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Abstract

The field of Procedural Generation is being increasingly used in modern content
generation for its ability to significantly decrease the cost and time involved.
One such area of Procedural Generation is Shape Grammars, a type of formal
grammar that operates on geometric shapes instead of symbols.

Conventional shape grammar implementations use mesh representations of
shapes, but this has two significant drawbacks. Firstly, mesh representations
make Boolean geometry operations on shapes difficult to accomplish. Boolean
geometry operations allow us to combine shapes using Boolean operators (and,
or, not), producing complex, composite shapes. A second drawback is that
sub-, or trans-shape detailing is challenging to achieve. To address these two
problems with conventional mesh-based shape grammars, we present a novel
extension to shape grammars, in which a voxel representation of the generated
shapes is used.

We outline a five stage algorithm for using these extensions and discuss a
number of optional enhancements and optimizations. The final output of the
algorithm is a detailed mesh model, suitable for use in real-time or offline graph-
ics applications. We also test our extension’s performance and range of output
with three categories of testing: performance testing, output range testing, and
variation testing.

The results of the testing with our proof-of-concept implementation show
that our unoptimized algorithm is slower than conventional shape grammar
implementations, with a running time that is O(N3) for an N3 voxel grid.
However, there is scope for further optimization to our algorithm, which would
significantly reduce running times and memory consumption. We outline and
discuss several such avenues for performance enhancement.

Additionally, testing reveals that our algorithm is able to successfully pro-
duce a broad range of detailed outputs, exhibiting many features that would be
very difficult to accomplish using mesh-based shape grammar implementations.
This range of 3D models includes fractals, skyscraper buildings, space ships,
castles, and more. Further, stochastic rules can be used to produce a variety of
models that share a basic archetype, but differ noticeably in their details.
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Chapter 1

Introduction

For video games, virtual environments, and cinema special effects, cost-effective
content creation is an increasing concern. In this context, content refers to mod-
els, animations, textures, sounds, and the like, – essentially, all the components
that go into a video game, animated film, or virtual environment, which are not
part of the underlying game engine or renderer.

The amount of content needed for these computer-graphics-related appli-
cations has been steadily growing with increases in computational power and
the quality of graphics. We have now reached a point where hundreds of mod-
ellers, animators, and artists can work for months or years to create the content
necessary for a single mainstream video game or blockbuster film [1, 52].

The large size of these content-development teams means the costs involved
are significant. Salaries, equipment, office space and a plethora of other costs
all make industry-grade content creation an expensive proposition. In spite of
the number of people working on the project, long development times are still
the norm, because authoring content is inherently a lengthy process.

For these reasons, content creators have begun turning to procedural gener-
ation, as a way of decreasing costs and shortening development times.

1.1 Procedural Generation

Procedural generation refers to the collection of methods designed to algorith-
mically generate content [38, 44]. That is, instead of having a human manually
specify the content (often using specialized purpose-built software), a software
program will be run that produces content, often adhering to some set of input
constraints. Minimal human interaction is required in procedural generation –
generally limited to setting the initial parameters of the algorithm, or providing
example inputs.

Hence, procedural generation can significantly reduce content creation time
and costs. The algorithms will run and produce content much more quickly than
a human designer can create it, and because large amounts of content can be
created automatically, the required number of content creators can be reduced,
saving on employment costs.

Of course, procedural generation does have disadvantages, and is not a
panacea for all the challenges of content creation. It cannot be used to create

1
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every type of content (for example, no algorithms exist for mood-appropriate
music, storylines, or voice acting), and fine-grain control of the output is of-
ten lost. Nonetheless, even with these constraints, procedural generation is an
extremely useful tool that can save significant resources.

Procedural generation is a relatively mature technique, with one of its best-
known earliest appearances being the 1984 video game Elite1. In that game,
the eight different galaxies that the player could explore were procedurally gen-
erated.

The use of procedural generation in the early days of computer graphics was
mostly driven by necessity, since the available memory was limited. Generating
content on the fly reduced the program’s memory footprint, because pre-created
content did not need to be stored in memory.

A more detailed overview of procedural generation is presented in Section
2.1.

1.2 Shape Grammars

This dissertation focuses specifically on shape grammars [49]. These are a type
of formal grammar that can be used to procedurally generate shapes and 3D
models. In this section we present a brief overview of shape grammars, to clarify
how we view them in the context of this thesis, and to provide background
knowledge for readers who may be unfamiliar with them.

As with other types of formal grammars, a shape grammar consists of three
components:

• A set of items, {Si}, which forms the alphabet of the shape grammar.

• The axiom, A, an element of {Si}, which is the initial item that the
grammar begins from.

• A set of production rules, {Ri} which take an element of {Si} as their
input (potentially with additional metadata), and output zero or more el-
ements of {Si} (potentially including additional metadata and performing
arbitrary computation to determine the output).

The grammar begins with the axiom, A, which forms the initial current
shape set, {Ci}. The grammar then operates over multiple iterations. In each
iteration, an item Ci from the current shape set, which is the input to a pro-
duction Ri, is selected and operated on by Ri to produce a new set of items,
Cnew. Cnew then replaces Ci in the current shape set.

It is also possible that multiple items from the current shape set will be
operated on in one iteration, in which case the grammar is said to operate in
parallel. If only one item is operated on in each iteration, the grammar is said
to operate serially.

In this way, the current shape set will be transformed (and generally ex-
panded) across multiple iterations. Starting as only the axiom, A, the current
shape set will eventually be transformed into the final shape set, {Fi}, which is
the output of the grammar.

1Game website: www.iancgbell.clara.net/elite/

www.iancgbell.clara.net/elite/
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Axiom Rule 1 Rule 2

Figure 1.1: A simple shape grammar that produces an infinite series of 2D
stairs, made up of squares and rectangle. The grammar’s first three iterations
are shown.

Shape grammars are distinguished from conventional grammars, in that their
rules operate directly on geometric shapes instead of symbols from an alphabet.
That is, instead of {Si} consisting of arbitrary symbols, all Si are geometric ob-
jects (points, lines, cubes, octagons, etc.). These geometric objects can be of any
dimension, but, in practice, are almost universally two- or three-dimensional.

The production rules, {Ri}, of a shape grammar are also different. Instead
of performing simple string operations such as replacement and addition of
symbols, the rules can perform geometric operations on {Si}, such as rotation
and scaling, in addition to the normal formal grammar operations.

This means that the final output, {Fi}, of a shape grammar will not be a
string of symbols. Instead, it will be a collection of geometric shapes which, if
the grammar was suitably designed, will collectively form the geometric model
intended by the designer.

An example of a basic two-dimensional shape grammar is shown in figure 1.1.
It consists of a square for the axiom, and two rules, one of which takes a square
as its input and the other, a rectangle. This grammar is intended to create an
infinite set of stairs, and operates serially, with the most recently added shape
being the shape that is operated on in each iteration. The first three iterations
are shown, and illustrate how the current shape set is transformed by the rules.

Shape grammars were originally developed in architecture as a tool for for-
malizing architectural design. Although still used for that purpose, they are
better known in computer science as a method for procedurally generating mod-
els of buildings and other structures. This research focuses on shape grammars
in that context: their use in procedural generation.

1.3 Shape Grammar Deficiencies

Conventional shape grammars operate on mesh-based representations of shapes.
Shapes are recorded as collections of vertices (points) and edges (line segments
between two of the points), which collectively form the mesh. Multiple edges
form closed polygons, and those polygons form the surface of the shape – an
example of how edges and vertices combine to form a mesh is shown in Figure
1.2.
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edgevertices faces polygons surfaces shape

Figure 1.2: This figure shows how vertices and connective edges between them
are combined to form mesh models of shapes. In this case 10 vertices and 24
edges are used to represent a 3D rectangle.

Surface detail is added by texturing the closed polygons (either the faces or
polygons in Figure 1.2). This is done by projecting a 2D image (the texture)
onto the flat surface. Each vertex is assigned coordinates from the texture, and
the image is then stretched/scaled to fit onto the face or polygon. In this way,
all flat surfaces in the final mesh will have visual detail displayed on them, in
the form of a 2D texture.

Geometric operations on meshes are accomplished by acting on the vertices,
with the edges being moved as a consequence. Rotation, scaling, shearing, and
translation of the overall shape can be accomplished by moving the vertices in
certain ways.

Conventional shape grammars operate on shape meshes. The rules create,
and operate on, mesh representations of shapes, modifying them until a final
collection of shape meshes is produced: the output of the shape grammar. Tex-
tures are often assigned to faces during shape grammar interpretation, based on
the shape grammar rules.

However, there are two major problems with conventional mesh-based shape
grammars, as used in procedural generation. The first deficiency arises from the
difficulty of robustly applying constructive solid geometry (CSG) or Boolean ge-
ometric operations to meshes [8]. This is because overlapping edges and vertices
must be identified and trimmed or removed, as appropriate. Then, new vertices
and edges must be created to join the shapes in a watertight manner.

Boolean geometry operations are a powerful tool in geometric modelling
and can be used to easily create a variety of shapes that are difficult to generate
without them. They are used in engineering design and game engines for their
ability to easily create such structures and meta-shapes, when other methods are
more time-consuming and less elegant. For this reason, being able to perform
Boolean geometry operations in shape grammars, and exploit their generative
power, is desirable.

Although algorithms exist for performing Boolean operations on meshes
[24, 45], these processes are complex; have edge cases that remain problem-
atic; can suffer from numerical inaccuracies; and can create non-manifold, or
badly sampled, meshes. Alternatively, this redundant geometry can be left hid-
den, but this is inefficient and can lead to visual problems, such as Z-fighting
(where two polygons are coplanar and hence interfere with the correct display-
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ing of the other). However, even with such an algorithm for handling redundant
geometry, the overlap between different shapes can lead to texture seams.

The second limitation of mesh shape grammars is that texturing is done
at a per-polygon level. Each shape, or pre-made piece of geometry, has fixed
texture coordinates for each vertex and fixed associated textures (or in some
cases, a small set to choose from). Hence the surface detail is often fixed, and
the possibility for dynamic detailing is limited since, at best, different textures
can be selected for each face, which is likely to lead to texture seam issues.

As an additional consequence of working with meshes, it is difficult to in-
corporate detailing that spans multiple shapes. Because textures are restricted
to single surfaces, it is difficult to have detail that crosses between shapes (for
example a series of racing stripes running the length of a car model produced
by a shape grammar). Additionally, it can be hard to avoid texture seams,
especially when the parameters of the shapes can vary.

Related to the above problem, 2D surface detail cannot easily be manipu-
lated at a sub-face or sub-polygon level. Because a texture is a static image
projected onto a flat surface, we cannot control details at a level lower than a
single face.

Of course, one could theoretically edit textures dynamically to create details
at a sub-shape level, but this rapidly becomes difficult, with many problem-
atic edge cases (such as rotations, variations in the shape grammar output, and
scaling of the model). Repeated loading and saving of image files is also too
inefficient to be done regularly, and the modifications to the texture may in-
terfere with special effects that rely on additional texture maps, such as bump
mapping.

It is thus difficult to have surface details on a mesh model that span multiple
shapes, and to control the textures at a sub-shape level. These limitations of
being constrained to working with an entire face or polygon of a model restrict
freedom in detailing.

1.4 Aims

This thesis aims to solve the above-mentioned problems of Boolean geometry
operations and surface detailing in shape grammars, by modifying how the gram-
mars are interpreted.

The identified problems both arise because conventional shape grammar im-
plementations work with mesh representation of shapes. If we were to operate
on non-mesh representations, these problems could be avoided.

We propose the use of voxel representations of shapes as a solution, since
they allow us to avoid the above limitations, and provide some interesting new
capabilities for shape grammars.

1.5 Voxels

A voxel is the 3D analogue of a pixel, that is, an element in a discrete, regular 3D
grid. It can be a binary value (true or false), or contain additional information
(such as velocities for a grid-based water simulation). A diagram showing a
simple voxel data set is shown in Figure 1.3.
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Figure 1.3: A simple example of a small voxel data set. One of the voxels has
been set to grey.

Figure 1.4: This figure shows a mesh representation of a 2D star on the left.
The blue lines are edges and the black circles are the vertices of the model. The
two pictures on the right show voxel representations of the same shape, taken at
different resolutions. Note how increasing the voxel resolution decreases aliasing
artifacts and provides a better approximation of the shape.

Voxel data is used in many domains, such as: the output of MRI scans,
where the final data set is constructed by stacking up slices of data [6]; for
representing landscapes in video games [10], where it allows the representation
of caves and overhangs; and a host of scientific data applications, ranging from
astronomy to geology [6].

For our purposes, we are interested in voxel grids where each voxel stores a
binary value indicating whether it is solid or empty. In this way, shapes can be
represented by groups of voxels. Instead of having a collection of polygons that
make up the shape, we have a collection of adjacent voxels, which collectively
form the desired shape. These voxels will be set to solid, while their surround-
ing neighbours will be set to empty, meaning that the solid voxels form a 3D
representation of the shape, surrounded by empty space. Additional metadata
(such as detailing information) can also be associated with each voxel. A simple
2D example, that compares mesh and voxel representations is found in Figure
1.4. Further discussion on voxels, and the challenges they present, is deferred
to Section 2.3.
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1.6 Voxel-Space Shape Grammars

In this work we present an algorithm for interpreting shape grammars in voxel-
space, instead of using mesh representations of shapes. Modifying shape gram-
mars to operate in a voxel-space solves the limitations mentioned earlier. Boolean
geometry operations on voxels are trivial [21] and hence CSG operations are eas-
ily applied [8]. It is a simple matter of iterating over all voxels in the affected
area and making them either solid or empty, based on simple logic. For ex-
ample, to create the geometric union between an overlapping cube and sphere,
simply loop over each shape in turn, and copy all ‘solid’ voxels into the output
grid. The resulting output will be a voxel grid that represents the union of the
two shapes. In a shape grammar context, this can be achieved by having each
shape generated by the grammar have an associated flag indicating whether it
is additive, or subtractive, meaning that the voxels within that shape will either
be set to solid or empty, respectively. Figure 1.5 shows a comparison between
mesh-based and voxel-based Boolean geometry operations.

Accomplishing this with meshes would require intersection detection between
polygons, followed by clipping of edges and vertices, and then the creation of
new vertices around the clipped areas. Even then, there would still be texture
seam issues.

One issue with voxel representations of shape is that the precision of the
initial geometry can be lost. When converting a shape defined as a mesh or
mathematical equation into a voxel grid, and then back into a mesh, the fine
details of the original shape can be lost. In many cases we will want a mesh of
our shape for display purposes, so this is a concern, since produced meshes may
lack the fine detail desired by the user. However, there is an easy solution to
this problem: increase the resolution of the voxel grid, as this will decrease the
aliasing issues that lead to precision and fine details being lost. How much the
resolution is increased by should be decided on a case-by-case basis, balancing
the need for fine detailing against the larger storage requirements that increasing
the grid resolution brings. Figure 1.4 shows an example of how increasing the
resolution achieves a more accurate representation of the shape.

The second deficiency that we identified in mesh-based shape grammar in-
terpreters, the limitations of detailing mesh models, can also be addressed by
using a voxel representation of shapes. Textures can be assigned on a per-voxel
basis, which removes their dependence on the polygons and faces of the mesh.

In this manner, each voxel will have associated detailing information, that
is used when displaying the model. This detailing information is not limited to
textures either, since there are methods to render voxel grids that do not use
textures, such as ray tracing [27].

Because the detailing information is assigned on a per-voxel basis, and not
a per-polygon basis, we can control the detailing at a much finer level and we
are not restricted by polygon boundaries. When the shapes are represented as
voxels, there is no concept of boundaries between shapes (the voxels are all just
values in a 3D array), and hence the detailing is not limited by those boundaries.
This means that we can create consistent global detailing patterns that would be
difficult to do procedurally in a purely mesh-based situation. For cases, where
we want knowledge of the shape boundaries, metadata can be stored to indicate
which voxels belong to which shapes, and the boundaries can then be derived.

Additionally, since the voxel grid resolution can be adjusted, we can ensure
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Figure 1.5: This figure demonstrates the 2D geometric union between a star and
a rectangle (top). With mesh-representations (middle) there are vertices and
edges that overlap and must be clipped, or removed. Additionally, new vertices
will need to be created where edges from the different shapes meet. This is
complex, and there are a number of edge cases that are problematic. With a
voxel representation of the shapes (bottom), finding the union is simple. All
voxels that form part of the shapes are simply set to ‘solid’, and the resultant
voxel data set is the union of the two shapes.

that a voxel will be smaller than a polygon face (by increasing the resolution
to make it so if it is not). Hence, we are able to easily detail at a sub-polygon
level, which is significantly more complex to do with meshes.

As a side-point, it should be noted that this method of per-voxel detailing
is not specific to our proposed algorithm. It could, in fact, be used indepen-
dently for procedurally detailing any voxel-based model or data-set. In this
thesis we restrict ourselves to considering use of the technique in the context of
shape grammars, but almost all of our observations and suggestions would be
applicable for use in other contexts.

Hence, interpreting the shape grammar in a voxel-space, instead of a mesh
space, solves the two deficiencies of conventional shape grammar implemen-
tations. A more detailed look at our algorithm for accomplishing the above
mentioned operations appears in Chapter 3.
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1.7 Research Questions and Contributions

This thesis explores the interpretation of shape grammars in a voxel space, in
contrast to the traditional mesh geometry approach. Our major, and novel,
contribution is an algorithm for this process. The algorithm consists of four
principal stages, and produces a mesh model, suitable for use in real-time, or
offline, 3D graphics. We also discuss optimizations and optional steps for the
algorithm, as well as testing its performance and range of output.

To determine the utility of our new system, we explore and evaluate the
following research questions:

• Does using a voxel representation of shapes, instead of a mesh, solve the
limitations of shape grammar implementations as identified? Can our
voxel-space shape grammar extensions produce models that are difficult
or impossible to produce with meshes?

• What limitations, if any, does working in a voxel-space bring? Further, are
any of these limitations severe enough to make our algorithm nonviable?

• Are our extensions computationally efficient enough for real-world use?

We have already provided a theoretical answer to the first question, but in
the rest of this thesis we assess the practicality of such a system. Likewise, we
have covered some obvious areas for the second question, but in later chapters
we give a more rigorous analysis of the limitations and whether we can overcome
them.

These three research questions represent the major objectives of this work.
The goal is to develop a system that expands the generative range of shape
grammars without losing existing functionality, and while remaining compu-
tationally viable. The research questions examine these three components of
our goal and thus their answers form the major success metrics for our work.
Determining these answers is the focus for evaluation of our research.

1.8 Overview of Thesis

The remainder of this thesis is presented as follows:
Chapter 2 covers background and related work relevant to this thesis. It

gives a brief overview of the wider field of procedural generation before delving
into shape grammars and voxels specifically.

In Chapter 3 we present a framework for utilizing the extensions developed
in this research. Each of the five algorithm stages is covered in detail, and we
discuss implementation details and optimizations.

We performed three types of testing and evaluation of our algorithm, and
these are described in Chapter 4. Each type of testing and its results are covered,
and then limitations and conclusions are discussed.

Finally, in Chapter 5, we summarize the rest of this thesis, draw conclusions
from our findings, and present some suggestions for future work.



Chapter 2

Background and Related
Work

In this chapter we examine the existing academic work and related background
knowledge relevant to our project. This includes procedural generation as a
whole, shape grammars in specific, and previous use of voxels in procedural
generation.

Section 2.1 focuses on the wider field of procedural generation. It looks at
its origins, its advantages and disadvantages, discusses a few of its key elements,
and finally delves into four of the best known types of procedural generation.
Although our research is focused on a specific area of procedural generation,
knowledge of the wider field is important for understanding our research, which
is why this section is included.

In Section 2.2, we cover previous work in the area most relevant to this re-
search: shape grammars. This section is focused on specific pieces of important
research in the field, from the inception of shape grammars, to recent develop-
ments. Our work incorporates ideas from a number of the papers mentioned in
this section.

The use of voxels in procedural generation is discussed in section 2.3. Al-
though voxels are not widely used in mainstream procedural generation, they
have seen use in research, and some video games. The section also discusses
data structures for efficiently managing voxels.

2.1 Procedural Generation

In the context of this dissertation, procedural generation refers to the collection
of methods designed to algorithmically generate content for games, film, and
virtual environments.

The content produced by these methods is primarily generated by an algo-
rithm, with minimal human interaction – generally limited to setting the initial
parameters of the algorithm. Examples of such parameters include: a small pro-
duction rule-set that can be used to make an entire forest, or a 128-bit random
seed to an algorithm that creates an entire landscape.

Contemporary use of procedural generation is driven by budgetary and time
constraints. The continuing increase in computer processing power means that

10
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Figure 2.1: This image shows a nature scene, where the foliage and plants were
procedurally generated by the SpeedTree software package. Copyright c©2011
IDV, Inc. All rights reserved.

the amount of content in graphics applications, and its complexity, has been
steadily increasing. As a result, the resources required to create all necessary
content has skyrocketed, resulting in larger costs and development times.

For example, the multitude of special effects in the blockbuster film Avatar1

took three years to create, with a peak of 900 people working on them [52]. The
film cost approximately $310 million to produce [1], a large percentage of which
was used to create the computer generated visuals.

Procedural generation provides a way to quickly generate large amounts of
content with minimal human interaction, reducing these increasing development
costs. One of the better-known commercial procedural products is SpeedTree2,
a middleware product for procedurally creating trees and plants. Other exam-
ples include CityEngine3, used for generating buildings and whole cities, and
Terragen4, which creates landscapes. Images of the content these products can
produce are shown in figures 2.1 to 2.3.

