitude is too great.
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Path Node Path Node

Cost Faces Expansions Time (s) Cost Faces Exp Time(s)

TA* TFD* TA* TFD* TA* TFD* Grid A*

Randomly Weighted Voronoi Diagram

8631.18 8439.44 16789 9760 9511 0.0029 0.05 9620.49 16384 16640 0.0059

8655.48 8414.64 41865 20875 21727 0.0068 0.12 9164.06 65536 66048 0.0287

8589.95 8404.57 92344 50007 47238 0.0223 0.26 8924.06 262144 263138 0.1279

8563.51 8390.41 219242 114587 111659 0.0593 0.65 8800.96 1048576 1050624 0.6090

8550.83 8386.65 461450 231625 234162 0.1385 1.49 8744.71 4194304 4198400 2.9960

Axis-Aligned World

38.22 37.31 2586 900 874 0.0003 0.01 369.32 4096 3334 0.0011

38.00 37.03 6753 1942 1942 0.0006 0.02 40.06 16384 7620 0.0028

37.94 36.87 15366 4318 4396 0.0015 0.03 38.77 65536 30633 0.0133

37.73 36.74 32479 8251 8480 0.0030 0.06 38.29 262144 121843 0.0580

37.62 36.63 68643 17052 17443 0.0074 0.11 38.01 1048576 487144 0.2630

37.47 36.55 135177 32521 33471 0.0152 0.22 37.9 4194304 1947273 1.1810

Arbitrarily-Aligned World

39.92 39.33 2722 965 1056 0.0003 0.01 43.17 4096 2513 0.0009

39.97 39.18 6315 2155 2399 0.0007 0.02 41.67 16384 9724 0.0033

39.8 38.97 13340 4482 4910 0.0016 0.03 40.90 65536 38874 0.0169

39.75 38.84 28620 9276 10258 0.0034 0.06 40.48 262144 154560 0.0769

39.74 38.73 57857 17994 20120 0.0076 0.13 40.28 1048576 615761 0.3250

39.55 38.66 115644 34768 39652 0.0198 0.26 40.20 4194304 2461271 1.5420

Table 4.3: Comparison of path cost, node expansions and time taken between A* on a triangulation (TA*) and Field D* (TFD*). Table rows are ordered by

the number of faces in the environment. In the Voronoi diagram, TFD* provides a better path cost compared to TA* (8439.44 vs 8550.83) on a more coarsely

triangulated graph (16789 vs 461450 faces) in a faster time (0.05 vs 0.1385 seconds). In the Axis-Aligned and Arbitrarily-Aligned Worlds, Field D* provides

better path costs in equivalent time with fewer faces. The last four columns tabulate data for A* on a grid. Grid A*’s path costs converge much slower than

TA* and TFD* and require many more faces. Consequently, the Grid A* data is not directly comparable to TA* and TFD* on the same row, but is provided for

completeness.
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(a) Maze grid (b) Axis aligned rooms

(c) Arbitrarily aligned structures (d) Randomly weighted Voronoi diagram

Figure 4.5: Triangulated environments used to compare Quadtree Field D* and Triangulated Field D*. (a) is

a grid-aligned maze and is designed to contrast the two implementations to a case where no geometric error is

present. (b) is a connected series of axis-aligned rooms, while (c) consists of arbitrarily aligned structures. (d)

is a randomly weighted Voronoi Diagram. Darker regions are weighted more heavily, while the lighter regions

have lesser weightings.

more accurately than grids and quadtrees. This is because triangles can represent polygonal objects

exactly, since the interior of a polygonal object can always be subdivided into triangles. Grids or

quadtrees, however, will always be subject to geometric error, unless that object’s boundaries are grid-

aligned. This implies that a grid or quadtree requires high levels of subdivision to accurately represent

polygonal objects. Additionally, since Field D* computes approximate paths across cells due to inter-

polation error, increasing the level of subdivision in either case should improve this approximation. In

[119], the authors perform a single simple experiment showing that triangle-based Generalized Field

D* is an improvement over the original Field D* in terms of node expansions. In the interests of

generality, we perform several experiments contrasting our scheme with Multi-resolution Field D* as
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(d) Voronoi Diagram

Figure 4.6: Normalised path cost vs number of faces
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Figure 4.7: Normalised path cost vs node expansions
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[47] shows that it provides time and space improvements over the original Field D*. In this section

we demonstrate the reduction in computational cost that is afforded when one allows pathing through

a triangulated, rather than grid-based, environment.

To this end, we compare the paths produced by Field D* implementations for quadtrees and trian-

gulations at different levels of subdivision and demonstrate that, due to geometric error, a quadtree

requires a far higher level of subdivision than a triangulation to produce paths of similar cost. We also

show that increasing the subdivision reduces interpolation error in both cases. We implemented two

versions of Field D*, one based on the triangle cost functions described in this chapter, and the other

based on the quadtree cost functions described by Ferguson et. al [47].

Triangulation Construction: We construct Constrained Triangulations, which allow the specifica-

tion of constraints in the form of edges that must be present in the triangulation. Therefore, if an

environment is constructed out of a set of weighted, non-intersecting polygons, we derive a con-

strained triangulation by inserting polygon edges as constraints and weighting the triangles internal

to the polygon with the polygon’s weight. A Constrained Triangulation generates a relatively coarse

mesh. We apply Delaunay Refinement [123] on the mesh to produce a finer Constrained Delaunay

Triangulation that respects the original constraints. Triangles in a Delaunay Triangulation satisfy

criteria that discourage thin triangles or slivers.

Quadtree Construction: Quadtrees [118] are restricted to representing polygonal data with squares

or cells. To construct a quadtree, we first subdivide the world into a square grid whose sides are a

power of two. Then, we determine which polygons intersect each grid cell. If a polygon intersects

a cell, we store the area of intersection as well as the polygon’s weight in a list of tuples within

the cell as {{a1, w1}, {a2, w2}, . . . , {an, wn}}. The weight of the grid cell is then calculated as the

sum of the products of each area-weight pair, divided by the total area of the cell ac. Since the

cell cannot represent the polygons intersecting it with complete accuracy, there is an error associated

with the cell’s weight which measures how accurately the quadtree models the original polygonal

representation. Given this cell weight, w̄, the Root Mean Square Error, or L2 error for the cell weight

can also be calculated from the area-weight tuples.

w̄ =
1

ac

n
∑

1

akwk (4.8)

L2 =

√

√

√

√

n
∑

1

[ak (w̄ − wk)]
2

(4.9)

We then construct a quadtree via the normal process of aggregating child cells with equal weights.

Our quadtree implementation trades space for time in that it stores references to neighbouring cells

within a cell, rather than determining the neighbours at execution time.
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A

Figure 4.8: Quadtree subdivision: When calculating the cost of node A, the costs of travelling from four

neighbouring edges must be considered, since this cell has high resolution neighbours.

Test Environments: We constructed four environments, shown in Figure 4.4 and Figure 4.5, to con-

trast the paths produced by quadtree and triangulated Field D*. In each environment, we calculated the

path between predefined start and goal points in the lower left and upper right corners, respectively, at

differing levels of subdivision for both quadtree and triangulation. Results for these paths are shown

in Table 4.2, which details the path cost, number of faces, number of node expansions, path costs

and L2 error. In this table, quadtree faces are square cells, whereas triangulation faces are triangles.

However, it should be noted as in Section 4.1 that basic Field D* treats a cell as two triangles when

computing cost functions since it must find calculate the shortest path from two edges. Quadtree Field

D* may consider even more edges, if the cell has a number of higher resolution neighbours, as shown

in Figure 4.8. Since this “decomposition” occurs during the runtime evaluation of cost functions it is

difficult to directly compare quadtree-generated triangles to pre-calculated triangles and we must in-

stead compare squares to triangles. For this reason, we consider the number of faces to be prejudiced

in Quadtree Field D*’s favour. The number of node expansions refers to the numbers of nodes popped

off the priority queue in order for the algorithm to complete.

It is an interesting exercise to compare the path costs produced by Field D* with those of an A*

implementation. We created a directed graph from the edges of the various subdivisions of our Voronoi

diagram environment. The edges are weighted by their length multiplied by the minimum weight of

the adjacent cells and we used a heuristic of the minimum triangle weight multiplied by the Euclidean

distance. The results of A* searches on these constructed graphs are shown in Table 4.3.

The first environment is a grid maze (Figure 4.5a) and we use it to show how quadtree and triangulation

implementations compare when data is grid-aligned and no geometric error is present. Since the data

is aligned to a grid, a quadtree cell represents a grid cell exactly and does not overlap with other grid

cells. To subdivide in the quadtree case, we simply split the grid squares into four smaller squares at

each level, rather than using normal quadtree decomposition. The triangulation is subdivided with the

usual Delaunay Refinement, with the original grid squares as constraints. The polygons representing

the other three environments are not grid-aligned in the sense that polygons may not necessarily fit

exactly into a quadtree cell. This discrepancy in representation is quantified by the L2 error metric we

mentioned previously.

The second environment (Figure 4.5b) is a series of interconnected, axis-aligned rooms. The third
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(Figure 4.5c) consists of arbitrarily aligned structures, while the fourth (Figure 4.5d) is a randomly

weighted Voronoi diagram. These last three environments are approximated by quadtree subdivision

and are consequently subject to geometric error. The grid maze, axis-aligned and arbitrarily aligned

world have their open space and obstacles weighted with 0.1 and 255 respectively. The Voronoi di-

agram cells are randomly weighted with multiples of 16, clamped between 0.1 and 255. We have

graphed the relationship between the normalised path cost and the number of faces in the environment

in Figure 4.6, and the normalised path cost and the number of node expansions required by the algo-

rithm in Figure 4.7. We normalise the path costs for a particular environment by dividing path costs

by the minimum path cost.

Discussion: The path costs for the grid maze decrease slowly as environmental subdivision increases

for both the quadtree and the triangulation, with the path costs for the quadtree case being slightly

lower than those of the triangulated case. This is because the environment is a grid, which ensures that

cell edges will largely be parallel with the direction of the path. This provides superior interpolation

results since, when edges are not parallel to the path direction, one of the nodes of the edge being

interpolated is favoured, causing the path to “hug” or travel directly along an edge connected to the

node. While both quadtree and triangulated variants are subject to this edge-hugging behaviour, the

subdivision of the grid environment favours the quadtree slightly in this regard. In Figure 4.5a for

example, the grid cells in the upper right corner are mostly subdivided from the top left to the bottom

right corner of the cell. The bottom right corner is favoured, causing the algorithm to “hug” the right

wall.

However, in the other three environments, the quadtree requires an order of magnitude more faces to

produce a path cost similar to that of the triangulation at the lowest subdivision level. In the axis-

aligned world for example, 2586 triangles produce a path cost of 37.31, while 12.7 times (32738)

more quadtree faces are required to produce a slightly higher path cost of 37.47. In the arbitrarily-

aligned world, 1676 triangles produce a path cost of 39.68, while 8 times (13535) more quadtree faces

are required for a higher path cost of 39.8. As the number of faces used to represent the environment

grows and geometric error decreases, the quadtree begins to produce improved path cost estimates as

can be seen in Figure 4.6.

Since the Delaunay triangulation requires a minimum of around 16500 triangles to represent the

Voronoi diagram, it was not possible to compare path costs at 1024 and 4076 quadtree faces re-

spectively. The path cost of 8439.44 for 16789 triangles beats the quadtree path costs at all levels of

subdivision so there are no comparable data points, but Figure 4.6d shows that the Voronoi diagram

exhibits a similar graph profile to the axis-aligned and arbitrarily-aligned world for the relationship

between path cost and number of faces.

The quadtree representation of the Voronoi diagram starts with a normalised L2 of 0.210 at the lowest

level of subdivision, while the quadtree representations of the axis-aligned and arbitrarily-aligned

worlds start with much higher Normalised L2’s of 0.537 and 0.321, respectively. This indicates that
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the quadtree has difficulty in accurately representing these structures at low resolutions. Regions of

high and low cost may be aggregated into a single cell, creating obstacles not necessarily present

in the polygonal representation and causing Field D* to underestimate the path length by travelling

through regions of high cost. Extreme cases of this, indicated in grey in Table 4.2, are not used as

graph data points due to issues of scale. Note how the quadtree first underestimates path length, then

reaches a point where it overestimates the path length before tending once again to lower path lengths.

This suggests that a certain level of quadtree subdivision is required before pathing through high cost

regions is avoided, around 40000 faces in the case of the Voronoi diagram for example. It is also

interesting to note that the axis-aligned world suffers the most from geometric error. This is because

the walls in this world are relatively thin and require high subdivision for accurate representation.

The number of node expansions required for the quadtree implementation to complete is consistently

greater than that of the triangulated implementation. Between two and three times as many expansions

are required on the quadtree for a similar number of faces, since a node in the triangulation has fewer

neighbours compared with the quadtree. The Delaunay refinement algorithm produces vertices with

an average of six neighbours. A node in basic Field D* has eight neighbours and a quadtree repre-

sentation will increase this if the node is on the border of a low-resolution cell with high-resolution

neighbours (see Figure 4.8). If we consider the node expansions required to produce a similar path

cost, the quadtree requires 23 times more node expansions to produce a path cost of 37.47 in the axis-

aligned world, compared to the triangulation path cost of 37.31. For the arbitrarily-aligned world, 15

times more expansions are required for a quadtree path cost of 39.8, compared to a triangulation path

cost of 39.68.

In terms of running time, our implementation of Field D* on a triangulation is between seven and

ten times faster than the quadtree implementation for a similar number of faces. A number of factors

favour the triangulation implementation. Firstly, as noted above, the average valence of a node in the

quadtree is greater compared to a quadtree node, increasing the number of node expansions. Also,

more faces are adjacent and consequently more cost functions are evaluated. Secondly, a quadtree face

requires further subdivision into triangles, again increasing the number of cost functions evaluated.

Thirdly, we implemented Field D* optimisations for the triangulated case, described in [49], that are

not applicable to the quadtree’s multi-resolution structure. Lastly, the triangulated implementation

utilises caching while the quadtree implementation does not, since it does not make sense to cache

data for triangles that are temporarily constructed during the calculation of a node’s cost. Dividing

the time taken in seconds by the number of nodes expanded, a value of around 18 microseconds is

required for a quadtree node expansion as compared to about 6 microseconds for a node expansion on

the triangulation.

As these differences in structure and implementation exist, it is useful to refer to the worst-case time

complexity when performing comparisons. As explained in Section 2.3.3, Field D* exhibits a worst-

case time complexity of O(F+V logV ) and requires O(F+V ) to represent the environment. In order

to increase path accuracy, the geometric error present in the quadtree representations must be reduced
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(a) Tharsis Plateau and Valles Marineris

Figure 4.9: Three paths plotted across a triangulation of the Mars landscape. The triangles are weighted

according to the difference in angle between the z-axis and their normal. The red and green paths illustrate how

steep sections of the Valles Marineris are avoided, with the green path showing how the flatter end of the valley

is favoured when leaving it. Similarly, the blue path avoids pathing over the steep volcanoes of the Tharsis

Plateau.

by increasing the environment subdivision. To reduce it to the point where it no longer significantly

effects path costs requiress increasing the F and V factors by an order of magnitude. These increases

in space directly increase the time complexity of Multi-resolution Field D*, compared to our triangle

implementation of Field D*. Additionally, since the valence of the triangle implementation is lower

than the quadtrees, the branching factor of the algorithm is lower, which reduces the number of nodes

placed on the priority queue.

Therefore, a triangulated version of Field D* requires an order of magnitude less space and between

10 and 20 times less running time to produce paths of similar costs within an environment, compared
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to a quadtree. As the geometric error in the quadtree representation decreases, the differences in

accuracy also decrease. Our results show that a triangulation implementation performs slightly worse

than a quadtree implementation when the data is grid-aligned, but is far superior for non grid-aligned

environments. It can also be seen that increasing the subdivision level of the environment decreases

the path cost at a slow linear rate for all triangulations in Figure 4.6 and also for the quadtree in the

grid maze case.

In comparison to A* on the triangulation edges, Field D* on the triangulation returns shorter paths

in equivalent or less time, and requires fewer faces for the representation. For example, with respect

to the Voronoi diagram in Table 4.3, Field D* produces a cost of 8439.44 in 0.05s on 16789 faces

compared to 8550.83 in 0.14s on 461450 faces. In the case of the Axis-Aligned and Arbitrarily-

Aligned Worlds, Field D* produces a better path cost on fewer triangles, in equivalent time. A*’s path

cost on grid edges is relatively expensive and does not converge as quickly as A* on triangulation

edges. A node expansion of our A* implementation takes about 0.6 microseconds, 10 times faster

than a node expansion of our Field D* implementation.

The original Field D* algorithm was designed for use on the Mars Rovers and so, as a practical

example of the environments in which Field D* can be applied, we show (see Figure 4.9) how paths

can be plotted across the surface of Mars. In this figure, triangles have been weighted according to

their steepeness, encouraging the algorithm to plot paths avoiding difficult features. This would be

useful as the battery life of these vehicles is limited and maximising their lifespan involves conserving

energy.

4.6.3 Timings

Number Normal Cached % Speedup

of Elements Time Time

Triangulation

52600 0.18s 0.15s 16.6%

80700 0.28s 0.24s 14.2%

102000 0.36s 0.32s 11.1%

Table 4.4: Algorithm run-times for non-cached and cached cases.

We tested the running time of Field D* on a single core of a Intel Quad Core Q9550 2.83 Ghz CPU

with 4 GB RAM. To accomplish this, we constructed a random Delaunay Triangulation within a

square. Half of the triangles were weighted with 0.1 (open space), while the other half were weighted

with a random multiple of 16 between 16 and 256.

We generated 100 random triangle environments and measured the time it took for the algorithm to

find a path from one corner of the square to the opposite corner. For each case, we measured the time
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for the algorithm to complete with caching turned both on and off. Table 4.4 shows the average of

these times for both the normal and cached cases and for a varying number of elements.

In terms of space, we define a triangle as having three indices to vertices, three indices to neighbouring

triangles and a floating point value defining the triangle weight. If each variable takes up four bytes,

then 28 bytes is required to represent a basic triangle. To cache function values in the triangle an

additional 48 bytes are needed, resulting in a total size of 76 bytes. Therefore, to cache triangle

functions, approximately 2.71 times more space is required per triangle to produce an improvement

in running time of between 11% and 16%.

4.7 Conclusion

This chapter describes an extension of Field D*’s cost functions to triangles. We provided analytic

solutions for the minima of these functions expressed using vectors. Experimental results show a 56%

increase in performance over a previous extension of the cost functions to triangles, which relied on the

expensive calculation of trigonometric values and triangle edge lengths. Expressing the cost functions

using vectors also allows us to provide a more general extension to higher dimension, presented in

Chapter 5.

These functions allow Field D* to operate on triangle meshes, thereby providing the algorithm with

the ability to solve the Weighted Region Problem on representations free from geometric error. This

has practical benefits, since triangles can always decompose a polygon exactly, compared to grid

squares which, in general, require an infinite level of subdivision to achieve the same. Thus, the space

required by the algorithm, O(F + V ) to obtain a solution free from geometric error is significantly

reduced. As the worst-case time complexity of the algorithm is O(F +V logV ), reducing the number

of faces F and nodes V also running time of the algorithm.

In this chapter, we have demonstrated this experimentally: For non grid-aligned data, a quadtree

requires an order of magnitude more faces compared to a low resolution triangulation in order for

Field D* to find a path of similar cost. As fewer faces are used to represent the environment and

because triangulation nodes have fewer neighbours compared to a multi-resolution grid, Field D*

operating on a triangulation has to expand between 10 and 20 times fewer nodes when calculating a

shortest path. While the computational expense of triangle cost functions on triangles may be greater

than those of a grid cell, the reduction in time complexity of the algorithm dwarfs this expense. In

our Voronoi diagram example for instance, 0.05 seconds is required to find a shortest path in 16789

triangles, compared to 10.82 seconds in 461450 quadtree cells.

We have also analysed the triangle cost functions for values that can be pre-calculated and cached.

This can produce up to a modest 16.6% improvement in the algorithm’s running time, at the cost of

using 2.77 times more space.
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Additionally, since the triangle cost functions can be applied to weighted triangles embedded in 3D,

they can also be applied to 3D triangulated surfaces and not just triangular subdivisions of a 2D plane.
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Chapter 5

Extending Field D* to N-Dimensions

The Field D* algorithm finds the least cost path between two nodes on a weighted grid. As such,

it is an approximate solution to the Weighted Region Problem (WRP) which poses the challenge of

finding the least cost path between two points in a weighted planar polygonal subdivision [93]. In the

previous chapter we extended Field D* to triangles, allowing the algorithm to operate on structures

that subdivide polygons exactly, and thereby removing a significant source of error in Field D*’s so-

lution to the WRP. This extension also offers benefits in terms of computational and space complexity

for the algorithm.

The WRP was originally specified in terms of a weighted planar polygonal subdivision, or, a weighted

polygonal mesh. However, the WRP can be solved without loss of generality by conversion to a

weighted triangle subdivision [93]. More generally, the WRP can be posed in terms of a weighted

polytope subdivision in higher dimensions, but solved without loss of generality by decomposition to

a weighted simplicial subdivision [67]. Then, we can define the WRP more generally as finding the

least cost path between two points in a simplicial complex.

In the previous chapter, we described an extension of the Field D* cost functions to triangles, or

2D simplices, allowing the algorithm to operate on 2D simplicial complexes. Here, we describe

the extension of Field D*’s cost functions to arbitrary simplices, thereby allowing the algorithm to

operate on general simplicial complexes, and providing an approximate solution to the WRP in higher

dimensions.

We start by discussing quadratic functions and polynomials, as well as convex functions and nonlinear

optimisation. In particular quadratic functions represent squared distances which arise in cost func-

tions developed in this chapter, while quadratic polynomials represent the contours, or, iso-surfaces of

these functions. Convex functions, which include quadratic functions, have desirable properties and,

in particular, are guaranteed to have an optimum. Consequently, many techniques, some analytical,

but also numeric nonlinear optimisation and quadratic programming have been developed to find these

optima.
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3D Field D*’s solution to the WRP is discussed, noting that the underlying representation of a 3D grid

that it operates on will always introduce geometric error into its solution of the WRP.