Procedural generation also appears in ad hoc applications outside industry
and academia. The Demoscene5 is the most prominent example of this. In this
context a ‘demo’ is an executable file (constrained to be less than a certain size)
which generates a visual and auditory presentation. Because the executable size
is so constrained, procedural generation is the only viable option for producing
content. The Demoscene subculture has formed around this, and produces some

1Film website: http://www.avatarmovie.com/
2Product website: www.speedtree.com
3Product website: http://www.esri.com/software/cityengine
4Product website: www.planetside.co.uk
5More information about the Demoscene can be found at: www.demoscene.info

http://www.avatarmovie.com/
www.speedtree.com
http://www.esri.com/software/cityengine
www.planetside.co.uk
www.demoscene.info
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Figure 2.2: An image of the CityEngine suite in the process of procedurally
creating a city. Copyright c©1995 – 2011 Esri.

Figure 2.3: This Martian terrain was created procedurally, using the Terragen
software package. c©2005 www.planetside.co.uk
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Figure 2.4: This is a screenshot from the demo ‘Beyond’ created by Demoscene
group ‘Conspiracy’. The executable is only 54 kilobytes in size, but produces 4
minutes of visuals through procedural generation.

extremely impressive work. See figures 2.4 and 2.5 for sample images. In some
cases the Demoscene has even inspired new techniques that are used elsewhere.
For example, in the video game Spore6, user-created creatures are procedurally
animated and detailed [15]. Figure 2.6 shows some user-generated creatures
from the game.

It is important to note that procedural generation cannot generate every
form of content, and is limited to content that has certain properties, such as
a fractal description, elements of randomness, clear mathematical definitions,
or exploitable commonalities across all instances of the content. Properties
like these provide an underlying structure that can be evaluated and produced
algorithmically.

Unfortunately, procedural generation usually results in less control over the
produced content. High-level constraints can be supplied but, in most cases,
there is little that can be done to change specific low-level or localised details.
One way to counter this problem is manual editing of the generated content.
With this, a user will take the procedurally generated output, and modify it by
hand, using specialized modelling software, such as Blender7 or 3ds Max8.

Alternatively, there are other methods proposed in research, such as adjecti-
val interfaces which use machine learning to associate words with characteristics
in produced content [16]. After the system has been trained on which adjectives
should produce which features in the output, the user can then select a number
of adjectives and the system will output content that has features matching
those adjectives.

Visual grammar editing [29] is another option, where a user can change
generating rules for a grammar to produce specific results in the output, using

6Game website: www.spore.com
7Project website: www.blender.org
8Product website: www.autodesk.com/3dsmax

www.spore.com
www.blender.org
www.autodesk.com/3dsmax
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Figure 2.5: This is a screenshot from ‘Interceptor’, a demo made by Demoscene
group ‘Black Maiden’. The executable is only 157kb in size, but it features a
full 3D model and a number of graphical effects.

a graphical interface, which is easier to work with than text-based rules.
The most common elements of procedural generation are self-similarity; ran-

domness; and elementary mathematical functions such as sin, cos, and the equa-
tions of shapes.

Self-similarity refers to structures that exhibit features that are similar (or
identical) to other parts of the same structure. In the context of procedural
generation, self-similarity usually means that features are repeated at multiple
scales. For example, the branch of a tree often looks like a smaller version of
the same type of tree, which has undergone an affine transformation to shrink
it.

The main purpose of randomness is to produce a variety of outputs from a
single algorithm. A deterministic algorithm will produce the same output given
the same input, but an algorithm that uses a different random seed as input for
each run can produce multiple different outputs.

The use of randomness also allows a type of compression. Instead of storing
the final content, only the algorithm to create the content and the random seed
need to be stored, since the content can be perfectly reproduced from these.
In almost all practical cases the content is much larger than its generating
algorithm, netting significant gains in storage space [38]. This method was used
to save space in the early days of computer games, and is known as Kolmogorov
compression, from the idea of Kolmogorov complexity [28].

Mathematical functions such as trigonometric functions, equations of shapes
and image filters provide the primitives for procedural generation. These can
be modified or used with other functions to produce specific effects or shapes,
such as distorting a sphere mesh into an ellipsoid and then randomly displacing
the vertices to create surface detail.

There are many other, less common, sub-components that can go into a
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Figure 2.6: This image shows four creatures created in the video game Spore,
by Maxis. These creatures are designed by a user, but their detailing and
animations are procedurally created. These images were taken from [15] and
are the property of their original creators.
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procedural generation algorithm. For example, the video game Borderlands9

procedurally generates weapons for the player. Specifically, each weapon has
basic characteristics and special enhancements that are procedurally decided
upon, giving the game a vast range of player-usable weapons that would have
taken years to be hand-made by a human. A unique aspect with this approach
was that the procedural algorithm had to consider game mechanics balance, and
ensure that none of the weapons it created were underpowered, or overpowered,
by balancing the good and bad characteristics out.

Another example is the AI ‘Director’ found in the Left 4 Dead games10. The
game’s levels are mostly static, but the ‘Director’ procedurally generates narra-
tive elements of the game, with the goal of creating tension in the players. The
locations where zombie enemies spawn from, and their number and frequency,
are dynamically chosen to keep things unpredictable for the players.

A large amount of work has been done on procedural generation, both in
academia and in industry, and a full survey of the many types is beyond the
scope of this work. We point readers to surveys of the field [22, 38, 48] for
further information.

We now discuss some of the best-known and most well-established meth-
ods in procedural generation. Although the following methods are not directly
relevant to our research, they do suggest ideas and techniques that could be
helpful in our work. Additionally, they provide examples, and a more concrete
understanding, of the hallmarks of procedural generation.

2.1.1 L-systems

L-systems are a class of formal grammar that execute in parallel, rather than
serially. This means that L-systems often produce content with a high degree
of self-similarity, since the same rules that created the symbols in the previous
iteration will operate on those symbols again, producing the same style of out-
put. When the scale is decreased across successive iterations, the L-system will
produce fractal output.

This makes L-systems well-suited to generating content which exhibits frac-
tal behaviour or has similar structures across many scales, such as road networks
[42] and plants [44] (for which L-systems are considered the de facto method).

An L-system consists of an alphabet of symbols, covering all possible sym-
bols that will appear during interpretation and in the final output; a set of
productions (known as the rule set) which replace symbols with zero or more
other symbols; and an axiom symbol, which is what the interpretation starts
with.

At each iteration, every symbol in the output string (initially only the axiom)
for which a production exists in the rule set (making it a non-terminal symbol)
is replaced by the right hand side of that production. Symbols which cannot
be used as the input to any of the rules are known as ‘terminal symbols’ and
are not operated on. See Figure 2.7 for an example of a simple L-system being
interpreted.

This process is repeated on the new output string for each iteration until
either: there are only terminal symbols left in the output string (symbols which

9Game website: www.borderlandsthegame.com
10Game website: www.l4d.com

www.borderlandsthegame.com
www.l4d.com
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Alphabet: A, B
Axiom: A
Rules: (A -> AB), (B -> A)

Output

n = 0 : A
n = 1 : AB
n = 2 : ABA
n = 3 : ABAAB
n = 4 : ABAABABA
n = 5 : ABAABABAABAAB
n = 6 : ABAABABAABAABABAABABA
n = 7 : ABAABABAABAABABAABABAABAABABAABAAB

Diagram

n=0:         A
            / \
n=1:       A   B
          /|    \
n=2:     A B     A
        /| |     |\
n=3:   A B A     A B

Figure 2.7: This figure demonstrates a simple L-system and how it is interpreted
over a number of iterations. This L-system is actually the original L-system that
Lindenmayer proposed to model the growth of algae. The alphabet consists of
two symbols, one of which is the axiom, and two rules. Seven iterations of the L-
system are shown, and a visual diagram of the first three iterations is provided
for clarity. This figure was derived from the Wikipedia article on L-systems.
Please see the Acknowledgements section on page 110 for full attribution and
licensing of this derivative work.
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do not match any productions), or until some pre-selected iteration limit is
reached.

The string of symbols that is produced by the L-system is then interpreted
by some method to produce the actual content. The best known interpretation
method is turtle interpretation, used for trees and plants [44].

Turtle interpretation is most widely recognized as a feature of the Logo
programming language. The turtle (or cursor) has a position, orientation, and
is either down (creates visible lines when it moves) or is up (does not create
visible lines when it moves). It follows a list of instructions than can change the
above attributes and move the turtle. This means that arbitrary vector images
can be produced by a series of turtle instructions.

In L-systems, a similar idea is used. The output string of the L-system is
interpreted left-to-right as a series of instructions for the turtle to follow, which
produce a 2D, or 3D, collection of lines that form the branches of the tree. For
actual use in games and virtual environments the lines will be converted into
textured cylinders or surfaces, but the same basic idea is still used at the core.

The rule set and axiom of the L-system control the characteristics of the
produced content. For example, when building a grid-like road network from
an L-system, the rules would ensure that roads are roughly straight and either
parallel or perpendicular to each other.

There have been many extensions and enhancements developed for L-systems,
the foremost of which we mention here.

Stochastic L-systems [7] introduce randomness in rules, so that the rules can
randomly choose outputs from a given selection, instead of choosing determin-
istically. This increases the range of outputs possible from a single L-system.

With environmental awareness [39], L-system rules can query the virtual
environment around the generated content and adjust outputs according to
that information. For example, a plant could change it’s growth direction over
multiple iterations to maximize sun exposure.

Finally, having parameters associated with symbols [44] allows a whole new
level of metadata to be used by the rules. Parameters can be arbitrary infor-
mation not easily controlled via grammar symbols that is defined or used in the
generation process. For example, the thickness and bark colour of branches in
a tree.

Enhancements such as these, combined with a long established history, mean
that L-systems are one of the fundamental methods of procedural generation.

2.1.2 Terrain Generation

Terrain generation is aimed at producing models of landscapes, usually encoded
as 2.5D height maps, that appear realistic. A 2.5D (two and a half dimensional)
height map is a two-dimensional grid, where each element in the grid stores a
height. In this way, the grid can represent terrain by indicating the heights
of the ground at each point in a rectangular area. Height maps are the most
common method of representing terrain, since they are simple and can be stored
efficiently using image compression techniques. However, they are unable to
represent fully 3D terrain, such as caves and overhangs.

Terrain generation was pioneered by Ken Musgrave [36], but has since been
further expanded by others [40]. Musgrave’s approach made use of fractals,
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where a polygon is recursively subdivided and the vertices of the new poly-
gons are randomly displaced. These displacements at multiple scales create a
plausibly realistic landscape.

Since then, many newer algorithms for producing terrain have been devel-
oped: for example, Perlin noise [43], a randomly generated type of gradient
noise where features are of similar size; genetic algorithms [41], a heuristic based
search technique, which is used to find terrain with features similar to those in
a given database of samples; erosion-based methods [37], which aim to simulate
the natural processes that create real landscapes; and patch-based methods,
which stitch together small pieces of real-world terrain data to produce larger
landscapes [57].

The different methods of terrain generation each have their own advantages
and disadvantages, but these tend to reduce down to a realism versus com-
plexity/performance trade-off. Hence, the choice of algorithm for a specific
implementation usually ends up being a balancing act between the quality of
landscape required, and the computational resources available. For further in-
formation on terrain generation, we refer readers to surveys of the field [48].

2.1.3 Texture Creation

Textures are 2D (and sometimes 3D) images that are projected onto the surfaces
of polygon models to efficiently simulate visual detail. A variety of methods have
been developed for procedurally creating textures.

There are methods that create completely new textures from random seeds.
The foremost of these is Perlin noise [43], which has the advantage that all
visual features are of the same size. This affords the user a great deal of control,
because multiple items of Perlin noise can be easily scaled and combined to
produce a range of different visual effects. The downside to these is that they
tend to be specific to a certain class of texture. For example, Perlin noise is
well-suited for effects such as smoke or flame, but would not be able to create a
grained wood texture. An example of Perlin noise is shown in Figure 2.8.

Another approach is to use physics simulations, which have visual repre-
sentations, such as reaction-diffusion systems. Reaction-diffusion systems are
methods of modelling how substances will tend to be distributed after interact-
ing with each other and diffusing into the local area, in the form of differential
equations.

Turk’s work [51] on creating textures for arbitrary polyhedral surfaces pi-
oneered the approach of using reaction-diffusion systems. It operates by sim-
ulating reaction and diffusion directly on the mesh, and using the results to
assign colour values to positions. See Figure 2.9 for some examples of textures
produced by his work.

Although these simulation-based methods can produce good quality tex-
tures for certain situations, they are often more computationally intensive than
alternatives, and have a generative range limited to a certain class of texture.

Finally, there is the cell-based approach, where the texture space is sub-
divided into cells based on randomly placed points. These tend to produce
textures with an ‘organic’ appearance.

Voronoi diagrams are commonly used in this approach. A Voronoi diagram
occurs when dividing an area of space up around a set of generator points in the
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Figure 2.8: A sample of randomly generated Perlin noise.

Figure 2.9: This figure shows several textures generated by reaction-diffusion
processes. This image was taken from [51] and is reproduced by permission of
the Association for Computing Machinery. c©ACM 1991.
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Figure 2.10: An example of a colorized Voronoi diagram showing how space is
divided up around the black dots so that every point in the image is associated
with its closest dot.

space, such that every point in the space is associated with its closest generator
point (see figure 2.10). The divided space is known as a Voronoi diagram.

Itoh et al. demonstrate this cell-based technique in their work [18] where a
region is subdivided into pseudo-Voronoi tessellations that resemble reptile skin.

Similar to simulation-based methods, cell-based approaches can produce
high quality content within a certain scope, but they are generally limited to
that scope.

There are also algorithms that take an example texture and create new
textures similar to the example. The first efficient method of this type was
developed by Wei and Levoy [53]. It operates on a per-pixel level by selecting
the pixel colour that best matches the surrounding neighbourhood of pixels. See
figure 2.11 for an example of this process.

This process is accelerated by using tree-structured vector quantization. This
is a technique for converting a large multi-dimensional search space into a tree
data structure which greatly reduces the time to search for items (O(log(N))
instead of O(N)). This requires that the search space can be ordered in some
consistent method, but drastically reduces running times.

It should be noted that acceptable textures can only be generated from sam-
ples that meet certain requirements. Specifically, the texture should consist of
only features that are similar across the entire texture in terms of size and ap-
pearance (Wei et al. describe as the property of ‘stationarity’), and each pixel’s
colour must be associated only with the surrounding nearby pixels (described as
‘locality’ in the original paper). This is because the algorithms are only able to
match and imitate existing patterns with relatively small features, and cannot
extrapolate larger complex features.
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Figure 2.11: An example of texture synthesis by Wei et. al.’s texture synthesis
algorithm. The larger images are produced by the running the algorithm on the
smaller images.

For example, an image of tree bark would work as an input, since the pieces
of bark are all very similar to each other, and the image consists of nothing
but these features. A picture of a face would fail, however, because there is no
regular repeating pattern that spans the entire image, and the algorithm cannot
extrapolate that the face should be connected to a neck and body.

These sample-based methods tend to produce higher quality output than
the methods that create entirely new textures, but are significantly slower. Ad-
ditionally, they require example inputs to operate, and cannot create textures
from scratch.

2.1.4 Random Level Generation

The need to randomly create game levels, or stages, arose out of the early ASCII
graphics Roguelike games11, as a way of varying subsequent playthroughs. These
early algorithms were simple. For example, NetHack12 simply creates a set of
non-overlapping rectangles, randomly generates content in them, and then con-
nects them with passages (see Figure 2.12 for an example of a generated level).

As time passed and technology improved, randomly created levels and their
generation algorithms became increasingly complex. For example: the game Di-
ablo 213, where pre-built elements are incorporated into the levels, and Infinity:
The Quest for Earth14, which procedurally generates an entire galaxy, down to
the level of terrain on planets. Infinity’s generating algorithm is proprietary, but
is known to be based around a hierarchical octree and aims to produce content
that is relatively consistent with the known make-up of our galaxy.

Some level generation algorithms even incorporate complex realistic ele-
ments, such as the geological simulations and erosion in Dwarf Fortress15. The
basic terrain is generated using fractal-based algorithms, but computationally
heavy simulation processes are done to produce a very detailed world map.

The majority of the work in this field comes from the gaming industry, and
not academic research. Unfortunately, this means that details of the algorithms
are not always available.

11More information on Roguelike games available at: en.wikipedia.org/wiki/Roguelike
12Game website: www.nethack.org
13Game website: www.blizzard.com/games/d2/
14Game website: www.infinity-universe.com/Infinity/
15Game website: www.bay12games.com/dwarves/

en.wikipedia.org/wiki/Roguelike
www.nethack.org
www.blizzard.com/games/d2/
www.infinity-universe.com/Infinity/
www.bay12games.com/dwarves/
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Figure 2.12: A random dungeon generated by the Roguelike game, NetHack.

2.2 Shape Grammars

Stiny and Gips [49] first developed shape grammars in an attempt to formalize
architectural design. Although still used in architecture, they have also been
adapted for use in the procedural generation of structures for other applications,
such as virtual environments, video games, and historical reconstructions [34,
56]. These computer graphics applications of shape grammars are the focus of
this section.

The original definition of shape grammars proposed by Stiny and Gips is very
broad, and allows scope for a large amount of complexity in shape grammars.
In particular, it allows for emergent shapes, where one or more shapes could
combine to form a new shape, which would then be treated as the new meta-
shape, and not as the individual shapes that make it up. For example, two
identical right angle triangles could be placed with their hypotenuses adjacent
to form a rectangle. In the original definition of shape grammars, this would
then be recognized and operated on as a rectangle, and not as two triangles.

However, writing a shape grammar interpreter that can correctly handle
emergent shapes is challenging, due to issues of recognizing new shapes formed
from collections of other shapes. This means that, in practice, implemented
shape grammar interpreters do not support the full complexity of shape gram-
mars as proposed by Stiny and Gips. Instead they generally operate on symbolic
evaluation, with a symbol for each shape, similar to how formal grammars work.
In the rest of this thesis, we limit ourselves to dealing with this restricted, but
implementable group of symbolic shape grammars.

Additionally, most shape grammar implementations have terminal symbols
included in their definitions, which are treated as placeholders for actual pieces
of geometry. Non-terminal symbols represent intermediate shapes, which are
operated on by the rules until only terminal shape remain. This means that
most shape grammar implementations use rule sets intended to run until all
symbols are terminal, rather than running for a fixed number of iterations.

Early implementations of shape grammars were simplistic, with a limited



CHAPTER 2. BACKGROUND AND RELATED WORK 24

range of output. They operated deterministically on simple collections of shapes
and produced straightforward models, with minimal variation.

However, over time, several ideas from procedural generation, principally
from L-systems, were incorporated into shape grammar implementations. These
enhancements expanded the generative power of shape grammars significantly.

Most notable among these extensions were environmental sensitivity and
stochastic rules.

With environmental sensitivity [39], rules can query the environment and the
current set of shapes, and then adjust their output based on the information
they retrieve. For example, a rule producing doors in the wall of a house might
query its neighbourhood to ensure that it will not place a door overlapping with
a perpendicular wall, and a rule creating solar-powered geysers on the roofs of
buildings would query the sun’s direction and rotate the panels appropriately.

Stochastic rules [7] introduce randomness, by randomly choosing different
outputs and parameters to achieve variation in the shapes generated. For ex-
ample, when generating a ship model with a shape grammar, the dimensions of
the ship could be randomized within certain ranges, and the height and location
of the mast could be randomly selected.

The major benefit of stochastic rules is that multiple models conforming to
a coherent style and theme can be produced by one shape grammar. When
creating a city of buildings, one well-designed stochastic shape grammar could
generate all buildings of a certain class (skyscrapers, warehouses, residential
buildings, etc.), instead of each building requiring its own shape grammar.

Shape grammars were extended explicitly for building generation using split
grammar rules [56], which focus on the subdivision of shapes. For example, a
building’s wall is divided first into floors, then the floors into different rooms,
and finally the walls of the rooms into different windows.

Split grammars are particularly well suited to façade generation [56] (gener-
ating the side faces of buildings) due to the regular, grid-like layout of building
windows. They work by recursive subdivision of a shape, guided by following
productions from a rule set. The final set of shapes that arise from the repeated
subdivision form a model of the desired building wall.

However, split grammars are less successful at creating the internal structure
of buildings, due to the internals of buildings being much less regular and not
as grid-like as the exteriors of buildings. However, other techniques have been
developed for generating building interiors [14, 32].

Another problem with split grammars is that they are not the best tool for
creating the basic shape of the building, since buildings are better represented
as the combination of shapes, instead of subdivisions of them. Early approaches
to this problem of creating the building’s basic shape tended to be simplistic,
such as using n-sided prisms as the split grammar axioms and then running a
shape grammar on each of the prism’s sides, in isolation from the others [11].

Subsequently, better solutions for this problem were developed. For exam-
ple, starting with aerial imagery, and using image recognition to determine the
footprints of buildings in the imagery, and reverse projection operations to cre-
ate a simple 3D geometric representation of the building [26]. Alternatively,
the building’s basic structure can be created by shape grammars themselves, by
combining geometric primitives, often with stochastic rules [34].

Along with the other extensions mentioned, the features of split grammars
have since been incorporated into current grammar implementations, unifying
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Figure 2.13: This image, taken from the work of Bokeloh et al., shows how an
input to their algorithm (the red model) can be analyzed and used to produce
output models in the same style (the grey models).

all features under one grammar, allowing for greater ease-of-use [34].
The range of output possible from modern shape grammar implementations

is extremely broad [34] and as a result, shape grammars are considered the
industry standard for procedurally generating architecture. They are able to
create whole cities with realistic buildings (using additional techniques [42, 50]
to create the road networks and city block layout). The best example of this
in practice is the CGA grammar of CityEngine16, a commercial product for
procedurally creating cities and buildings.

Example-based shape grammars can be used to generate different models
in the same style as the given-example. Input can be an image of a building’s
façade, as in the work by Müller et al. [35], where image analysis techniques
are used to identify the features of a façade, from which a shape grammar to
generate that particular façade is derived. Additionally, texturing information
is extracted from the picture, and used to detail the models produced from the
derived shape grammar.