We proceed to introduce some notation defining these simplices and prove how shortest paths within a

simplex separate into either the direct or indirect cases. The general cost function, defined in Chapter

4, is then extended to arbitrary dimensions using linear algebra, and an analytic minimisation of this

function is presented. This minimum must be solved subject to optimisation constraints defined by the

boundary of the simplex, and we present an efficient method for constraining the minimum to these

boundaries.

This function does not express the higher dimensional indirect case as effectively as possible since it

does not express the distance between two vector subspaces. To solve this, we present an extended

version of the general cost function. A full analytic solution for the extended version is not obtainable,

but it can be reduced to the general cost function in certain cases.

We proceed to show how the direct and indirect cases in higher dimensions can be solved using the

general cost function. Finally, we present results for pathfinding through 3D environments, demon-

strating how the 3D version of Field D* can be used to find paths through a fluid simulation and

through blood vessels in 3D medical data. We also present experimental evidence suggesting that the

indirect cases contribute minimally to the final path cost in 3D.

5.1 Quadratic Functions and nonlinear optimisation

In the following section, we discuss quadratic functions and some of their properties. In particular,

they are convex functions and therefore have an optimum. They are relevent to our work since they

can express the squared distance between a parameterised point in a vector subspace and another point

that is not in the vector subspace. These distances are components of the cost functions that we will

need to solve. We also discuss nonlinear optimisation for quadratic programming, which involves

finding optima to quadratic formulae, subject to linear equality and inequality constraints.

5.1.1 Quadratic Polynomials and Functions

A quadratic polynomial is a polynomial composed of variables whose exponent is no greater than

two. For scalar variables, the quadratic polynomial can be expressed as:

ax2 + bx+ c (5.1)

where a,b and c are scalar constants and x is a scalar variable. Quadratic functions evaluate the

polynomial for a particular value of x when a 6= 0:

f(x) = ax2 + bx+ c
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Quadratic functions have well-known properties:

• If a > 0, then the graph of f(x) forms a downward parabola, with a minimum at −b
2a .

• If a < 0, then the graph of f(x) forms a upward parabola, with a maximum at −b
2a .

Quadratic functions can be generalised in higher dimensions to multivariate quadratic functions of

the form:

f(x) = xTAx+ bTx+ c (5.2)

where A is a square matrix of dimension n × n, b and x are row vectors of dimension n and c is a

scalar. Distance functions in higher dimensions can be expressed in terms of a quadratic since, for

some n×m matrix M with m < n expressing a linearly independent basis of m vectors , and vectors

x ∈ R
m and v ∈ R

n, with sizes m and n respectively, we can derive:

‖Mx+ v‖ =
(

(Mx+ v)T (Mx+ v)
) 1

2

=
((

xTMT + vT
)

(Mx+ v)
)

1

2

=
(

xTMTMx+ vTMx+ xTMTv + vTv
)

1

2

=
(

xTMTMx+ 2vTMx+ vTv
)

1

2

Setting A = MTM, an m × m square matrix, bT = 2vTM, a vector of size m and c = vTv, a

scalar, it can be seen that the term in the square root is a multivariate quadratic function:

xTMTMx+ 2vTMx+ vTv = xTAx+ bTx+ c

Given that m < n, M has a left inverse, (MTM)−1MT , and the analytic optimum to the quadratic

above is well known [20]:

xopt =
(

MTM
)−1

MTv

Also, as long as v is non-zero, ‖Mx+ v‖ is differentiable everywhere and has the same minimum as

the quadratic.

5.1.2 Quadric Surfaces

Quadrics are quadratic polynomial equations of the following form:

xTAx+ bTx+ c = 0
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Figure 5.1: Quadric Surfaces in 2D and 3D (a) an Ellipse (b) an Ellipsoid

Solving this equation for x produces a family of points that collectively define a quadric surface,

such as the ellipes in Figure 5.1a and ellipsoid in Figure 5.1b. Quadrics may be classified into 17

surfaces such as ellipsoids, elliptic parabaloids and hyperboloids. In particular if the quadratic form

xTAx > 0∀x then A is positive definite, the quadric is an ellipsoid and can be expressed as:

(x− v)T A (x− v) = 1

where v is the centre of the ellipsoid. Ellipsoids are relevent to this work as they describe cost function

contours.

5.1.3 Convex Functions

Convex functions [20] are a group of functions classified by the relation between any two points on

the surface of the function’s graph. If the line between these two points itself never crosses the graph

surface, the function is said to be convex. Figure 5.2a illustrates the convexity of the quadratic function

while 5.2b illustrates a non-convex cubic function. Expressed algebraically, a function f : Rn → R

is convex if the following holds:

f(αx+ βy) ≤ αf(x) + βf(y)

∀x, y ∈ R
n and ∀α, β ∈ R where

α+ β = 1, α ≥ 0, β ≥ 0

It is useful to identify whether functions are convex, since convexity implies that a minimum will

always exist, and if the function is strictly convex, it will be unique. In particular, quadratic functions

are convex [20] and have analyic solutions. Other, more general convex functions may need to be
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Figure 5.2: (a) x2−2 is convex, since connecting two points do not cross the graph surface. (b) x3+3x2−6x−8
is non-convex since connecting two points does cross the graph.

solved using numeric techniques such as Nonlinear optimisation,

5.1.4 Nonlinear Programming and Optimisation

The mathematical field of Nonlinear Programming (NLP) [12] encompasses techniques for finding

the optimum of an objective function, subject to a system of equalities and inequalities, termed con-

straints. The objective function and constraints may be nonlinear. More formally the requirement is

to:

Minimisef(x) where

f : Rn → R

x ∈ R
n

subject to

gi(x) ≤ 0, i ∈ 1, . . . , l

hj(x) = 0, j ∈ 1, . . . ,m

The set of possible solutions that lie within the supplied constraints is called the feasible region. In

Figure 5.3 for example, the feasible region lies below 2x+ 2 and −3x+ 1 and above x2 − 2.

5.1.5 Quadratic Programming

Quadratic Programming [102] is a nonlinear optimisation method, which aims to minimise or max-

imise a multivariate quadratic function, subject to linear constraints on the variables.
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Figure 5.3: A nonlinear function y = x2 − 2, constrained by 2x+ 2− y ≤ 0 and −3x+ 1− y ≤ 0

The quadratic function f(x), is composed of a Q, a symmetric, n× n square matrix and row vectors

c and x of dimension n:

f(x) =
1

2
xTQx+ cTx (5.3)

If xTQx ≥ 0 ∀x, then Q is said to be positive semi-definite and f(x) is a convex function which, if

bounded below by a feasible region, has a global minima. If this property is strengthened such that

xTQx > 0 ∀x the Q is said to be positive definite and the global minimum will be unique.

In practice, the quadratic program is subject to multiple, linear constraints, such that the problem

becomes one of finding a local minimum within these imposed bounds. In the most general sense,

these constraints are expressed as linear inequalities, although linear equalities allow for an easier

solution.

gi(x) ≤ 0 ∀i ∈ 1, . . . , l

hj(x) = 0 ∀i ∈ 1, . . . ,m

The method of Lagrange Multipliers [12] finds an optimum to a problem subject to linear equalities.

For example, we may wish to minimise Function f(x) subject to constraint g(x) = c. This constraint

is multiplied by a Lagrange Multiplier, λ and added to f(x) to form a Lagrange Function:

L (x, λ) = f (x) + λ (g(x)− c)
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The method of Lagrange Multipliers thus involves solving the following:

∇x,λL (x, λ) = 0 or

∇xf = −λ∇xg where

∇xf =
∂f

∂x
and ∇xg =

∂g

∂x

Lagrange Multipliers provides an analytic solution to an equality constrained quadratic program since

it reduces the program to an easily solvable linear system. For example, Function 5.3 and constraint

E.x = d result in the following system:

[

Q ET

E 0

][

x

λ

]

=

[

−c
d

]

While the Lagrange Multiplier method can find an optimum subject to linear equalities, the use of

Karush-Khan-Tucker conditions (KKT) [69, 76] generalises this method so that optima can be found

subject to linear inequalities. KKT are first order necessary conditions for finding an optimal solution

to nonlinear programming problems

The aim, once again, is to minimise a function, f(x), this time subject to multiple inequality con-

straints gi(x), i = 1, . . . , l and equality constraints hj(x) = 0, j = 1, . . . ,m. If x∗ is some local

minimum of f(x), then there exist two sets of constants, µi i = 1, . . . , l and λj j = 1, . . . ,m

called KKT multipliers, corresponding to the l inequality, and m equality constraints. Then, in order

for x∗ to be optimal, a number of KKT conditions must also hold. The Primary Feasibility condition

serves to re-iterate the original constraints.

h(x∗) = 0

g(x∗) ≤ 0

The Dual Feasibility condition states that every element in ui must be greater than or equal to zero.

µi ≥ 0 ∀i ∈ 1, . . . , l

Stationarity is a statistical concept which implies that the mean and variance of equally sized sub-

sequences within a series are always constant. It is particularly useful in analysing time-related series,

since data trends can be identified that are independent of time. The Stationarity of the system must

equal zero.

∇f(x∗) +
l
∑

j=1

λi∇hi(x∗) +
m
∑

i=1

µj∇gj(x∗) = 0

Finally, the Complementary slackness condition requires that the product of µi and the inequality
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constraint corresponding to it should be zero.

µigi(x∗) = 0

If the above KKT conditions hold for x∗, then it is the optimum for the problem.

5.2 Related Work

3D Field D* [23] extends Field D* to operate on a uniform 3D grid by extending Field D*’s direct

cost function to cubes. The authors state that no closed form minimization of this function exists in

3D and approximate the minimum to avoid the expense of numerical methods. This is accomplished,

firstly, by approximating the minima along the four cube edges, and secondly, by connecting the

minima of opposing edges so that two intersecting lines are formed. The point at which they intersect

is considered to be the minimum. It is not clear whether the minima estimation is accurate or how

much error exists in the approximation of the minimum – a discussion of this topic was presented in

Chapter 3. This can be considered as interpolation error present in the cost function.

More problematically, 3D Field D* also operates on a uniform 3D grid, which suffers from same geo-

metric error inherent in representing weighted regions with 2D grids and quadtrees: A finite number of

cubes cannot, in general, subdivide a polyhedron exactly. Therefore, any algorithm attempting to solve

the WRP on a uniform 3D grid, will necessarily require high levels of subdivision to ameliorate geo-

metric error in the representation of a polyhedron. An extension of this technique to multi-resolution

grids may ameliorate this error, but can never remove it completely.

Also, as dimension increases, the level of subdivision required to represent a polytope increases, since

the polytope boundary occupies an increasing number of dimensions. For example, to accurately rep-

resent a triangle boundary using a 2D grid, it must be finely subdivided along the three triangle edges

using grid cells. Similarly, a tetrahedron boundary must be finely subdivided on the four boundary

triangles using grid cubes.

Therefore, an extension of Field D* to simplices is important, because, as discussed earlier, simplices

subdivide polytopes exactly and consequently allow Field D* to operate on representations free from

geometric error.

5.3 Notation

As much of the discussion in this work involves simplices, we now introduce some notation. We use

upper-case letters to refer to points, bold lower-case letters for vectors and bold upper-case letters for

matrices.
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Figure 5.4: A tetrahedron with apex node A and base facet B1B2B3 consisting of node B1, B2 and B3. M is

a matrix representing the basis of the vector subspace of the base facet, while N is a basis matrix representing

the side facet AB2B3. x and y are coordinates that parameterise M and N respectively. u is a vector between

A and B1, while v and w are vectors between points on the base facet and side facet respectively.

A simplex generalises the concept of a triangle in two dimensions and a tetrahedron in three dimen-

sions to arbitrary dimensions. An n-simplex is a n-dimensional polytope constructed from n + 1

vertices, and is defined as the convex hull of those vertices.

The convex hull of any nonempty subset of the n + 1 vertices defining the simplex is a face of the

simplex and is itself a simplex. An m + 1 subset of the original n + 1 vertices is an m-simplex, also

termed an m-face of the n-simplex. Under this formulation, 0-faces are equivalent to vertices, 1-faces

to edges and (n-1)-faces to facets.

The number of m-faces in an n-simplex, with m < n is equal to the binomial coefficient

(

n+ 1

m+ 1

)

.

Using this formula, it can be seen that there are n+ 1 facets in an n-simplex, for example.

Simplices may be connected together in a Simplicial Complex, sharing vertices and facets. In a 3D

Simplicial Complex, two adjacent tetrahedra share a facet (triangle) and three vertices.

When referring to simplices, A will denote the apex vertex, or the node for which we are calculating

the path cost g(A), while the vertices B1 . . . Bn form a facet of the simplex opposite A, which we

call the base facet. The other facets, involving A and each Bi save one, we denote the side facet. The

path costs g(Bi) ∀i ∈ (1, . . . , n), form a linear weighting system on the base facet. We denote the

interior weight of the simplex with λ, while we use βi to denote the weights of simplices adjacent to

the simplex under consideration.

In the mathematical derivations that follow, we refer to m-dimensional vector subspaces formed from

the coordinate system of the base and side facets, as well as vectors expressing the distance between
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points and the origin. We use the following notation to refer to the bases of these subspaces and the

associated vectors:

• M: A matrix, the basis of the vector subspace formed by points on the base facet.

• N: A matrix, the basis of the vector subspace formed by points on a side facet.

• x: A coordinate with respect to basis M.

• y: A coordinate with respect to basis N.

• µ : A vector, the gradient of a linear function defined over the vector subspace.

• u: A vector, between the apex point, A ∈ R
n and the point B1.

• v: A vector between two points in the vector subspaces described by M and N.

• w: A vector between two points in the vector subspaces described by M and N.

5.4 Proof of separation of the Direct and Indirect Cases

In their development of the Field D* algorithm [49], the authors prove that a path through a triangle

originating from an interpolated edge must either be a direct or indirect case - a combination of the

two is not optimal. Similarly, here, we show that it is a path cannot be optimal if it includes both a

point on the interior of the base facet and multiple points in the side facets. Thus, if a point originates

on the interior of the base facet, it must travel straight to the apex node A, which we have defined as

the direct case. However, if a point originates on the boundary of the base facet, it can either be an

edge case of the direct case, or an indirect case. This proof was first published as a technical report

[91].

Suppose that all global minima are for a path through some P1 in the interior of the base facet of

the simplex and some P2, P3, . . . , Pm in the interior of the side facets. An example configuration is

shown in Figure 5.5. The path travels from P1 . . . PmA. We will show that this leads to a contradic-

tion.

The path cost of a point P1 is linear in P1 by definition. We express the linear weighting for the sake

of simplicity as w · P1 + d, where w is a n-dimensional vector representing a linear scaling and d is

the offset of this linear scaling system.

Let T be the point where AP2 meets the face B2B3 . . . Bn. We parameterise the line segments
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Figure 5.5: Depiction of the proof by contradiction, which shows that optimal paths originating on the interior

of the base plane cannot travel on side facets, P1T and P2T are parameterised by t, while P2A, P3A and

P4A are parameterised by u. P1,P2,P3 and P4 are points on a path that is assumed to be a global minimum.

Since u is linear in t, and the cost function describing a path through these points, G(t) is itself linear in t,
a local minimum for this function can only occur when the slope is zero. However, starting from 1, t can be

adjusted downwards until P1 and P2 reach T on the facet boundary or Pi reaches the base facet for i > 2
without changing the cost, contradicting the assumption that the global minimum occurs within the base plane.
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constituting the path throught the simplex with t:

Q1(t) =T + t(P1− T )

Q2(t) =T + t(P2− T )

Qi(t) =A+ u(t)(Pi− 1−A) ∀i > 2

where u(t) is a linear function of t that we derive from the following relation:

u(t)(A− P2) + t(P2− T ) = (A− T ) (5.4)

⇒ u(t)‖A− P2‖+ t‖P2− T‖ = ‖A− T‖

⇒ u(t) =
‖A− T‖
‖A− P2‖−t

‖P2− T‖
‖A− P2‖

In particular, the term ‖Q3(t) − Q2(t)‖ is linear in u(t), and thus t, by using the relation expressed

in Equation 5.4:

‖Q3(t)−Q2(t)‖ = ‖u(t)(P3−A) +A− t(P2− T )− T‖
= ‖u(t)(P3−A)− t(P2− T ) + (A− T )‖
= ‖u(t)(P3−A)− t(P2− T ) + u(t)(A− P2) + t(P2− T )‖
= ‖u(t)(P3−A) + u(t)(A− P2)‖
= u(t)‖P3− P2‖

The other distance components of consecutive sections of the path are also linear in t:

‖Q2(t)−Q1(t)‖ = ‖t(P2− T ) + T − t(P1− T )− T‖
= ‖t(P2− P1)‖
= t‖P2− P1‖

‖Qi+ 1(t)−Qi(t)‖ = ‖u(t)(Pi+ 1−A) +A− u(t)(Pi−A)−A‖
= ‖u(t)(Pi+ 1− Pi)‖
= u(t)‖Pi+ 1− Pi‖

‖A−Qm(t)‖ = ‖A− u(t)(Pm−A)−A‖
= u(t)‖Pm−A‖

Note that Pi = Qi(1). Therefore we can say that there is an open interval I including the value 1,

containing a range of values for t such that Qi(t) will always lie within the interior of their respective

facets. Thus, t ∈ I will always produce a legal path.

Let G(t) be the path cost through Qi(t). Since the points Pi are supposed to give the globally optimal
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path, G(1) must be a local minimum on I . Now G(t) can be expressed as:

G(t) =w ·Q1(t) + d+ λ‖Q2(t)−Q1(t)‖+ β1‖Q3(u(t))−Q2(u(t))‖+
. . .+ βo‖Qm(u(t))−A‖

=w ·Q1(t) + d+ λt‖P2− P1‖+ β1u(t)‖P3− P2‖+
. . .+ βnu(t)‖Pm−A‖

Thus, G is a linear function of t. A linear function can only have a local minimum on an open interval

if its slope is zero. But in that case, we can start with t = 1 and then adjust it upwards or downwards

until any Qi(t) reaches the boundary of its corresponding facet without changing the cost because of

the zero slope. But this contradicts the assumption that there are no global minima except where Pi

are in the interior.

This proves that it is not possible for the path with the lowest cost to include points on both the interior

of the base facet and the side facets. Therefore, in the direct case, the path must travel from a point

on the base facet directly to the apex node A. However, it is possible for the shortest path to originate

from points on the boundary 1 of the base facet and then travel to points on the side facets. These

form the indirect cases in higher dimensions. In particular, we have not proved that the indirect cases

may not have more than two path segments and we leave this for future work. The rest of this chapter

only considers indirect cases involving two path segments.

5.5 N-Dimensional General Cost Functions

Extending Field D*’s cost functions to N-Dimensions requires a concise mathematical treatment. For

example, in Field D* pathfinding on weighted triangulated and tetrahedral meshes [106], minimising

a cost function on a 3D tetrahedron requires reduction to a two-dimensional case, at which point

two-dimensional cost functions could be applied. While a similar process could be applied in higher

dimensions, it quickly becomes cumbersome. Thus, to simplify higher dimensional cases, and to

make the three-dimensional case easier to implement, we express the general cost function developed

in Chapter 4 with Linear Algebra.

We first extend the general cost function by changing its arguments to use vectors and matrices, and

develop an analytic solution for this function. This function does not describe the indirect cases as

effectively as possible because it does not express the distance between two bases that the case must

consider. To this end, we also present an extended version of the cost function which can represent

these indirect cases. We do not have an analytic solution for the extended version, but for certain

1In 3D, boundary of the triangle that forms the base facet would consist of the triangle edges. In 4D, the boundary of the

tetrahedron that forms the base facet, would itself consist of triangles.
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Figure 5.6: The components of the general cost function. M is a basis matrix of a vector subspace formed on

the points of the base facet AB1B2 and u is a vector that expresses the distance between A and B1. Then,

λ‖u + Mx‖ express the cost of travelling with weight λ from A to coordinate x in this vector subspace,

weighted by linear function µ
Tx+ d.

indirect cases it reduces to the simpler general cost function. This is especially the case in 3D, where

all indirect cases can be reduced to the general cost function.

5.5.1 General Cost Function

The general cost function 4.1 described in Chapter 4 is expressed in terms of vectors and scalars:

G(x, λ,v1,v2,µ, d) = λ‖v1 + xv2‖+ µx+ d (5.5)

Recall that v1 and v2 are linearly independent. Then, v2 is a 1D basis, representing a 1D vector

subspace of R2 and x is a coordinate relative to this basis. v1 is a position vector representing a point

relative to the origin. Then λ‖v1 + xv2‖ expresses a distance, scaled by λ, between this point and a

range of points within the vector subspace. µx+ d is a linear function defined on the vector subspace,

with d the value at the origin. This formulation is convenient for expressing functions involving two

edges of a triangle in 2D, but does not scale to higher dimensions.

We now extend these concepts to the Euclidean vector space R
n. Let u be a n-dimensional position

vector representing a point in R
n relative to the origin and let λ be the cost of travelling through space.

Let M be an n ×m basis matrix representing a m-dimensional vector subspace of Rn, composed of

m linearly independent, n-dimensional vectors, and with m < n. Then x is an m-dimensional vector

expressing a coordinate relative to this basis. Also let µ be an m-dimensional vector, defining a linear

function µ
Tx+ d over the vector subspace, where d is the scalar value of this function at the origin.
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Then we define the general cost function as:

G (x, λ,u,M,µ, d) = λ‖u+Mx‖+ µ
Tx+ d (5.6)

In practice, we set u = B1 − A and compose M from m linearly independent vectors between base

facet vertices, Bi− B1 i ∈ 2, . . . ,m for example. Then ‖u+Mx‖ represents the distance between

A and a range of points on the hyperplane containing the base facet. Similarly, we compose µ
T from

the m scalar path cost differences, g(Bi)− g(B1) i ∈ 2, . . . ,m and set d = g(B1), so that µTx+ d

interpolates the path costs of the base facet vertices over the facet hyperplane. This configuration can

be seen in Figure 5.6.

Also, in order for x to represent a coordinate within the facet, x > 0 and ‖x‖ ≤ 1 must hold, otherwise

x lies outside the simplex.

The analytic solution of Cost Function 5.6, derived in Section B.1 of the Appendix is:

xT =
(

φµT − uTM
) (

MTM
)−1

MT (5.7)

whereφ = −

√

√

√

√

uT
(

I−M (MTM)−1
)

u

λ2 − µT (MTM)−1
µ

(5.8)

We note that uT (I −M(MTM)−1)u is the squared distance between position vector u and its or-

thogonal projection onto M. Also, λ2−µ
T
(

MTM
)−1

µ is the difference between the squared travel

cost from u and a quadratic of µ.

Therefore, x, depends on scalar φ, a ratio between a point’s distance from the basis and the difference

between the travel cost λ from this point and linear gradient µ. In particular λ2 > µ
T
(

MTM
)−1

µ is

required for φ to be real. If this does not hold, then the intuition is that the linear component µTx+ d

dominates the distance component entirely and no global minima exists. However, a local minima

will always exist on the exterior of the base facet. To find this local minima, φ can be set to a large

value and the technique described in Section 5.5.1 used to find it.

The distance component, λ‖u + Mx‖ is in fact a Least-norm convex function [20] whose gradient

can be visualised as a collection of hyperspheres (Figures 5.7a and 5.7d). If the linear component

does not dominate (Figures 5.7b and 5.7e), it changes the distance component by “tilting” the solution

in the direction of the plane formed by the linear component. The combination of the two results in

a convex function whose gradient is a collection of ellipsoids (Figures 5.7c and 5.7f). The ellipsoid

nature of the gradient is shown in Section B.1.2.

Edge Conditions

An analytic minimisation of G produces a minimum, x, a coordinate relative to the basis M, represent-

ing a coordinate system on the facet of a simplex. Minima lying outside the facet do not correspond
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Figure 5.7: (a) and (d): λ‖u + Mx‖ is a convex function that produces hypersphere (circular) contour lines.

(c) + (e):µx + d produces lines on a plane. (d) + (f): Combining them results in another convex function (as

long as µx+ d does not dominate) producing parabaloid contour lines.

to physically correct locations. Thus, the analytic minimisation must be constrained to lie within the

bounds of this facet: specifically we require x ≥ 0 and ‖x‖ ≤ 1. If x does not satisfy these relations,

a local minimum must be found on the exterior of the facet.

One possible method for finding the local minimum would solve G on the exterior of the facet: The

(m− 1)-faces on the exterior of the m-face. For example, the base facet of a tetrahedron is a triangle

(2-face) with three edges (1-faces) on the exterior and base facet of a 4-simplex is a tetrahedron (3-

face) with four triangles (2-faces) on the exterior. M and µ can simply be reconfigured for each of

the (m− 1)-faces and G solved to find a local minimum on each of them.

However, the local minimum may still not lie on the (m − 1)-face – the exterior triangle of a tetra-

hedron, for example – and thus the process must continue until local minima on edges (1-faces) are

considered. Consequently, this is a computationally expensive solution which becomes more expen-

sive as the dimension of the problem increases: The local minima for three edges of a triangle must

be considered. For a tetrahedron, four triangles and six edges must be considered and for a 4-simplex,

five tetrahedra, 10 triangles and 10 edges.

A more efficient method of determining which m-face contains the local minimum utilises the fol-

lowing information:

• x is a coordinate relative to the M basis.

• Within this coordinate system, the m− 1-faces form hyperplanes with simple coordinates.
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Figure 5.8: The contour of G is a family of ellipsoids expanding around the minimum. Their convex nature

implies that we need only classify x with respect to the hyperplanes formed from the facet edges in the coor-

dinate system of M. P2 is within the positive half-space of the hyperplane of the hypotenuse, but not those of

the top and bottom edge. Thus, the hypotenuse edge can be selected as the boundary condition to consider. P3
is within the positive half-space of the hyperplanes of the bottom and hypotenuse edges. Therefore we must

consider both these boundary conditions.

• The gradient of G forms a family of ellipsoids in this coordinate system.

In Section B.1.2 we show that the contour lines of G are a family of ellipsoids, radiating outwards

from x. From the fact that these contour lines are convex, we can classify the position of x relative

to the half-space of the hyperplanes formed by the facet edges. If x is within the positive hyperplane

related to an edge, then x lies outside the facet and we should check for a local minimum along the

related edge.

For example, in the tetrahedral case shown in Figure 5.8, B1 is at (0, 0), B2 at (1, 0) and B3 at (0, 1)

in the coordinate system of M. Then P1 is within the negative half-space of all three hyper-planes

and is therefore the local minima. P2, however, is within the positive half-space of the hypotenuse

hyperplane and the negative half-space of the top and bottom hyperplanes. Therefore, we consider

only the hypotenuse edge when finding a local minimum. P3 is within the positive half-space of both

the hypotenuse and bottom hyperplanes and consequently we must check for local minima along these

edges.

Thus, using this hyperplane classification system, we can reduce the number of edges that we should

check for a local minimum.

5.5.2 Extended General Cost Function

This formulation of the cost function is more general in that it expresses the cumulative cost of trav-

elling a distance between points on bases M and N, weighted by λ, followed by the cost of travelling
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Figure 5.9: Layout of the Field D* extended general cost function H . It expresses the cost of travelling from a

coordinate x, weighted by linear function µ
Tx+d, added to the weighted cost of travelling between x on basis

M and y on basis N, λ‖u+Mx+Ny‖, added to the cost of travelling along basis N, β‖Ny‖, to A.

to point A, weighted by β. It provides a more natural expression of the various indirect cases that are

encountered in higher dimensions:

H (x,y, λ, β,u,M,N,µ, d) = λ‖u+Mx+Ny‖+ β‖Ny‖+ µ
Tx+ d (5.9)

An example of the physical configuration is shown in Figure 5.9. Two points, P1 and P2 are expressed

by parameterising M and N with variables x and y, respectively, such that P1 = B1 + Mx and

P2 = A + Ny. u = A − B1 is a vector expressing the difference between the origins of the

two bases. In particular, choosing A as the origin for basis N allows us to express the distance

‖P2−A‖ = ‖A+Ny−A‖ = ‖Ny‖. This distance is weighted by β. ‖u+Mx+My‖ expresses

the distance between the two bases 2 and is weighted by lambda. Finally, µTx+ d expresses a linear

function defined over the vector subspace represented by M.

2To express this distance more naturally, Mx could be re-expressed as −Mx, but the sign can be incorporated into the

matrix.
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The solutions for x and y derived in Section B.2 of the Appendix, are:

xT =
(

φµT − uTM
) (

MTM
)−1

yT = θwTN
(

NTN
)−1

φ = −

√

√

√

√

uT
(

I−M (MTM)−1
)

u

λ2 − µT (MTM)−1
µ

θ = −1±

√

√

√

√

√

β2
(

wTN (NTN)−1
NTw −wTw

)

(λ2 − β2)
(

wTN (NTN)−1
NTw

)

v = u+Ny

w = u+Mx

Just as x is parameterised by scalar φ, y is also parameterised by scalar θ. θ expresses a ratio between

the two weights, β and λ, as well as the ratio between the distance of the projection of w onto N

and the distance between this projected point and the apex A. In order for θ to be real, β < λ and

wTN
(

NTN
)−1

NTw 6= 0 must hold.

Since v and w still contain y and x, respectively, the solutions for x and y are not independent of

each other. However, it is possible to eliminate y and θ from H , as shown in Section B.2.1 of the

Appendix, to produce the following form:

H (x, λ, β,u,M,N,µ, d) =
λ2 ± β2

√

λ2 − β2
‖
(

I−N
(

NTN
)−1

NT
)

(u+Mx) ‖+

β‖N
(

NTN
)−1

NT (u+Mx) ‖+ µ
Tx+ d (5.10)

where N
(

NTN
)−1

NT is a matrix that projects orthogonally onto basis N. There are two distance

components: The first expresses the distance between vector u+Mx and its projection onto N. while

the second expresses the magnitude of u + Mx projected onto N. These two distance components

are orthogonal to each other, and thus the distance components from the original Equation have been

transformed so that they lie on the catheti of a right-angled triangle.

We have not managed to obtain a general analytic solution for Equation 5.10 since two distance terms

and one linear term contain x. Attempts at solving 5.10 by minimisation suggest that it is necessary

to solve for an eighth degree polynomial in x. However, in certain cases described in Section 5.5.1, a

distance term is linear and 5.10 reduces to 5.6, for which an analytic solution is available.
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A

B1

B2

B3

P1

Figure 5.10: A direct case originating from point P1 on the base facet B1B2B3.

5.6 N-dimensional Direct and Indirect Cost Functions

In this section, we describe how the general cost functions from Section 5.5 can be applied to solve

the direct and indirect cases in arbitrary dimensions.

5.6.1 Direct Case

In the direct case, the path travels directly from a linearly weighted base simplex to the apex node A.

For example, in Figure 5.10, the path travels from point P1 on△B1B2B3 to A.

In this example, we simply set

v = B1−A

M =
[

B2−B1, B3−B1
]T

µ =
[

g(B2)− g(B1), g(B3)− g(B1)
]T

d = g(B1)

and solve the Cost Function 5.6 to obtain first φ and then x. Thus, to solve the direct case, we simply

set M to be the basis of the base facet and µ to the differences between the linear weightings of the

facet vertices. d is assigned the weight at the origin of the linear weighting system, g(B1) , while v

is assigned the difference between the apex node and B1 the origin of basis M.
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5.6.2 Indirect Cases

The indirect case is the most difficult case to extend to higher dimensions. Firstly it must consider

neighbouring simplices and the number of neighbouring simplices increases with each dimension.

Secondly, the number of indirect cases rapidly increases with each dimension, because the number

of ways in which simplices neighbour each other also increases. In the three-dimensional case for

example, four tetrahedra each share a face with the primary tetrahedron and so we must consider the

indirect cases involving these faces (Figure 5.11). Additionally, the three edges with the primary tetra-

hedron are also shared with an unspecified number of tetrahedra and consequently there are indirect

cases involving these edges (Figure 5.12).

Each of Field D*’s cases originate from some point on the base facet of the simplex under consid-

eration. The direct case originates from some internal point within the facet, while indirect cases

originate from points on the facet exterior. In three-dimensions for example, the base facet is a tri-

angle, direct cases originate from the interior of this triangle, while indirect cases originate from the

edges of the triangle. Thus, there is also an interpolation component to the indirect case. [106] do not

consider this interpolation component, and only present indirect cases originating from nodes. The

interpolation component is not immediately apparent in the original two-dimensional case, since in

two-dimensions the base facet is an edge, and the two indirect cases originate from the two nodes on

either side of the edge. It is, however, present in the three-dimensional, and higher-dimensional cases.

Indirect Hyperplane (n− 1) Case

Section 5.5.2 re-expressed H as:

H (x, λ, β,u,M,N,µ, d) =
λ2 ± β2

√

λ2 − β2
‖
(

I−N
(

NTN
)−1

NT
)

(u+Mx) ‖+

β‖N
(

NTN
)−1

NT (u+Mx) ‖+ µ
Tx+ d

In this form, y has been eliminated from H and can be used to solve certain indirect cases. The

key to understanding how this is possible involves examining the kernel of the projection matrix

PN = N
(

NTN
)−1

NT . The basis N, composed of linearly independent vectors formed from facet

edges is a vector subspace of the linear space inhabited by the primary simplex. If, in the general case,

the linear space is Rn, then the kernel of an projection matrix PN onto basis N has one element if N

consists of n− 1 linearly independent vectors, two elements if N consists of n− 2 vectors, and so on.

If N is composed of n− 1 vectors, the basis N forms a hyperplane with normal o, the single element

in the kernel of PN . In this case, o · (u+Mx) + e = ‖ (I−PN ) (u+Mx) ‖ for some e. The

distance term then becomes linear in terms of x and can be combined with the µ
Tx and d terms so
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that we have the following:

H (x, λ, β,u,M,N,µ, d) = β‖N
(

NTN
)−1

NT (u+Mx) ‖+
(

λ2 ± β2

√

λ2 − β2
o ·M+ µ

T

)

· x+
(

λ2 ± β2

√

λ2 − β2
o · u+ e

)

+ d

which obeys the form of Cost Function 5.6 and thus has an analytic solution. However, this reduction

only works for a basis of n−1 vectors, because the dimension, or nullity of PN is one: it only contains

one vector. In the following section we discuss why this is not possible in cases where the kernel of

PN has nullity greater than two.

Indirect (“inbetween”) Cases between 2 and n− 2 inclusive

If N is composed of n − 2 linearly independent vectors, then the kernel of PN contains two vectors

and the nullity of this kernel is two. If N is composed of n − 3 linearly independent vectors, the

nullity will be three and so on. Then, the linear span of the kernel vectors defines a range of vectors

orthogonal to the basis N.

In these cases, the intuition is that there are many directions that are orthogonal to N. In 3D for

example, an infinite cylinder of vectors is orthogonal to a line. By contrast, when the kernel of PN

only contains one vector, it represents only one direction. While it is possible to scale this vector, the

direction of the scaled vector does not change. In 2D for example, only one vector is orthogonal to a

line and in 3D, only one vector is orthogonal to a plane.

Therefore, when the nullity PN is greater than 2, a single direction, or normal vector cannot be chosen

and ‖ (I−PN ) (u+Mx) ‖ cannot conveniently be converted into a o · (u+Mx)+ e term, because

o would need to be expressed as a linear function of the kernel vectors.

Alternatively, one could construct a normal for a point u+Mx as:

o =
(I−PN ) (u+Mx)

‖ (I−PN ) (u+Mx) ‖

However, since the normal is dependent on x, we cannot convert a distance component into a compo-

nent linear in x and consequently to the form of Cost Function 5.6. Thus, there are a range of indirect

cases without an analytic solution, for Rn where n > 3. For ease of reference, we refer to these as the

“inbetween” cases.
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Indirect Edge Case

Below this range of analytically unsolvable cases lies one last indirect case which does have an an-

alytic solution. This case originates from some interpolated side simplex of the base facet, travels

through the primary simplex to an edge and then towards node A. This indirect case is solvable using

Cost Function 5.6 because it is possible to include the vector describing the edge into the M basis,

and the cost of travelling along this edge, into µ vector.

For example in the 3D tetrahedral case shown in Figure 5.12, the path originates on side simplex

B1B3 of the base facet B1B2B3, travels through the simplex to edge AB2 and then to node A. The

cost of this path can be expressed as:

w(P1) + λ‖P2′ − P1‖+ β‖P2′ −A‖

Now for some real s and t, the variables above can be expressed as:

P1 = (B3−B1)s+B1

P2′ = (B2−A)t+A

w(P1) = (g(B3)− g(B1)) s+ g(B1)

also

P2′ −A = (B2−A)t+A−A

⇒ ‖P2′ −A‖ = t‖B2−A‖ (5.11)

We can set:

v = A−B1

M =
[

−(B3−B1), B2−A
]T

µ =
[

g(B3)− g(B1), β‖B2−A‖
]T

d = g(B1)

Thus λ‖P2′ − P1‖ = λ‖v +Mx‖, while β‖P2′ −A‖ and w(P1) combine to form µ
Tx+ d.

We substitute these values into Cost Function 5.6 and solve for variable x to obtain an analytic solu-

tion.

An analytic solution can be obtained for this example because the basis for edge B2A contains one

vector. Thus, it can be parameterised by one scalar variable, which can be moved out of the distance

term, as in 5.11. In terms of H , this distance term is related to ‖Ny‖.
The example above describes a 3D tetrahedral case, but this solution also works for higher dimensions:

The basis formed from the base facet’s side simplex will always form the first part of M, while the
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A

B1

B2

B3P1

P2′
P2

Figure 5.11: Two indirect hyperplane cases originating from a point P1 on edge B1B3 to a point P2 on facet

AB1B2 and P2′ on facet AB2B3.

vector describing the edge will be the last entry in M. Similarly, the differences between the linear

weightings forms the first part of µ, while the cost of travelling along the edge will be the last entry.

In terms of H , this represents a combination of matrices M and N and variables x and y.

Number of Indirect Cases

Here we provide details on the number of indirect cases in each dimension. This is somewhat difficult

to visualise as certain indirect cases reduce to a lower dimension.

Indirect cases originate from points on the exterior of the base facet. In 2D, this is a point on the end of

a line, in 3D, an edge on the side of a triangle, and in 4D a triangle on the side of a tetrahedron. Firstly,

the geometric entity from which the indirect case originates is always missing one of the vertices of

the base facet. In 3D for example, an edge involves two vertices and leaves out the remaining vertex

defining the triangle of the base facet.

Secondly, the geometric entity onto which the indirect case moves from its originating point contains

this missing vertex, as well as the apex, A. In the 3D example in Figure 5.11, an indirect hyperplane

case originates from edge B1B3 and moves to a point P2 on triangle AB1B2. Edge B1B3 leaves

out vertex B2, but moves onto AB2B3, which does involve B2. Similarly in Figure 5.12, an indirect

edge case originates from P1 on edge B1B3 and moves to a point P2 on edge AB2.

The reason for this is that is not possible for an indirect case to move onto a geometric entity that does

not contain the missing vertex since this will reduce the dimension of the problem. Consider a point

P1 originating from B1B3 and moving to point P2′ in edge AB1 of Figure 5.12: The dimension

of the case is reduced to a 2D triangle AB1B3, and by the proof provided earlier, an indirect case
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A

B1

B2

B3P1

P2′ P2

P2′′

Figure 5.12: Indirect edge case. Path P1P2A is a valid 3D indirect edge case. P1P2′A reduces the dimen-

sionality of the case to that of a 2D triangle. However, we know by proof that an indirect case cannot originate

from a point on the base edge of triangle AB1B3 and so P1P2′A is not a valid indirect edge case and can be

safely ignored. Path B3P2′′A is also an example of reduction of dimensionality of the 3D indirect case to a

valid 2D indirect case. It does not need to be solved as a separate case because it is a boundary condition of the

indirect 3D edge case originating from edge B2B3 and moving to edge AB1.

A

B1

B2

B3

B4

Figure 5.13: The projection of a 4-simplex into 3D.
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cannot originate from the interior of a base facet. It is however possible for the path to originate from

point B3 and move to edge AB1, but this is a valid 2D indirect case originating from a point and is in

fact the boundary of another 3D indirect edge case originating from B2B3 and moving to edge AB1.

This also applies in higher dimensions. In the 4D for example (Figure 5.13), paths originating from

triangle B1B3B4 may not move onto triangle AB3B4 since the dimension of the case reduces to 3D.

Thus, indirect cases originate from n, n− 2 simplices which form the exterior of the base facet, each

composed of n − 1 vertices. Each n − 2 simplex produces a number of cases, each involving the

missing vertex and the apex vertex. For example in 4D, the triangle B1B2B3 produces the following

cases:

A - - - B4

A - - B3 B4

A - B2 - B4

A - B2 B3 B4

A B1 - - B4

A B1 - B3 B4

A B1 B2 - B4

Note that the case involving the entire 4D 4-simplex (AB1B2B3B4) is excluded since (B1B2B3)

is contained within it and would not produce a valid indirect case. Thus, the n − 1 vertices in a

n − 2 simplex, in combination with the missing vertex produce a combinatorial total of 2n−1 − 1

cases. As there are n, n − 2 simplices in the base facet, a total of n(2n−1 − 1) indirect cases exist

in each dimension. The number of cases (hyperplane, edge) associated with each n − 2 simplex can

be determined by taking the binomial coefficient

(

n− 1

n− i

)

, where i is the dimension of the subspace.

For example, in 4D there are:

(

3

1

)

= 3 triangle to hyperplane (3 dim subspace) cases

(

3

2

)

= 3 triangle to triangle (2 dim subspace) cases

(

3

3

)

= 1 triangle to edge (1 dim subspace) cases

It follows that there are two indirect cases in 2D, nine in 3D, 28 in 4D and 75 in 5D. Since the number

of indirect cases is governed by an exponential term, their number increases rapidly in higher dimen-

sions. In Section 5.8 we show how, at least in 3D, these indirect cases do not contribute significantly

to the final path cost.
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5.7 Results

Here, we describe results from our implementation of Field D* on Weighted 3D Tetrahedral Meshes.

We show how Field D* can be used to find paths through medical data and simulated water data,

and provide information about how the number of tetrahredra representing the environment produce

different numbers of node expansions, path costs and running times. The results were first presented

in [106], but this work did not include the extended range of indirect cases presented in this Chapter,

instead implementing a cached indirect case originating from a node rather than from an interpolated

point on an edge. The cost functions in this work were implemented analytically.

Subsequent to the work in [106] it was discovered that an extended range of indirect cases occur.

We show that this extended range of indirect cases do not contribute significantly to the final path

cost, and therefore the path costs produced in [106] are representative of a complete 3D Field D*

implementation. Note that in these experiments we implemented the cost functions numerically due

to time constraints and the running times are therefore not as fast as that of an analyic implementation.

5.7.1 Pathing through 3D Models

Number of Node Time Path Path

Tetrahedra Expansions (s) Cost Length

Cow Model

45,684 7,923 0.64 1.0923 10.6936

86,939 14,126 1.40 1.0754 10.6360

146,774 23,773 2.60 1.0735 10.6258

217,889 35,365 4.18 1.0722 10.6282

High Genus Model

83,919 13,129 1.12 0.9000 8.75

100,088 14,438 1.29 0.8975 8.7821

121,232 16,725 1.64 0.8939 8.7441

164,971 22,226 2.27 0.8901 8.7161

273,943 36,338 4.06 0.8876 8.7213

Table 5.1: This table shows how the number of node expansions, time to find a path, path cost and path length

vary as the number of tetrahedra in the object increases.

We obtained a number of 3D surface models and tetrahedralized their interiors. The tetrahedra used

to generate the path in Figure 5.14b and 5.14c were uniformly weighted. Additionally, we obtained

a 3D Medical DICOM data set in which the structures of the abdomen were segmented and labelled.

We tetrahedralized this data set using the Computational Geometry and Algorithms Library (CGAL)

[4] to produce paths through anatomical structures.