Alternatively, the work of Bokeloh et al. [3] takes an existing model as its
input example. The model is analyzed and subdivided into component parts,
and a shape grammar is derived that re-uses the components of the example to
produce new models in the same style as the example. An example of an input
and associated outputs from their work is shown in Figure 2.13.

The problem of easily, and visually, editing shape grammars for the layman
has also been addressed by Lipp et al. [29] in their work on interactively edit-
ing shape grammars for architecture. Their approach is primarily concerned
with operating on the grid-like façades of buildings, but does feature methods
for shaping the overall building structure. It works with the derivation tree of

16Product website: http://www.esri.com/software/cityengine

http://www.esri.com/software/cityengine
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shapes that the shape grammar produces, and provides a GUI for shape gram-
mar generation for users not familiar with the intricacies of formal grammars.

Recent work [2, 17] has also developed methods for automatically creating
a structural skeleton for models generated by shape grammars. These meth-
ods are integrated into the shape grammar process, creating skeleton bones for
the different parts of the model and linking them together with appropriate
joints and constraints as the generative process occurs. The grammar itself can
be extended to let the rules tweak these skeletons, allowing the user to con-
trol the structural skeleton’s creation in parallel with the model creation itself.
This means that structural skeletons do not need to be manually created by
hand, saving time and effort. The created skeletons can then be used to create
animations or run structural simulations on the generated models (by passing
the bones, joints, and constraints to a physics engine which will simulate their
interactions).

However, in spite of the large body of work described above, shape grammars
do have limitations. In split grammars, shapes that span multiple subdivisions,
and shape intersections, are difficult to handle gracefully. In addition, partic-
ularly unusual building designs with complex elements, such as tunnels and
interior hollows, are very hard to generate.

2.3 Voxels

Voxel data is used in many different areas of computer science, such as compu-
tational astronomy, medical imaging, and fluid simulation. The range of uses
are far too numerous to cover in this section, so we focus on their use in the area
relevant to our work: procedural generation. The following subsections cover
the issue of efficiently storing voxel data, and the two major areas in procedural
generation where voxels are used.

2.3.1 Voxel Storage

Managing voxel data presents some challenges [21]. In spite of the widespread
use of voxel data sets, managing, storing, and processing voxels can be challeng-
ing. For example, a relatively small 256 x 256 x 256 grid of integers requires 64
megabytes of storage, and a single integer per element cannot store much infor-
mation. This illustrates one of the major problems with voxel data sets: storage.
They tend to be quite large when stored näıvely, requiring approximately O(N3)
for storage, where N is the average dimension size.

There are a number of options for storing voxel data sets, the most obvious
being a 3D array. Although conceptually pleasing and simple, this is unsuitable
for medium sized or larger data sets, due to the amount of space required.

Compression can be used to cut down on the space requirements, but this is
only useful for secondary storage, since the data needs to be uncompressed in
RAM for actual manipulation. Additionally, if the data set has a high entropy,
then compression is ineffective at reducing the storage size.

Hierarchical tree data structures [47] are a much better choice for voxel data
storage. In the context of voxel data sets, tree data structures can reduce the
data size by recursively creating nodes down to only the level of granularity
needed to accurately represent the data set. They also allow the aggregation
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Figure 2.14: A 2D illustration of how hierarchical tree data structures can reduce
the memory requirements for storing voxels. On the left, the voxel data set is
stored as a 2D array, requiring that each of the 256 elements of the grid are
explicitly stored. On the right, the same data set is stored in a quadtree (the
2D equivalent of an octree), where groups of voxels can be aggregated together
if all of them are either solid, or empty. With the tree, only 67 elements need
be stored, plus the tree overhead – 26.1% of the space required for the array.
This generalizes to three dimensions, and in most cases storing the data set in
a tree data structure will require much less space than using an array.

of adjacent elements that are the same, since these elements can all be stored
as one aggregate parent node, rather than multiple individual nodes. This is
illustrated in Figure 2.14.

An alternative to regular tree data structures are pointerless trees. This is
a way of storing a tree without the use of pointers, that operates on the same
principles as a 1D array being used to encode a binary heap. This has the
benefit of avoiding pointer overhead, but these techniques are more complex
to implement than pointer-based data structures, and for most voxel-storage
situations, the small performance benefit they bring is not worth the added
implementation complexity.

There are four main types of trees which can be used for storing voxel data
sets: octrees, point region octrees (PR-octrees), kd-trees, and R-trees. Here
we will examine how they work, their strengths, and their weaknesses. Further
details on these, and other methods of voxel data set storage, can be found in
the literature [10, 47].

The best-known example of a hierarchical tree data structure for space sub-
division is the octree [47]. Octrees work by recursively subdividing 3D space
into 8 equal size octants, with each octant becoming a child node of the parent
node that spatially contains all the octants. Figure 2.15 shows how an octree
operates.

Octrees have many applications, from collision detection [13] to compression
[4], and are a widely used data structure in 3D graphics applications. They also
have the benefit of allowing for spatial indexing.
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Figure 2.15: An example of an octree being used to divide up a cuboid space.
The root node is partitioned into eight octants, but then only the two octants
that require further subdivision are subdivided.

Spatial indexing is a feature of some data structures that store spatial infor-
mation. These data structures can be used to efficiently query what objects are
in a region of space and the distances between objects. Spatial indexing is often
accomplished by subdividing the space into a tree structure and then walking
the tree in some fashion to find the desired information.

Spatial indexing is important because it allows the efficient use of common
operations such as nearest neighbour finding, collision detection, and the like,
on spatial data sets (maps, virtual environments, simulations, etc.). Without
it, these operations would be significantly more computationally intense. In the
context of storing voxel data though, spatial indexing is of little use, since the
benefits it brings are typically not needed.

A point-region octree (PR-octree) is a modification to the standard octree,
where the splitting point is not always at the centre of the space contained by
the parent node. Instead, it can be located anywhere in the parent’s space, and
its location is stored by the node. See Figure 2.16 for a PR-octree example.

The benefit of the PR-octree is that it allows the tree to be better balanced.
During the creation stage, the splitting points can be chosen to evenly divide
the contents of the tree at each level.

Kd-trees can be considered a special case of a binary space partitioning tree
(BSP) tree. A BSP tree is a type of binary tree used to hierarchically divide up a
space. It operates by recursively splitting the space on either side of arbitrarily
aligned planes.

BSP trees are used to accelerate rendering of scenes, because the tree of a
scene can be precomputed and then that tree used to accelerate the painter’s
algorithm. BSP trees are not suitable for storing voxel data, however, since
non-axis-aligned splits cause aliasing issues.

Kd-trees differ from BSP trees in that their spatial subdivisions are all axis-
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Figure 2.16: An example of a point-region octree. Note that the splitting point
for each subdivision is not centered in the space to be subdivided, as it is in a
normal octree. Instead it is stored in the relevant node of the tree.

aligned. The two subdivisions are not necessarily of equal size though. The
axis to which the split is aligned to can either be a function of node depth (for
example, alternating X, Y and Z) or stored explicitly (which is useful for keeping
the tree balanced during creation). Unlike BSP trees, kd-trees are typically used
for storing data, and not for rendering it. A simple kd-tree example is shown
in Figure 2.17.

Because they are binary, less information needs to be stored at each kd-tree
node than in trees with more children per node, but traversals will be longer,
since the tree is deeper.

Finally, R-trees are the spatial equivalent of B-trees. Each node is the mini-
mum bounding rectangle that contains N children rectangles, up to a maximum
of M. The leaves of the tree may contain a list of the points and shapes that the
tree actually stores, assuming the tree does not just store rectangular regions.
A diagram of a R-tree is presented in Figure 2.18.

Bounding regions at the same level of the tree may overlap, but each child
node only ever has one parent node. R-tree nodes can also be split when they
have too many children. This is done in a manner similar to B-trees, and allows
the tree to be balanced.

The major benefit that R-trees bring is that they are very efficient at spatial
queries, such as finding the ten closest items of a certain type near an arbitrary
point (when all the items are stored in the tree).

Any of the above tree types can be used to store voxel data sets, and each
type brings different benefits, which may be useful for application-specific uses.
Discussion of the best type of tree for our purposes is deferred to Section 3.3.1.
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Figure 2.17: An example of a kd-tree, used to hierarchically store a collection of
points in a square 2D space. Every node of the tree contains the coordinates of
one point (not just the leaf nodes), and during creation, the points are chosen
and inserted into the tree so as to keep it balanced. This kd-tree alternates
between splitting along the X and Y axes.
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Figure 2.18: An example of a R-tree, in a continuous space. Each node can have
a maximum of three rectangles within it, and will be split into two nodes should
more be added. Each node’s bounding rectangle completely encompasses the
bounding rectangles of its children, for example, R2 encompasses R6 and R7.
Bounding rectangles can also overlap, such as R1 and R2.
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Figure 2.19: A screenshot showing fully 3D voxel terrain created by the inde-
pendent video game, Minecraft. c©2011 Mojang AB.

2.3.2 Terrain Representation

Voxels have seen sporadic use in procedural generation. Most commonly, they
are used to represent terrain (often procedurally generated) [10]. In this regard
they are superior to 2.5D heightmaps because they allow the specification of fully
3D terrain, with elements such as overhangs and tunnels that are impossible to
represent with a heightmap. One of the best-known games to use a voxel terrain
representation is Crysis17.

However, voxel terrain does have higher performance requirements and in-
creased complexity, since the change from 2D to 3D significantly increases the
number of elements to be stored and processed (O(N3) instead of O(N2)). For
this reason, 2.5D heightmaps are used far more commonly than voxel terrain in
games.

One of the foremost examples of voxels used for procedural generation is the
independent video game Minecraft18. The entire world is represented with vox-
els and the landscape, rivers, caves, and buildings are all procedurally generated
by the game, using a multi-pass algorithm that makes heavy use of 3D Perlin
noise. An example of terrain from the game is shown in Figure 2.19.

Unfortunately, due to the proprietary nature of the game, the full details of
the algorithm used are not in the public domain. What is known is that the
game is ‘chunk’, or block based, with the world being generated in chunks that
are seamlessly joined together. Only the chunks near a player are generated
and loaded into memory at any point. The world is made up of different adja-
cent ‘biomes’ (plains, forest, mountain, etc.) which are created using different
generation algorithms, but blend into each other. The currently-loaded part of
the world is also stored in some space efficient data structure, most likely an
Octree.

17Game website: www.ea.com/crysis/
18Game website: www.minecraft.net

www.ea.com/crysis/
www.minecraft.net
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When voxel data is used for applications such as landscapes, it is often
necessary that it be converted to a format suitable for rendering. Although
3D grids can be rendered to an image using methods such as ray casting [27],
these are often too computationally intensive for real-time use. A more common
option is to convert the voxels into a mesh, using either the Marching Cubes
algorithm [30], or by simply converting each voxel into a mesh cube (as is done
in Minecraft).

2.3.3 3D Texture Generation

Since a 3D texture is effectively a voxel grid, voxels methods are also used
in procedurally generating 3D textures. These are generally extensions of 2D
texture generation methods converted to work in 3D [23].

These texture synthesis methods have also been extended to create 3D mod-
els. Merell’s algorithm [33] works by assigning a cuboid section of geometry to
each voxel type, and then keeping a record of how these cubes of geometry can
be placed adjacent to each other while keeping the resulting model consistent.
The sections of geometry must be created such that each piece can seamlessly
blend into a few of the other sections. If a pre-created section cannot join to at
least one other section, it can lead to problems such as visual inconsistencies.

Texture synthesis methods are then employed to create a, potentially infinite,
3D grid of cuboid sections of geometry that are joined so as to be consistent
(the pieces of geometry join seamlessly so that the edges of the sections are not
apparent). A downside to this approach is that it requires the manually created
cuboid sections of geometry.

This approach differs from our voxel-space shape grammar algorithm in sev-
eral respects. Firstly, there is much less control over the output in Merell’s
algorithm. General guidelines and high level meta-shapes can be defined, but
medium to low-level control of the output is not possible. Secondly, it requires
pre-created pieces of geometry to make up the created model, whereas shape
grammars do not. Thirdly, Merell’s method is aimed at a different scale to ours.
His is intended to produce large regions uniformly covered in similar range of
pieces of geometry. In contrast, our algorithm is aimed at creating a single
standalone model.

2.4 Summary

In this chapter we have examined and discussed the background information
relevant to our research. This includes procedural generation as a wider field,
shape grammars and their myriad of extensions, and the use of voxels in proce-
dural generation.

Although there are large bodies of previous work on shape grammars and
voxels that are relevant to us, there is little crossover between shape grammars
and voxels in the literature, and certainly nothing similar to the algorithm that
we are proposing. This shows that our work is, to the best of our knowledge,
novel.

There are however, many aspects from the previous work that we shall build
upon in the remainder of this work, and incorporate into our design for voxel-
space shape grammars. For example: Kolmogorov compression, storing voxels
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in space efficient data structures, and many of the shape grammar extensions
created by others.



Chapter 3

A Framework for
Voxel-Space Shape
Grammars

The core novel contribution of this thesis is an extension to shape grammars,
where they are interpreted in a voxel-space. We have developed a framework
for using this extension, and the features it provides. In this chapter we dis-
cuss the design and implementation of the framework, and suggest avenues for
improvement and optimization.

The framework that we developed in this work was intended to be a proof-
of-concept implementation of the shape grammar extensions that we developed.
These extensions are aimed at allowing the easy use of Boolean geometry op-
erations and sub-shape rule-based detailing in shape grammars, as outlined in
chapter 1.

Our algorithm builds on, and includes, some of the techniques discussed in
the previous chapter, but also features a number of novel ideas that we have
developed. It operates in multiple stages, and makes use of an additional input
that conventional shape grammars do not have, but this is necessary to control
the added complexity our extensions introduce. The rest of this chapter covers
the different stages of the algorithm, from both design and implementation
perspectives, and shows how our extensions are able to increase the generative
range of shape grammars.

The layout of this chapter is as follows: Section 3.1 provides a high-level
outline of the process and Sections 3.2 to 3.6 discuss each of the stages of the
algorithm in detail. Section 3.7 discusses implementation details and potential
optimizations, and finally, Section 3.8 summarizes the chapter.

3.1 Framework Overview

The process of interpreting a shape grammar to produce a model in our frame-
work consists of five stages (one of which is optional), and requires two inputs
from the user. The final output is a textured mesh, suitable for use in mod-
ern graphics applications. See figure 3.1 for a diagrammatic overview of this

34
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Shape Grammar Interpretation

Shape Voxelization

Voxel Detailing

Mesh Generation

Mesh Post-processing

tagged shapes

voxel grid with tags

detailed voxel grid

mesh of voxel grid

Grammar Specifiction

Detailing Rule Set

Figure 3.1: A flow chart of our algorithm. The cyan boxes are the user inputs,
and the grey boxes are the four stages of the algorithm. Arrow labels indicate
the output of each stage. Mesh post-processing is an optional final step.

process.
The two user inputs to the algorithm are:

• Shape Grammar Specification: The shape grammar specification con-
sists of three items: the axiom, which is the symbol that the grammar be-
gins with and any metadata associated with it; the set of productions, or
rules, of the grammar which transform the shapes; and other parameters
for the shape grammar itself, such as the maximum number of iterations
allowed. This collection of items is what is needed to run the shape gram-
mar to completion and produce a model. These items are discussed further
in Section 3.2.1.

• Detailing Rule Set: The collection of rules that are used to assign visual
detailing information to the voxel grid, and any global parameters that
go with them. The information generated from this rule set is used when
displaying the created model. The specification of this rule set is similar
to the shape grammar specification, but does not have an axiom. Further
discussion on this input is found in Section 3.4.

The five stages of the algorithm are:

1. Shape Grammar Interpretation: The input grammar is run to pro-
duce a collection of shapes, with associated metadata tags. This step is
very similar to how a conventional shape grammar would run, and pro-
duces an exact specification of shapes that is passed onto the next stage.
Shape grammar enhancements (such as stochastic rules and context sen-
sitivity) can be used during this interpretation process.

2. Shape Voxelization: The shapes from the previous step are voxelized,
and any metadata tags from the shapes are inherited by the voxels. Be-
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cause voxel representations of the shapes are used, Boolean geometry op-
erations can easily be applied during this step. The final product of this
stage is a voxel grid representing the shape grammar’s output from stage
1.

3. Voxel Detailing: Surface voxels in the grid are assigned visual detailing
information by the detailing rule set. The rules make use of the metadata
tags assigned by the shape grammar to get contextual information about
the shapes, and give each voxel a set of detailing tags which can be used
to provide visual detail when displaying the model.

4. Mesh Generation: A mesh representation of the voxel shape is pro-
duced, using the marching cubes algorithm. Only the surface voxels need
to be operated on to produce the mesh, so other voxels are ignored. De-
tailing information from the previous step is assigned to the generated
mesh.

5. Mesh Post-processing: The generated mesh is smoothed and refined.
This step is optional, but improves the mesh’s visual quality if performed.
Any of a large number of mesh smoothing algorithms can be used.

We cover each of the five stages in detail, explain their operation, what
inputs they use, and what outputs they generate.

3.2 Shape Grammar Interpretation

The first stage of the algorithm requires that we specify a shape grammar and
then run it to produce the output set of shapes.

This step is very similar to running a conventional shape grammar, with
some minor differences. A set of shape grammar rules, and an axiom shape,
are provided by the user. This rule set is then run on the axiom, producing
new shapes and modifying existing shapes on each iteration of the rules. This
continually-updated set of shapes (the current shape set) converges to the final
output of the shape grammar. A simple example of this stage is shown in figure
3.2, and pseudocode for this stage of the generative process is found in algorithm
3.1.

Figure 3.2 shows a simplified shape grammar example, which builds a simple
two-dimensional house. The four rules, and an image showing the derivation
process are included. The grammar is interpreted in parallel (as many shapes as
possible are operated on in each iteration), and the symmetric copies of shapes
are added after interpretation is complete. A symbolic representation of the
grammar’s output after each iteration (with coordinates and other shape data
excluded for ease of understanding) is shown in Figure 3.3.

3.2.1 Grammar Interpretation Details

A full specification of the shape grammar requires three components: the gram-
mar’s axiom, the grammar’s rules/productions, and the parameters necessary
to run the grammar. These three items are specified by the user, and passed to
the shape grammar interpreter.
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rule 0: building_base -> roof (shape: triangle) | tower (shape: rectangle; symmetry: 
reflective) | window (shape: square; symmetry: reflective) | door (shape: square)

rule 1: roof -> roof | chimney (shape: rectangle)

rule 2: tower -> tower | tower_peak (shape: triangle) | tower_window (shape: 
rectangle)

rule 3: window -> window | window_arch (shape: triangle)

rule 4: door -> door | door_arch (shape: circle)

Axiom: building_base

Figure 3.2: A simple shape grammar being interpreted in parallel to form a
basic building. Grey shapes are additive, and red ones are subtractive. Position
and size information in the example grammar are not shown, for the sake of
simplicity. Note that the final step involves the symmetric copies being created,
as the grammar only requires two iterations to complete (after two iterations,
all shapes in the current shape set are terminal).

The axiom is simple enough to specify, but for certain grammars, associated
metadata tags might also need to be explicitly stated, for example a castle
generating grammar that begins with the keep as a rectangle would need tags
for “material:stone” to be specified by the user.

The exact specification of the grammar rules depends on what shape gram-
mar extensions and operations are supported by the implementation. They
should follow a well-defined syntax that can be parsed to ensure validity and
their order of priority should be indicated to avoid a situation where one of
two rules could be used, and the interpreter is unable to choose which. In the
literature, the most common method of indicating rule priorities is to have the
user explicitly assign each rule an integer priority [34].

The parameters for running the grammar are global pieces of data that
the interpreter requires to correctly interpret the grammar. The most obvious
of these is the maximum number of iterations the grammar is allowed to run
for. Other items are likely to be implementation specific and related to shape
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Algorithm 3.1 Shape Grammar Interpretation

currShapeSet← {Axiom}
iterations← 0
MaxIterations← getMaxIterations()
while iterations < MaxIterations and currShapeSet.hasNonTerminals()
do

if parallelExecution = TRUE then
for all i ∈ currShapeSet do

i← doRuleDerivation(i)
end for

else
a← getFirstNonTerminal(currShapeSet)
a← doRuleDerivation(a)

end if
iterations← iterations + 1

end while
for all i ∈ currShapeSet do

if i.hasSymmetry() then
s← i.createSymmetricCopies()
currShapeSet.insert(s, i− 1)

end if
end for
return currShapeSet

I t e r a t i o n 0 : { bu i l d i ng ba s e }

I t e r a t i o n 1 : { r oo f | tower ( r i g h t ) | window ( l e f t ) | door }

I t e r a t i o n 2 : { r oo f | chimney | tower ( r i g h t ) | tower peak
( r i g h t ) | tower window ( r i gh t ) | window ( l e f t ) | window arch
( l e f t ) | door | door arch }

After Symmetric Copy Creat ion : { r oo f | chimney | tower ( r i g h t )
| tower peak ( r i g h t ) | tower window ( r i gh t ) | tower ( l e f t ) |
tower peak ( l e f t ) | tower window ( l e f t ) | window ( l e f t ) |
window arch ( l e f t ) | window ( r i g h t ) | window arch ( r i g h t ) |
door | door arch }

Figure 3.3: A symbolic representation of the output from the shape grammar in
Figure 3.2 across three iterations of interpretation. The final output, after sym-
metric copy creation is also shown. Associated coordinates and other metadata
is excluded for the sake of simplicity.
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grammar extensions. For example, in a context-sensitive shape grammar that
generates houses, the average sun direction would be included here, so that the
rules could query that information and change aspects of the house based on it.