Such path information could be used in angiographic (vascular) surgical planning and training, or

in applications like virtual endoscopy, where a path needs to be traced through a 3D model of the
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(a) Cow (b) High Genus Object

(c) Sternum to Femoral Head (d) Leg Vein to Hepatic Vein

Figure 5.14: 3D pathfinding. (a), (b) and (c) show paths through objects composed of uniformly weighted tetra-

hedra. In (d), tetrahedra representing the veins were weighted inexpensively, and other anatomical structures

weighted expensively, resulting in the path following the veins.

winding, tubular structure of the intestinal tract without piercing the wall.

Figure 5.14a and 5.14b illustrates 3D pathing through cow and high genus objects, respectively. Figure
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(a) (b)

(c)

Figure 5.15: 3D pathfinding through a fluid simulation. (a) Top-down, (b) side and (c) three-quarter views.

The red shading indicates areas of high fluid velocity, while blue indicates low velocity. The black path results

from a tetrahedral weighting favouring the high velocity, while the red path favours low velocity, diving into

the terrain crevices.

5.14c shows a 3D path through the human skeletal structure, starting at the sternum, travelling along a

true rib, down the spine and across the pelvis to a femoral head. The tetrahedra in this structure were

weighted uniformly. Figure 5.14d shows a path starting at the leg vein and travelling up the inferior

vena cava to the hepatic vein within the liver. Inexpensive weighting of the vein and expensive

weighting of the liver tetrahedra encourages the algorithm to avoid pathing directly through the liver
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when tetrahedra from the two structures are adjacent.

Finally, we simulated the velocity of fluid over an underwater terrain model, using the Palabos Lattice

Boltzmann Method package. We tetrahedralized a timestep of the simulation using CGAL and plotted

paths through the fluid, as shown in Figure 5.15. The black path favours fluid represented by high ve-

locity tetrahedra and follows the general fluid flow, while the red path favours low velocity tetrahedra

and descends into the crevices of the model, where the fluid moves more slowly. This demonstrates

how our technique could be applied to plotting a safe course for submersible robot in a 3D underwater

environment.

Table 5.1 shows data for paths across two 3D models as the number of tetrahedra used to represent

the object increases. We chose these objects since they have large amounts of space in their interiors,

allowing us to vary the number of tetrahedra used to represent them, as opposed to the medical data

sets which require high levels of subdivision to produce tetrahedra representing veins and ribs. In both

cases, increasing the number of tetrahedra decreases the path cost and path length at the cost of more

node expansions and greater running time. The time taken for the algorithm to complete increases

linearly as the number of faces and required node expansions increases.

5.8 Investigating the relevance of the indirect cases

As explained earlier, the number of indirect cases that must be considered increases with the dimen-

sion of the problem. In 3D for example, there are a total of 6 indirect hyperplane cases and 9 indirect

edge cases. These cases have analytic solutions in three dimensions. In 4D, there are 12 indirect

hyperplane cases, 12 “inbetween” cases and 4 indirect edge cases, and we have no analytic solutions

for the inbetween cases. Numeric solutions would be required to solve these.

It is therefore apparent that, even in 3D, a significant amount of computation must be performed to

obtain the costs for all the indirect cases. In higher dimensions, it would quickly become impractical

to compute these costs due to the sheer number of cases that must be considered. Consequently, it is

useful to investigate the degree to which indirect cases contribute to the final path and path cost.

Here, we first discuss how the indirect case is governed by two weights, λ and β, illustrating how

sensitive the occurrence of an indirect case can be in certain circumstances. We then perform exper-

iments showing how the indirect case in 3D, does not contribute significantly to the final path cost.

These experiments were performed with numerical implementations of Field D*’s cost functions due

to time constraints.

5.8.1 The relation between λ and β

To begin, we consider path costs without the involvement of g-values. This is accomplished by setting

µ and d to zero in cost function 5.9.
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A

B1

B2

B3P1 P1′ P1′′

Figure 5.16: The range of an indirect case in 3D. At one end of the range, the indirect case is actually a

boundary condition (a 2D direct case) of the direct case of the main tetrahedron: When λ ≥ β it travels from

P1 straight to A. At the other end of the spectrum, if β is very small then P1 can be pushed onto B3 which is

a boundary condition (1D direct case) of the direct case of the adjacent tetrahedron. Within the spectrum itself,

there is a curve of points which the indirect case travels to on the face AB2B3. This curve is produced by

varying β from λ to some small number ǫ. Indirect cases originating from P1′ and P1′′ produce points along

this curve.

The indirect case is governed by the relation between λ and β. If β ≥ λ, then the indirect case

devolves to a boundary condition of direct case. By the triangle inequality, it is cheaper to travel the

shortest distance, rather than along two segments. Thus, for an indirect case to occur we must have

β < λ. If β is very close to λ, then the shortest path involves only a short distance involving the

adjacent simplex since the cost of travelling along it is only slightly cheaper than travelling through

the main simplex.

If β is small and λ large, then the indirect case will tend towards travelling close to the projection of

the point originating from the M basis onto the N basis, as this minimises the distance involving the

large λ and maximises the distance involving β.

However, the smaller β is, the cheaper it is to travel through the adjacent simplex. Thus, we have a

paradoxical situation where the better the indirect case becomes (because of a cheaper β), the better the

direct case of the adjacent simplex also becomes. Additionally, the indirect case has the disadvantage

of travelling an expensive distance involving λ, while the direct case of the adjacent simplex has the

advantage of an inexpensive β. In fact, in cases higher than 2D, an expensive λ and inexpensive β has

the effect of forcing the originating point on the M basis onto a boundary condition of the adjacent

simplex since this avoids a distance involving λ.

Thus, in Figure 5.16, a high λ and low β can force P1 onto B3, since travelling along the adjacent

tetrahedron weighted by β is much cheaper than travelling through the main tetrahedron weighted by

118



λ. By contrast a β value just below that of λ produces a direct case originating from P1.

This relation between β and λ produces extremely sensitive behaviour. An example of this is a tetra-

hedron with A = {3, 1, 3}, B1 = {1, 0, 0}, B2 = {5, 0, 0}, B3 = {3, 3, 0} and λ = 5, g(B1) =

g(B2) = g(B3) = 0 and the indirect case from edge B1B3 to the facet AB2B3. An actual indirect

case where the indirect point lies on the interior of the face is only produced when 4.441 ≤ β ≤ 4.448,

which is only 0.14% of the range of β. The indirect cases originating from P1′ and P1′′ in Figure 5.16

are examples of this. If β < 4.441 then P1 is forced onto B3, otherwise if β > 4.448, P1 becomes

a boundary condition of the tetrahedron’s direct case - an example of this is the path originating from

P1 in Figure 5.16).

It is possible to set up pathological cases whereby environments are constructed from very thin sim-

plices, reducing the distance involving λ. In practice our environments have been constructed using

meshing algorithms that produce regularly shaped simplices with Delaunay properties [41]. This is

not an unreasonable expectation since the original Field D* operates on a grid, for example. In such

situations the indirect case is rare, as we show in the following section.

5.8.2 Prevalence of the indirect case

Nr Nr Cost Length Indirect Indirect

of of Direct Indirect Direct Indirect Edge Plane

Verts Tets Case Only Cases Incl. Case Only Cases Incl. Instances Instances

1056 5797 108.713 108.713 36.2494 36.2721 4 0

1056 5748 109.257 109.257 36.0728 36.0452 6 1

1056 5797 111.774 111.774 39.4182 39.3827 1 1

1056 5797 111.941 111.941 36.6455 36.6426 0 2

1056 5797 108.705 108.705 36.8831 36.8831 4 0

1056 5726 107.648 107.648 35.7997 35.7997 2 1

1056 5797 108.999 108.999 35.7904 35.7904 1 0

1056 5796 113.135 112.708 35.787 35.782 4 2

1056 5797 112.513 112.513 36.7904 36.7904 1 0

1056 5797 110.389 110.378 37.5835 37.6166 8 5

Table 5.2: This table displays the results of ten experiments recording the path cost of travelling from corner

to opposite corner of a tetrahedral mesh when firstly, only direct cases are considered and secondly, where

indirect cases are also included in the search The individual tetrahedra were randomly weighted with a normal

distribution, with values range from 0.1 to 256. Including indirect cases in the computation multiplies the time

taken to find the shortest path by 5.35.

Each simplex requires only one direct case to be evaluated. By contrast, the number of indirect cases

increases with each dimension and a number of them must be considered when calculating paths

across a simplex. As the number of indirect cases contribute significantly to the total computational

cost of a path across a simplex, it is important to identify the degree to which the indirect cases

contribute to the final path cost.
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Nr Nr Cost Length Indirect Indirect

β of of Direct Indirect Direct Indirect Edge Plane

Verts Tets Case Only Cases Incl. Case Only Cases Incl. Instances Instances

1.0 1056 5797 36.2344 36.2344 36.3397 36.3397 0 0

2.0 1058 5710 71.9232 71.9232 37.2419 37.2419 2 1

3.0 1056 5797 109.513 109.512 35.7271 35.7599 2 4

4.0 1056 5797 144.742 144.742 35.2571 35.2571 0 4

5.0 1056 5797 179.158 179.158 34.8183 34.8183 0 0

Table 5.3: This table displays the results of five experiments recording the path cost of travelling from corner to

opposite corner of a tetrahedral mesh when firstly, only direct cases are considered and secondly, where indirect

cases are also included in the search The individual tetrahedra were randomly weighted, with a 50% chance of

been assigned the value in the β column and a 50% chance of being assigned 5.0. Including indirect cases in

the computation multiplies the time taken to find the shortest path by 5.35.

To this end, we performed two experiments. In each case, we used CGAL’s 3D Meshing Package [4]

to mesh the interior of a 20x20x20 cube, centred on the origin and then found paths from corner to

opposite corner of the cube.

In the first experiment, the tetrahedra within the cube were weighted randomly according to a normal

distribution. This normal distribution has a mean of 0.5 and a σ of 1/6, thereby ensuring that 99%

of the values would be generated in the range between 0.0 and 1.0. The generated values were then

multiplied by 16, cast to an integer and multiplied again by 16 so that the range of values lies between

0.1 and 256, separated by increments of 16. The aim of this experiment is to determine whether indi-

rect cases occur in an environment where the weights have a normal distribution and where significant

differences between the weights of adjacent tetrahedra can occur. Ten iterations of the first experiment

were performed and are tabulated in Table 5.2.

In the second experiment we performed five iterations. 50% of the tetrahedra were weighted with

value 5.0, while the remaining 50% were weighted with 1.0, 2.0, 3.0, 4.0 and 5.0 in each of the

five experiments, respectively. The aim of this experiment is determine whether indirect cases tend

to occur when there are “easier” paths to choose i.e. cells weighted with 1.0. The data from these

experiments is tabulated in Table 5.3.

In the first experiment, only two out of the ten iterations showed a difference in path cost. In both

cases, using the indirect case produced a slightly shorter path cost, both with 99.5% of the path cost

using only the direct case. These two cases are highlighted in grey. In the second experiment, there

was no difference in the path cost of all five iterations. The tabulated data also shows that both indirect

hyperplane and indirect edge cases do occur. The occurrence of an indirect case means that a node

or vertex derived its cost from an indirect case. In the second table row of the first experiment for

instance, out of a total of 1056 nodes, only 7 derived their cost from an indirect case.

In terms of running time, only executing Field D* with the direct case took approximately 3.7 seconds,

while including the indirect cases in the computation increasing the time taken to approximately 19.8
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seconds with minor deviations of up to 0.02 seconds for all test runs - an average extra computation

cost of 5.35 times. These results were produced from a numeric implementation of Field D*’s cost

function due to time constraints.

From these experiments and data, we can conclude that indirect cases do not occur frequently in 3D,

and also do not contribute significantly to the final path Cost. This is an important observation, since

implementers of Field D* who are not overly concerned with exact path cost can simply implement

the direct case, ignoring the six indirect hyperplane and three indirect edge cases, thereby saving

significant computation. Indeed, Ferguson et. al. [49] ignore the indirect case when creating a lookup

table in their implementation of Field D* for the Mars Rover.

These experiments show the likelihood of the indirect case occuring in 3D. We note that in higher

dimensions, the connectivity of simplices is much higher compared to lower dimensions since they

abut one another via their many facets in each dimension. For, example in 3D, tetrahedra may share

edges and triangles, while in 4D, a 4-simplex may share tetrahedra, triangles and edges. This accounts

for the increasing number of indirect cases. Whether these indirect cases significantly contribute to

the path cost in higher dimensions remains to be seen.

5.9 Conclusion

This chapter describes an extension of Field D*’s cost functions to simplices in arbitrary dimensions.

The analytic solutions for finding the minimum of these functions are fully provided for the 3D tetra-

hedral case, expressed in linear algebra. The direct case extends easily to higher dimensions and

certain indirect cases do so too. Indirect cases involve projection onto a basis within a Euclidean

space Rn, and when the subspace representing this basis represents a hyperplane (n− 1 basis vectors)

or an edge (1 basis vector), analytic solutions exist. We have also documented a range of indirect

cases in higher dimensions for which analytic solutions do not exist, specifically for subspaces with

between n− 2 and 2 basis vectors inclusive where n > 4.

Extending the cost functions to simplices in higher dimensions allows Field D*’s to solve the Weighted

Region Problem on a representation free from geometric error: Simplices decompose polytopes ex-

actly, compared to hypercubes which can, in general, only admit an approximate decomposition.

By providing the complete set of cost functions and their minimizations to tetrahedra in 3D, a full

analytic extension of Field D* to 3D has been achieved, improving upon 3D Field D* where only an

approximate minimization of the direct case was provided for a cube. These functions allow Field D*

to operate on tetrahedral meshes, which subdivide a space partitioned by 3D polyhedra exactly. By

contrast, 3D Field D* operates on weighted 3D grids composed of cubes, which, in general, can only

approximate 3D polyhedrons.

Experimental evidence in 3D suggests that indirect cases do not contribute significantly to the final

path cost. This is important since the indirect cases are more numerous than the single direct case,
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and increase the algorithm’s running time by a factor of 5.35. Consequently, implementers of Field

D* interested in maximising computational efficiency may choose to ignore these indirect cases. This

has important implications for higher dimensions since the number of indirect cases is n(2n−1 − 1)

for dimension n, and this rapidly increases with each dimension.
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Chapter 6

Creating Distance Fields with Field D*

The distance field, or distance transform, is a fundamental shape operator that describes the shape

of an object and how it changes. Consequently, it has many applications such as extracting object

skeletons, and producing Voronoi diagrams and Delaunay triangulations. They have also been applied

to navigation problems. Distance fields are commonly represented with images or grids. In this

chapter we present a technique for calculating an approximate distance field on the nodes of simplicial

complexes using Field D*. As discussed in previous chapters, the simplicial complex offers space and

time improvements over grid-based representations.

We first discuss literature related to distance fields, focusing on a penalized volumetric skeleton al-

gorithm [15, 14] which computes a distance field and medial axis on a voxel grid, using Dijkstra’s

shortest path algorithm. Next we show how similar strategies can be applied to Field D* to compute

distance fields on 2D and 3D simplicial complexes.

Field D* is adapted to perform a Dijkstra shortest path expansion on nodes existing on the boundary of

the object for which we want to compute the distance field. This produces a distance field with some

artifacts. We show how adding two conditions to Field D*’s UpdateNode function greatly reduces

these artifacts.

Obstacle avoidance behaviour [111] is an important part of environment navigation as it allows agents

or robots to avoid colliding with features within the environment. We show how the distance field that

we compute can be used to weight a triangulation in such a way as to induce contour following

behaviour from the Field D* algorithm.

6.1 Related Work

Distance maps or the distance transform were originally represented as an image [112, 113, 36], where

each pixel contains the distance to an object of interest. The distance transform is closely linked to the
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(a) Local Maxima (b) Local Minima (c) Uniform Gradient

Figure 6.1: Classifying a cubic region according to the gradient vector field. (a) All vectors point towards a

local maximum. (b) All vectors point away from a local minimum. (c) A region of uniform gradient.

skeleton and medial axis of an object, since these features occur at the furthest point from an object

boundary.

A recent survey of the 2D Euclidean distance transform techniques can be found here [44]. Distance

transforms have many applications. They can be used to separate overlapping objects in images. To

recover the boundaries between these objects, a distance transform can be performed, followed by a

watershed segmentation on the transformed image [145, 33].

They are also used in the computation of geometrical representations and measures. The distance

transform can be used to produce an object’s skeleton [36, 53, 120, 32, 30] as well as Voronoi diagrams

and Delaunay triangulations [145].

Distance maps have also been applied to robot navigation [34, 26, 125], but are limited to finding

shortest paths within images or voxel grids.

The distance transform is a fundamental operator in shape classification and is used for constructing

Shape measures related to distance [112, 113, 34]. The maximum of an object’s distance transform

is its greatest width, for example, and the distribution of the distances within an object is useful for

reasoning about it.

Distance transforms can be calculated in 3D; Jones [66] provides a survey of 3D distance field tech-

niques. The shapes for which the distance transform is computed can be represented in a variety of

formats such as triangle meshes and constructive solid geometry. Many techniques exist for making

the calculation from these representations efficient. However, the distance field itself is still repre-

sented with a voxel grid or adaptive distance fields (ADF), which are essentially octrees, for efficiency

of space representation.

Of particular relevance to our work in this chapter is the penalized volumetric skeleton algorithm

[15, 14] since it uses pathfinding to find shortest paths from a point in a distance field to the closest

boundary. This work utilises Dijkstra’s shortest path algorithm [37] to find the shortest path from

all voxels to a set of boundary voxels. To produce a graph suitable for Dijkstra’s shortest algorithm,
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the authors construct an eight-connected dual graph from the voxel grid, linking adjacent voxels with

edges. Computing the shortest path between a voxel and the closest boundary voxel produces a dis-

tance from boundary field (DBF), which stores path distances within the voxel and is post-processed

to improve accuracy. Next, a gradient vector field (GVF) is constructed, representing the gradient

of the distance field at each voxel. This is calculated from the DBFs of six neighbouring voxels,

connected by faces in 3D. The GVF values of eight-voxel cubic regions are averaged and compared

against the average gradient vector in order to classify local maxima, minima and regions of uniform

gradient within the GVF, as shown in Figure 6.1. Relevent regions are connected together to form a

skeleton or medial axis.

However, the underlying representation of the distance field is a grid, which suffers from the geometric

error and resolution issues that were highlighted in Chapter 4. Polygonal boundaries require many grid

cells to accurately represent increasing the space requirements of the algorithm, and consequently the

running time of the algorithm increases due to the O(n log n) worst-case time complexity.

6.2 Adapting Field D* to approximate distance fields

We have adapted Field D* to operate on weighted simplicial complexes and specifically constructed

simplicial complexes whose members exhibit Delaunay properties. Thus, the simplicial complex

representing the environment necessarily sub-samples the environment domain with triangles or tetra-

hedra. In this section we describe how to construct a distance field on the vertices or nodes of the

simplicial complex using Field D*.

This is a useful representation because environments that are not axis-aligned can be regularly meshed

with triangles of given sizes. Meshing strategies produce triangles/tetrahedra that follow polygo-

nal/polyhedral boundaries. By contrast, grid representations must subdivide to accurately represent

polygonal boundaries, as explained in Chapter 4. This results in high space requirements for represen-

tation, which increases the running time of algorithms using it. As a simplicial complex can represent

an environment compactly, the representation space requirements and the running times of algorithms

using it, are concomitantly decreased.

It is also possible to adaptively sample areas of the domain by adding extra triangles or tetrahedra.

This allows algorithms operating on the simplicial complex to achieve greater accuracy in areas of the

domain that contain polygons or are sensitive to noise.

6.2.1 Creating the distance field

A distance field computes the distance from a boundary. The first step in creating the distance field

is to identify all nodes on the boundary. Such nodes are initialised with zero path cost (g-value) and

placed on a priority queue.
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Algorithm 12 Dijkstra-like implementation of the Field D* algorithm. nbrs(s) denotes the neigh-

bouring nodes of u, while connbrs(s) denotes the set of neighbouring node pairs surrounding u,

{(s1, s2), (s2, s3), · · · , (s8, s1)}.
1: function KEY(s)

2: return [min(g(s), rhs(s)),min(g(s), rhs(s))]
3: end function

4: function UPDATENODE(u)

5: if s was not visited before then g(s) =∞
6: end if

7: if u 6= sgoal then

8: rhs(u) = mins∈trinbrs(u)ComputeCost(u, s)
9: end if

10: if u ∈ U then U.Remove(u)
11: end if

12: if g(u) 6= rhs(u) then U.Insert(u,Key(u))
13: end if

14: end function

15: function DODIJKSTRA

16: while U.Size() > 0 do

17: u = U.Pop()

18: if g(u) > rhs(u) then

19: g(u) = rhs(u)
20: for all s ∈ nbrs(u) UpdateNode(s)
21: else

22: g(u) =∞
23: for all s ∈ nbrs(u) ∪ {u} UpdateNode(s)
24: end if

25: end while

26: end function

27: function MAIN

28: for all nodes s on boundary edges do

29: g(s) =∞; rhs(s) = 0;
30: U.insert(s,Key(s))
31: end for

32: DoDijkstra()

33: end function

All traversable triangles or tetrahedra in the environment are assigned a uniform path cost of 1. The

Field D* cost functions will therefore consider the actual Euclidean distance within a triangle, rather

than the weighted Euclidean distance. The resulting path cost, or, the g(s) value at node s will then

be set to the distance to the nearest boundary point upon completion of the algorithm. Triangles on

the interior of a boundary’s obstacle are assigned a large value, say 255, to distinguish them from

traversible triangles.

Dijkstra’s shortest path algorithm is then executed on the priority queue, using Field D*’s cost func-

126



(a) Basic distance field computed with Field D*

(b) First Artifact (c) Second Artifact

Figure 6.2: (a) An example of the basic computation of a distance field using Field D*. The red lines show

Field D*’s estimate of the shortest path to the nearest boundary. Two problematic cases are highlighted by the

dashed boxes. (b) illustrates how Field D*’s interpolation assumption for nodes equidistant from boundaries

can produce artifacts in path extraction. The blue path is produced because Field D* interpolates between path

costs produced by two different boundaries. (c) An edge whose nodes belong to two boundaries also results in

Field D* assuming that the best point to traverse from lies between them, since they both have zero path cost.
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A

B1 B2

(a) Valid

A

B1 B2

(b) Invalid

A

B1 B2

(c) Valid

Figure 6.3: Checking the child vector directions to decide whether an interpolation estimate is valid. (a) The

directions that B1 and B2 derive their estimates from are similar and thus the angle between them is less than

90◦. In this case it is valid to derive costs from this triangle. (b) If however, the directions are dissimilar and

the angle between them is greater than 90◦, we do not derive costs from the triangle. (c) If B1 and B2 have

zero path cost, then AB1B2 must have a weight of 1, and its opposing triangle a weight of 255 for derivation

of costs from this triangle to be valid.

tions to evaluate the least cost path to each node until the priority queue is empty, and shortest distances

to each node have been computed. This is similar to the way the penalized volumetric skeleton [15]

uses Dijkstra’s shortest path to calculate an approximate distance field on the dual graph of a voxel

grid. However, Field D* allows this computation to be performed on a simplicial complex.

The Field D* algorithm, described in Chapter 3, and Chapter 4 can be used to perform Dijkstra’s

algorithm with minor modifications. This modified version is shown in Algorithm 12. Similarly to

the way a single goal node is placed on the priority queue in anticipation of finding a shortest path to

the start node, boundary nodes placed on the priority queue should have their rhs-values initialised to

zero, and their g-values initialised to∞, in the Main function. The heuristic value for each node can be

effectively ignored by setting it to zero, since we are not directing the search towards a specific node,

but rather expanding all nodes in the environment until their g-values and rhs-values are consistent1.

The Key function therefore becomes simpler. Once all the boundary nodes have been placed on the

priority queue, the DoDijkstra can be executed to expand all the nodes in the complex until the priority

queue is empty.

Once the Dijkstra expansion has been executed, path extraction must be performed for each node in

the simplicial complex to find the shortest path to the boundary. Algorithm 11 described in Chapter

4 can be applied to each node, with a slight adaptation: Instead of extracting points on the path until

we reach the start node, we extract nodes until we obtain a point with zero path-cost (g-value). Thus,

the extracted paths trace back from the node under consideration to a point on the boundary. It is

important to highlight that this final point is not necessarily a node: It can also be an point on the

boundary due to Field D*’s use of interpolation.

An example of the distance field created by this process can be seen in Figure 6.2a, which illustrates

Field D*’s estimate of the shortest path from a node to the nearest boundary point. The paths from

1See Chapter 3 Section 2.2.3
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(a) Improved Distance Field

(b) First Artifact (c) Second Artifact

Figure 6.4: (a) A distance field computed using the two extra conditions imposed upon the Field D* UpdateN-

ode function. Some of the field lines in (b) and (c) are still not orthogonal to their respective boundary.

each node are shown in order to two problematic cases. Firstly, Figure 6.2b shows a particularly

erroneous path extraction caused by Field D*’s interpolation assumption. In this case, Field D*’s

cost function has assumed that it should interpolate the path costs – the distance from a boundary

– produced by two completely different boundaries. This results in a path that initially follows the
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medial axis before turning to a boundary. In practice, one can simply connect the initial node to the

final point on the boundary and in the provided example, this would produce a good distance field that

is orthogonal to the boundary. However, in other cases, most obviously visible in the lower left hand

corner, this is not the case.

Secondly, in Figure 6.2c, a single edge connects two boundaries. As they are both on separate bound-

aries, they have zero path cost. Therefore, Field D*’s cost function assumes that the interpolated path

cost along the entire edge is zero. Consequently, the cost function ends up only minimising the dis-

tance component, which, by definition produces a path from the node, down the perpendicular to the

triangle edge to a point between each boundary.

These two cases occur during the Dijkstra expansion when distance values are propagated outwards

to the nodes of the complex. To prevent their occurrence we check two conditions to decide whether

a triangle is a valid neighbour.

• Firstly, when considering whether to call ComputeCost on node A at the apex of a triangle

AB1B2, we check the nodes over which interpolation occurs, B1 and B2, to see whether

they derive their costs from similar directions. To accomplish this, we consider the points

from which B1 and B2 derive their cost, P1 and P2, for instance, and take the dot product,

(B1−P1) · (B2−P2). If (B1−P1) · (B2−P2) ≤ 0 then the angle between the two vectors

is greater than 90 degrees and we ignore AB1B2 when computing the path cost at A. The idea

is similar to the penalized volumetric skeleton’s [15] classification of cubic regions of uniform

gradient. This condition ensures that interpolation only occurs between nodes deriving their

costs from similar gradients as in Figure 6.3a.

• Secondly, if both B1 and B2 have zero path cost, and the two triangles shared by edge B1B2

both have the initial uniform cost of 1, then we ignore AB1B2. This ensures that interpolation

does not occur between two zero path cost boundary nodes from different boundaries. It does,

however, permit interpolation between zero path cost boundary nodes on the same boundary,

since the triangles shared by such nodes will have values of 1 and 255, respectively, as in Figure

6.3c.

If these two conditions do not hold, then the triangle is not considered to be a member of the set

trinbrs(u) in Algorithm 12 and ComputeCost is not called. Implementing these two extra conditions

eliminates the most egregious problems with our distance field technique. Connecting each node to

its corresponding boundary point, as opposed to displaying the full path extraction for each node

produces Figure 6.4.

The distance field was computed in 0.01 seconds on a mesh of 3086 vertices and 5916 triangles. To

estimate the accuracy of the distance field, a brute-force approach was used to find the actual distance

to the closest boundary: the shortest distance between a node and all boundary edges were calculated.
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This took 0.63 seconds to compute. Then, the Normalised Root Mean Square Deviation (NRMSD)

between the path distances produced by Field D* and the brute force approach were calculated. Thus,

given a set of bi i ∈ 0 . . . , n brute forced distances at n vertices, we calculated the NRMSD against a

set of di i ∈ 0, . . . , n Field D* distances using the following:

NRMSD =

√

∑n
0 (di − bi)

2

n
× 1

dmax − dmin

(6.1)

where dmax and dmin are the maximum and minimum distances estimated by Field D* respectively.

The NRMSD of the mesh was 0.00656. Expressed as a percentage, the residual variance is 0.65%,

indicating a low level of error in Field D*’s distance field approximation.

Some of the distance field lines are not completely orthogonal to their corresponding boundaries:

This is because implementing the first condition prevents Field D* from interpolating through certain

triangle edges, and thus the resulting paths traverse around them. The penalized volumetric skeleton

[15] shares similar artifacts during path extraction and post-processing is used to fix this [117]. We

leave this for future work as our creation of a distance field using Field D* is exploratory in nature.

6.3 Weighting the triangulation with distance

The distance field on the simplicial complex nodes, produced above, is useful for weighting the trian-

gulation to produce different behaviours in the Field D* algorithm. We show how contour following

behaviour can be induced from this weighting.

Firstly, we select a particular contour distance, c, that we wish Field D* to favour. Then for each

triangle, we average the distances at the triangle nodes to produce a weight, a. We assign the final

triangle weight with the following expression – λ = MAX(‖a−c‖, 0.1) – to assign the triangle with a

non-zero distance from the contour. We then run Field D* on the resulting triangulation. When c = 0,

we obtain wall hugging behaviour, as demonstrated in Figure 6.5a. Setting c = 1 produces contour

following behaviour, shown in Figure 6.5b

In narrow sections of the world that are covered by only one or two triangles across the breadth of the

corridor, there is insufficient resolution in the mesh for the algorithm to represent the desired contour,

and this results in the path adhering to walls. This could be solved by introducing greater levels

of subdivision in these areas, or by extending the Field D* cost functions to cater for a barycentric

weighting across the interior of the triangle, rather than the uniform λ weighting. The latter approach

is discussed further in Chapter 7.
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(a) Wall hugging

(b) Contour following

Figure 6.5: (a) Wall following behaviour, produced by weighting triangles close to contour 0 with a cheap

weight. (b) Contour following behaviour, produced by weighting triangles close to contour 1 with a cheap

weight.
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Figure 6.6: The distance field of an elephant mesh

6.4 3D distance fields

The distance field technique described in Section 6.2.1 can be adapted to 3D. The additional two

conditions are modified as follows:

• The first condition now checks whether it is possible to update a node A on tetrahedron AB1B2B3.
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In the 2D case only two vectors needed to be compared against each other. In the 3D case, three

vector dot products must be formed for the three, (B1−P1) ·(B2−P2),(B2−P2) ·(B3−P3)

and (B3−P3) · (B1−P1). If any of these dot products is less than or equal to zero, the tetra-

hedron should be ignored.

• The second condition changes to: If at least two of B1,B2 and B3 are zero, then the weights

of the tetrahedrons sharing facet B1B2B3 must be checked. If they are both 1, then the facet

is not a boundary facet as it lies between at least two other boundaries. Thus, it too should not

be considered in this case.

We show an example of a 3D distance field computed on a elephant mesh in Figure 6.6. The mesh

is composed of 6557 vertices and 41351 tetrahedra, while the distance field was computed in 0.42

seconds. Similarly to the 2D example, we calculated the shortest distance between a node and all mesh

boundary triangles using a brute force method and compared this actual distance to that computed

by Field D*. The brute force method took 9.7 seconds to complete and the NRMSD was 0.66%,

indicating low amounts of error in 3D Field D*’s approximation.

6.5 Discussion and Future Work

The distance field that we have computed on a simplicial complex offers savings in terms of space,

compared to a distance field on an image. This is analagous to the space benefits offered by our

extension of Field D* from weighted grids to weighted simplicial complexes.

The triangulation that we use to present our work in the previous sections is composed of 3086 ver-

tices and 5916 faces. If we store a floating point distance at each node, and six integers to store the

connectivity information for each face, we require a total of 3086 ∗ 4+ 5916 ∗ 6 ∗ 4 = 154, 328 bytes

to store the distance field. By comparison, if a 512x512 image of floating point distances is used for

the representation, 5122 ∗ 4 = 1, 048, 576 bytes is required. We can do a similar calculation for 3D:

The elephant mesh was composed of 6592 vertices and 41409 tetrahedra. Using 8 integers to store

connectivity information, we require a total of 6592 ∗ 4 + 41409 ∗ 8 ∗ 4 = 1, 341, 456 bytes, while a

512x512x512 voxel grid would require 5123 ∗ 4 = 12, 582, 912 bytes.

In terms of running time, the penalized volumetric skeleton algorithm would have to expand 5122 =

262, 144 nodes to compute a distance transform, compared to our customised Field D*’s expansion of

3086 nodes. Both algorithms perform a Dijkstra type expansion and run in O(n logn) time, but the n

factor is significantly lower for the customised Field D*.

Additionally, the distance within a triangle can be interpolated over the distances stored at the node

corners using a linear weighting scheme, giving the ability to approximate the distance field within

triangles. We note that this interpolation would only be valid if the distance fields related to the nodes
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shared a uniform gradient, similar to Figure 6.1c. Such interpolation would not be valid for triangles

containing local maxima and minima (Figures 6.1a and 6.1b), but in these cases, subdividing the

triangle by introducing a node where the distance fields intersect, might solve this problem. We leave

this for future work.

Future work can expand the exploratory nature of the work in this chapter. The distance field that we

have calculated is approximate in the sense that it does not guarantee that the distance to the boundary

is exact. In particular, we have documented cases where subtle artifacts still exist and the line between

the simplex node and the boundary point is not completely orthogonal. It should be possible to fix

these cases by locally perturbing the point until it’s position is completely orthogonal to the simplex

node. However, the overall error in the distance field, represented by Normalised Root Mean Square

Deviation is less than a percent for both the 2D and 3D examples presented.

We also note that once the distance field has been computed, it is possible to extract contour lines in

2D and iso-surfaces in 3D, by interpolating along edges to find the appropriate contour values.

6.6 Conclusion

In this chapter we have described how a strategy, similar to that employed with voxel grids in the

penalized volumetric skeleton algorithm [15], can be applied to Field D* in order to calculate an ap-

proximate distance field on a simplicial complex in two and three dimensions. The Field D* algorithm

is modified to perform a Dijkstra’s shortest path algorithm on the vertices of the simplicial complex.

Paths across certain triangles are ignored when performing this expansion in order to avoid serious

artifacts in the distance field.

Once Dijkstra’s algorithm has been applied, Field D*’s path extraction is performed for each node in

the complex. This produces a path from each node to a corresponding point on the boundary. Such

boundary points are not restricted to vertices of the complex and may be interpolated across a triangle

edge, or tetrahedron face. In both a 2D and 3D example, the Normalised Root Mean Square Deviation

in Field D*’s approximation was less than a percentage point, indicating a low level of error.

A distance field on a simplicial complex saves space over a grid-based distance field, since simplicial

complexes do not require a grid’s high level of subdivision to accurately represent polyhedral bound-

aries. This saving in space positively impacts the time complexity of our algorithm, since far fewer

nodes need to be considered in a complex, compared to the nodes in a grid.

We have also shown how this distance field can produce wall hugging and contour following be-

haviour. This functionality is useful as obstacle avoidance is an important part of path-planning.
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Chapter 7

Conclusion

The development of shortest path algorithms to navigate through environments is a continuing area

of research. When paths through environments can be logically decomposed into a collection of

routes and intersections, such environments can be represented by a graph. Edges of the graph can be

assigned a cost, representing the expense of traversing a route between two graph nodes. Algorithms

such as Dijkstra’s shortest path and A* operate on these graphs to find paths with a minimal summed

edge cost. Thus, different routes can be favoured or avoided by weighting graph edges with some

metric associated of the environment. The distance travelled along a route is the most frequently used,

but other measures such as traffic congestion can also be used.

Such formulations are useful and commonly applied when routes through an environment can logi-

cally be mapped to a graph, such as a road network. In other cases, this mapping is not trivial. When

environments are represented by a set of weighted regions, a continuous range of paths can exist be-

tween them. The Weighted Region Problem (WRP) formulates the challenge of finding the least cost

path between two points in a weighted planar polygonal subdivision. Steiner point techniques intro-

duce extra graph nodes on region boundaries, as well as edges connecting these new nodes, but this

requires pre-processing of the graph and space to store extra edges and nodes.

By contrast, the Field D* algorithm takes the approach of minimising a cost function representing a

range of paths across a weighted square cell to a node on the cell corner. Field D* then finds shortest

paths through a grid of weighted cells and the resulting path is able to travel through cells. Grids are

a simple and easy representation to work with, but suffer from resolution issues when representing

polygonal structures, since subdivision of the grid is required to represent polygons to within an error

tolerance. Multi-resolution grids can ameliorate this to some extent by aggregating smaller, similar

cells into larger cells. However, subdivision is still necessary on polygon boundaries, since it is not

possible to aggregate dissimilar cells. Consequently the Field D* solution to the WRP is subject to

geometric error, since grid subdivision cannot, in general, represent a polygon exactly.

Triangulations, by contrast, represent polygons both accurately and compactly. For example, Trian-
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gulated Irregular Networks (TINs) are favoured over image-based height maps of Digital Elevation

Models (DEM) in the field of Geographic Information Systems since they can accurately model en-

vironment boundaries, leading to savings in the space required for representation. A triangulation is

a 2D simplicial complex, a mathematical structure which generalise to a mesh of tetrahedrons in 3D,

and general simplices in higher dimensions.

The core contribution of this thesis is an extension of the Field D* [49] algorithm to weighted simpli-

cial complexes, in order to take advantage of the space and time savings associated with this represen-

tation. This also allows Field D* to solve the WRP on a representation which is free from geometric

error. Polygons can be exactly decomposed into a finite number of weighted triangles. Similarly,

polytopes can be exactly decomposed into a finite number of simplices in higher dimensions. The

same does not apply to squares in 2D, or hypercubes in general.

We extended Field D* to 2D triangulations and 3D tetrahedral meshes by adapting the algorithm’s

cost functions to triangles with an efficient and compact linear algebra formulation. This differs from

Generalized Field D* [119] which uses a formulation based on trigonometric relationships and length

ratios of a triangle, and which performed limited experiments to justify the extension to triangulations.

We showed our formulation offers up to a 56% performance improvement over this technique. We

also performed extensive testing showing how such a triangle extension offers significant benefits in

terms of algorithmic time and space requirements, in comparison to Multi-resolution Field D*.

The reasons these benefits acrue are clearly illustrated by our experiments. Grids and multi-resolution

grids require a large degree of subdivision to represent a polygon with a geometric error bound. By

contrast, we found that an order of magnitude fewer triangles than quadtree cells produced similar

path costs, since triangles can represent polygons exactly. This reduction in elements, or space, leads

to a reduction in running time, since between 10 and 20 times fewer node expansions are required to

calculated a shortest path. Indeed, reducing the number of faces and vertices – F and V – directly

effects Field D*’s worst case performance of O(F +V logV ). We also identified cases in which Field

D*’s cost functions can be precomputed and cached, offering modest performance improvements of

up to 16% of running time.

Building upon this 2D mathematical and theoretical basis, we proceeded to extend Field D* to 3D

tetrahedra and simplices in higher dimensions. This improves upon 3D Field D* [23] which only

approximates a direct cost function on a 3D grid. Our formulation adapted the vector mathematics

used in our 2D extension to express the Field D* cost functions with linear algebra. We provided a

complete set of analytic solutions in 3D. Next, we documented a range of cases that exist in higher

dimensions that are not analytically solvable, and showed how, in 3D, these cases do not contribute

significantly to the final path cost. We also presented results for 3D pathfinding queries through

medical data, as well as a simulated ocean environment.

Finally, we demonstrated how Field D* can be used to create an approximate distance field on 2D

and 3D simplicial complexes. A simplicial complex is a more compact representation than the typical

137



voxel grids or octree distance field representations. We adapted Field D* to perform a Dijkstra-

like algorithm, propagating distances from relevent environment features to the nodes of the sim-

plicial complex using Field D*’s cost functions. In both a 2D and 3D example, the Normalised Root

Mean Squared Deviation between Field D*’s approximation and the actual distance field was less than

1%. We also showed how this distance field is useful for producing contour-following and obstacle-

avoidance behaviour in the Field D* algorithm by weighting triangles appropriately.

Our results demonstrate the importance of selecting a good representation for the Field D* algorithm

to operate on. While grid representations are simple to work with, they require subdivision to represent

environment features with low geometric error. Due to this, the space requirements for the algorithm,

represented by the number of nodes in the environment, is high and consequently increases the running

time of the Field D* algorithm. By contrast, a simplicial complex can represent environments more

compactly, lowering the space requirements and, by implication, the running time of the algorithm.

Furthermore, triangulations and tetrahedral meshes are frequently used to represent environments.

TINs represents terrain data, and triangulations are the dominant environment representation in com-

puter graphics and visual effects. Triangulations and tetrahedral meshes are frequently used in Finite

Element Methods (FEM) [55] to represent the domain of computation, and in the field of Medical

Imaging to represent the various tissues, bones and organs within a body [46, 63]. Many packages

exist that efficiently mesh such domains. Examples include Tetgen [126] and the Computational Ge-

ometry and Algorithms (CGAL) library’s 3D meshing package [4].

Simplices are also easily subdivided into other simplices. For example, by placing a new node on

a triangle, a subdivision of the triangle into other triangles can be achieved by connecting it to the

other triangle nodes. As Field D* must consider interpolated points on triangle boundaries during path

extraction, triangle cost functions can be applied during the extraction process. It is also possible to use

this subdivision strategy to place temporary start and goal nodes at arbitrary locations inside triangles.

However, this is not necessarily the case for grid squares or cubes, which, to be subdivided into squares

and cubes, must have a node inserted precisely at their centre. Therefore, the cost functions for these

elements cannot be used during path extraction.

To summarise: We have extended the Field D* algorithm to a space-efficient representation – the sim-

plicial complex – commonly used to represent complex domains in a wide range of computationally

challenging problems. This extension does not merely benefit from savings in terms of space: By

reducing the space requirements, the running time of the algorithm is also reduced. Additionally, the

simplicial complex allows Field D* to solve the Weighted Region Problem on a representation free

from geometric error.
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7.1 Future Work

Field D*’s cost functions dominate computation and a number of possible options to reduce this are

discussed. Simplicial complexes are also amenable to adapative meshing, whereby areas of the mesh

relevent to the solution can be finely subdivided to reduce computation. The Field D* cost functions

that we have presented assume constant weighting of a simplex; a linearly interpolated barycentric

weighting may be appropriate for certain applications. Finally, our Spatial Awareness Framework is a

good candidate for further development.

7.1.1 Accelerating Field D*’s cost functions

Field D* introduces a set of cost functions that must be minimised to calculate the shortest path across

a triangle or a tetrahedron. By contrast Steiner point techniques discretise the triangle by introducing

extra edges between additional Steiner points added on the triangle borders. Field D* emphasises

computation over memory access, and one of the subtle advantages of Field D* is that the CPU

speed of modern computers is fast eclipsing the speed of memory access. Nevertheless, evaluating

cost functions is a dominant part of the algorithm, consuming up to 80% of the computation in our

benchmarks, and strategies to reduce cost function evaluation time would be useful.

One simple approach would be to implement the cost functions using the standard Streaming Single

Instruction Multiple Data (SIMD) Extensions (SSE) on modern CPUs. SIMD instructions process

vector operations in parallel, and are thus good candidates for evaluating Field D*’s cost functions,

which we have framed using linear algebra.

Another possible approach would be to implement all or part of the algorithm on a Graphics Process-

ing Unit (GPU). GPUs also use a SIMD approach by applying a single kernel, or program, to multiple

data points. The difference between GPU and CPU SSE instruction sets is the degree of parallelism

exhibited by a GPU, since hundreds of threads may execute the same kernel, whereas SSE instruction

only execute four operations concurrently.

Thus, GPU’s have the potential to compute many of Field D*’s cost functions in parallel. In our

experience, implementing many parallel cost functions on a GPU is not a difficult task, but integrating

this cost function calculation with the priority queue driving the algorithm is challenging. A priority

queue is not an easily parallelised data structure and, if naı̈vely implemented on a GPU, is a bottleneck

in the algorithm’s performance.