There are no special format requirements for how these three items are spec-
ified. In our implementation they are specified in a text file, using a custom
syntax, but other implementations could use their own formats.

The process of running the grammar will terminate under one of two con-
ditions: Either after a user-defined maximum number of iterations have been
run, or once all shapes in the current shape set are terminal and hence none of
the rules in the rule set can be applied to any of the shapes.

Fractal models, and other shape grammars which will not terminate natu-
rally, such as spirals, require that a maximum number of iterations be specified
or they will run forever. However, most well-designed shape grammars to cre-
ate buildings and architecture should be created such that they will eventually
consist of nothing but terminal shapes, and hence finish running naturally.

Rules can be run in parallel (as done in L-systems), or serially (as is done
in traditional formal grammars). These are appropriate in different situations,
depending on the type of model being generated by the shape grammar. Serial
rule derivation is suitable for most situations, such as buildings, vehicles, and
other structures. Parallel rule derivation is needed for models that have fractal
qualities, such as trees and 3D fractal objects, because parallel derivation at
decreasing scales is perfect for creating fractal structures [44]. In our imple-
mentation, the user can choose between parallel and serial derivation for each
different shape grammar individually.

3.2.2 Supported Shapes

The selection of shapes available to the grammar is dependent on the imple-
mentation. The possibilities range from only simple shapes, such as rectangles,
cylinder, etc. to complex parametric shapes that can be defined during interpre-
tation, such as volumes or rotation, user-defined splines, and arbitrary meshes
loaded from file.

Although the more complex shapes can increase generative range, they are
more difficult to handle, and users may struggle to work with them through
the medium of shape grammar rules, due to their inherent complexity, and the
difficulty of visualizing the results of adjusting their parameters.

At a minimum, the interpreter should be able to handle simple shapes such
as cubes, rectangles, prisms, ellipsoids, and cylinders. These are much easier for
users to visualize and work with when designing shape grammars, and are still
sufficient to create reasonably complex models, especially when combined using
Boolean geometry operations.

3.2.3 Grammar Enhancements and Extensions

Any of the many enhancements and extensions to grammar generation methods
can be used here: environmental sensitivity [39], stochastic rules [7], a deriva-
tion tree for querying earlier states during the rules’ execution [34], and more.
Our implementation includes these three extensions, as well as split grammar
operators [56].
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Environmental sensitivity allows a rule to query the environment around the
shape it is operating on and use that information to modify its output. This is
achieved in our implementation by making the full current shape set accessible
to the rules (but read-only). Because the rules are written in Python, arbitrary
queries about the current shape set can easily be specified, and the rules written
to change their outputs based on the results of the queries.

In addition, the use of a full programming language to specify rules allows
a great deal of expressive power. Complex environmental queries can be con-
structed more easily than with a constrained rule grammar. For example, should
a user wish a rule to query whether a shape lies in the shadow of another shape
cast by a light source that changes position on different iterations, this can
be coded using the expressive power of Python, which is a full programming
language. However, constructing such a complex query in a limited grammar
syntax would be problematic, perhaps even impossible. For this reason, we
opted to have our shape grammar rules be specified in the Python program-
ming language.

Stochastic rules mean that the rules in the shape grammar have access to ran-
domness, and can use it to make random decisions about rule outputs and shape
metadata. Our implementation achieves this by making the built-in ‘random’
Python class available to the rules directly. Rules can call the class’s methods
to easily obtain numbers from a wide range of floating point and integer random
distributions.

Stochastic rules are particularly important for their ability to create multiple
models from a single shape grammar. Instead of hard coding a parameter,
the user can indicate that a random value from a range of numbers should
be chosen each time the rule is run. From this, a single shape grammar can
produce different models across multiple runs, where all the generated models
will share a consistent theme and style (assuming the grammar is reasonably
well-designed).

For example, when creating a large number of cars to populate a virtual city,
the dimensions of the cars could be randomly decided by choosing values for
their length, height and width from a uniform distribution. This is an extremely
useful extension that allows the creation of many models with minimal work.
For actual examples of stochastic shape grammars, refer to appendix B, where
three such grammars from our implementation are included.

Our implementation also stores a derivation tree of the grammar’s interpre-
tation. This is a tree data structure, with depth equal to the current number
of iterations, where each layer of the tree represents the current shape set at
the iteration equal to the depth of that layer. For example, the root of the tree
is the axiom, the root’s children are the shapes derived from the axiom on the
first iteration, those node’s children are the shapes derived from them on the
second iteration of interpretation, and so on.

The benefit of storing this tree is that it can be used to query previous states
of the current shape set. This is useful in certain situations. For example,
when creating the façade of a building, a rule may wish to query the original
dimensions of one side of the building, but that side of the building has been
split up into multiple façade elements. It would be wasteful and inefficient to
calculate the original dimensions from those façade elements, so instead the rule
can use the derivation tree to query an earlier version of the current shape set,
where the building’s façade was still one rectangle.



CHAPTER 3. VOXEL-SPACE SHAPE GRAMMARS 41

Splitting operators allow rules to access the power of split grammars. They
are extremely useful and well-suited to creating buildings. Our interpreter has
a parametrized split operator that can be used to split a shape into a number
of smaller shapes, along any of the three Cartesian axes.

Our implementation also includes a collection of standard utility functions
for common operations, such as scaling, translation, rotation, and hollowing
shapes. All that is required from this stage of the generation process is a spec-
ification of the final set of shapes, so virtually any extension should be usable
here.

There are two other grammar extensions that we found most useful for gen-
erating models during our experimentation, which we discuss below.

Shape Tagging

The first of these extensions is the tagging of shapes with metadata. One of the
operations that the shape grammar rules can perform is to add metadata tags
to shapes in the current shape set. We implement these as arbitrary strings.
These serve to preserve additional information about the shapes that can be
used in later stages of the generation algorithm. For example, when generating
a castle, a cylinder (and its children if recursive tagging is used) could be tagged
with “type:tower” and “material:stone”.

These metadata tags indicate additional properties of the shape that signif-
icantly enhance later detailing and texturing. This makes detailing the voxels
significantly easier, because there is no extra overhead needed to determine
what the properties of a voxel are; we can just examine the tags to know what
properties the voxel should have.

Additionally tagging is important for distinguishing which voxels came from
which shapes, since shape boundaries are lost in the conversion to voxels. By
giving a unique identifier tag to each shape output from the shape grammar, we
can examine a voxel in the grid and know exactly which shapes from the original
grammar it is derived from. This means we do not lose knowledge of the original
shapes that created a voxel grid. Additionally, this is useful for visual debugging
of a shape grammar, since each shape can be assigned a unique colour. This
lets the user examine how the shapes are interacting with each other, making
it easier to see problems in the grammar.

Tagging of shapes is not new, and has been used in other shape grammar
implementations [34]. However, previous uses have used tags as part of the
shape grammar derivation process, indicating whether shapes were active or
inactive, their overlap with other shapes, and the like. Our usage of tags to
store metadata information is novel in that they are used outside the shape
grammar derivation process, in our voxel detailing scheme (see Section 3.4).

Symmetry Specification

The second shape grammar extension is our support for the specification of
symmetry in the grammar rules. Our grammar implementation has special
operators for indicating that a shape, or group of shapes, (and any child shapes
that derive from them) should be cloned to create symmetrical versions.

Symmetry operators are an important element in shape grammars, because
symmetry is very common, with cars, buildings, ships, spacecraft, and many
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Reflective

Pref

Vref

Rotational

Vrot

Prot

Nrot = 3

Figure 3.4: An example of the two types of symmetry, used in our shape gram-
mar. Note that in the rotational example, Vrot is pointing out of the page.

other structures featuring it. Manually creating symmetric copies of objects is
inefficient and tedious, which is why symmetry operators are so useful. They al-
low the shape grammar designer to easily create symmetry, saving large amounts
of design time.

The topic of symmetry and shape grammars has seen much discussion in the
literature [3, 35]. However, this discussion has focused on analyzing symmetry
in existing models or image inputs, in order to create new models based off them.
There has been very little discussion on how to implement the specification of
symmetry in shape grammar rules.

As a result, there is no universally accepted method of specifying symmetry
information in shape grammars, and we have designed our own approach to
declaring symmetry for our implementation of our algorithm. Using our own
approach also allowed us to ensure that our handling of symmetry would not
cause problems with the rest of our algorithm.

We support two types of symmetry: rotational and reflective. Figure 3.4
shows an example of how our symmetry operators work. In rotational sym-
metry, three arguments are provided to the operator, from which positioning
information for the symmetrical copies can be derived:

Prot The center point around which the symmetric branches are rotated.

Vrot A vector normal to the plane of rotation.

Nrot The number of rotational copies to create.
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For reflective symmetry, only two arguments are required to fully construct
the mirror copies of the shape, or group of shapes, to be reflectively copied:

Pref A point on the plane of reflection.

Vref A normal to the plane of reflection.

These symmetry-specifying points and vectors can either be specified in
global coordinates, or relative to the local coordinate frame of the symmetric
object, whichever the user prefers.

The symmetry information is set by shape grammar rules while the grammar
is run, but the actual symmetric copies are only added to the current shape set
once the grammar rules are finished running.

This is done as a post-process because further shapes could be added to
the set of shapes undergoing symmetry, in iterations after the symmetry is
specified. Rather than tracking the symmetric copies and updating each of
them for every change to the original set of shapes, we simply flag the set of
shapes for symmetry and wait until the rule derivation is finished before creating
the symmetric copies, which is more efficient.

One potential issue with this approach of adding symmetric copies after the
grammar has run is that it can break context sensitivity. If a shape grammar
rule adds a shape in a spot that will have a symmetric copy created in it, and
that rule makes queries about its neighbourhood, the information it received
will no longer be accurate once those symmetric copies are created.

For example, consider a spaceship’s wing being created using a reflective
symmetry rule, and subsequently, a series of windows, which make context sen-
sitivity queries, are placed on the other side of the spaceship where the wing’s
reflective copy will be placed. The queries will indicate that the space is not
occupied, and the windows will be created accordingly. However, later, when
the reflective wing copy is created, that previously empty space will be occupied,
and the windows will overlap with the wing.

This problem can be solved by creating symmetric copies in synchronization
with the original, but this raises the efficiency problems described above, mean-
ing that having context-sensitivity queries that are guaranteed to be correct
comes with a small performance penalty.

Our implementation uses the first approach, and creates the symmetric
copies of the original shape after the shape grammar has finished being derived.
This is simpler and more efficient, and although context-sensitivity queries could
be incorrect, we did not experience any issues during our testing.

3.2.4 Output

Once the shape grammar interpretation has finished, a full specification of the
final output set of shapes is passed to the next stage of the algorithm. This
includes positions, dimensions, orientations, tags, and any other relevant infor-
mation. The exact format is obviously implementation dependent, but what
is most important is that it unambiguously describes the output in a format
suitable for further use.

An example output from our implementation, of our spiral model (see Figure
4.14), is shown in Figure 3.5.
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name : r e c t ang l e a c t i v e : True add i t i v e : True po s i t i o n : 0 . 0 0 . 0
0 .0 ex tent s : 5 . 0 10 .0 5 .0 o r i e n t a t i o n : −1.0 0 0 .0 0 .0 −1.0
0 .0 0 .0 0 .0 1 .0 p r i o r i t y : 0 t ag s beg in : s p i r a l tags end #

name : r e c t ang l e a c t i v e : True add i t i v e : True po s i t i o n : −6.75
−17.5 5 .0 ex tent s : 5 . 0 10 .0 5 .0 o r i e n t a t i o n : −0.734 −0.678
0 .0 0 .678 −0.734 0 .0 0 .0 0 .0 1 .0 p r i o r i t y : 0 t ag s beg in :
s p i r a l tags end #

name : r e c t ang l e a c t i v e : True add i t i v e : True po s i t i o n : −23.585
−25.768 10 .0 ex tent s : 5 . 0 10 .0 5 .0 o r i e n t a t i o n : −0.115
−0.993 0 .0 0 .993 −0.11 0 .0 0 .0 0 .0 1 .0 p r i o r i t y : 0
t ag s beg in : s p i r a l tags end #

name : r e c t ang l e a c t i v e : True add i t i v e : True po s i t i o n : −41.748
−21.086 15 .0 ex tent s : 5 . 0 10 .0 5 .0 o r i e n t a t i o n : 0 .529 −0.848
0 .0 0 .848 0 .529 0 .0 0 .0 0 .0 1 .0 p r i o r i t y : 0 t ag s beg in :
s p i r a l tags end #

name : sp i r a l s e gment a c t i v e : True add i t i v e : True po s i t i o n :
−53.027 −6.099 20 .0 ex tent s : 5 . 0 10 .0 5 .0 o r i e n t a t i o n : 0 .931
−0.364 0 .0 0 .364 0 .931 0 .0 0 .0 0 .0 1 .0 p r i o r i t y : 0
t ag s beg in : s p i r a l tags end

Figure 3.5: An example of a shape grammar output from our implementation.
This output corresponds to the ‘spiral’ model shown in Figure 4.14.

The format is keyword variable names, followed by their value. For example,
‘position:’ indicates that the following three values are the x, y, and z coordi-
nates of the shape’s position, and ‘tags begin:’ indicates that all whitespace
separated strings that follow are metadata tags associated with the shape, until
the ‘tags end’ string is encountered. A # character indicates the end of an in-
dividual shape’s specification. This format was designed to be human readable,
but also easily parse-able by our implementation.

This final, and unambiguous, shape specification is all that is required from
this stage. In fact, with some minor modifications, it should be entirely possible
to use any other shape grammar implementation for this stage, and pass its
output to the next stage of the algorithm. Certain minor features, such as
shape priority (discussed in the next section), would need to be added to the
other shape grammar implementation, but no major changes would be required.

3.3 Shape Voxelization

In this phase, the shapes output from the shape grammar are voxelized into a
voxel grid. This process is analogous to rasterizing vector graphics into a pixel
image format. An example of this voxelization process is shown in Figure 3.6,
with pseudocode in Algorithm 3.2.

Hence, we go from working with the collection of shapes from the shape
grammar stage to working with a voxel grid containing those shapes.

In many cases it will be necessary to scale the shapes output from the gram-
mar into the voxel grid’s space. In our implementation, the grammar could
generate shapes at any scale and coordinates, and the shapes were then auto-
matically scaled into the coordinates of the voxel grid (which is a cuboid shape
with a size that is a power of 2). This allows grammar designers to not be lim-
ited to a certain scale or coordinate range, while still ensuring that all shapes
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Figure 3.6: The output of the simple building shape grammar from figure 3.2,
after being voxelized. The colours of the voxels correspond to the tags they
inherited from shapes. Grey indicates ‘material:wall’, brown indicates ‘mate-
rial:roof’, and the dark grey ‘material:chimney’.

generated by the grammar are voxelized.
In the following subsections, we look at the practical issues around shape

voxelization, and present our solutions to the problems and other recommenda-
tions.

3.3.1 Voxel Storage

As mentioned in Section 2.3.1, there are number of tree data structures that can
be used to store voxel data sets, each of which has different properties. Because
we are expecting to deal with large, complex voxel data sets, it is a requirement
that we store the data sets in space-efficient tree data structures suited to that

Algorithm 3.2 Shape Voxelization

shapes← getShapeGrammarOutput()
shapes← sortByPriority(shapes)
shapes bounding box← getBoundingBoxOfAllShapes(shapes)
gridResolution← getVoxelGridResolution()
voxelGrid← initializeEmptyGrid(gridResolution)
for all i ∈ shapes do
i← scaleShape(i, gridResolution, shapes bounding box)

end for
for all i ∈ shapes do
voxelGrid.voxelizeShape(i)

end for
return voxelGrid
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Criteria Octree PR-octree Kd-tree R-tree

Memory
Efficiency

Voxel Aggrega-
tion

3 3 3 2

Balance Guaran-
tees

1 3 3 3

Performance
Data Analysis
Requirements

3 2 2 1

Efficient
Lookup/Modifi-
cation

2 2 2 2

Re-balancing Re-
quirements

3 1 1 1

Ease of implementation 3 2 2 1

Total 15 13 13 10

Table 3.1: Taxonomy of how the different types of tree meet our requirements
for storing voxel data. Each item is rated on a scale of 1 to 3, where 1 is
worst and 3 is best. Voxel aggregation indicates how well the tree type sup-
ports multiple adjacent voxels being aggregated together to save memory. The
second row, Balance Guarantees, indicates the tree’s ability to ensure that it
is balanced, preventing degenerate cases from consuming more memory than
necessary and guaranteeing logarithmic lookup times. In the performance cat-
egory, Data Analysis Requirements shows indicates to what degree the data
set must be analyzed during tree creation. Efficient Lookup/Modification in-
dicates, on average, how fast we can expect lookups and editing of individual
voxels to be (this includes consideration of periodic re-balancing where neces-
sary). Re-balancing Requirements shows how much periodic re-balancing of the
tree is necessary. The Total row shows the cumulative scores of the different
tree types, where higher is better.

purpose. Using a näıve method, such as an array in an implementation of our
algorithm would require infeasible amounts of memory.

When evaluating which type of tree is best suited to our purposes, there are
three important factors to consider: memory efficiency, performance, and ease
of implementation. A taxonomy of the options is shown in Table 3.1.

Memory efficiency is the entire reason for choosing a hierarchical tree data
structure, and is the most important factor. Performance is less important,
since our algorithm is not required to be real-time, though it must still operate
at an acceptable level (a low-power polynomial-time algorithm). Finally, ease
of implementation had to be considered due to the limited time frame of this
project.

In terms of memory efficiency, all four tree types are at a similar level. They
all allow for adjacent voxel elements of the same type to be aggregated into one
parent node, which is where the main memory gains are made. R-trees perform
worse than the other tree types on this front, since their design is focused more
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on balancing their child nodes than efficiently aggregating, which is why they
are ranked behind the other tree types.

PR-octrees, kd-trees and R-trees can all adjust the position of their divid-
ing point/plane, which allows more efficient aggregation of voxels, theoretically
requiring less memory than an octree. These extra savings are not an order-
of-magnitude improvement though, and come at the cost of significant added
complexity. Additionally, these extra gains rely on analyzing the data to be
stored, which is an expensive operation that would be hugely inefficient for
every update to the data set.

Note that in the table, the “Balance Guarantees” row in the memory effi-
ciency section indicates only to what extent the tree is capable of guaranteeing
balance. The performance impact of this balancing is compared in the per-
formance section of the table, with “Data Analysis Requirements” indicating
how much pre-processing analysis is necessary before creating the tree, and the
“Re-balancing Requirements” row indicating how computationally expensive
the periodic re-balancing is. Both of these performance factors are discussed
below.

In theory, the computational performance of the different tree types is quite
similar, with all operations being on the same order of magnitude asymptoti-
cally. However, as we can see in the table, there after differentiating factors in
practice.

As shown in the “Data Analysis Requirements” row, tree creation is slightly
quicker for the octree, because it does not require analysis of the data to ensure
balance. The R-tree is ranked worst because it requires more complex pre-
processing analysis than a PR-octree and kd-tree do.

Lookup and modification is logarithmic across the different tree types, and
this is reflected in the table row labelled “Efficient Lookup/Modification”, where
all trees have the same rating. No trees have any feature to differentiate each
other in this category.

However, the PR-octree, kd-tree and R-tree all require periodic re-balancing
if the voxel data set changes significantly. Re-balancing is an expensive opera-
tion, and since we are going to be working with data sets that change frequently
due to continual editing and addition of new shapes, we consider the perfor-
mance impact of re-balancing in the table row titled “Re-balancing Require-
ments”. The octree wins in this category, as it does not require any balancing
operations. The other tree types all require periodic re-balancing to maintain
their efficient lookup guarantees.

The final criterion in the table is ease of implementation. The octree is once
again the best in this category. It is extremely simple, and does not require data
analysis or re-balancing, which can be complex, especially when heuristics are
involved. The R-tree, in comparison, would be very complex to implement for
voxel data, since bounding boxes can overlap, which would cause ambiguities
without some system for resolving them.

It should be noted that the special situations and qualities, for which the
various types of tree are best suited, are not necessarily guaranteed to appear in
the data sets that we will be expecting for our work. For example, the spatial
adjacency lookups of R-trees, and the nearest-neighbour searches that kd-trees
excel at, are unlikely to be particularly useful in our work. This is why special
qualities of the tree types are not considered.

Based on the above taxonomy and evaluation, we believe that a standard
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octree is the most suitable type of tree for our purposes. It is the best option
for performance, the easiest to implement, and the minor advantage the others
have in memory savings are not significant enough to offset the octree’s other
benefits.

Other implementations of our algorithm might use different types of trees
and potentially, the specialized features they bring. However, in our implemen-
tation we make no assumptions about the data sets and opt for generality, using
a basic octree.

3.3.2 Shape Tag Handling

When shapes produced from the shape grammar in the first stage are voxelized,
the tags associated with them are inherited by the voxels produced during the
shapes’ voxelization. Any voxel that falls inside the shape when it is voxelized
will inherit any tags that shape had. See Figure 3.6 for an example of this.

In the case of overlapping shapes, it is possible that a voxel may inherit
tags from multiple shapes. This is not problematic at this stage, but may have
unintended consequences during detailing.

For example, when creating a tunnel through a building using subtractive
shapes, shapes to create features on the exterior of the building may have signif-
icant overlap into the interior of the building. Hence, the voxels in the interior
of the building would have multiple tags, including from shapes intended for the
exterior of the building. As a result, if the created tunnel passes through areas
with these multiple tags, the walls of the tunnel could have occasional patches
detailed as though they were part of the building’s exterior.

When designing grammars, users should consider the possibility of voxels
having tags from multiple, overlapping shapes, and ensure that their grammars
can handle these situation correctly.