An alternative approach is to implement the priority queue on the CPU and leave the calculation of the

cost functions to the GPU. This approach is relatively simple, but the latency of the PCI-Express bus

between the CPU and the GPU then impacts the algorithm’s performance. Modern GPU’s specifically

offer methods for interleaving memory transfers and kernel executions however, and it may be possible

to ameliorate this latency, by interleaving the cost functions of multiple searches.
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We note that a GPU implementation of the A* algorithm [16] exists, and while this implementation

does obtain speedups of up to 50X, they are obtained by performing many searches in parallel on

relatively small graphs of up to 340 nodes and 2150 edges.

7.1.2 Polytope Subdivision

A

(a) Static sub-division

A

(b) Temporary sub-division

Figure 7.1: Travelling to node A through a weighted complex may end up being more complicated with static

sub-division since there are more triangles to travel through. By contrast, temporary sub-division may make

this less complex and possibly shorter.

The original Field D* cost functions operate on unit squares. In practice, each square is temporarily

subdivided into two triangles during evaluation. The minimum costs across both are calculated and

the least cost minimum is chosen. Similarly, it may be useful to consider subdividing a world into

convex polytopes containing the same weight. The polytopes can then be temporarily subdivided into

triangles or tetrahedrons when calculating the path cost of a node on the polytope.

The advantage of this approach over a sub-division into static triangles (Figure 7.1a) is that temporary

subdivision may result in longer path segments (Figure 7.1b) and slightly shorter paths since the path

to node A has to travel through fewer triangles. The disadvantage is that the number of neighbouring

nodes that must be updated by the UpdateNode function will increase, potentially increasing the

running time of the node expansion phase of the algorithm.

7.1.3 Adapative Mesh Refinement

Adaptive mesh refinement is frequently used in numerical analysis techniques, such as finite element

methods (FEM) to save both space and time during computation. For example, [71] models the

collapse and fragmentation of a stars in a molecular cloud. The vast distances involved preclude the

use of a uniform grid, and so the authors implement a multi-resolution grid which is only refined in

regions containing stellar gas. Similar concepts apply to triangulations: Delaunay triangulation and

3D adaptive mesh generation [55] describes a general adaptive meshing technique for 3D tetrahedral

meshes.
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High levels of subdivision reduce the interpolation error inherent in Field D*, but the path cost de-

creases too slowly to justify the increase in space and time requirements. Utilising the adaptive mesh-

ing paradigm, one can calculate an approximate shortest path on a coarse triangulation and adaptively

refine portions of the triangulation involved with the path. Similar ideas have been applied to grids:

Partial Pathfinding Using Map Abstraction and Refinement [131], for example, builds an abstraction

hierarchy from a grid which is refined during path-planning operations. As a further enhancement, it

may be possible to propagate heuristic estimates to nodes of the refined mesh from path costs of the

coarse mesh.

7.1.4 Field D* on Barycentrically Weighted Simplices

The current formulation of the Field D* cost functions only allows a uniform weighting of the simplex

with some value λ. Finite Element Methods allow for a barycentric weighting of the interior of a

simplex, derived from values stored at the vertices of the simplex. For example, in our distance field

technique, the distances stored at the vertices of a triangle can be barycentrically interpolated over

the triangle’s interior, instead of averaging these distances and weighting the triangle with a uniform

average distance.

Converting Field D*’s cost function to a formulation involving barycentric coordinates could provide

this functionality, since this coordinate system can elegantly represent the linear interpolation within

the simplex. It may be possible to formulate an isoparameteric simplex, which has easy convertability

between barycentric and cartesian coordinate systems.

The benefit of a barycentrically weighted simplex is that less subdivision of the simplicial complex is

required to represent a gradated weighting of sections of the environment. For example, when using

our distance field to weight a simplicial complex, we averaged the node distances at the corners of each

triangle to create a uniform distance weight for the triangle. However, it would be more accurate to

plot paths across a distance gradient. This can be applied to many other measures such as temperature

and lighting for instance.

7.1.5 Field D* Pathfinding in Higher Dimensions

This dissertation has focused on pathfinding in 2D and 3D, as these are the standard Cartesian spaces

in which pathfinding takes place. The cost functions that we have developed have been specified with

linear algebra, and can thus be applied in higher dimensions.

Applications for pathfinding in 4D exist. [84] represents blood vessels in a 4D space: The first three

dimensions are the standard x, y, z coordinates while the fourth represents the radius at that coordi-

nate. This coordinate system specifies the 3D surface of a blood vessel as a 4D curve, through which

a minimal path is found. [87] plans shortest paths for vehicles in a 2D plane while incorporating the
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vehicle’s turning and velocity constraints into the final path. Cartesian coordinates x, y, as well as

angle and velocity θ, v form a 4D coordinate space. Points in this 4D space are connected in a graph,

on which the shortest path is performed.

Another example, Cooperative A* [128] provides cooperative pathfinding between multiple agents

within an environment by giving agents with the positions of other agents in time. The time dimen-

sion is incorporated with a 2D cartesian coordinate grid to form a 3D grid. Shortest paths across this

grid are calculated from an x, y coordinate in time step 0 to a coordinate in time step n, where n

is the dimension of the time coordinate. The cells that the path traverses in the grid are marked as

impassable, reserving the range of coordinates in time occupied by the path so that subsequent path

queries on the grid will avoid it. Windowed Hierarchical Cooperative A* (WHCA*) [128] incorpo-

rates an improved heurisitic for handling such searches and a windowing strategy to limit the search

domain. Improving Collaborative Pathfinding Using Map Abstraction [132] combines WHCA* with

Partial Refinement A* (PRA*) [131] to form the Cooperative PRA* (CPRA*) algorithm, which uses

hierarchical environment abstraction to improve search efficiency.

A similar cooperative pathfinding strategy can be constructed with Field D* to allow multiple agents

to find paths within a 3D space. A 3D tetrahedral mesh can be created by subdividing the space

according to some meshing strategy. Then, the dimension of the mesh can be raised by adding a

fourth dimension, time, to produce a 4D mesh of 4-simplices on which Field D* searches can be

performed. 4-simplices occupied by such paths can be weighted with some value representing the

degree to which an agent occupies the 4-simplex, thereby making the 4-simplex more expensive for

other agents to travel through.

7.1.6 Spatial Awareness Framework

The 2D Spatial Awareness Framework documented in Appendix A was developed as a prototype to

explore how qualities of space can aid autonomous agent behaviour within that space. This framework

is useful for analysing and representing these qualities, giving agents an understanding of the space in

which they operate. It can also be used to weight regions within that space for use by Field D*. For

example, regions within areas of high curvature can be weighted expensively.

Due to time constraints we have not achieved an integration of this framework and Field D*, or ex-

tended the concepts of this framework into 3D. A denouement to these avenues of work still remains.
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Appendix A

Prototype Spatial Awareness Framework

This appendix introduces an exploratory Spatial Awareness Framework used to investigate region-

based analysis of environments, for the purposes of providing Artifical Intelligence (AI) agents with

a sense of the qualities of the space that they operate in. We implement simple agents that use this

framework in a bottom-up manner to tailor their behaviour to the local area of space.

This follows from the field of Nouvelle AI which, by the Physical Grounding Hypothesis [21], pro-

poses that systems must be grounded within a physical environment to produce intelligence. Thus,

to behave intelligently according to this paradigm, AI agents must be able to react to the conditions

within their environment. For example, straight and gently curving corridors of space are appropriate

for running, while spaces with sharp corners are not. Wide-open spaces provide good vantage points

for observing other objects, but are difficult to hide in. By contrast, enclosed, dimly lit spaces are

good hiding places.

In order to create this form of intelligence, agents must be provided with an understanding of the

space in which they operate. It would be appropriate for an agent representing a bird to fly in wide-

open spaces, but hop or walk in narrow, enclosed spaces. An agent behaving in a “sneaky” manner

may favour dimly lit areas with poor visibility to more exposed areas. To provide this information to

agents, it is necessary to perform some form of spatial analysis on the environment.

Creating an abstract graph representing an environment is a form of spatial analysis specifically de-

signed to assist the navigation of agents within a environment. Graphs or navigation meshes can

be constructed representing the space within which an agent navigates. Graph edges are frequently

weighted with characteristics pertaining to the routes they represent, so that shortest path algorithms

such as Dijkstra’s shortest path [37] and A* [61, 101] can find paths that minimise certain criteria.

Such types of spatial information are extracted during the analysis of an environment, and while such

information may not be specifically extracted with agents in mind, it may still be useful to them.

For example the visibility between different points in a environment allows one to avoid rendering
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invisible environment structures [1, 136, 89, 83]. This information may also be useful to an agent

wishing to strategise about the suitability of a vantage point.

Similarly, the lighting in various areas of an environment is calculated to improve the realism of a

rendered image [29, 57], but this information may also be useful if agents are designed to react to

lighting information. Some agents may see better in the dark and should favour dark areas to gain an

advantage over opponents with poor vision.

These areas have been well researched, but less work has been done on providing information about

the intrinsic qualities of a space. For example, the way a space curves is useful to an agent when

planning when to accelerate and decelerate, especially if its turning behaviour is physically modelled.

The width or openess of a space is also a useful measure for evaluating proximity to environment

structures and strategising about wide or narrow spaces.

We present a novel data structure that provides useful data on higher-order connectivity, curvature and

width. We also describe the process for automatically generating this structure from a environment

defined by 2D polyons. The data from this structure can be combined with data extracted from other

sources, such as visibility and lighting. We implement simple agents and demonstrate how their

effectiveness can be improved by utilising this data in two different scenarios. In the first, racing car

agents use data about track curvature to improve their racing line. In the second, “battle” robots use

data about path intersections to orientate themselves towards areas of high traffic. The agents use

almost no planning capability since our intention is to produce bottom-up behaviour based on the

environment they occupy.

This appendix is structured as follows: We describe previous work and background material relevent

to our work in Section A.1. Section A.2 provides a description of the framework as a pruned medial

axis, with linear mappings between it and the environment boundary. Section A.3 describes the cre-

ation of this data structure, while Section A.4 describes the agents that used to test the framework.

Finally, Section A.5 describes our testing and results and we conclude in Section A.6.

A.1 Related Work

Binary Space Partition Trees Binary Space Partition (BSP) Trees [52] are commonly used in spatial

analysis. They are binary trees that recursively divide a space using half-planes. They are typically

created from a set of polygons, using the polygon planes as splitting half-planes. BSP trees are

commonly used in environments as they are useful in calculating visibility and performing collision

detection.

Navigation Data Structures Navigations Graphs are commonly used to enable agents to navigate

within an environment by providing perception of paths within the environment. They provide a

simplified representation of the spatial areas that an agent may occupy. This reduces the time needed
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to search through positions in order to plan routes and make decisions. At first designers created

navigation graphs by manually placing waypoints in the environment [85]. As environments increase

in size and complexity, this task became more time-consuming and a candidate for automation.

Binary Space Partition (BSP) Trees [52] recursively partition an environment into spaces on either

side of a hyperplane: each leaf node corresponds to a convex polytope. The traversability of these

leaf nodes can be examined and linked together to automatically create a navigation graph [143]. The

Navigation Mesh [104] simplifies navigation graph creation by representing walkable environment

areas as polygons which are connected together in a mesh. As noted by [142], such navigation algo-

rithms are useful for calculating the shortest path between two locations, but they do not assist agents

in understanding the surrounding terrain.

Figure A.1: Simple Voronoi Diagram

Terrain Reasoning Pottinger [110] discusses influence maps which are created by applying terrain

influences to a 2D array to determine the best position to site objects. He also discusses grouping

logical areas together for AI use via area decomposition and the importance of establishing connec-

tivity between such areas for pathfinding purposes. However, this information is derived from features

external to the terrain and not from the terrain itself. Morgan [97] evaluates a number of algorithms

for determining suitable locations for a soldier to take a cover within an environment including using

Shadow BSP Trees [29] to detect regions of concealment. For reasons of efficiency, a sensor grid

evaluating visibility around an agent at different heights is used to decide if a location may be used

for cover.
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Van der Sterren [142] discusses terrain reasoning by examining the relationship between waypoints

in a navigation graph. The connectivity and visibility between waypoints is used to make estimates

about the effectiveness of a waypoint as a firing position. This effectiveness is then modified by the

actual performance of agents at the waypoint. Van Der Sterren recognises the need for annotating

waypoints with higher-order terrain information such as visibility and lighting. However, the focus

on waypoints inherently discards intrinsic geometric data that may be useful to agents and introduces

resolution issues. For example, the curvature of a section of space would be difficult to reconstruct

from waypoints and resolution issues would complicate the matter further. It also difficult to reason

about higher-order connectivity because waypoints are distributed throughout the environment in or-

der to provide agents with sensory information. The proliferation of waypoints maybe obscure the

fact that there is a single logical path that all the waypoints in a region may belong to. In contrast our

method focuses on retaining such information since it may be useful to agent designers.

Voronoi diagrams Voronoi diagrams [146] are another useful tool for spatial analysis. Given a set of

points S in a plane, a Voronoi diagram partitions the plane into convex polygons, each containing one

point p ∈ S and having the property that every point in the polygon is closer to p than any other point

in S. Each point is called a Voronoi Site and lies within a Voronoi Cell. Figure A.1 illustrates a simple

example.

Voronoi diagrams have various applications but for our work they are pertinent for the generation of a

Medial Axis. Sample points are introduced on the boundary of an object, and the Voronoi Diagram of

these points is computed. A sufficient density of samples is required to represent a surface accurately

– refer to [82] and [40] for an in-depth discussion.

Medial Axes and Skeletons In 2D, the medial axis [17] of a shape can be defined as a set of curves.

Each curve is defined as the locus of points lying between the boundaries of a shape [31]. It is a shape

descriptor representing the shape of an object, since it constitutes a connected set of curves passing

through the central parts of an object.

Originally introduced as the topogical skeleton [17], the terms medial axis and skeleton have been

used interchangeably to refer to the same concept, while in other cases they are considered to be

different but related concepts. In this work we use the term skeleton when referring to the medial axis.

When the shape for which the skeleton is to be computed is represented with an image, it may be

calculated using a distance transform [112, 113] or morphological thinning [65]. Images are not

compact representations of a shape, and polygons are frequently used to represent environments and

objects. Voronoi diagrams are frequently used to approximate the skeleton [103] of polygonal shapes.

In Mathematical Morphology, they are also referred to as Skeletons by Influence Zones (SKIZ) [144].

This process is used in path planning [13] and robotic motion planning [58, 62] to generate a skeleton,

from which a navigation graph is derived.

Computing the skeleton of an object with complex boundaries may produce many vestigial “spurs”

near the boundary, which do not contribute significantly the basic skeleton shape. Ogniewicz [103]
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prunes very fine spurs on the object boundary, and groups the remaining spurs as primary, secondary

and tertiary according to a hierarchical scheme. These spurs may still connect to the object boundary

at particularly jagged points of convexity.

Amenta et. al [5] use Voronoi Diagrams to reconstruct surfaces from unorganised sample points.

They use a process they call “Voronoi filtering” to choose faces of the Delauney simplices to remove.

Of interest here is their use of the medial axis to construct a metric that relates sampling density to

surface curvature, and from which they can prove the accuracy and topological validity of their surface

reconstructions.

Mobile Robot Mapping Mobile robots explore and interact with physical environments. In order to

successfully navigate between regions of explore space, they build maps of the environment. Mapping

strategies tend towards two approaches:

• Metric Maps, most commonly represented by Occupancy Grids [43].

• Topological Maps, commonly represented by mathematical graphs.

Metric Maps are fine-grained, highly-detailed representation of an environment. Simple formulations

of Occupancy Grids [43, 42] accomplish this by marking grid cells as occupied or empty, but more

complex versions store statistical information about cell occupancy [96, 18]. Due to the resolution

required to represent large environments, metric maps can be demanding in terms of space and time

complexity.

By contrast, the Topological Map, is a simplified representation of an environment, represented with

a graph. Important topological locations are assigned vertices and edges are assigned to paths linking

these locations. Early formulations [77, 28, 78] developed from the concept of a Cognitive Map

[127] of an environment. Theoretically, Topological Maps scale well to large environments, but may

struggle to adequately represent salient features of an environment [78].

Efforts have been made to integrate the two approaches, alternatively by building Topological Maps

from Metric Maps [139, 138], and Metric Maps from Topological Maps [140].

Frequently, the robot must perform mapping without any absolute positioning data, requiring it to

simultaneously build a map and localise itself within the map. This process referred to as Simulta-

neous Localisation and Mapping [59] (SLAM). SLAM identifies important geometric features in an

environment and stores their location in a sparse map. Correlating the robot pose and the estimated

features has a time complexity of O(n2) which has performance implications for large environments.

The DenseSLAM problem aims to integrate much denser sampling of environment features, while

maintaining efficiency in the correlation process[99, 100]. Hybrid Metric Maps (HYMM) [99] ac-

complish this by sampling features, and partitioning the feature plane into local triangle regions (LTR)

triangles with some, but not all, features as triangle corners. The triangles are themselves subdivided
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into grids in which dense feature information is stored. This multi-resolution representation provides

correlation efficiency and dense environment mapping. Guo et. al. [60] use Voronoi diagrams to

partition of the feature plane by using features as Voronoi sites. This partitions the plane uniquely and

the contours of the Voronoi cells can describe the environment contour.

Metric maps do not explicitly store any width, curvature or logical connectivity. Topological maps

are useful structures for representing the logical connectivity of an environment, and possibly, the

curvature of the environment if it is adequately sampled and graph edges correctly placed. However,

as the environment is represented as a graph, information about the width of a environment is not

stored.

A.2 Spatial Awareness Framework

We aim to develop a Spatial Awareness Framework representing the intrinsic qualities of an environ-

ment, such as width, curvature and connectivity. Here we describe the structure and mathematical

description of this framework. The process for creating this structure is described in Section A.3.

The core of this framework is a medial axis or skeleton, generated from a Voronoi diagram, and

represented with a mathematical graph. The Voronoi diagram is produced by sampling points on the

environment boundaries, which are used as input points to the process creating the diagram. Note that

we manually estimate the number of samples required for an environment, but techniques do exist

[82, 40] for computing a Delaunay triangulation that accurately approximates a surface, and its dual,

the Voronoi diagram.

An illustration of a skeleton produced from a Voronoi diagram can be seen in Figure A.2. This skeleton

can also be thought of as a topological map of the environment. Our framework builds on this graph

by establishing a correspondence between the skeleton and boundaries of the environment.

A skeleton is an orthodox structure for describing the shape of an environment, since it approximates

these structures by their centre lines – lines which are equidistant from the borders of the environment.

As such, it is useful for representing the logical connectivity of an environment since different sections

will be connected along their centre lines. For our purposes however, not all curves in the skeleton

are appropriate for describing the curvature and width of sections of an environment, as they are not

sufficiently parallel to the object boundaries. In particular, many of the skeleton leaf vertices extend

towards concavities on the environment boundary.

Consider Figure A.4a. The major concavity introduces significant changes to the width, curvature and

connectivity of the space and the skeleton segment that extends into it is parallel to the environment

boundary. By contrast the minor concavity in Figure A.4b does not introduce major changes to the

space and the skeleton segment is not parallel to the boundary. We therefore impose an orthogonality

condition on skeleton leaf vertices that require the graph edge containing them to be perpendicular to
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Figure A.2: The Voronoi Diagram generating the skeleton. Edges marked in red are considered to be on the

skeleton.

Figure A.3: The skeleton after pruning.

at least one environment boundary edge. Leaf vertices that do not satisfy this requirement are pruned

from the skeleton. This pruned skeleton resulting from the pruning process applied to Figure A.2 is

shown in Figure A.3.

This pruned skeleton forms the core of our Spatial Awareness Framework, representing the logical

connectivity of the environment, as well as the general curvature of the space. Then, to estimate
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(a) Major Concavity (b) Minor Concavity

Figure A.4: Major concavities introduce significant changes into the width and curvature of a space and there-

fore warrant a skeleton extension into the space. The changes introduced by minor concavities do not.

the width of the environment around the skeleton, we establish a bi-directional mapping between the

skeleton and environment boundaries, derived from collections of Voronoi sites, which estimate the

closest boundary points on either side of the skeleton.

Figure A.5: Environment boundaries and closed walks on the skeleton graph are converted into closed param-

eterised lines, represented by a piecewise linear function. These functions are paired togethered and mappings

established between their domains.

We require the boundaries of our environment to be specified by parameterised lines which form

closed loops. Each boundary line is paired with a closed walk on the graph skeleton – a cycle in a graph

possibly containing repeated vertices – also represented as a closed parameterised line. These pairings

may be seen in figure A.5. These parameterised lines are defined as piecewise linear functions. We

also create mappings between intervals on the domains of these functions, also through the use of
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v1 v2 v3 v4 v5 v6 v7

y1 y2 y3 y4 y5 y6 y7

x ∈ R

y ∈ R

mb

Figure A.6: A piecewise linear map is established between the domain of the function describing the skeleton

closed walk, and the domain of the function describing the environment boundary.

piecewise linear functions.

For a particular line pair, let {p1, . . . , pj} with p1 = pj be the j points forming the closed parame-

terised boundary, and let {q1, . . . , qk} with q1 = qk be the k points forming the parameterised closed

walk. Also let the values that parameterise these points be {t1, . . . , tj} and {u1, . . . , uk} respectively.

Then we can define piecewise linear functions, b and s representing these parameterised lines:

b(x) =











(p2 − p1)x+ p1 t2 < x ≤ t1

· · ·
(pj − pj−1)x+ pj−1 tj < x ≤ tj−1

s(y) =











(q2 − q1) y + q1 u2 < y ≤ u1

· · ·
(qk − qk−1) y + qk−1 uk < k ≤ uk−1

and b : R→ R
2

and s : R→ R
2

Since s and b parameterise closed lines, they are periodic, and we choose this periodic interval to be

[0, 1]. Thus s(0) = s(1). We also define piecewise linear functions mb and ms that map intervals of

the domain of b onto intervals of the domain of s:

ms(x) =











(y2 − y1)x+ y1 v2 < x ≤ v1

· · ·
(yl − yl−1)x+ pl−1 vl < x ≤ vl−1

mb(y) =











(x2 − x1) y + x1 w2 < y ≤ w1

· · ·
(xm − xm−1) y + xm−1 wk < y ≤ wm−1

and mb : R→ R

and ms : R→ R

See Figure A.6 for an illustration of how the domain of b is mapped onto the domain of s. mb and

ms are also periodic on the [0, 1] interval. To determine how these domain intervals are mapped,

Voronoi cells created by sampling points along a parameterised boundary are grouped into polygons.
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The points at which these polygons intersect the environment boundary and skeleton determine the

interval mappings.

We describe the process for creating the skeleton, pruning it, creating parameterised lines representing

boundary and skeleton sections and establishing piecewise linear mappings between them in Section

A.3, which follows.

A.3 Approach

We aim to develop a data structure representing the intrinsic qualities of a space, such as width,

curvature and connectivity. A medial axis or skeleton is useful for representing these qualities since

in 2D it is a set of curves that run through centre of a space. From the skeleton, logical paths through

the space can be identified, providing connectivity information and allowing the path curvature to be

used to identify the curvature of the surrounding space.

We first perform a BSP decomposition of the environment. Since this structure subdivides the environ-

ment using half-planes, convex regions representing the solid areas of a environment can conveniently

be determined and grouped together. The boundaries of these grouped regions can then be identified

by traversing the outer boundary of the group. This approach means that a level designer can con-

veniently construct environment structures out of separate polygons. It also allows for environment

structures with holes.

As we are dealing with geometric representations of environments, we adapt the popular geometric

technique of extracting a medial axis from a Voronoi diagram [103]. The boundaries extracted from

the BSP process are sampled and used as input to the Voronoi tesselation process.

A.3.1 Skeleton Extraction

We create a modified medial axis from a Voronoi tesselation [146] of environment objects. This

medial axis is then pruned to fit our definiton of the skeleton.

Sampling polygons: We perform a Binary Space Partition (BSP) [52] of the polygons describing the

environment and extract the convex regions defined by the BSP tree half-plane intersections. Solid

regions representing a distinct environment structure are grouped together and the counter-clockwise

boundaries of this structure are extracted. This boundary is stored as a closed, parameterised line.

Voronoi Tessellation and Initial Skeleton: Points are sampled on the parameterised boundaries and

are used as input points to the Voronoi tesselation process. We use qhull [7] to perform the tesselation.

For each input point, a Voronoi facet is generated, consisting of a number of Voronoi vertices. The

vertices and the edges between them are linked together in a graph as shown in Figure A.7. Initially, a

Voronoi vertex is labelled as “off” the skeleton if it lies within a environment structure, otherwise it is
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considered to be on the skeleton. A graph edge is considered to be on the skeleton if both its starting

and ending point are on the skeleton.

Figure A.7: Voronoi tesselation created from orange input points, sampled from the boundary of the gray

environment structures. The blue edges and vertices of this tesselation are linked together in a graph.

Pruning the skeleton: According to our definition of the skeleton, skeletal sections extending towards

minor regions of concavity represent too much detail and should be pruned. Skeletal sections that

extend into major regions of concavity are orthogonal to sections of the environment. We therefore

test the endpoints to see if the orthogonality criterion is met. This is accomplished by examining the

skeletal endpoints, e, that only have one neighbour n on the skeleton. An endpoint e is considered

strong if there exists at least one adjacent non-skeletal neighbour a such that the angle between the

vectors −→en and −→ea lies in the interval [π2 − ǫ, π2 + ǫ] for some tolerance ǫ. Otherwise the endpoint is

considered to be weak. Weak endpoints are pruned from the skeleton. The process continues until no

endpoints remain or only strongly supported endpoints remain. Figure A.8 shows two examples of

this process.

Skeleton Parameterisation: Prior to creating a mapping between environment boundaries and the

skeleton, parameterisation must be performed to facilitate the mapping. To accomplish this, we need
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(a) Before (b) After

(c) Before (d) After

Figure A.8: Two examples of skeleton pruning: A.8a shows a number of skeletal endpoints with weak support-

ing neighbours. This results in recursive removal until no endpoints remain as shown in A.8b. In A.8c the two

endpoints are recursively pruned to the configuration in A.8d, where only one endpoint remains supported by

two strong neighbours.

to parameterise both a environment boundary and a section of skeleton with the intent of creating a

correspondence between the two. An intuitive way of visualising this is to realise that each environ-

ment boundary is enclosed by a part of the skeleton. Parameterising a boundary is simple since we

can extract a closed counter-clockwise sequence of points from the BSP tree to describe it. However,

our skeleton at this point exists as a graph – a set of vertices connected by edges – with no implied

direction and no way to choose which path to take at intersecting points.

To parameterise the section of skeleton surrounding a environment boundary, we utilise the Voronoi

facets derived from the tesselation process. By sampling the parameterised environment boundaries,

a sequence of points is extracted that is input to the Voronoi tesselation process. The tesselation

produces a facet for each input point and therefore produces a corresponding sequence of facets that

intersect the parameterised boundary. Facets that do not have skeleton vertices can be safely ignored.

Once the facet ordering has been established, the ordering of the skeleton points lying on the facets
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Figure A.9: Skeleton parameterisation: The orange input points to the Voronoi tesselation process produce the

blue Voronoi facets, which have edges and vertices that lie on the skeleton and are marked in red. The ordering

of the input points produces a corresponding Voronoi facet ordering, which allows us to establish an ordering

of the skeleton points surrounding the environment structure.

can also be established. This sequence of points is then parameterised. The relation between the

Voronoi input points and the skeleton points is shown in Figure A.9.

At the end of the parameterisation process a parameterised environment boundary b, and a section of

parameterised skeleton s, that correspond to each other are produced. They are periodic functions on

the interval [0, 1].

A.3.2 Mapping Generation

Once a skeleton has been derived from the environment structure, and parameterisations for sec-

tions of skeleton and environment boundaries have been established, we create a mapping between

the skeleton and environment boundaries. The aim of this mapping is to establish the best possi-

ble correspondence between points on the skeleton and points on the environment boundary in order

to accurately represent the width of the space. Once again, this is accomplished by examining the
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Voronoi facets that intersect the environment boundaries and have an edge on the skeleton. We use

these facets to categorise sections of environment boundary and skeleton into three classes as shown

in Figure A.10.

Perpendicular Sections: Consist of one or more consecutively ordered Voronoi facets which have

edges that all intersect the environment boundary at the same angle. The intersecting edges are per-

pendicular to each other.

Folded Out Sections: Consist of one Voronoi facet that “fans outward” from the environment bound-

ary. The intersecting edges diverge from each other as they move from the environment boundary

towards the skeleton.

Folded In Sections: Consist of one or more consecutively ordered Voronoi facets which have had

weak skeleton endpoints pruned away. These facets “fan in” towards skeleton endpoints that have

been removed.

These sections are used to establish local mappings between environment and skeleton boundaries

and form the building block of the final mapping. Each section is assigned parameterised values for

the starting and ending skeleton points (vs and ve) and starting and ending boundary points (ws and

we). Two section lists are maintained, a skeleton ordered section list ordered by the vs of each section

and a boundary ordered section list, ordered by ws.

When performing a mapping from the parameterised skeleton onto the parameterised boundary for

some parameterised skeleton value v, the skeleton ordered section list is used to look up a section such

that vs ≤ vv ≤ ve. Linear interpolation is then performed to derive a corresponding parameterised

value w for the boundary.

w =
(v − vs)

vs − ve
.(ws − we)

Folded in sections converge on a single skeleton point such that vs = ve and linear interpolation fails

in this case. To deal with this we simply map vs and ve to ws−we
2 . Mapping from the boundary on

to the skeleton can be performed by reversing the process, with no special cases needing to be dealt

with, since sections never converge onto a single boundary point.

A.4 Agent Implementation

In order to test the spatial awareness framework, we implemented an agent-based crowd simulation

system. This system is briefly described here, but for greater implementation insight, the reader is

referred to Chapter 6 of [64].

The simulation consists of environment geometry represented as a set of polygons and a crowd of

autonomous, embodied agents. Using forward Euler integration, the agents update their state at each

time step based on their perception of the environment as well as constraints imposed on them.
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The autonomous agents interact with the environment (as well as other simulated agents) through a

set of senses as shown in Figure A.11. These senses take information from the environment (such as

environment geometry or enemy agent positions), as well as information about the local agent (such as

turn rate or movement speed), and produce a two dimensional output according to the sense interface.

This output is used by the agent to steer.

The senses are tailored for a particular type of agent. Examples include distance to friends, the

distance to each friendly agent in the environment, and geom vision x, the amount of area obscured

by environment geometry measured along the agent’s x-axis. The senses may be customised to allow

the agents a greater or lesser knowledge of the environment or to allow a certain type of behaviour.

For example, the geom vision x sense may be used for navigation purposes and the angle to friend

sense for tactical decision purposes.

The input from the senses are grouped into a perception module and used as input to the agent’s brain.

This brain then alters control values for the agent which are in turn used to update the agent’s internal

state.

An agent’s brain is a collection of fuzzy rules, well documented in the field of control systems [148].

These rules may be visualised as a network of fuzzy logic nodes. Each rule, of a standard if a then b

form, operates on fuzzy variables which, in contrast to the standard boolean variety, take on a value

in the range [0, 1]. For a full explanation of fuzzy variable and fuzzy inference, the reader is referred

to standard texts [72].

A fuzzification step takes the two dimensional input from the agent’s senses and determines the values

of the fuzzy variables used by the brain. This is done in a number of different ways, depending on the

properties required, usually involving a scaling step followed by a summation or maximum operation.

Once the fuzzy inference has been conducted, a defuzzification step is required in order to determine

the real values for the agent’s controls as well as combine rules that act upon the same control. We

use the height method for this defuzzification [94] due its computational efficiency.

A.5 Results

To demonstrate the usefulness of the spatial awareness framework, we created two simple games

using the crowd simulation agents designed to play the games at a basic level. We then created

a new group of agents based on the original agents, but with additional rules making use of extra

sensory information provided by the spatial awareness framework. By observing the performance of

the modified agents, we evaluated whether or not the framework has enhanced their behaviour.
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A.5.1 Racing Car Scenario

The racing car game involves the agents moving around a simple track as efficiently as possible while

avoiding the walls. We observed that the basic agent, with inter-agent and wall avoidance behaviour,

did not take an optimal line around corners. This is due to the agent being purely reactive with no

knowledge or recollection of the way in which the track turns.

We created a sense which provided information on the curvature of the upcoming section of track by

considering the angle changes along upcoming sections of skeleton. To accomplish this, polygons

created from the boundary local mapping sections in the skeleton ordered section list were placed in

a quadtree. Then, during the game, the agent’s position was used to query the quadtree and return the

local mapping section containing the position. The skeleton t value, defining the line containing the

position within the section was obtained using a binary search and changes in skeleton curvature after

this t value were provided to the agent. Using this information, the agent was able to keep the inside

wall of the track in view, hugging the walls and taking a better line around corners.

We created five racing tracks (See Figure A.12a to A.12e) to test the performance of the agents. Eight

racing agents took part in each race, four of which were normal agents and the other four being

enhanced with curvature awareness. The agents’ starting positions were arranged in the traditional

staggered, two column configuration, with the curvature aware agents placed at the back.

In all of the five tracks, the spatially aware agents overtook all the normal agents by the second lap.

Taking the inside line on the track shortened the distance they travelled and gave them a better line

making it more difficult for normal agents to pass.

The four spatially aware agents queried the framework in realtime. The complexity of this query is

O(logN) since it involves a quadtree lookup followed by a binary search.

A.5.2 Robot War Scenario

To test the use of the spatial awareness framework in a setting somewhat similar to a first-person

shooting game, we created a robot war simulation. Each agent was able to shoot in the direction that

they are facing with some degree of randomness in their accuracy. The basic behaviour for a robot

agent is the standard agent-and wall-avoidance, as well as a “targetting” behaviour in which an agent

turns to face any enemy agent that it sees.

In this scenario, the improved agents were given a sense of how many skeleton intersection points –

locations where three or more skeleton sections connected – were visible to them. The rationale for

knowledge of these areas being advantageous is that places where paths intersect are likely to have a

lot of traffic. This sense is therefore a combination of the intrinsic quality of connectivity provided by

the framework and the secondary quality of visibility.
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Contest Smart Agent Normal Agent

Kills Kills

Map 1 Team 5 3

Map 2 Team 5 0

Map 3 Team 5 1

Map 1 Team Reversed 5 0

Map 2 Team Reversed 5 2

Map 3 Team Reversed 5 0

Map 1 1v1 1 0

Map 2 1v1 1 0

Map 3 1v1 1 0

Map 1 1v1 Reversed 1 0

Map 2 1v1 Reversed 1 0

Map 3 1v1 Reversed 1 0

Table A.1: The outcomes of the agent contests. The number of kills for each type of agent are listed for each

contest.

To this end, we generated a strategy map from the spatial awareness framework. The strategy map is

generated by traversing the skeleton and sampling points on it and to either side of it. At each point, we

compute the number of visible skeleton intersection points and two sense values, best vis angle and

position goodness. best vis angle is set to the angle at which the most skeleton intersection points

can be seen in a 30◦ arc. position goodness is set to the number of intersection points in the 30◦

divided by the number of visible skeleton intersection points. Thus, if a point has many intersection

skeleton points visible in a single 30◦ arc, it will have a high position goodness, representing the

advantage of being able to see many areas of high traffic. The sample points were placed in a kd-tree

[11] to facilitate fast lookup of point-based data.

The first sense, best vis angle, was used by adding two rules to the brain which turn the agent toward

the best angle if there are no enemies currently visible. The second sense, position goodness was

used to direct the agent to stop and wait for enemies in a location (also known as “camping”) if it

has a high position goodness and is not too close to other friendly agents (to stop agents grouping

together in one spot). The combination of these two behaviours results in the agents occasionally

camping in a strategically valuable area while facing in the direction from which an enemy is most

likely to come.

The contests between the agents took place in three environments (See Figure A.13a to A.13c). Since

we wished to evaluate the effect of one environmental variable or sense at a time, we constructed

environments which did not give an undue advantage to the normal agents. For example, we broke

up outer circuits on the edge of the environment since normal agents tended to congregate on them

and surprise the more spatially aware agents looking inward. While it would be easy enough to use

additional environmental variables to eliminate this advantage, our intention was to assess the utility

of the extra spatial information to agent behaviour, not to design an optimal agent.
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For each environment two different contests took place: A team contest were a group of five “smart”

agents competed against a group of five “normal” agents and a one-on-one contest where one “smart”

agent competed against one normal agent. Each contest was then repeated with the starting positions

reversed in order to ensure that the environments did not unduly favour one side. The results of these

contents are listed in Table A.1.

In each case, the agents with awareness of path intersection points won the contest. Additionally, the

more spatially aware agents “camped” near positions with a high position goodness sense, managing

to surprise normal agents who wandered across areas of high traffic. Since the agents react to sensory

information, they have no higher-level planning behaviour besides “camping.”

A.5.3 Complexity of Data Structure Queries

In each scenario, the more spatially aware agents queried the framework in realtime. To lookup

curvature information for a racing agent, a quadtree lookup was performed followed by a binary

search, yielding an O(logN) complexity. To lookup up a point sample for the warring agents, a

nearest neighbour search was performed on a kd-tree, which again produces O(logN) complexity.

A.6 Conclusion

The spatial awareness framework presented in this appendix introduces a new system which allows

agents to query the intrinsic geometric qualities of the space that they are operating in, namely width,

curvature and connectivity. To our knowledge, this is the first system which automatically extracts

such qualitative geometric information from an environment. An agent crowd simulation system was

implemented to test whether awareness of these qualities could improve the performance of agents

within an environment.

Even though the agents were primarily designed to react to sensory information and only implemented

the most basic of planning capabilities, their effectiveness was increased with access to geometric

information. We also showed how the connectivity information derived from our spatial awareness

framework could be combined with the commonly used visiblity information.

The framework conveniently stores information about the space that we have termed intrinsic. In

our testing scenario, secondary visibility information is embedded within the graph of the skeleton,

but this information is point-sampled at each vertex. This strategy may not be ideal for representing

regions of secondary information such as lighting or temperature. This information could be incor-

porated into the polygonal data on either side of the skeleton, but subdivision of polygons may be

necessary to accurately represent regions of various characteristics.

Additionally, while the autonomous agents used to test the Spatial Awareness Framework were use-

ful for testing purposes, it would be impractical to actually use these types of agents in a real-time
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scenarios, since simulating vision is costly. The agents can also only respond to what they can “see”

around them, but introducing responses to features further away is limited by this sense, since it does

not incorporate an abstract representation of the environment, such as a graph. The most useful aspect

of this approach to agent programming is that it is bottom-up: the agents behaviour is defined by the

way it “senses” its environment.

Once the environmental feature that the agent should respond to is further away from the agent, the

notion of path-planning naturally comes into consideration. Integrating path-planning across regions,

or a subdivision of these regions, so that the agents react to the properties within them, prompted our

investigation of various path-planning algorithms capable of finding shortest paths through a set of

weighted regions. The challenging nature of this set of problems, as well as the interesting issues

stemming from the coupling between the environment representation and the algorithm, resulted in

our focus on these algorithms in the rest of this work.

Our criteria for a candidate pathfinding algorithm are:

• it finds shortest paths through weighted regions;

• it should be able to efficiently represent and find paths through irregularly shaped environments.

By this, we mean that the environments are not necessarily axis-aligned;

• it should be able to efficiently replan paths when the weightings within the environment change.

Lighting, for example, can be a dynamic when light sources move;

This criteria led us to adapt and extend Field D*, a shortest path algorithm that operates on weighted

grids.
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Figure A.10: Classifying sections: Sections of space between the environment boundary and skeleton are

classified into folded out, folded in and perpendicular sections, based on the Voronoi facets found within the

space.
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Figure A.11: A visual overview how an agent’s brain interacts with the environment.
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(a) Racetrack 1 (b) Racetrack 2 (c) Racetrack 3

(d) Racetrack 4 (e) Racetrack 5

Figure A.12: The racetrack environments and their skeletons, used in testing.
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(a) Robot War 1

(b) Robot War 2 (c) Robot War 3

Figure A.13: The robot war environments and their skeletons, used in testing.
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(a) (b)

(c) (d)

Figure A.14: Starting with the geometry defining an environment in A.14a, information on connectivity, width

and curvature is extracted in A.14b. This information is used by agents to enhance their behaviour within the

environment. In A.14b and A.14c the beige and blue agents use this enhanced behaviour to defeat their red

opponents.
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Appendix B

N-Dimensional Cost Function Solutions

and Reductions

In this appendix, we derive the analytic solutions for the n-dimensional cost functions. In each case

we will be considering the space R
n with dimension n. Within this space, we will be constructing

bases M and N from linearly independent vectors within R
n. In particular these matrices will have

an n×m shape, with m < n since M and N represent subspaces of Rn. Since these matrices are full

rank and m < n, a left inverse,
(

MTM
)−1

MT for example, exists for both M and N.

B.1 General Cost Function

The simple general cost function is expressed as:

G (x, λ,u,M,µ, d) = λ‖u+Mx‖+ µ
Tx+ d (B.1)

Expressing the distance component as the vector dot product to the power of a half yields:

G (x, λ,u,M,µ, d) = λ
(

uTu+ 2uTMx+ xTMTMx
)

1

2 + µ
Tx+ d

Taking the derivative with respect to x and setting, dG/dx = 0

−λ
(

uTM+ xTMTM
)

.
(

uTu+ 2uTMx+ xTMTMx
)− 1

2 + µ
T = 0 (B.2)
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Setting φ =
(

uTu+ 2uTMx+ xTMTMx
)

1

2 /λ and rearranging, we obtain the following expres-

sion for xT and x:

uTM+ xTMTM = φ.µT

⇒ xTMTM = φ.µT − uTM

⇒ xT =
(

φµT − uTM
) (

MTM
)−1

⇒ x =
(

MTM
)−1 (

φµ−MTu
)

Now, we rearrange Equation B.2 and square it. By squaring we introduce an extra solution. Later on,

we show that it is possible to always pick a particular solution.

λ
(

uTM+ xTMTM
)

= µ
T
(

uTu+ 2uTMx+ xTMTMx
)

1

2

⇒ λ2
(

uTM+ xTMTM
) (

MTu+MTMx
)

= µ
T
µ
(

uTu+ 2uTMx+ xTMTMx
)

⇒ λ2uTMMTu+ λ2uTMMTMx+ λ2xTMTMMTu+ λ2xTMTMMTMx =

µ
T
µuTu+ 2µT

µuTMx+ µ
T
µ
TxTMTMx

Grouping by xT and x:

(

λ2uTMMTu− µ
T
µuTu

)

+
(

λ2uTMMTM− 2µT
µuTM

)

x+

xT
(

λ2MTMMTu
)

+ xT
(

λ2MTMMTM− µ
T
µMTM

)

x = 0

We now substitute the expressions for xT and x into the above:

(

λ2uTMMTu− µ
T
µuTu

)

+
(

λ2uTMMTM− 2µT
µuTM

) (

MTM
)−1 (

φµ−MTu
)

+
(

φµT − uTM
) (

MTM
)−1 (

λ2MTMMTu
)

+
(

φµT − uTM
) (

MTM
)−1 (

λ2MTMMTM− µ
T
µMTM

) (

MTM
)−1 (

φµ−MTu
)

= 0

Note that
(

MTM
)−1

multiplied by
(

MTM
)

produces the identity matrix. Expanding out produces:

(

λ2uTMMTu− µ
T
µuTu

)

+

λ2φµTuTMµ− λ2uTMMTu− 2φµT
µuTM

(

MTM
)−1

µ+ 2µT
µuTM

(

MTM
)−1

MTu+

λ2φµTMTu− λ2uTMMTu+

λ2φ2
µ
T
µ− λ2φµTMTu− λ2φuTMµ+ λ2uTMMTu−

φ2
µ
T
µµ

T (MTM)−1
µ+ φµT

µµ
T (MTM)−1MTu+

φµT
µuTM(MTM)−1

µ− µ
T
µuTM

(

MTM
)−1

MTu = 0

Taking into account that the transpose of a scalar value is equal to itself, and that many of the above

terms cancel each other, we obtain:

λ2φ2
µ
T
µ− φ2

µ
T
µµ

T (MTM)−1
µ+ µ

T
µuTM(MTM)−1MTu− µ

T
µuTu = 0
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This expression can hold if µT
µ = 0. Assuming it does not, we can cancel the µ

T
µ terms out and

rearrange to obtain:

φ2
(

λ2 − µ
T
(

MTM)
)−1

µ

)

= uTu− uTM(MTM)−1MTu

Thus we have the following value for φ:

φ = ±

√

√

√

√

uT
(

I−M (MTM)−1
MT

)

u

λ2 − µT (MTM)−1
µ

Note that λ2 − µ
T
(

MTM
)−1

µ > 0 is required for a real solution of φ to exist. Also, there are two

possible solutions for φ, and consequently, x. In fact, one always chooses the negative value for φ as

we explain in the next section.