3.3.3 Order of Shape Addition

The order in which shapes are added is also important, because shapes may
be additive or subtractive (additive for creating solid structures, or subtractive
for carving empty spaces out of solids). Adding and subtracting geometry in
this manner is not commutative. Hence a grammar may generate unintended
results, depending on the order in which the shapes are voxelized. Figure 3.7
shows a visual example of this problem.

To resolve this ambiguity, the shape grammar rules can assign a priority
to the shapes. This is an integer attribute associated with each shape that
determines when the shape will be voxelized. Before voxelization, the shapes are
sorted by priority, and are then added in sorted order. Any sorting algorithm
can be used, since there are no special requirements or complications when
sorting the shapes. This allows a user to explicitly control when shapes are
added, and resolve order-dependency issues.

For example, consider Figure 3.7 which attempts to create a rectangle with
a circular arch above it (the rightmost model in the figure). The model is
constructed from three shapes, a rectangle and two circles, the smaller of which
is subtractive. Order is important, because if the subtractive shape is created
either first or last, it will produce an incorrect model (the left and middle results
in the figure). The shapes must be added in a specific order to produce the
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Incorrect Incorrect Correct

Figure 3.7: An example of how order is important when creating additive and
subtractive shapes. The red inner sphere is subtractive, and the grey larger
sphere and rectangle are additive. Applying the subtractive sphere first, last,
or in between the other two shapes will produce different results, some of which
will not be what the user desires.

desired result. First the larger additive circle, then the subtractive circle, which
will create a hollow sphere. Finally, the rectangle must be added, which fills
the lower half of the circle and produces our desired result. Any other order of
shape addition will produce incorrect results.

Figure 3.8 shows a simplified grammar that produces the correct result for
the example in figure 3.7, along with the prioritized output. Note how each
shape is assigned a priority to ensure they are voxelized in the correct order.

3.3.4 Manual Editing

Finally, it is possible to manually edit the voxel grid once the shapes have been
voxelized. This could be done to allow hand-crafted modifications to the output
of a grammar, or because the user is dissatisfied with some aspect of the output
that is difficult to correct in the grammar.

Manual editing is an important capability for artists and modellers, and our
shape grammar extensions do not restrict this at all, although it does require
voxel editing software.

Supporting manual editing of the voxel grid was not an explicit design choice.
However, a benefit of the way our algorithm operates (in stages) is that manual
editing of the grid is possible between the stages.

A significant problem with manual editing is that tagging information would
be lost through the use of voxel editing software that is not tag-aware. A
custom voxel editing program that could preserve and change tags would solve
this problem, but we recommend that if the user wishes to manually edit the
shape grammar output, they edit the final mesh produced by our algorithm (see
Section 3.6) instead of the voxel data set.

In a similar vein, it would be possible to have grammar-aware manual editing
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Shape Grammar :

Axiom : o u t e r c i r c l e ( add i t i v e = true , p r i o r i t y = 1)

Rule 0 : o u t e r c i r c l e −> o u t e r c i r c l e | i n n e r c i r c l e ( add i t i v e =
f a l s e , p r i o r i t y = 2) | r e c t ang l e ( add i t i v e = true , p r i o r i t y = 3)

Output :

1 : o u t e r c i r c l e ( add i t i v e = true )
2 : i n n e r c i r c l e ( add i t i v e = f a l s e )
3 : r e c t ang l e ( add i t i v e = true )

Figure 3.8: A simplified version of the grammar that produces the correct output
from Figure 3.7, and the final output in priority order. Note the use of the
additive flag, and priorities, to ensure the correct result is produced.

software. Such software would take account of the underlying grammar when
editing operations where performed. For example, when editing one symmetric
copy of a shape, the software could simultaneously apply the same operation to
all other copies of the shape. Should the user wish to perform manual modifi-
cations at this stage, it would be beneficial if the software used was grammar-
aware.

The final output of this stage is a 3D voxel grid, where each voxel is either
solid or empty, and may have metadata tags associated with it.

3.4 Voxel Detailing

In this stage of the algorithm, the voxels are assigned a concrete appearance that
will be used when displaying the final model. This can include, but is not limited
to, texturing information, bump maps, displacement maps, lighting information,
and materials. The goal is to provide the model with visual detail to be used for
display purposes. A simple example of a voxel grid after undergoing detailing
is shown in Figure 3.9, and pseudocode of our detailing process is found in
Algorithm 3.3.

Algorithm 3.3 Voxel Detailing

detailingRuleSet← getDetailingRuleSet()
maxIterations← getMaxDetailingIteration()
surfaceV oxels← voxelGrid.getSurfaceVoxels()
for i = 1 to maxIterations do

for all j ∈ surfaceV oxels do
neighbours = voxelGrid.getNeighbouringVoxels(j)
j.detailingTags← detailingRuleSet.runRules(j, neighbours)

end for
end for

This is done on a per-voxel basis, by a user-created detailing rule set which
operates on each voxel individually. These rules may iterate over the voxels
multiple times, allowing the creation of complex multi-pass detail.
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Detailing Rules
rule_0: if "material:roof" in tags then texture = red_tile
rule_1: if "material:chimney" in tags then texture = black_stone
rule_2: if "material:stone" in tags then texture = random_selection(grey_brick, 
dark_brick)
rule_3: if voxel.borders_enclosed_space() == true then texture = blue_paint

Figure 3.9: The voxel grid from figure 3.6 after detailing. Each voxel has been
assigned a texture in accordance with the detailing rule set supplied. Non-
surface voxels are ignored, and are not displayed in the diagram. Pseudocode
for the detailing rules is shown.

An example of such multi-pass detail would be the plasma-like pattern shown
in Figure 3.10. The pattern works by having a base colour and seed points cre-
ated in the first pass. Then in subsequent passes, the seed points are randomly
grown outwards with cells more distant from the seed point being given lighter
colours. Pseudocode for this detailing rule set is found in Algorithm 3.5.

The specification of the detailing rule set is broadly similar to the specifica-
tion of the shape grammar, but features a number of differences. Firstly, there
is no axiom. The detailing rules operate independently on whatever information
is contained in the voxel passed to them, and do not require any axiom.

As with the shape grammar rules, the exact syntax of the detailing rules
depends on what operations and capabilities are made available to the detailing
process, but the rules should be specified in a manner that is easily parse-able.
Additionally, some method for indicating which rules take priority in ambiguous
situations (when either of two rules could be used on a voxel) should be included.

Global parameters for the detailing process, such as the maximum number
of detailing passes, must also be included with the detailing rule set. The only
mandatory global parameter is the number of passes, but additional extensions
used by the detailing rule set may also require global information specified by the
user. For example, if detailing a model with a dynamic camouflage pattern that
depends on the environment, using context-sensitive rules, those environmental
details would be specified as global parameters, so that the rules could access
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them.
One particular advantage of operating at a per-voxel level, is that cellular

automata (CA) patterns can be created, since they map very well onto the
discrete, gridded nature of voxels.

Cellular automata are a class of automatons that operate on discrete grid-
like spaces over multiple iterations [55]. Each cell in the space has an associated
state ranging from a simple on or off, to complex multi-dimensional information.
Cellular automata have a function that is applied to every cell on each iteration,
which may update the state. This is a very close mapping to our method of
doing surface detailing, which makes cellular automata easy to run under our
framework.

However, in our implementation, the detailing rules are focused on 2D surface
detail, not the solidity of the voxels themselves. Hence, the rules are limited to
operating on the detailing tags of voxels, and cannot modify whether individual
voxels are solid or empty. This capability could be added in future work though,
allowing automata patterns that operate on the voxels themselves.

In spite of their relatively simplistic nature, cellular automata are capable
of generating surprising emergent behaviour across multiple iterations. For ex-
ample, Langton’s Ant [25] has been proven to be Turing complete, and Rule 30
[55] produces aperiodic, chaotic output. This means that cellular automata are
able to produce complex detailing on models under our framework.

As mentioned above, detailing is done on a per-voxel level as opposed to the
per-shape level of conventional shape grammars. Operating at a per-voxel level
means that detailing elements are not constrained by shape boundaries, allowing
the creation of detail features which span shapes and work on sub-shape scales.

This is the main justification for doing detailing in this manner. With the
voxel grid, there is no distinction between the different shapes produced by the
shape grammar, and the rule set is free to detail the voxels without being con-
strained by shape boundaries. This allows the easy creation of global detailing
patterns that consistently cross different shapes in the model. In conventional
grammars this would be much more difficult to do as the textures on adjacent
polygons faces would have to be aligned, to avoid visible seams in the detailing.
This sort of texture alignment is very difficult to do algorithmically (that is,
without human guidance) especially in a procedural context.

The disadvantage to this detailing freedom which our per-voxel scheme
brings, is more complexity for the user. This complexity could be reduced
in two ways. Firstly, by creating a visual rule editor, as opposed to text-based
programming. Secondly, by designing an interface that allows rapid prototyping
of rules on small examples, to quickly detect problems. However, we did not
implement these, and leave them to future work.

The scope of these rules is extremely broad, and features such as context-
sensitivity and randomness can easily be included. Everything from assigning a
simple texture, based on position, to complex randomized multi-pass procedural
methods are possible. In our implementation, the rule set was specified in
Python, allowing the vast scope that comes with the expressive power of a
programming language.

In fact, this method of detailing voxels has many similarities to pixel shaders.
With pixel shaders, each pixel on the screen is operated on independently by a
small routine of code. The shader can be fed arbitrary information which can
be used in processing that pixel, and the final result is that the pixel has been
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modified in some manner so that the collection of modified pixels form a visual
effect on the screen.

Our detailing scheme is very similar to this, but differs in that it is three-
dimensional, and the results of detailing are passed for use in later stages of our
algorithm, instead of being displayed directly.

When detailing the voxel grid, relevant details about the voxel are passed to
the rule set. In our implementation these details are:

• Tags associated with the voxel.

• The normal of the voxel.

• The maximum resolution of the octree.

• The coordinates of the current voxel.

• The count of the current iteration of the rule set.

• The maximum number of iterations to be run.

• The above details for all neighbouring voxels, within a user-specified ra-
dius.

Note that the voxel’s normal is calculated from the neighbouring voxels.
By examining which of the neighbours are solid and which are empty, a rough
normal can be derived.

In our implementation, the parameters of each voxel that the detailing rules
can set or modify are:

• The name of a texture to use for the triangles generated from the voxel.

• A vector to displace the normals of generated triangles, which allows a
voxel-level form of bump mapping.

• Displacement mapping information, used to modify the positions of ver-
tices generated from the voxel.

• An RGB colour used to modify the lighting of triangles generated by that
voxel.

We do not claim that the above inputs and outputs are sufficient for all
situations, but in our work we found them to be adequate. By this we mean
that in our testing we never encountered a need to modify other parameters
beyond these. Still, there may be situations where other implementations of our
algorithm would wish to add other parameters that can be read or modified.

Fortunately, it would be easy to add other inputs to the detailing rule sets
and parameters that could be modified by them. A few options that future
implementers may wish to consider are: parallax mapping information, bump
maps for the textures, and the ability to add imported pieces of pre-made ge-
ometry to the generated mesh (such as placing manually created gun turrets on
a generated space ship).
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Figure 3.10: Our Enterprise model with two different detailing rule sets applied
to it. On the top, with its original detailing, and below with a randomized
plasma-like pattern. This shows how detailing rule sets that are not reliant on
shape tags can be applied to any voxel grid.

3.4.1 Shape Tag Dependence

It should be noted that this detailing stage is independent of previous steps. A
detailing rule set can be applied to any voxel grid, and does not need to concern
itself with how that data set was produced.

It is possible to have a detailing rule set that is completely independent of
metadata tags. For example, detailing that creates a consistent pattern across
the entire model without using the context information from the tags. These
detailing rules will work on any model provided to them, regardless of tags.
An example of such a detailing rule set being applied to a model intended for
a different rule set is shown in Figure 3.10 (below the model with its original
detailing).

We also show pseudocode for the two detailing rule sets in figure 3.10 in
algorithms 3.4 and 3.5. These rule sets consist of a single rule that operates on
all pixels. In other rule sets, there may be multiple rules, which can call each
other, similar to methods in a programming language.

The Enterprise detailing rule set works in a single pass, uses tags to deter-
mine how to detail the model, and randomness to assign the window’s positions.

The plasma detailing is a multi-pass rule set, which produces randomized
flame coloured blobs on a blue base colour. The number of iterations determines
how big the plasma patches are. Numbers are used to indicate how bright a
voxel in the blob should be: 0 indicates red, 1 indicates orange, 2 indicates
yellow, and 3 indicates the base colour, blue. The translation from numbers
into colours is done once the rule set has completed running.

Note how the Enterprise rule has conditional statements that rely on shape
tags, while the plasma rule does not reference tags at all.
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Algorithm 3.4 Example Detailing Rule Set: Enterprise

if any(“disk”, “neck”, “body”) ∈ voxel.tags then
if abs(voxel.normal.y) < 0.6 and voxel.position.y mod 3 = 1 and
randint(1, 4) = 1 then
voxel.detailing tags← “window”

else
voxel.detailing tags← “grey”

end if
else if any(“thruster”, “front dish”) ∈ voxel.tags then
voxel.detailing tags← “glowing blue”

else
voxel.detailing tags← “grey”

end if

Algorithm 3.5 Example Detailing Rule Set: Plasma Pattern

if current iteration = 1 then
if randint(1, 500) = 1 then

voxel.detailing tags← 0
else
voxel.detailing tags← 3

end if
else
brightest neighbour ← 3
for all i ∈ voxel.neighbours do

if min(i.detailing tags) < brightest neighbour then
brightest neighbour ← min(i.detailing tags)

end if
end for
if brightest neighbour < 3 and voxel.detailing tags >
brightest neighbour then

random num = randint(1, 3)
if random num = 1 then
voxel.detailing tags← brightest neighbour

else if random num = 2 then
voxel.detailing tags← brightest neighbour + 1

end if
end if

end if
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In most practical situations though, we expect that rules from the detailing
rule set will be dependent on metadata tags in the voxel data set. For example,
detailing a house’s walls with brick textures and the doors with wooden ones
requires that the two parts of the model be distinguished. Hence the user
should ensure that the shapes in the shape grammar are properly tagged for the
detailing stage.

3.4.2 Performance

Running snippets of code for each voxel in a grid can be extremely slow, espe-
cially so if the grid is large, or the rule’s code is complex. For this reason, we
only run the rule set on surface voxels in the grid. This typically decreases the
input size from O(N3) to O(N2), in the size of the voxel grid.

We define a surface voxel to be any solid voxel in the grid which is 26-
connected to at least one empty voxel. Because the marching cubes algorithm
(used in the next stage of the algorithm to produce a mesh) does not generate
triangles for completely empty or solid space, only voxels on the border between
solid and empty space will affect the final model. All others can be safely
ignored.

Using the hierarchical structure of the octree, surface voxels can be quickly
identified. If a node of the octree does not have any children, then only the
voxels around the edge of that node need be checked further. For all reasonable
models, this dramatically reduces the number of surface voxel candidates that
need to be checked, improving speed from O(N3) (for the brute force search)
to O(N2).

The final output of this step is a voxel grid where all surface voxels have been
assigned detailing information. This information must unambiguously provide
all information required for rendering the grid, either as is, or when converted
to a mesh.

3.5 Mesh Generation

In this stage of the algorithm, the voxel grid is converted into a mesh format,
which is more suitable for use in most graphics applications than a voxel grid.

It is possible to make use of the generated model as a detailed voxel grid,
terminating the algorithm without doing this step. There are many methods for
rendering voxel grids, often based on ray casting [27], or point rendering [46].
The user may wish to render the model using one of these methods, or perhaps
to use the model in some sort of voxel game engine, such as Minecraft.

In this case, there are some considerations that should be made about the
detailing process. Firstly, texturing information is no longer relevant, as the data
is a collection of points, which cannot be used with a texture. Voxels should be
assigned colours or some other usable detailing information instead. Secondly, if
rendering the voxel grid with volume ray casting, it may be necessary to retain
and detail the interior voxels, as they will be used by the algorithm.

However, most graphics applications today work with triangle meshes, not
voxel data sets. For this reason, we need to convert our voxel data set into
a mesh that can be used in conventional raster graphics applications, such as
modern 3D game engines.
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Figure 3.11: The 2D mesh produced by meshing the voxel grid shown in Figure
3.9.

The marching cubes algorithm [30] is a well-established solution to the prob-
lem of extracting a mesh representation of a voxel grid or isosurface. We make
use of it to produce a mesh version of our generated model. A comparison be-
tween a voxel grid, and its mesh produced by the marching cubes algorithm is
shown in figure 3.12. Additionally, a 2D example of a produced mesh is shown in
Figure 3.11. Pseudocode for the mesh generation process is found in algorithm
3.6.

Algorithm 3.6 Mesh Generation

voxelGrid← getVoxelGrid()
surfaceV oxels← voxelGrid.getSurfaceVoxels()
outputMesh← ∅
for all i ∈ surfaceV oxels do
currTriangles← marchCube(i)
currDetailingInfo← getDetailingInformation(i)
currV oxelMesh← buildGeometry(currTriangles, currDetailingInfo)
outputMesh.addGeometry(currV oxelMesh)

end for
return outputMesh

One could also use the marching tetrahedra algorithm [12], a successor to
marching cubes. It was designed to solve an ambiguity in the marching cubes
algorithm (one item in the original lookup table was a symmetric copy of an-
other), and to provide a patent-free algorithm for producing a mesh from an
isosurface or voxel grid (the marching cubes algorithm was originally patented,
but this has since lapsed).

Although the marching tetrahedra algorithm can produce a finer mesh than
the marching cubes algorithm, in practice their results are very similar for large
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voxel grids. We opted to use the marching cubes algorithm in our implementa-
tion, but there is no reason that other implementations could not use marching
tetrahedra.

The marching cubes algorithm operates by iterating (or marching) over the
voxel grid, and at each point, it determines what triangles to produce by exam-
ining which of the neighbouring voxels are solid or empty.

The marching cubes algorithm does not march over the voxels themselves
though. Instead, it iterates over the spaces between voxels, specifically, the
points exactly midway between the surrounding 8 voxels, where the corners of
those voxels meet.

At each of those points in the grid, the algorithm examines whether the eight
surrounding voxels are solid or empty. Depending on which of those voxels are
solid or empty, a group of triangles that fit into a cuboid selection of geometry is
selected. That cuboid is then placed at the current point, centred on the point
where the corners of the surrounding voxels meet.

To minimize processing time, a pre-computed lookup table is used for deter-
mining what selection of triangles should be placed at the current point.

This process is repeated across the entire voxel data set, with the triangles
created at each point being added to a mesh. Once the entire grid has been
marched over, a final mesh version of the model will have been created.

Because this requires examining every voxel in the grid, it has a running time
of O(N3), where N is the size of the voxel grid. This means that, in practice,
the algorithm is slow to run.

With a tree data structure, such as an octree, large areas of empty and
solid space can be skipped, but this will only provide a constant factor speed
increase (dependent on the data set in question). It does not provide an order of
magnitude improvement. Additionally, using the octree in this manner increases
the implementation complexity of the algorithm.

The algorithm outputs a list of triangles, each of which can be associated
with a voxel in the input grid. As each triangle is generated it is assigned
textures, materials, and other detailing information that was assigned to the
voxel it was generated from.

Hence, the final output of this step of the algorithm is a fully textured and
detailed mesh representation of the voxel grid that the original shape grammar
produced.

3.6 Mesh Post-Processing

The mesh produced by the marching cubes algorithm is suitable for direct
use in graphics applications, but its visual quality could be improved by post-
processing.

One of the problems with the marching cubes algorithm (and marching tetra-
hedra) is that the output mesh has visual artifacts caused by the discrete nature
of the voxels. Curves in particular, are not fully captured during the meshing
process, and will instead appear ‘bumpy’. This is actually a form of aliasing
[54] arising from the low resolution of a voxel grid, so increasing the resolution
of the voxel grid can reduce this problem.

A less computationally intensive solution to this problem is using an appro-
priate mesh smoothing algorithm, which will remove such aliasing artifacts [20].
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Figure 3.12: A comparison of a low resolution version of the enterprise model
as a voxel grid, an unsmoothed mesh, and as a smoothed mesh. Note that
this example is purposely at a low resolution to better display the stages of the
algorithm. A model intended for production use would be generated at a higher
resolution.

An example of how mesh smoothing can improve a model’s visual quality is
shown in figure 3.12.

However, as is seen in the image, using mesh smoothing on models produced
by low resolution voxel grids can distort detailing elements (the windows in
the smoothed model). This occurs because the triangles to which the textures
are mapped will have the positions of their vertices changed by the smoothing
algorithm. Different smoothing algorithms operate on the mesh in different
ways, and hence will cause different amounts of distortion, but any smoothing
will introduce some degree of distortion.

There are texture-aware mesh smoothing methods that aim to minimize
texture disruptions [5], however in our implementation we opted not to use such
an algorithm. This is because, in our testing, we found that the distortion
of detailing elements was seldom a problem for voxel grid sizes of 256 or more,
where the triangles are smaller and hence moving them affects the overall model
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less. However, the distortion is noticeable at lower resolutions.
Figure 3.12 was produced at a very low resolution to aid in understand-

ing of the algorithm, and thus the texture distortion is significant. At higher
resolutions, the distortion is greatly reduced. For examples of this, see figures
3.10, and 4.6 to 4.14. These models were all created a higher resolution, with
smoothing applied, and there is no texture distortion to the degree seen in figure
3.12.

Smoothing can be done either automatically, as part of the generation pro-
cess, or by hand, using a standalone modelling software package, such as Blender
(which we opted to use in our work).

Using a standalone program has the requirement of needing a human to
perform the operations. This can be a benefit where fine control is required,
or potential problems must be caught, such as smoothing a very unusual mesh
where the process could deform it in unwanted ways.