B.1.1 Choosing the root

It is possible to substitute both the positive and negative values of φ into cost function B.1 and select

the value of φ that ultimately minimises the function. However, it would involve less computation if

we could detect this root initially. Firstly we consider its effect on the distance term ‖v + Mx‖ =
(

vTM+ 2vTMx+ xTMTMx
)

1

2 . Substituting xT and x into the expression within the distance

term yields:

vTv + 2vTM
(

MTM
)−1 (

φµ−MTv
)

+
(

φµT − vTM
) (

MTM
)−1

MTM
(

MTM
)−1 (

φµ−MTv
)

Expanding out produces:

vTv + 2φvTM
(

MTM
)−1

µ− 2vTM
(

MTM
)−1

MTv+

φ2
µ
T
(

MTM
)−1

µ− 2φvTM
(

MTM
)−1

µ+ vTM
(

MTM
)−1

MTv

⇒ vTv − vTM
(

MTM
)−1

MTv + φ2
µ
T
(

MTM
)−1

µ

Since only φ2 contributes to this expression, the sign of φ does not matter here. Next we substitute x

into the µ
Tx term:

µ
T
(

MTM
)−1 (

φµ−MTv
)

⇒ φµT
(

MTM
)−1

µ− µ
T
(

MTM
)−1

MTv

Now, µ
T
(

MTM
)−1

µ = µ
T
(

MTM
)−1 (

MTM
) (

MTM
)−1

µ = ‖M
(

MTM
)−1

µ‖2 > 0.

Thus, to minimise the µ
Tx term and G in general, we always use the negative root of φ.
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B.1.2 Proof that the General Cost Function’s contours are sometimes ellipsoid

Here we show that the contours of the cost function B.1 are ellipsoid under certain conditions. Let c

be the cost of G at a particular contour. Then we have:

λ‖u+Mx‖+ µ
Tx+ d = c

Substituting e = d− c and re-arranging:

µ
Tx+ e = −λ‖u+Mx‖

We then square both sides of the equation and re-arrange:

(

µ
Tx
)2

+ 2eµTx+ e2 = λ2
(

xTMTMx+ 2uTMx+ uTu
)

⇒xT
µµ

Tx+ 2eµTx+ e2 = λ2
(

xTMTMx+ 2uTMx+ uTu
)

⇒2eµTx− 2λ2uTMx+ e2 − λ2uTu = λ2xTMTMx− xT
µµ

Tx

⇒2
(

eµT − λ2uTM
)

x+ e2 − λ2uTu = xT
(

λ2MTM− µµ
T
)

x

⇒xT
(

λ2MTM− µµ
T
)

x− 2
(

eµT − λ2uTM
)

x− e2 + λ2uTu = 0

This is a quadratic polynomial equation, defining a quadric whose nature is determined by the m×m,

square, symmetric and real matrix
(

λ2MTM− µµ
T
)

. If it is positive definite, then the quadratic

polynomial equation represents an ellipsoid quadric surface. Otherwise, it represents a hyperboloid.

To be positive definite, the following must hold for all x 6= 0:

xT
(

λ2MTM− µµ
T
)

x > 0

⇒λ2xTMTMx− xT
µµ

Tx > 0

⇒λ2xTMTMx > xT
µµ

Tx

⇒λ2‖Mx‖2 >
(

µ
Tx
)2

Now, if the above did not hold, i.e. λ2‖Mx‖2 ≤
(

µ
Tx
)2 ∀x, it would imply that the weighted

distance λ‖Mx‖ to the origin is cheaper than the linear component’s value at x.

Geometrically, this means that after travelling weighted distance λ‖u + Mx‖, it is cheaper to take

the weighted distance λ‖Mx‖ to the origin instead of using the linear component’s value at x, i.e.

λ‖u+Mx‖+ λ‖Mx‖ ≤ λ‖u+Mx‖+ uTx ∀x.

But by the triangle inequality λ‖u‖ ≤ λ‖u + Mx‖ + λ‖Mx‖ ∀x – It is always cheaper to travel

directly to the origin. In practice, these situations occur when the gradient of the linear component,

µ
Tx+ d, is very steep compared to the weighting of the distance component. The linear component

dominates the distance component to the extent that a global minimum no longer exists.
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Thus, for a global minimum to be present,
(

λ2MTM− µµ
T
)

must be positive definite, in which case

the contour lines of the cost function will be ellipsoids. Note that the positive definite requirement on

this matrix is similar to the requirement that λ2 − µ
T
(

MTM
)−1

µ be positive for a real value of φ

to exist.

B.2 Extended General Cost Function

The extended general cost function is expressed as:

G (x,y, λ, β,u,M,N,µ, d) = λ‖u+Mx+Ny‖+ β‖Ny‖+ µ
Tx+ d (B.3)

If we set v = u+Ny take the partial derivative with respect to x, ∂G/∂x, set it to zero and solve we

obtain the same solution for x and φ as in the Section B.1.

Now we wish to solve for y. We set w = u+Mx so that:

G (x,y, λ, β,u,M,N,µ, d) = λ‖w +Ny‖+ β‖Ny‖+ µ
Tx+ d

and take the partial derivative with respect to y, ∂G/∂y:

∂G

∂y
= −λ

(

wTN+ yTNTN
)

‖w +Ny‖ − β

(

yTNTN
)

‖Ny‖ (B.4)

Setting ∂G/∂y = 0, ξ = −λ/‖w +Ny‖ and δ = −β//‖Ny‖, we have:

ξ
(

wTN+ yTNTN
)

+ δyTNTN = 0

⇒yTNTN (ξ + δ) = −ξwTN

⇒yT = − ξ

ξ + δ
wTN

(

NTN
)−1

For convenience we combine the ξ and δ terms into θ and express yT and y as follows:

yT = θwTN
(

NTN
)−1

(B.5)

y = θ
(

NTN
)−1

NTw (B.6)

Working from Equation B.4 we obtain the following expression:

−λ‖Ny‖
(

wTN+ yTNTN
)

= β‖w +Ny‖yTNTN
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Squaring both sides yields:

λ2
(

yTNTNy
) (

wTN+ yTNTN
)

·
(

NTw +NTNy
)

=

β2
(

wT + yTNT
)

· (w +Ny)
(

yTNTNNTNy
)

⇒ λ2
(

yTNTNy
) (

wTNNTw + 2yTNTNNTw + yTNTNNTNy
)

=

β2
(

wTw + 2yTNTw + yTNTNy
) (

yTNTNNTNy
)

Substituting the values of yT and y from Equation B.5 and B.6 into the above produces:

(

λ2θ2wTN
(

NTN
)−1 (

NTN
) (

NTN
)−1

NTw
)

(

wTNNTw + 2θwTN
(

NTN
)−1

NTNNTw + θ2wTN
(

NTN
)−1

NTNNTN
(

NN
)−1

NTw
)

= β2θ2
(

wTw + 2θwTN
(

NTN
)−1

NTw + θ2wTN
(

NTN
)−1

NTN
(

NTN
)−1

NTw
)

(

wTN
(

NTN
)−1

NTNNTN
(

NTN
)−1

NTw
)

Note that
(

NTN
)−1

multiplied by
(

NTN
)

produces the identity matrix. We substitute PN =

N
(

NTN
)−1

NT for convenience noting that PN is a matrix defining the orthogonal projection onto

N. Expanding out produces:

λ2θ2wTPNw
(

wTNNTw + 2θwTNNTw + θ2wTNNTw
)

= β2θ2wTNNTw
(

wTw + 2θwTPNw + θ2wTPNw
)

Expanding further produces:

λ2θ2
(

wTPNw
) (

wTNNTw
)

+

2λ2θ3
(

wTPNw
) (

wTNNTw
)

+

λ2θ4
(

wTPNw
) (

wTNNTw
)

+

β2θ2
(

wTNNTw
) (

wTw
)

+

2β2θ3
(

wTPNw
) (

wTNNTw
)

+

β2θ4
(

wTNNTw
) (

wTPNw
)

= 0

Grouping by θ:

θ4
(

λ2 − β2
) (

wTPNw
) (

wTNNTw
)

+

2θ3
(

λ2 − β2
) (

wTPNw
) (

wTNNTw
)

+

θ2
(

λ2wTPNw − β2wTw
) (

wTNNTw
)

= 0

The above can hold if wTNNTw = 0 or θ = 0. If this is not the case however, we need to solve the
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following quadratic:

Cθ2 + 2Cθ +D = 0

where

C =
(

λ2 − β2
) (

wTPNw
)

D = λ2
(

wTPNw
)

− β2
(

wTw
)

According to the quadratic formula:

θ = −−2C ±
√
4C2 − 4CD

2C

θ = −1±
√
C2 − CD

C

⇒ θ = −1±
√

C −D

C

Utilising the fact that C −D reduces to the following:

C −D = β2
(

wTw −wTPNw
)

we obtain the following formula for θ:

θ = −1±
√

β2 (wTPNw −wTw)

(λ2 − β2) (wTPNw)

B.2.1 Eliminating y

For the formula:

G (x,y, λ, β,u,M,N,µ, d) = λ‖u+Mx+Ny‖+ β‖Ny‖+ µ
Tx+ d (B.7)
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θPNw t = PNw

s = (I−PN )w
w

Figure B.1: The vectors s and t are in the nullspace and range of projection PN respectively. Therefore, they

are orthogonal to one another.

we have the following solution for x and y:

xT =
(

φµT − vTM
) (

MTM
)−1

yT = θwTN
(

NTN
)−1

φ = ±

√

√

√

√

vT
(

I−M (MTM)−1
)

v

λ2 − µT (MTM)−1
µ

θ = −1±

√

√

√

√

√

β2
(

wTN (NTN)−1
NTw −wTw

)

(λ2 − β2)
(

wTN (NTN)−1
NTw

)

v = u+Ny

w = u+Mx

Since v and w still contain y and x respectively, the solutions for x and y are not independent of each

other. We will now eliminate y and θ from G.

First we substitute w and y into Equation B.7, substituting PN , the orthogonal projection onto basis

N from the previous section:

G (x,y, λ, β,u,M,N,µ, d) = λ‖w + θPNw‖+ β‖θPNw‖+ µ
Tx+ d (B.8)

Now, setting s = (I−PN )w, a vector in the nullspace of PN and t = PNw, a vector in the range of

PN , we proceed to transform the distance components of Equation B.8, taking advantage of the fact

that s · t = 0, since elements of the nullspace and range of a projection are orthogonal to one another,

as shown in Figure B.1.
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The first distance component can be represented in terms of an s and t as follows:

λ‖w + θPNw‖ = λ‖t+ s+ θt‖
= λ‖s+ (1 + θ) t‖

= λ

√

‖s‖2 + 2 (1 + θ) s · t+ (1 + θ)2 ‖t‖2

= λ

√

‖s‖2 + (1 + θ)2 ‖t‖2

now working with the definition of θ:

(1 + θ)2 =

(

β2

λ2 − β2

)(

wTw −wTPNw

wTPNw

)

=

(

β2

λ2 − β2

)(‖t+ s‖2 − ‖t‖2
‖t‖2

)

=

(

β2

λ2 − β2

)(‖s‖2
‖t‖2

)

Thus:

λ

√

‖s‖2 + (1 + θ)2 ‖t‖2 = λ

√

‖s‖2 + β2

λ2 − β2
‖s‖2

= λ

√

‖s‖2
(

1 +
β2

λ2 − β2

)

= λ‖s‖
√

λ2

λ2 − β2

Working with the second distance component:

β‖θPNw‖ = β‖θt‖
= β

√

θ2‖t‖2
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and utilising the fact that:

θ = −1± ‖s‖‖t‖

√

β2

λ2 − β2

⇒ θ2 = 1± 2
‖s‖
‖t‖

√

β2

λ2 − β2
+ ‖s‖2 β2

λ2 − β2

⇒ θ2‖t‖2 = ‖t‖2 ± 2‖s‖‖t‖
√

β2

λ2 − β2
+ ‖s‖2 β2

λ2 − β2

⇒ θ2‖t‖2 =
(

‖t‖ ± ‖s‖
√

β2

λ2 − β2

)2

⇒
√

θ2‖t‖2 = ‖t‖ ± ‖s‖
√

β2

λ2 − β2

Thus,

λ‖w + θPNw‖+ β‖θPNw‖ = λ‖s‖
√

λ2

λ2 − β2
+ β‖t‖ ± β‖s‖

√

β2

λ2 − β2

= ‖s‖ λ2

√

λ2 − β2
+ β‖t‖ ± ‖s‖ β2

√

λ2 − β2

= ‖s‖ λ2 ± β2

√

λ2 − β2
+ β‖t‖

= ‖ (I−PN )w‖ λ2 ± β2

√

λ2 − β2
+ β‖PNw‖

we have eliminated y from Equation B.7. which can now be expressed as:

G (x, λ, β,u,M,N,µ, d) =
λ2 ± β2

√

λ2 − β2
‖ (I−PN ) (u+Mx) ‖+

β‖PN (u+Mx) ‖+ µ
Tx+ d (B.9)

There are two distance components: The first expresses the distance of a vector u + Mx and its

projection onto N. while the second expresses the magnitude of u + Mx projected onto N. These

two distance components are orthogonal two each other, and thus the distance components from the

original Equation have been transformed so that they lie on the catheti of a right-angled triangle.

We have not managed to obtain a general analytic solution for Equation B.9 since two distance terms

and one linear term contain x. Attempts at solving B.9 by minimisation suggest that it is necessary to

solve for an eighth degree polynomial in x. However, in certain cases, a distance term is linear and

5.10 reduces to 5.6, for which an analytic solution is available.
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[40] Ramsay Dyer, Hao Zhang, and Torsten Möller. Surface sampling and the intrinsic Voronoi

diagram. In Proceedings of the Symposium on Geometry Processing, SGP ’08, pages 1393–

1402, Aire-la-Ville, Switzerland, Switzerland, 2008. Eurographics Association.

[41] Herbert Edelsbrunner, M. J. Ablowitz, S. H. Davis, E. J. Hinch, A. Iserles, J. Ockendon, and

P. J. Olver. Geometry and Topology for Mesh Generation (Cambridge Monographs on Applied

and Computational Mathematics). Cambridge University Press, New York, NY, USA, 2006.

[42] A. Elfes. Using Occupancy Grids for Mobile Robot Perception and Navigation. Computer,

22(6):46–57, 1989.

[43] Alberto Elfes. Occupancy grids: a probabilistic framework for robot perception and naviga-

tion. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1989.

[44] R. Fabbri, L. da F. Costa, J. C. Torelli, and O. M. Bruno. 2D Euclidean Distance Transform

Algorithms: A Comparative Survey. ACM Computing Surveys, 40(1):1–44, 2008.

[45] M. Falcone. A numerical approach to the infinite horizon problem of deterministic control

theory. Applied Mathematics and Optimization, 15:1–13, 1987.

[46] A. Fedorov, N. Chrisochoides, R. Kikinis, and S. Warfield. Tetrahedral mesh generation for

medical imaging. Technical report, 2005.

[47] David Ferguson and Anthony Stentz. Multi-resolution Field D*. In Proceedings of the Inter-

national Conference on Intelligent Autonomous Systems (IAS), 2006.

[48] David Ferguson and Anthony (Tony) Stentz. The Field D* Algorithm for Improved Path Plan-

ning and Replanning in Uniform and Non-Uniform Cost Environments. Technical Report

CMU-RI-TR-05-19, Robotics Institute, Pittsburgh, PA, 2005.

[49] David Ferguson and Anthony (Tony) Stentz. Using Interpolation to Improve Path Planning:

The Field D* Algorithm. Journal of Field Robotics, 23(2):79–101, 2006.

[50] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345–, 1962.

180



[51] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved

network optimization algorithms. Journal of the ACM, 34:596–615, 1987.

[52] Henry Fuchs, Zvi M. Kedem, and Bruce F. Naylor. On visible surface generation by a priori

tree structures. In SIGGRAPH ’80: Proceedings of the 7th annual conference on Computer

graphics and interactive techniques, pages 124–133, New York, NY, USA, 1980. ACM Press.

[53] Yaorong Ge and J. Michael Fitzpatrick. On the Generation of Skeletons from Discrete Eu-

clidean Distance Maps. IEEE Trans. Pattern Anal. Mach. Intell., 18(11):1055–1066, 1996.

[54] H. Goldstein, C. Poole, and I. Safko. Classical Mechanics (3rd Edition). Addison Wesley, 3

edition, 2001.

[55] N. A. Golias and R. W. Dutton. Delaunay Triangulation and 3D Adaptive Mesh Generation.

Finite Elements in Analysis and Design, 25(3-4):331–341, 1997.

[56] R. Gonzalez and E. Rofman. On Deterministic Control Problems: An Approximation Proce-

dure for the Optimal Cost I. The Stationary Problem. SIAM Journal on Control and Optimiza-

tion, 23(2):242–266, 1985.

[57] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett Battaile. Modeling

the interaction of light between diffuse surfaces. In Proceedings of the 11th annual conference

on Computer graphics and interactive techniques, SIGGRAPH ’84, pages 213–222, New York,

NY, USA, 1984. ACM.

[58] L. Guibas, C. Holleman, and L. Kavraki. A probabilistic roadmap planner for flexible ob-

jects with a workspace medial axis. In Proceedings of the IEEE International Conference on

Intelligent Robots, 1999.

[59] J. Guivant, E. Nebot, and H. Durrant-Whyte. Simultaneous localization and map building using

natural features in outdoor environments. Intelligent Autonomous Systems, 6(1):581–586, 2000.

[60] Shuai Guo, Shugen Ma, Bin Li, Minghui Wang, and Yuechao Wang. A new hybrid metric

map representation by using voronoi diagram and its application to SLAM. In Information and

Automation (ICIA), 2012 International Conference on, pages 400–405, 2012.

[61] P. E. Hart, N. J. Nilsson, and B. Raphael. A Formal Basis for the Heuristic Determination of

Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107,

1968.

[62] C. Holleman and L. E. Kavraki. A framework for using the workspace medial axis in PRM

planners. In Proceedings of the International Conference on Robotics and Automation, pages

1408–1413, 2000.

181



[63] Ping Hu, Hui Chen, Wen Wu, and Pheng-Ann Heng. Multi-Tissue Tetrahedral Mesh Genera-

tion from Medical Images. In Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th

International Conference on, pages 1–4, 2010.

[64] David Jacka. MSc Dissertation: High-Level Control of Agent-based Crowds by means of

General Constraints. Technical report, University of Cape Town, 2009.

[65] B. K. Jang and R. T. Chin. Analysis of Thinning Algorithms Using Mathematical Morphology.

IEEE Trans. Pattern Anal. Mach. Intell., 12(6):541–551, 1990.

[66] Mark W. Jones, J. Andreas Baerentzen, and Milos Sramek. 3D Distance Fields: A Survey of

Techniques and Applications. IEEE Transactions on Visualization and Computer Graphics,

12(4):581–599, 2006.

[67] G. Kalai and G.M. Ziegler. Polytopes : Combinatorics and Computation. Basel: Birkhuser

Verlag, 2000.

[68] M. Kallman. Path Planning in Triangulations. In Proceedings of the IJACI Workshop on Rea-

soning, Representation and Learning in Computer Games, 2005.

[69] W. Karush. Minima of Functions of Several Variables with Inequalities as Side Constraints.

Master’s thesis, Department of Mathematics, University of Chicago, 1939.

[70] Donald E. Kirk. Optimal Control Theory: An Introduction. Dover Publications, 2004.

[71] Richard I. Klein. Star formation with 3-D adaptive mesh refinement: the collapse and fragmen-

tation of molecular clouds. Journal of Computational and Applied Mathematics, 109(12):123–

152, 1999.

[72] George J. Klir and Bo Yuan, editors. Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers

by Lotfi A. Zadeh. World Scientific Publishing Co., Inc., River Edge, NJ, USA, 1996.

[73] Sven Koenig, Maxim Likhachev, and David Furcy. Lifelong planning A*. Artificial Intelli-

gence, 155:93–146, 2004.

[74] K. Konolige. A gradient method for realtime robot control. In Intelligent Robots and Systems,

2000. (IROS 2000). Proceedings. 2000 IEEE/RSJ International Conference on, volume 1, pages

639–646 vol.1, 2000.

[75] Richard E. Korf. Depth-first iterative-deepening: an optimal admissible tree search. Artif.

Intell., 27(1):97–109, September 1985.

[76] H. W. Kuhn and A. W. Tucker. Nonlinear Programming. In Jerzy Neyman, editor, Proceedings

of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, pages 481–492.

University of California Press, Berkeley, CA, USA, 1950.

182



[77] Benjamin Kuipers. Modeling Spatial Knowledge. Cognitive Science, 2:129–153, 1978.

[78] Benjamin Kuipers and Yung-Tai Byun. A Robot Exploration and Mapping Strategy Based

on a Semantic Hierarchy of Spatial Representations. JOURNAL OF ROBOTICS AND AU-

TONOMOUS SYSTEMS, 8:47–63, 1991.

[79] H. Kushner. Numerical Methods for Stochastic Control Problems in Continuous Time. SIAM

Journal on Control and Optimization, 28(5):999–1048, 1990.

[80] Mark Lanthier, Anil Maheshwari, and Jörg-Rüdiger Sack. Approximating weighted shortest
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