However, if working with many models where the quality does not need to be
perfect, or the smoothing will not cause problems, saving time by automation
of this step may be preferable.

In addition, manual editing and tweaking of the final mesh can be undertaken
at this point. Because it is now a regular textured mesh, conventional modelling
software can be used, and no voxel-specific features are required.

3.7 Implementation and Optimizations

We implemented our algorithm largely in C++. However, Python was used
for both the shape grammar and voxel detailing rule sets. This was because,
although slower than a compiled language, the interpreted nature and ease of
embedding Python greatly simplifies and reduces the programming work needed
to create the shape grammar and detailing rule set interpreters.

The rules are described in Python code, and as a result, the legwork of
parsing and running them can be offloaded to the Python interpreter.

The implementation of our algorithm was intended to be a proof-of-concept,
and not necessarily suitable for practical use. This, combined with time con-
straints, meant that we did not focus on optimization, although there is large
scope for significant performance gains.

In particular, we have identified a number of potential optimizations that
could dramatically reduce running times. We discuss them here.

3.7.1 Voxelization

The voxelization process is not suitable for parallelization, due to the order of
shapes being important, which would require frequent locking of sections of the
octree to keep the voxel grid consistent with the shape grammar. The high
occurrence of locking data would hamper parallelization speed-ups, most likely
making them negligible.

However, voxelization of shapes can be performed extremely efficiently in a
non-parallel manner by exploiting the hierarchical nature of the octree.

Beginning at the root of the tree, query the intersection between each of
the eight child octants of the octree node, and the shape to be added. If the
area covered by a child octant is entirely within the shape, then that child, and
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hence all the voxels that it contains, are set with the shape’s information. If
there is a partial intersection between the child node and the shape, then the
algorithm is recursively called on that node. See algorithm 3.7 for pseudocode
of this process.

Algorithm 3.7 Fast Recursive Shape Voxelization

tree root← getOctreeRoot()
shape← getShapeToBeAdded()
for i = 1→ 8 do
octant boundaries← tree root.children[i].bounds
degree of overlap← getDegreeOfOverlap(octant boundaries, shape)
if degree of overlap = FULL then

tree root.children[i]← Solid
else if degree of overlap = NONE then
tree root.children[i]← Empty

else
recurseOnChild(tree root.children[i])

end if
end for

While faster, this method of voxelization is more complex to implement,
and requires a method of exact collision detection, such as the well-known GJK
algorithm [9]. We recommend that any future implementations make use of this
method to significantly reduce execution times.

3.7.2 Voxel Detailing

Voxel detailing is also highly parallelizable, because each voxel can be examined
independently of the others, and no message passing or locking of data is needed.
A multi-threaded implementation would increase performance linearly with the
number of cores available.

However, the voxel detailing is completely unsuitable for acceleration with
graphics hardware. Writing a rule interpreter for graphics processing units
(GPUs) would be extremely challenging, due to the complexity and size of the
resulting computational kernel. Also, there is likely to be significant amounts
of branching in the code, which impacts negatively on performance when using
graphics hardware.

3.7.3 Storage of Shape Tags and Detailing Information

In our implementation, the shape tags and output of the detailing rule set are
collections of arbitrary strings that are associated with individual voxels. Other
implementations could store these tags differently.

A point that should be borne in mind when deciding how to store this
information is that having multiple items of data for each voxel can require a
large amount of storage. One appropriate method of compression is to store
the information in the octree, to benefit from the compression it provides. This
should work well for most detailing rule sets, but the compression ratio will
begin to deteriorate for surface detailing patterns with a high entropy, such as
high frequency random speckles.
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Another method of compressing this data, that can be used with the octree
storage method, or independently, is data deduplication [31]. In most reasonable
data sets, we expect that the same pieces of detailing information will appear
often and be associated with many voxels in the grid. Instead of storing that
information repeatedly in each voxel, we can store a reference to that data,
which takes up less space than the data itself. The actual data itself then only
needs to be stored once.

For maximum compression, this reference should be a 1 byte identifier, but
that assumes that the total number of pieces of detailing information is at most
256 (the maximum number of possible states for a single byte). While we expect
that most models will not require more than 256 detailing information strings,
it may be necessary to have pointers as a fallback means of referencing the data.

Data deduplication can provide significant memory savings, especially when
using a single byte for each reference. When combined with octree compres-
sion, the amount of memory required to store the detailing information will be
drastically reduced for all but the most extreme detailing rule sets.

3.7.4 Mesh Conversion

The implementation of marching cubes can also be substantially accelerated by
only marching over the surface voxels of the voxel grid. Since entirely solid
or empty regions will not produce any triangles, the voxels of those regions
need not be marched over. If a list of the surface voxels was stored during the
detailing step, it can be re-used here, since there will be no change to the voxel
grid between the time that list of surface voxels is generated, and the time that
mesh generation is performed.

In addition to the above optimization, the marching cubes algorithm could
be accelerated using graphics hardware, a technique which has been investigated
previously [19]. Because each group of eight voxels can be examined indepen-
dently of the others, the problem is highly parallelizable. In particular, because
each group of voxels requires a small amount of work, and can be examined
without branching, the algorithm is especially suitable for graphics hardware.

The above optimizations to the marching cubes algorithm are also equally
applicable to the marching tetrahedra algorithm, should an implementation opt
to use that technique instead.

3.7.5 Large Scale Generation

When using our algorithm in a production environment, where large numbers
of models are being generated by a cluster, it would be advisable to pipeline our
algorithm into the five different stages to achieve better resource utilization.

In a production cluster, more nodes can be assigned to perform the more
computationally heavy stages of the generative process (detailing, mesh gener-
ation), while fewer nodes work on the quicker stages (shape grammar interpre-
tation, voxelization, mesh post-processing). Additionally, the outputs from the
different stages can be stored in stage-specific queues.

Once a node has finished processing an item, it will push it onto the back
of the next stage’s input queue and pull a new work item from the front of the
current stage’s input queue. This, combined with dynamic load-balancing of
nodes, will ensure optimal utilization of computational resources.
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There is another benefit to explicitly storing the outputs from each stage:
Should a designer wish to experiment with a particular stage of the algorithm,
they can store the output from the previous stage and work with that, instead
of needlessly re-running the earlier stages repeatedly.

For example, if a model designer wished to experiment with tweaking the
parameters of a detailing rule set, they could instruct the storage queue be-
tween the voxelization and detailing stages to not process the voxel grid that
they wanted to experiment with, only to store it. After experimenting and de-
ciding on the desirable parameters of the rules set could they mark the voxel
grid as being suitable for moving onto the next stage. This way, the grammar
interpretation and voxelization stages do not need to be re-run redundantly.

In a production environment, with large amounts of models being generated,
a pipelined setup such as the above would improve resource utilization and
reduce needless computational expenditure.

3.8 Summary

This chapter has presented our algorithm for interpreting shape grammars in a
voxel-space, instead of the conventional mesh-based method.

The inputs to the process are a shape grammar, consisting of the axiom,
rules, and global parameters, and a detailing rule set, with its associated global
parameters. The final output from our algorithm is a textured mesh, suitable
for use in other graphics applications.

The algorithm is broken up into 5 stages: shape grammar interpretation
(where the shape grammar is executed to produce a collection of tagged shapes),
shape voxelization (where the grammar output is converted into a voxel grid),
voxel detailing (where the voxels are assigned detailing information), mesh gen-
eration (where the voxel grid is converted into a polygon mesh), and optionally,
mesh post-processing (where the generated mesh is smoothed and refined).

There are a number of points to consider when implementing our framework,
including the choice of tree for storing the voxel grid, the exact syntax for the
rule sets, and mesh smoothing algorithms. Additionally, there are a host of
optimizations that can be used to accelerate the model generation (the perfor-
mance of which is discussed in the following chapter), some of which introduce
associated constraints, and some of which do not.



Chapter 4

Testing and Results

This chapter covers the testing and experimentation we undertook to validate
our shape grammar extensions. In order to evaluate our voxel-space extensions
to shape grammars, and their suitability for practical use, we undertook three
branches of experimentation:

• Performance Testing: (Section 4.1) We analyzed the running time and
memory required for our implementation of the algorithm, across a range
of input sizes and types. This included examining the running time and
memory usage of each of the stages of the algorithm.

• Variation Testing (Section 4.2) This was oriented at ensuring our ability
to produce multiple models of acceptable quality from a single stochastic
grammar/detailing rule set pair. For these tests, we developed stochastic
grammars and ran them repeatedly to evaluate their outputs.

• Output Range Testing (Section 4.3) These tests were aimed at ensuring
that our extensions increase the generative range of shape grammars, and
do not limit the outputs. We developed a variety of shape grammars and
detailing rule sets for this purpose.

We believe that these three tests cover the key areas of evaluation for our
algorithm extensions, and provide an adequate examination of whether our work
has practical application because they tie into the success metrics defined by
our research questions presented in section 1.7.

Performance testing examines whether our extensions are computationally
viable, which was one of the main research questions in this work. Variation
testing forms part of the evaluation for another one of our research questions
(whether our extensions introduce limitations) by testing whether our extensions
still allow the creation of a range of models in a similar, which is an important
ability of shape grammars. Finally, the output range testing provides an answer
to the final research of our work, by testing whether our shape grammar exten-
sions do allow the creation of models that are hard to create under conventional
shape grammar systems.

Therefore, each of these three areas of testing is directly tied to our research
questions (and hence to our success criteria), and collectively cover the key
evaluation areas of our algorithm.

64
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We cover each kind of testing individually in Sections 4.1 to 4.3, discuss the
limitations of our shape grammars extensions in Section 4.4, and draw conclu-
sions from our testing in Section 4.5.

4.1 Performance Testing

We analyzed our algorithm’s performance across a variety of voxel grid sizes and
user inputs (see Table 4.1). The goal was to cover a wide variety of inputs and
options, to ensure that our testing was representative of real-world use cases.

The two main results of interest from the performance testing are the time
taken to generate a model, and the peak memory usage of the process.

We do not concern ourselves with testing secondary storage requirements,
because the algorithm itself does not require any secondary storage, beyond
what is needed to store the input and output files. The input grammar files
are very small (on the order of a few kilobytes), but the output models can be
sizable, depending on factors such as the voxel grid resolution and the number
and complexity of textures. However, the model sizes are as large as they would
be if created by other methods, and thus we do not consider this aspect any
further.

A final point that the reader should note regarding these performance tests,
is that our implementation was strictly intended as a single-threaded proof-of-
concept. Thus, performance was not a priority, and there is large scope for
improvements in this area (as mentioned in Section 3.7). It is possible that
those optimizations could offer order of magnitude improvements to running
time, and noticeable savings on memory usage.

Nonetheless, we still provide the results of testing our implementation. This
provides a baseline comparison point for future implementations, and shows
that the performance of an implementation that is not fully optimized is still
sufficient for actual use.

The following three subsections present the details of our testing setup and
the results for running time and memory usage.

4.1.1 Testing Setup

Performance testing was conducted with a selection of 15 shape grammar and
detailing rule-set combinations, at 4 different voxel grid resolutions. The details
of the different testing inputs are shown in Table 4.1.

Only the files sizes for mesh models produced at a grid size of 256 are shown
in the table. The file sizes of the mesh models produced at other grid sizes are,
on average, proportional to the cube of the size of the grid. For example, the
file sizes for models from a grid of size 512 are roughly 8 times larger than those
shown in the table for grids of size 256. This is to be expected since the number
of voxels, and hence the number of triangles produced, is proportional to the
cube of the grid’s resolution.

The selection of grammars and rule sets used in our testing (those in the
table) was specifically chosen to encompass a wide range of complexity and types
of generated content, from simple mathematical shapes, to complex models of
structures. Many of the grammars and rule sets also included elements that
we intended our shape grammar extensions to be able to create easily, such
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Shape Grammar Detailing Rule Set Iterations Mesh Size

castle castle 5 34.5 Mb
tank tank 1 25.9 Mb
space station station detail 5 58.8 Mb
skyscraper skyscraper detail 1 54.6 Mb
enterprise enterprise detail 1 16.2 Mb
enterprise camouflage 1 16.3 Mb
enterprise plasma 15 16.3 Mb
enterprise rule110 20 16.3 Mb
fractal tree grey 1 15.2 Mb
spiral stripes 1 9.1 Mb
spike ship spaceship windows 1 24 Mb
spike ship tiger stripes 15 23.8 Mb
c station station detail 5 33.5 Mb
flat rectangle rule30 25 31.6 Mb
flat rectangle rule90 25 31.6 Mb

Table 4.1: This table shows the different shape grammar/detailing rule set
combination that were used for testing our research. The first column is the
name of the grammar used to create the model, and the second is the detailing
rule set used to detail it. The third column is how many iterations the detailing
rule set took, and the fourth is how large the generated mesh was (in OGRE’s
native format). The file sizes shown are those created with a voxel grid of size
256. Finally, note that these are the unoptimized mesh file sizes.
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as complex multi-pass cellular automata patterns (such as the ‘tiger stripes’
pattern shown in figure 4.13) and recursive use of Boolean geometry operations
to create complex shapes (such as the ’c station’ model in figure 4.8). For the
above reasons, we believe that it is an adequate and appropriate selection of
test cases.

The voxel grids used were all cuboid, with resolutions ranging from 64 voxels
per side, suitable for rapid prototyping of ideas, to 512 voxels per side, suitable
for producing high quality models for real-world use.

We limited our resolutions to 512 because our initial testing of a larger size
(1024) indicated that cases with a high number of detailing passes would take an
infeasible amount of time to run (given the time constraints we were under), and
would require more memory than we had available. As mentioned above, our
implementation was not heavily optimized, and we believe that a fully optimized
implementation using the techniques mentioned in Section 3.7 would be able to
run high resolution examples in a reasonable amount of time.

Additionally, in testing we found that a resolution of 512 is sufficient to
generate high quality models. That is, when combined with mesh smoothing,
a resolution of 512 is the threshold for when generated models have no obvious
artifacts.

For the above reasons, and because our implementation was intended as
a proof-of-concept and not a production implementation, we did not pursue
testing at resolutions higher than 512. Still, we expect that performance char-
acteristics at higher resolutions would follow the trends we discovered below.

Testing was performed on a computer with an Intel Core 2 Duo clocked at
2.4Ghz, 3 gigabytes of RAM, and an Nvidia GTX 280. The operating system
was 64-bit Ubuntu Linux, version 11.04.

4.1.2 Algorithm Running Time

Timing information for the C++ component of our implementation was ob-
tained using the C Time Library (ctime), while the Python shape grammar
interpreter used the Python datetime module. Both of these are able to provide
timing information of more than sufficient accuracy for the purposes of timing
sections of our code. Timestamps were recorded at various points during the
execution, and the differences between them were computed to determine how
long sections of code took to run.

We decomposed the running times of the test cases into the time taken for
each of the four principal stages of the algorithm. Post-processing was excluded
as it is an optional step, and because our implementation used the external
modelling software, Blender, for that stage of the algorithm.

The timing information reflects only the time taken for each stage of the
algorithm to run. It does not include time to load and save input and output
files, handle program arguments, initiate the graphics display, etc. In practice
though, the time for that setup was negligible compared to the time needed to
run the algorithm.

Grammar Interpretation

The first thing to note is that the shape grammar interpretation is orders of
magnitude faster than the other stages, as the histogram in Figure 4.1 shows.
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Figure 4.1: A histogram showing the distribution of running times for the gram-
mar interpreter, taken across all of our test case grammars. Note how the
majority of running times were very quick (under 25 milliseconds), except for
the models exhibiting fractal behaviour, which took around 200 milliseconds to
generate.

This speed is because the interpretation is independent of the voxel grid reso-
lution, and only involves operating on strings and some basic mathematics.

It is possible for the interpretation of some grammars to have a running
time that is exponential in the number of grammar iterations, as is commonly
the case in L-systems. However, in practice, most reasonable shape grammars
do not exhibit this exponential behaviour, and when they do, the number of
iterations is often low enough that the exponential nature is not apparent (less
than 10).

The majority of the interpretations times are clustered between 0 and 25 mil-
liseconds, with 10 outlier running times of slightly more than 200 milliseconds.
These outliers were the interpretations of the fractal tree and skyscraper models
shown in figures 4.11 and 4.12. Both of these grammars have a large amount of
branching, due to the fractal nature of the tree, and the repeated subdivisions
to create the skyscraper’s grid-like façade of windows. Hence they exhibit the
exponential behavior described above, although for the fractal tree, the number
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Figure 4.2: A box and whisker plot of the total algorithm running times (the
sum of the voxelization, voxel detailing, and mesh creation times), across the
four different resolutions. The minimum, maximum, and average running times
all grow sharply as the resolution increases, and cover a time range of nearly
instant to 35 minutes. Similar breakdowns of the time for each algorithm stage,
across the different sizes, are included in figures A.1 to A.3 in Appendix A.

of iterations was capped to 10 iterations to keep running times reasonable. The
skyscraper grammar terminates naturally after 5 iterations.

All of the interpretation running times are relatively quick, and more than
sufficient for the purposes of an offline procedural generation algorithm.

Due to the tiny relative time required, we do not consider grammar interpre-
tation relative to the times taken for the other stages of the algorithm. Hence
it is not shown in subsequent performance graphs.

Voxelization, Voxel Detailing, and Mesh Generation

The last three stages of the algorithm are much slower than the grammar inter-
pretation.

Figure 4.2 shows the range of combined running times for voxelization, voxel
detailing, and mesh generation, plotted against the voxel grid sizes.
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Figure 4.3: A cumulative graph of the average times taken for our algorithm
to run on 36 different inputs, covering a range of complexities. Shape grammar
interpretation is not shown as it was negligible compared to the other three
stages. This graph also shows the relative durations of the different stages, with
voxel detailing being the longest by far. A more nuanced breakdown of these
times can be gleaned from the box and whisker plots in figures A.1 through A.3.

The most obvious observation from the graph is that voxel grid resolution is
a major factor in the running time of the algorithm. The slowest, median, and
fastest running times all grow at a rate that is somewhere between quadratic
and cubic in the sizes of the voxel grid.

This is to be expected, as the running time of each of the algorithm stages is
directly proportional to either the number of voxels in the grid, or the number
of surface voxels. These scale cubically and quadratically, respectively, with the
resolution of the grid.

The overall collective shape output by the shape grammar can affect the
running time because the shapes are scaled into the cuboid voxel grid. If the
overall shape (or bounding box) is roughly cuboid, then the scaled shapes will
collectively be a closer fit to the cuboid voxel grid, and take up more of it than
they would if their overall bounding box was rectangular. Taking up more of
the grid means more voxels are used, and the running time will be increased.
Hence, the rough overall dimensions of the shape grammar output can affect
the running time.

These two parameters are the major factors for determining the running time
of our implementation. Others, such as the number of detailing iterations, do
also influence the running time, but their impact is minor compared to that of
the grid resolution and overall collective shape of the shape grammar’s output.

The second observation is that there is a huge range of running times, from
a few seconds to roughly 40 minutes. The size of the voxel grid is the biggest
factor, but the shape grammar output and number of iterations required for
detailing also play a significant role.

Figure 4.3 shows the average times across all of the inputs, broken down
into the different stages. This allows us to compare the running times of the
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individual stages to each other.
We can draw a number of observations from this graph. Firstly, the voxel

detailing stage is, on average, the longest running. This is expected, as it
requires the execution of a section of arbitrary code for each surface voxel,
potentially multiple times.

Secondly, the running times of the voxelization stage of the algorithm is
approximately cubic in the size of the voxel grid. This is expected, as the running
time of our method of voxelization is directly proportional to the number of
voxels in the grid, which scales as the cube of the grid’s resolution.

Because the detailing and mesh creation stages of the algorithm only operate
on the surface voxels, we should expect their running time to be quadratic in
the size of the voxel grid. The volume of an object will increase cubically when
scaled along all three axes, but its surface area only increases quadratically.

However, the fact that many of the surface detailing rule sets call for multiple
passes (as high as 25, in our data set) means that, on average, the surface
detailing times appear to scale faster than quadratically with increasing voxel
grid size.

This is a constant factor specific to multi-pass detailing however, and asymp-
totically, the quadratic rate of growth would dominate.

Figures A.1 to A.3 in Appendix A present a more nuanced look at the
running times of the individual stages of the algorithm. These allow us to get
a better idea of the range of relative times for the voxelization, voxel detailing,
and mesh generation stages.

Apart from reinforcing our earlier observations about running times from
the other two graphs, we can also note some other trends. Across the different
voxel grid sizes, the ranges of running times for the voxel detailing and mesh
creation stages stay very similar relative to each other.

However, the running times for voxelization grow significantly as the size of
the voxel grid increases, with some cases taking even longer than mesh creation
for large voxel grids. This is expected because, as mentioned above, the method
we use for voxelization requires iterating over each voxel in the shape to be
voxelized. This total number of voxels grows cubically with increases in the
voxel grid size.

In contrast, the voxel detailing and mesh creation stages only operate on
surface voxels. The number of surface voxels grows quadratically with increases
in the size of the voxel grid. These different rates of growth explain how the
voxelization running times increase so rapidly, relative to the other two stages.

4.1.3 Memory Usage

Our main concern regarding the memory usage of our program is the peak
memory usage, i.e. the largest amount of memory that the program uses at any
one point. This is the metric that we measured during testing.

Memory usage data was gathered by reading the Linux ‘/proc/self/status’
file, which contains details of the peak and current memory usage of the program
reading the file. This is not a completely accurate measurement of the program’s
memory usage, since some memory pages may be counted more than once, but
it provides sufficient accuracy for our purposes. Additionally, it is conservative,
and so will not underestimate memory usage, which is desirable for measuring
worst cases.
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Figure 4.4: A box and whisker plot of the peak memory usage of our program
across all test cases, plotted against the size of the voxel grid. The pattern is
very similar to that of the running times, as memory use increases sharply with
grid resolution.

Exact memory usage can be determined by running the program under a
memory debugger, such as Valgrind1, but these are extremely slow for mem-
ory intensive programs, such as ours. Because a conservative approximation
of memory use is sufficient for our purposes, we opted not to use a memory
debugger.

Figure 4.4 shows a box and whisker plot of the distribution of peak memory
usage vs. the size of the voxel grid, measured across all of our test cases. It shows
the order-of-magnitude range of memory requirements possible for the program.
Although some test cases required more than three gigabytes of memory, the
majority of them needed less than 1750 megabytes.

When measuring peak memory use, we once again considered the peak mem-
ory usage of the program for each stage of the algorithm individually. This
meant that the peak memory usage of the program was recorded after each
stage of the algorithm had been run.

1Software website: valgrind.org

valgrind.org
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Figure 4.5: This diagram shows the average peak memory used by our imple-
mentation, after each stage of the algorithm has been run, for each voxel grid
size. As can be seen, each stage of the algorithm requires more memory than
the previous stage, with the increase being proportional to the grid size.

Figure 4.5 shows a breakdown of the average peak memory after each stage
of the algorithm, across all four voxel grid sizes.

As can be seen, the average peak memory usage grows extremely quickly with
increases in voxel grid size, particularly for voxel detailing and mesh generation.

The major factor affecting memory usage is the number of active voxels in
the grid. This is because the amount of storage required for the octree, shape
tags, detailing tags, and the mesh output is directly proportional to the number
of voxels that are processed and used in the grid. Hence, factors that affect this
will cause the biggest changes in memory requirements.

Primary among these factors is the size of the voxel grid. As is seen in Figure
4.4, the memory requirements grow quickly with increases in the voxel grid size.

Also, as with the running time of the algorithm (see Section 4.1.2), the
collective shape of the shape grammar’s output also affects the memory require-
ment. Because the shapes are scaled into a cuboid space, and the closer they
collectively are to a cube, the tighter the fit into the octree’s space, and hence
the more voxels are used.

Another big factor in the memory requirements is the number of surface
voxels in the voxel grid. This is in fact, the biggest contributor to the algo-
rithm’s memory requirements in our implementation. As mentioned in Section
3.7.3, our implementation uses a simple method to store detailing tags, which
is not optimal for saving memory. This means that when a detailing rule set
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assigns multiple detailing tags to many of the voxels in the grid, the memory
requirements quickly ramp up.

The number of iterations does not noticeably affect memory use. Because
the amount of active voxels in the grid is not proportional to the number of
iterations, it has very little effect on our implementation’s memory requirements.

The worst case scenario for memory usage among all of our test cases was
one of the space station shown in figure 4.7, generated with a grid size of 512.
In addition to having a very cuboid overall shape, it also featured a very large
surface area. These factors, combined with every voxel having at least one de-
tailing tag, and a high grid resolution, produced the perfect storm of conditions,
requiring 3.2 gigabytes of memory, 700 megabytes more than the next highest
case.

Looking at the memory requirements for the individual stages of the algo-
rithm in Figure 4.5, in all cases, each stage of the algorithm required more
memory than the previous stage. This is to be expected, as each stage requires
all information from the previous stage, and adds new information. The vox-
elization stage only requires an octree, but the voxel detailing stage requires
that detailing information be added the octree. Finally the mesh creation stage
requires the full, detailed octree, but then needs to store the mesh it creates as
well.

Figures A.4 and A.5, included in Appendix A, show a more detailed break-
down of the range of peak memory values measured during testing, and allow a
better comparison of the relative amounts of memory required for the different
stages of the algorithm.

As can be seen from the graphs, the relative size and position of the boxes
in the plots remain very similar across all voxel grid sizes. This means that the
majority of our test cases shared a very similar pattern of peak memory usage.

This is useful, as it would theoretically allow us to estimate the peak memory
requirements of an input, given the size of the voxel grid. The ability to do this
is helpful, especially when producing high quality models at large voxel grid
sizes.

In all cases, voxelization requires the least memory. This is expected, as
octrees are highly efficient at storing voxel data. From there, voxel detailing
requires significantly more memory. This is because the python interpreter is
loaded into the program for running the detailing rules, and the output of the
rules has to be stored for each surface voxel in the grid. Depending on the
size of the grid, and rule output, this can be a large amount of memory. As
mentioned in Section 3.7.3, there is scope for decreasing the memory required
for this stage, through optimizations.

Mesh generation requires a further significant increase in memory. In most
cases (those contained within the boxes of the box and whisker plots), the
increase is not as pronounced as that seen when moving from voxelization to
voxel detailing. This extra memory is required to store the output mesh, which
can be of substantial complexity and size, especially at the larger resolutions.

4.2 Variation Testing

Variation testing was performed to test the variety of models that could be
generated, with all models conforming to a similar style, when using our shape
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Figure 4.6: A selection of castles produced by our voxel-space shape grammar
implementation. These were all generated from the same grammar, with dif-
ferent random seeds supplied during interpretation. Note how they share com-
monalities, but the exact details (such as wall heights, dimensions, and number
of towers) vary between the models.

grammar extensions (as discussed in Section 3.2.3).
It is, of course, difficult to show that creating shape grammars to exhibit this

variation behaviour is always possible or easy, but we have chosen a selection of
shape grammars/detailing rule set combinations that produce a range of types
of models (buildings, vehicles, and space stations). Each of these combinations
can successfully create a variety of models in a common theme, using stochastic
rules.

Figure 4.6 shows some of the outputs of our castle generating shape grammar,
used with a mossy-brick surface detailing rule set. The actual Python source
code of the shape grammar that created the castles is attached in appendix B,
Section B.1. As can be seen, almost all parameters of the castle are randomly
set. The height and dimensions of the walls, the number of towers and their
layout, the position and size of the keep, and the layout of the wall gates are all
stochastically chosen from a defined range. Because the rules all operate with
relative coordinates of parent shapes, the shapes will not overlap or interact in
unwanted ways unless expressly instructed to. This does require some additional
work on the part of the grammar designer, but not much more than would be
required to create the basic shape grammar.

Some slightly more complex examples are shown in figure 4.7. Again, the
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Figure 4.7: A selection of tanks and space stations produced by two of our shape
grammars, using randomized parameters in their rules. This shows how a single
grammar can produce multiple models in the same style.
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shape grammars that generated these models are included in appendix B (sec-
tions B.2 and B.3). The rotationally symmetric space stations are detailed
using a rule set that creates a base layer of dark metal and then overlays lighter
patches, as well as windows on the vertical surfaces. This shape grammar makes
heavy use of the symmetry operators, often with randomized parameters, as
demonstrated by the varying number of spires and ring spokes. As can be seen
from the space stations, the symmetry operators can be incorporated into the
stochastic rules, with good results.

Finally, Figure 4.7 shows the output of our tank shape grammar/detailing
rule set combo. Once again, most parameters are randomized, resulting in a
wide range of outputs that all share a consistent style, both in geometry and
detailing.

These examples also illustrate another strength of our shape grammar exten-
sions: the ability to easily apply the same detailing rule set to different models
and achieve a consistent output across them, as discussed in Section 3.4.1. In
some cases, this is only possible if the detailing rule set is not dependent on tags
from the shape grammar, but generally across models created from the same
stochastic shape grammar, a detailing rule set that relies on shape tags will
work correctly.

Both of these situations are shown our variation testing examples. The
detailing rule sets used on the castles in figure 4.6 and that used on the space
stations in Figure 4.7 are not reliant on tags assigned by the shape grammar.
However, the rule set used to detail the tanks in Figure 4.6 is. Because the tank
models are created from the same shape grammar, the tags assigned to their
shapes (and hence voxels) are all used in a consistent manner, and the tank
detailing rule set will work correctly for all of them.

The detailing rule sets for the castles and space stations do not make use
of any shape tags, but this does give them the benefit of broader applications.
They could be applied to any voxel grid, and the results would be consistent
with what was expected (the voxel grid would be covered in a brick texture with
patches of moss, or a metallic texture with patches of lighter metal and windows
on vertical surfaces). However, if the tank’s detailing rule set was applied to
an arbitrary voxel grid, the result would be entirely covered in the camouflage
pattern, because none of the voxels would be tagged as treads or gun barrels.

In short, a detailing rule set that relies on tags will be able to create more
customized outputs tailored to the models intended for it, but at the cost of
working properly on arbitrary voxel grids that may lack the shape tags.

4.3 Output Range Testing

In this type of testing we attempted to generate a wide variety of models,
covering a range of complexity in both the geometric structure and surface
detailing. The objective was to demonstrate that our shape grammar extensions
add additional expressive power to conventional shape grammars and do not
restrict previously existing capabilities at all.

A selection of these generated models are shown in figures 4.6 to 4.14.
Figures 4.9 and 4.10, contain models demonstrating cellular automata (CA)

patterns. The two rectangles in figure 4.10 demonstrate 25 iterations of the
well-known CA patterns rule 30 (a chaotic pattern that occurs in nature) and
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Figure 4.8: A model of a rotationally symmetric space station detailed with
windows and bright metal patches. Note the hollowed out areas created in the
wings using subtractive shapes.

Figure 4.9: A model of the enterprise, from Star Trek, detailed in red and blue
with the cellular automata pattern Rule 110.
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Figure 4.10: Two simple rectangles detailed with the cellular automata patterns
Rule 30 (left), and Rule 90 (right).

Figure 4.11: A model of a simple fractal tree, detailed with a plain grey colour.
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Figure 4.12: A simple skyscraper model, generated using a basic split grammar.

Figure 4.13: A spaceship model, created with multiple symmetry rules. It is
detailed with a pattern of randomized horizontal and vertical ‘tiger stripes’, and
blue windows on the vertical faces of the ship.
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Figure 4.14: A simple model of a spiral, detailed using a global horizontal stripe
pattern.

rule 90 (which produces a 2D Sierpinski triangle). Figure 4.9 shows an example
of the CA pattern, rule 110, being applied in a 3D context on a model of the En-
terprise. There is no way to create consistent rule-based detailing patterns such
as these, across an entire model with conventional mesh-based shape grammar
implementations.

In figures 4.11 and 4.12 we also display a fractal tree and a model of a simple
skyscraper-style building, both created by our implementation. These models
show that with our extensions, we are still able to generate models using L-
systems (for the tree), and split grammars (for the building), and have not lost
any generative ability.

The model of a spiral in Figure 4.14 was created from overlapping rectangles,
with a detailing pattern based on the y-coordinate of the voxels. Note that, in
spite of the rectangles overlapping, there are no seams in the detailing and the
pattern is not disrupted. Creating such a global detailing pattern based on the
coordinates of pieces of geometry would be difficult to impossible to do with
conventional shape grammars. Other examples of this global detailing with no
detailing seams between joined geometric primitives can be seen in the castles
of figure 4.6 and the space stations of figure 4.7.

Another good example of the power of context-sensitive detailing is shown
in the space stations in figures 4.7 and 4.8. The detailing rule set specifies that
windows should only be created on voxels whose normalized normals have an
X component of 0.8 or greater. This means that windows are only created on
surfaces which are nearly vertical. This level of context sensitivity for the sur-
face detailing of models cannot be achieved using conventional shape grammar
implementations.

Staying with the space station model in Figure 4.8, it shows how powerful
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subtractive shapes can be. The rotational wings start as ellipsoids, but then
have subtractive rectangles applied, to carve out the indentations on their sides.
Then, a subtractive cylinder is used to hollow out the holes at the end of the
wings and further rectangles used to make docking bays in the hollowed out area.
These subtractive capabilities allow us to easily create an interestingly shaped
wing, whereas, if we wanted to create the same wing with a conventional mesh
based grammar, we would need far more rules, and would have issues with
texture seams between shapes.

The space ship decorated with ‘tiger stripes’ of black and orange in Figure
4.13 shows a good example of a multi-pass detailing pattern. The stripes are
randomly generated and grown to overlap each other across 15 passes. A con-
ventional shape grammar implementation would be unable to create dynamic
multi-pass detailing such as this.

These examples illustrate the major benefits that our extensions bring to
shape grammars, and confirm that they can increase their generative range
beyond what is possible with conventional implementations.

4.4 Limitations

In spite of the increased generative power of our shape grammar extensions,
there are still some caveats to their use. During the process of testing the output
range of our implementation, we identified two limitations to our voxel-space
shape grammar algorithm that could restrict its potential applications.

4.4.1 Voxel Grid Size Requirements

In order to obtain a high quality model from a voxel data set, the set must be
created at a high resolution. This is because the discrete nature of a voxel grid
causes “blocky” visual artifacts in meshes produced by the meshing algorithms.
These artifacts are especially visible for low resolution voxel grids (sizes of 128
or less), but are much less pronounced for high resolution voxel grids (size
256), and virtually negligible for very high resolutions (sizes of 512 or more).
Hence, to generate models for production use, a large voxel grid size should be
used. When experimenting or designing the model, a lower resolution should be
sufficient though.

An example of this issue can be seen in figure 3.12, where a model of the En-
terprise was intentionally created at a low resolution to better illustrate how the
different stages of the algorithm work. The unsmoothed mesh is visibly bumpy,
but those artifacts are removed after smoothing (although the smoothing does
distort texture details as mentioned in Section 3.6).

Mesh smoothing as a post-process can help with the problem of removing
the artifacts from the mesh, but it is not sufficient on its own. However, artifacts
can be more than adequately dealt with by creating the model at a larger voxel
grid resolution, and then applying mesh smoothing.

Unfortunately, the higher the voxel grid resolution, the slower the algorithm,
especially the voxel detailing stage: each surface voxel in the model must be
detailed, and the number of surface voxels is quadratic in the dimensions of the
voxel grid.
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Consequently, when generating high quality models for production use, they
must be generated at a relatively high resolution, and mesh smoothing is rec-
ommended. As a result, their generation is likely to be slow, and may require
out-of-core processing (which can easily be implemented with an octree).

4.4.2 Curves and Very Fine Detailing

A second limitation is that texturing at a per-voxel level may be insufficient for
certain types of detailing, in certain cases.

This is once again to do with the discrete nature of the underlying voxel
grid. The detailing process is also bound by this discreteness, and this can
cause issues for very fine details and curves.

The detailing rule set cannot create details at a sub-voxel scale, because it
cannot operate at a level lower than a single voxel. This means that it may be
impossible to create very fine detail without increasing the voxel grid size, and
possibly modifying the detailing rule set to handle the changed voxel grid size.

Related to this, curves created at small scales by the detailing rule set may
be visibly “blocky”. This is for the same reasons as described in the previous
section (4.4.1), but in the context of the surface, as opposed to the structure of
the voxel grid itself.

For example, an elaborate spiral design with very fine curved detail on the
side of a spaceship would almost certainly run into sampling issues if created
with a detailing rule set.

A possible solution to this problem would be allowing the addition of decal
textures to the final version of the mesh. The detailing rule system could be
extended to allow the specification of how arbitrary textures could be projected
onto parts of the generated mesh. These decals would then replace, or blend
with, the textures assigned at a voxel-level and display detail that could not be
created within the detailing rule set framework. However, we did not implement
this solution, and leave it to future work.

Alternatively, the desired detailing features could be added by hand, using
external mesh editing software.

4.5 Summary

The results of our testing are very encouraging. There are some areas of minor
concern, but our shape grammar extensions do bring new functionality to the
procedural design process, and all indications are that our algorithm is com-
pletely viable.

In terms of performance, the running times and memory usage do scale very
quickly with the voxel grid size, but as mentioned in Sections 3.7.3 and 3.4.2,
there are optimizations that could reduce these costs significantly.

Nevertheless, the running times are reasonable for an offline generation work-
flow (even at large voxel grid sizes), and the memory requirements are well
within reach of medium- to high-end computers, where 4 gigabytes of RAM is
common.

Additionally, in practice, users can prototype their grammars and rule sets at
lower voxel grid resolutions and then do off-line generation of a high resolution
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model for actual use. This means the long running times for large models will
not significantly disrupt work-flow.

The variation and output range testing both indicate that our extensions
increase the generative range of shape grammars without limiting any existing
features. We are able to produce a wide range of models that exploited the
features of our extensions to produce content that would be much more difficult,
or impossible, to create with a conventional shape grammar implementation.

There are limitations to our shape grammar extensions, mostly linked to the
discrete nature of the underlying voxel grid. However, these limitations are not
critical, and none of them should be problematic in the majority of cases.

Overall, the results of our testing provide positive answers to our original
research questions, which indicates that we have met our success criteria. Hence
we conclude that our algorithm meets the original design goals: It is viable for
real-world use, and successfully addresses the weaknesses in conventional shape
grammars that we originally identified.



Chapter 5

Conclusion

This thesis has covered novel extensions to shape grammars, aimed at addressing
two deficiencies that occur when using mesh-based representations of shapes.

Firstly, there are issues with complex 3D models created by means of Boolean
(CSG) operations. Boolean geometry is difficult to perform with meshes as it
requires clipping of edges, removal of vertices, and the creation of new edges and
vertices to adequately join shapes. Beyond these geometric difficulties, there are
still challenges with texture seams and issues of robustness.

Secondly, there are difficulties with sub-, or trans-, shape detailing using
mesh-based shape grammars. Mesh detailing is done by texturing the faces of
shapes with 2D images. As a result, it is difficult to have adjoining detailing
that spans multiple faces or operates at scales smaller than a single mesh face.

Our extensions address these issues by voxelizing the shapes output from the
shape grammar. This allows more robust Boolean geometry operations (as these
operations are much simpler to perform accurately with voxels) and a new per-
voxel, rule-based approach to detailing the surface of generated models, where
each voxel can be detailed independently of those around it, allowing fine-grain
control and detailing elements to easily span shapes.

There is an extensive body of research on shape grammars and voxels in
procedural generation, but to the best of our knowledge, our extensions are
novel.

Our algorithm operates in five stages. In the first stage, the shape grammar
is interpreted to produce an output set of shapes. This step is very similar to
the way in which conventional shape grammars operate, and ideas and enhance-
ments from those may be used.

The second stage voxelizes the shape output from the first stage into a voxel
grid. There are several concerns to address in this stage, such as storing the
voxel grid efficiently and the order of shape addition. Metadata can also be
associated with voxels, to aid later detailing.

The voxels are detailed in the third stage of the algorithm. This is done via
a detailing rule set, which operates on each voxel individually, using contextual
information.

Stage four involves the conversion of the voxel grid into a mesh, suitable for
rendering. This is done via the marching cubes algorithm.

The fifth stage, mesh smoothing, is optional but does generally increase the
visual quality of the produced mesh, and is recommended for most situations.
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Our research also included a comprehensive suites of tests to validate our
shape grammar extensions and ensure that they are suitable for real-world use.
This testing produced positive results, with only a few qualifiers about using
our algorithm in certain situations.

Performance testing was aimed at ensuring that our algorithm’s execution
time and memory requirements are acceptable (it can achieve reasonable per-
formance on high-end hardware). The results show that our algorithm is slower
and more memory intensive than conventional shape grammar implementations,
but not outside acceptable limits. Specifically, the running time complexity is
a low-order polynomial, and the memory requirements are within the ability of
current medium to upper end hardware. In light of the increased generative
range our algorithm allows, these increased requirements are acceptable.

In addition, we have outlined a number of possible optimizations that would
decrease memory usage and running times. These would be a benefit to normal
generation, but could possibly also allow real-time, ‘on the fly’ generation of
models.

From a practical perspective, we recommend our shape grammar extensions
only be used when their increased generative range is required. For the gen-
eration of simpler models, conventional mesh-based shape grammars would be
sufficient, and users could switch to using our advanced extensions when neces-
sary to generate more complex models.

The ability to produce a range of outputs from a single algorithm is an
important capability in most areas of procedural generation, including shape
grammars. Our evaluation included variation testing to ensure that we could
use stochastic shape grammars to produce a range of models from a single shape
grammar. The results of this testing indicate that our voxel-space extensions
fully support stochastic grammars, as we were able to to generate groups of
models that shared a similar style and look, but noticeably differed in their
specifics.

The final type of testing, output range testing, was undertaken to verify
that our enhancements allow an increased generative range. In this we cre-
ated grammars targeted at using our extensions to create models that would
be much more difficult to produce with a mesh-based shape grammar. The re-
sultant models exhibited both geometric and surface detail features that would
be extremely challenging to produce under a conventional grammar framework,
such as components whose easy creation relies heavily on CSG and complex cel-
lular automata patterns that span the entire model seamlessly. As outlined in
the introduction chapter, model aspects such as these are challenging to create
under a conventional mesh-based shape grammar system.

5.1 Discussion

The success of our research, and the voxel-space shape grammars it presents,
can be determined by the answers to the three pivotal research questions we
originally laid in section 1.7. We examine the answers to these questions here.

• Question 1: Does using a voxel representation of shapes, instead of a
mesh, solve the limitations of shape grammar implementations as identi-
fied? Can our voxel-space shape grammar extensions produce models that
are difficult or impossible to produce with meshes?
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As Section 4.3 shows, this research question is answered in the affirmative.
Figures 4.6 to 4.14 show a range of models, produced by our implementation,
that conventional shape grammar implementations would struggle to create.
This is due to features such as: complex rule-based detailing, nested Boolean
geometric operations, overlapping shapes with detailing that moves between
them, and having the same complex detailing pattern successfully applied to
multiple models.

• Question 2: What limitations, if any, arise from working in a voxel-
space? Further, are any of these limitations severe enough to make our
algorithm nonviable?

The main limitations that our extensions bring are increased running times
and higher computational resource requirements. There are also potential re-
quirements for the minimum resolution of the voxel grid, to avoid aliasing issues
in the generated mesh. However, none of these make our algorithm nonviable.

• Question 3: Are our extension computationally efficient enough for real-
world use?

In spite of the greater running times and memory usage, our shape grammar
extensions are still efficient enough for offline real-world use, especially if the
optimizations that we were unable to implement due to time constraints are
incorporated. Resource usage is higher than in conventional shape grammar
implementations, but powerful computers that can handle this more intensive
usage are the norm in content generation environments, so the increased re-
quirements are not an obstacle to real-world use.

By examining the results of our testing and evaluation, it can be seen that
our novel shape grammar extensions add new functionality to shape gram-
mars, without losing existing capabilities, and significantly increase the range
of achievable content.

They also meet the three major requirements that we originally set out for
them in our research questions. Their computational performance is within
acceptable bounds, they successfully solve the two deficiencies we originally
identified in conventional implementations, and they do not add any limitations
that cannot be overcome.

These testing results, and the answers to our research questions, show that
using voxel representations of shapes in shape grammars provides a new method
of generating models, that overcomes the limitations we identified in mesh-based
shape grammars. Hence, our shape grammar extensions could be used in content
production environments for the creation of complex models, that are currently
difficult to generate with conventional shape grammars.

The fact that no major limitations are introduced by our extensions, and
that their computational performance is within acceptable bounds, shows that
there are no issues preventing the use of our extensions, and the benefits that
they bring, in a real-world production environment.

5.2 Future Work

There are many avenues for future work on our voxel-space shape grammar
extensions.
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To begin with, the per-voxel detailing stage could be expanded to address
the interior of generated models. In our work, we have only performed detailing
on the surface voxels of the model, but the method could be extended to detail
the interior voxels. This would allow the creation of details such as rooms inside
generated buildings, but would increase the time needed to generate the model
significantly.

Post-processing could also be applied to the voxel grid before it is detailed. A
separate group of rules could be provided to add, remove, and tag voxels before
voxel detailing took place. These rule sets could create detail corresponding
to damage, wear and tear over time, growth of mold, and more. This would
be similar to the voxel detailing, except that this rule set could modify voxels
themselves instead of only their detailing tags.

As our algorithm currently stands, it is not suitable for real-time use. The
memory requirements and long running times mean it could not be used to
procedurally generate models ‘on the fly’. However, because real-time use was
never one of our design criteria, this is acceptable for our research.

Still, it is possible that a highly optimized implementation, possibly using
graphics hardware acceleration and with restricted output scope, could generate
low resolution models in real-time.

It should be possible to develop a hybrid system that combines our voxel-
based approach with a conventional mesh technique. Under this scheme, users
could apply our voxel extensions only where required. Computation costs would
be decreased, without losing the benefits of the voxel extensions.

The voxel detailing rules could be extended to operate at multiple resolutions
of the voxel grid. Octree nodes could easily be coalesced to form a lower-
resolution version of the model, to which the rule set could then be applied.
This would allow the creation of large-scale detailing initially, working down to
finer details as the rules were run at higher resolutions. Additionally, it would
be an easy way to produce lower level-of-detail models.

Finally, there is scope for a user-friendly interface that allows easy use of our
extensions to shape grammars. Such an interface would assist users in designing
surface detailing rules, and handling complex Boolean geometry operations,
especially those in which the order of shape addition is important.
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Additional Performance
Testing Graphs
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Figure A.1: A box and whisker plot showing the range of running times for the
voxelization, voxel detailing, and mesh generation stages of the algorithm, on
voxel grids of size 64.
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Figure A.2: Box and whisker plots showing the range of running times for the
voxelization, voxel detailing, and mesh generation stages of the algorithm, on
voxel grids of size 128 (top) and 256 (bottom).
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Figure A.3: Box and whisker plots showing the range of running times for the
voxelization, voxel detailing, and mesh generation stages of the algorithm, on
voxel grids of size 512.
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Figure A.4: Box and whisker plots showing the range of peak memory usage for
the voxelization, voxel detailing, and mesh generation stages of the algorithm,
on voxel grids of size 64 and 128.
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Figure A.5: Box and whisker plots showing the range of peak memory usage for
the voxelization, voxel detailing, and mesh generation stages of the algorithm,
on voxel grids of size 256 and 512.



Appendix B

Stochastic Shape Grammars

B.1 Castle

1 # ca s t l e shape grammar
2
3 ##########################################################
4 # Global parameter assignment , i n c l ud ing s t o c h a s t i c s t u f f .
5 ##########################################################
6
7 c a s t l e k e e p e x t e n t s = vec3 ( random . randint (300 ,500) ,

random . rand int (50 ,500) , random . rand int (300 ,500) )
8
9 c a s t l e k e e p c e n t r a l i z e d = True

10 i f random . rand int (1 , 2 ) <= 1 :
11 c a s t l e k e e p c e n t r a l i z e d = False
12
13 c a s t l e k e e p o f f s e t = vec3 ( random . uniform (0 , 0 . 2 5 ) ,

random . uniform (0 , 0 . 2 5 ) , random . uniform (0 , 0 . 2 5 ) )
14 c a s t l e k e e p wa l l b o r d e r i n g = vec3 ( random . rand int (−1 ,1) , 0 ,

random . rand int (−1 ,1) )
15
16 c a s t l e k e e p c e n t r a l t ow e r = True
17 i f random . rand int (1 , 2 ) > 1 :
18 c a s t l e k e e p c e n t r a l t ow e r = True
19 else :
20 c a s t l e k e e p c e n t r a l t ow e r = False
21
22 c a s t l e k e ep c o r n e r t owe r s = [True , True , True , True ]
23 for i in range (4 ) :
24 i f random . rand int (1 , 2 ) <= 1 :
25 c a s t l e k e ep c o r n e r t owe r s [ i ] = True
26 else :
27 c a s t l e k e ep c o r n e r t owe r s [ i ] = False
28
29 c a s t l e t o p wa l l e x t e n t s = vec3 ( random . rand int (750 ,1500) , 100 , 50)
30 c a s t l e s i d e w a l l e x t e n t s = vec3 ( random . rand int (750 ,1500) , 100 ,

50)
31 c a s t l e w a l l h e i g h t = random . rand int (100 ,250)
32
33 ca s t l e t owe r w id th = random . randint (100 ,200)
34 c a s t l e t ow e r e x t e n t s = vec3 ( ca s t l e t ower w id th ,

random . rand int (300 ,500) , c a s t l e t owe r w id th )
35 c a s t l e t ow e r p o s i t i o n r e l a t i v e = vec3 (−1 ,0 ,0)
36 i f random . rand int (1 , 2 ) > 1 :

99
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37 c a s t l e t ow e r p o s i t i o n r e l a t i v e =
vec3 ( random . uniform (−1 ,0) ,0 , random . uniform (−1 ,1) )

38
39 c a s t l e t owe r m i r r o r = True
40 i f random . rand int (1 , 3 ) <= 1 :
41 c a s t l e t owe r m i r r o r = False
42
43 c a s t l e g a t e e x t e n t s = vec3 (50 , 50 , c a s t l e t ow e r e x t e n t s [ 2 ] )
44
45 c a s t l e g a t e p o s i t i o n r e l a t i v e = vec3 (0 , 0 , 0 )
46 i f random . rand int (1 , 2 ) > 1 :
47 c a s t l e g a t e p o s i t i o n r e l a t i v e =

vec3 ( random . uniform (−1 ,−0.33333) , 0 , 0 )
48
49 c a s t l e g a t e m i r r o r = False
50 i f random . rand int (1 , 3 ) <= 1 :
51 c a s t l e g a t e m i r r o r = True
52
53 #r e l a t i v e to wa l l
54 c a s t l e b a t t l em e n t s s c a l e f a c t o r = vec3 (1 , 0 . 3 , 0 . 3 )
55 c a s t l e b a t t l emen t s p r e s e n t = True
56 i f random . rand int (1 , 3 ) <= 1 :
57 c a s t l e b a t t l emen t s p r e s e n t = False
58
59 #r e l a t i v e to tower
60 c a s t l e t ow e r b a t t l em en t s s c a l e f a c t o r = vec3 (1 . 33333 , 0 . 2 ,

1 .33333)
61
62 #################################
63 # The ac tua l shape grammar r u l e s .
64 #################################
65
66 def c a s t l e ( parent ) :
67 parent . a c t i v e = False
68
69 keep = Node ( ” c a s t l e k e e p ” )
70 keep . ex t ent s = c a s t l e k e e p e x t e n t s
71 i f c a s t l e k e e p c e n t r a l i z e d :
72 keep . p o s i t i o n = c a s t l e k e e p o f f s e t
73 keep . p o s i t i o n = vec3 ( c a s t l e t o p wa l l e x t e n t s . x ∗

c a s t l e k e e p o f f s e t [ 0 ] + c a s t l e k e e p e x t e n t s [ 0 ] ∗
−c a s t l e k e e p o f f s e t [ 0 ] , 0 , c a s t l e s i d e w a l l e x t e n t s . x
∗ c a s t l e k e e p o f f s e t [ 2 ] + c a s t l e k e e p e x t e n t s [ 2 ] ∗
−c a s t l e k e e p o f f s e t [ 2 ] )

74 else :
75 keep . p o s i t i o n = vec3 ( c a s t l e t o p wa l l e x t e n t s . x ∗

c a s t l e k e e p wa l l b o r d e r i n g [ 0 ] +
c a s t l e k e e p e x t e n t s [ 0 ] ∗
−c a s t l e k e e p wa l l b o r d e r i n g [ 0 ] , 0 ,
c a s t l e s i d e w a l l e x t e n t s . x ∗
c a s t l e k e e p wa l l b o r d e r i n g [ 2 ] +
c a s t l e k e e p e x t e n t s [ 2 ] ∗
−c a s t l e k e e p wa l l b o r d e r i n g [ 2 ] )

76 keep . p o s i t i o n [ 1 ] = keep . ex t ent s [ 1 ]
77 keep . tags . append ( ” c a s t l e k e e p ” )
78 keep . p r i o r i t y = 0
79
80 top wa l l = Node ( ” c a s t l e w a l l ” )
81 top wa l l . ex t en t s = c a s t l e t o p wa l l e x t e n t s
82 top wa l l . ex t en t s . y = c a s t l e w a l l h e i g h t
83 top wa l l . p o s i t i o n = vec3 (0 , c a s t l e wa l l h e i g h t ,

c a s t l e s i d e w a l l e x t e n t s . x )
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84 top wa l l . tags . append ( ” c a s t l e w a l l ” )
85 top wa l l . p r i o r i t y = 0
86 top wa l l . setSymmetry ( ” r e f l e c t i v e ” , vec3 (0 , 0 , 0 ) , vec3 (0 , 0 ,

1) )
87
88 s i d e wa l l = Node ( ” c a s t l e w a l l ” )
89 s i d e wa l l . ex t ent s = c a s t l e s i d e w a l l e x t e n t s
90 s i d e wa l l . ex t ent s . y = c a s t l e w a l l h e i g h t
91 s i d e wa l l . p o s i t i o n = vec3 ( c a s t l e t o p wa l l e x t e n t s . x ,

c a s t l e wa l l h e i g h t , 0)
92 s i d e wa l l . o r i e n t a t i o n = mat3 . r o t a t i on (math . p i / 2 ,

vec3 (0 , 1 , 0 ) )
93 s i d e wa l l . tags . append ( ” c a s t l e w a l l ” )
94 s i d e wa l l . p r i o r i t y = 0
95 s i d e wa l l . setSymmetry ( ” r e f l e c t i v e ” , vec3 (0 , 0 , 0 ) , vec3 (1 , 0 ,

0) )
96
97 return [ top wal l , s i d e wa l l , keep ]
98
99 def c a s t l e w a l l ( parent ) :

100 parent . name = ” r e c t ang l e ”
101
102 tower = Node ( ” c a s t l e t owe r ” )
103 tower . ex t ent s = c a s t l e t ow e r e x t e n t s
104 tower . p o s i t i o n =

parent . c o r n e r r e l a t i v e ( c a s t l e t ow e r p o s i t i o n r e l a t i v e [ 0 ] ,
c a s t l e t ow e r p o s i t i o n r e l a t i v e [ 1 ] ,
c a s t l e t ow e r p o s i t i o n r e l a t i v e [ 2 ] )

105 tower . p o s i t i o n [ 1 ] = tower . p o s i t i o n [ 1 ] + tower . ex t ent s [ 1 ] −
parent . ex t ent s [ 1 ]

106 tower . tags . append ( ” c a s t l e t owe r ” )
107 i f c a s t l e t owe r m i r r o r :
108 tower . setSymmetry ( ” r e f l e c t i v e ” , parent . po s i t i on ,

vec3 (1 , 0 , 0 ) )
109
110 batt lements = Node ( ” c a s t l e b a t t l emen t s ” )
111 batt lements . ex t ent s = vec3 ( parent . ex t ent s [ 0 ] ∗

c a s t l e b a t t l em e n t s s c a l e f a c t o r [ 0 ] , parent . ex t en t s [ 1 ] ∗
c a s t l e b a t t l em e n t s s c a l e f a c t o r [ 1 ] , parent . ex t en t s [ 2 ] ∗
c a s t l e b a t t l em e n t s s c a l e f a c t o r [ 2 ] )

112 batt lements . p o s i t i o n = parent . c o r n e r r e l a t i v e ( 0 , 1 , 1 )
113 batt lements . tags . append ( ” c a s t l e b a t t l emen t s ” )
114 batt lements . setSymmetry ( ” r e f l e c t i v e ” , parent . po s i t i on ,

vec3 (0 , 0 , 1 ) )
115
116 gate = Node ( ” c a s t l e g a t e ” )
117 gate . ex t ent s = c a s t l e g a t e e x t e n t s
118 gate . ex t ent s [ 1 ] = gate . ex t ent s [ 1 ] ∗ 0.66666
119 gate . p o s i t i o n =

parent . c o r n e r r e l a t i v e ( c a s t l e g a t e p o s i t i o n r e l a t i v e [ 0 ] ,
c a s t l e g a t e p o s i t i o n r e l a t i v e [ 1 ] ,
c a s t l e g a t e p o s i t i o n r e l a t i v e [ 2 ] )

120 gate . p o s i t i o n [ 1 ] = gate . p o s i t i o n [ 1 ] + gate . ex t ent s [ 1 ] −
parent . ex t ent s [ 1 ]

121 gate . tags . append ( ” c a s t l e g a t e ” )
122 i f c a s t l e g a t e m i r r o r :
123 gate . setSymmetry ( ” r e f l e c t i v e ” , parent . po s i t i on ,

vec3 (1 , 0 , 0 ) )
124 gate . add i t i v e = False
125
126 r e t = [ tower , gate ]
127 i f c a s t l e b a t t l emen t s p r e s e n t :
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128 r e t . append ( batt lements )
129 return r e t
130
131 def c a s t l e t owe r ( parent ) :
132 parent . name = ” cy l i nd e r ”
133
134 tower batt l ements = Node ( ” c a s t l e t owe r ba t t l emen t s ” )
135 tower batt l ements . p o s i t i o n = parent . c o r n e r r e l a t i v e (0 , 1 , 0 )
136 tower batt l ements . ex t ent s = vec3 ( parent . ex t en t s [ 0 ] ∗

c a s t l e t ow e r b a t t l em en t s s c a l e f a c t o r [ 0 ] ,
parent . ex t ent s [ 1 ] ∗
c a s t l e t ow e r b a t t l em en t s s c a l e f a c t o r [ 1 ] ,
parent . ex t ent s [ 2 ] ∗
c a s t l e t ow e r b a t t l em en t s s c a l e f a c t o r [ 2 ] )

137 tower batt l ements . tags . append ( ” tower batt l ements ” )
138
139 return [ tower batt l ements ]
140
141 def c a s t l e b a t t l emen t s ( parent ) :
142 parent . name = ” r e c t ang l e ”
143
144 return [ ]
145
146 def c a s t l e t owe r ba t t l emen t s ( parent ) :
147 parent . name = ” cy l i nd e r ”
148
149 sub t r a c t i v e a r e a = Node ( ” cy l i nd e r ” )
150 sub t r a c t i v e a r e a . add i t i v e = False
151 sub t r a c t i v e a r e a . ex t ent s = vec3 ( parent . ex t ent s [ 0 ] ∗ 0 . 8 ,

parent . ex t ent s [ 1 ] ∗ 2 , parent . ex t ent s [ 2 ] ∗ 0 . 8 )
152 s ub t r a c t i v e a r e a . p o s i t i o n = parent . c o r n e r r e l a t i v e (0 , 2 , 0 )
153 s ub t r a c t i v e a r e a . p r i o r i t y = parent . p r i o r i t y − 1
154 sub t r a c t i v e a r e a . tags . append ( ” t owe r ba t t l emen t s sub t r a c t i v e a r e a ” )
155
156 return [ s ub t r a c t i v e a r e a ]
157
158 def c a s t l e g a t e ( parent ) :
159 parent . name = ” r e c t ang l e ”
160
161 arch = Node ( ” cy l i nd e r ” )
162 arch . o r i e n t a t i o n = mat3 . r o t a t i on (math . p i / 2 , vec3 (1 , 0 , 0 ) )
163 arch . ex t ent s = vec3 ( parent . ex t ent s [ 0 ] , parent . ex t en t s [ 2 ] ,

parent . ex t ent s [ 0 ] )
164 arch . p o s i t i o n = parent . c o r n e r r e l a t i v e (0 , 1 , 0 )
165 arch . add i t i v e = False
166 arch . tags . append ( ” g a t e s ub t r a c t i v e a r e a ” )
167
168 return [ arch ]
169
170 def c a s t l e k e e p ( parent ) :
171 parent . name = ” r e c t ang l e ”
172
173 r e t = [ ]
174
175 roo f = Node ( ” r e c t ang l e ” )
176 r oo f . o r i e n t a t i o n = mat3 . r o t a t i on (math . p i / 4 , vec3 (0 , 0 , 1 ) )
177 r oo f . ex t ent s = vec3 ( parent . ex t ent s [ 0 ] / 2 . 0 ,

parent . ex t ent s [ 0 ] / 2 . 0 , parent . ex t ent s [ 2 ] )
178 r oo f . p o s i t i o n = parent . c o r n e r r e l a t i v e (0 , 1 , 0 )
179 r oo f . tags . append ( ” keep roo f ” )
180
181 r e t . append ( r oo f )
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182
183 c en t r a l t owe r = Node ( ” c a s t l e t owe r ” )
184 c en t r a l t owe r . ex t ent s = c a s t l e t ow e r e x t e n t s
185 c en t r a l t owe r . p o s i t i o n = parent . c o r n e r r e l a t i v e ( 0 , 1 , 0 ) +

vec3 (0 , c a s t l e t ow e r e x t e n t s [ 1 ] , 0 )
186 c en t r a l t owe r . tags . append ( ” keep tower ” )
187 i f c a s t l e k e e p c e n t r a l t ow e r :
188 r e t . append ( c en t r a l t owe r )
189
190 count = 0
191 for i in c a s t l e k e ep c o r n e r t owe r s :
192 count = count + 1
193 i f i :
194 corne r tower = Node ( ” c a s t l e t owe r ” )
195 corner tower . ex t ent s = c a s t l e t ow e r e x t e n t s
196 corner tower . tags . append ( ” keep tower ” )
197
198 t pos = vec3 (0 , 0 , 0 )
199 i f count == 1 :
200 t pos = vec3 (−1 ,0 ,−1)
201 e l i f count == 2 :
202 t pos = vec3 (−1 ,0 ,1)
203 e l i f count == 3 :
204 t pos = vec3 (1 ,0 ,−1)
205 e l i f count == 4 :
206 t pos = vec3 (1 , 0 , 1 )
207
208 corner tower . p o s i t i o n =

parent . c o r n e r r e l a t i v e ( t po s [ 0 ] , 0 , t po s [ 2 ] )
209 corner tower . p o s i t i o n [ 1 ] = −parent . ex t ent s [ 1 ] +

corner tower . ex t ent s [ 1 ]
210 r e t . append ( corner tower )
211
212 g round subt r a c t i v e th ing = Node ( ” r e c t ang l e ” )
213 g round subt r a c t i v e th ing . ex t ent s = parent . ex t en t s
214 g round subt r a c t i v e th ing . p o s i t i o n = vec3 (0 ,

−g round sub t r a c t i v e th ing . ex t ent s [ 1 ] ∗ 2 , 0)
215 g round subt r a c t i v e th ing . add i t i v e = False
216 g round subt r a c t i v e th ing . p r i o r i t y = parent . p r i o r i t y − 5
217 r e t . append ( g round subt r a c t i v e th ing )
218
219 return r e t

B.2 Space Station

1 # Stocha s t i c Space Stat i on Grammar
2
3 ##########################################################
4 # Global parameter assignment , i n c l ud ing s t o c h a s t i c s t u f f .
5 ##########################################################
6
7 spa c e s t a t i on num sp i r e s = random . rand int (1 , 7 )
8 space s ta t i on num spokes = random . randint (1 , 7 )
9

10 s p a c e s t a t i o n r a d i u s = random . rand int (50 ,80)
11 s p a c e s t a t i o n e x t e n t s = vec3 ( s pa c e s t a t i o n r ad i u s ,

random . rand int (10 ,25) , s p a c e s t a t i o n r a d i u s )
12
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13 s p a c e s t a t i o n s u b t r a c t i v e d i s k r a d i u s = sp a c e s t a t i o n r a d i u s ∗
random . uniform (0 . 5 , 0 . 85 )

14 s p a c e s t a t i o n s u b t r a c t i v e d i s k e x t e n t s =
vec3 ( s p a c e s t a t i o n s ub t r a c t i v e d i s k r a d i u s ,
s p a c e s t a t i o n e x t e n t s [ 1 ] ∗ 1 . 2 ,
s p a c e s t a t i o n s u b t r a c t i v e d i s k r a d i u s )

15
16 s s s p i r e e x t e n t s = vec3 ( random . rand int (10 ,15) ,

random . rand int (20 ,50) , random . rand int (10 ,15) )
17 s s s p i r e s h a p e = ” e l l i p s o i d ”
18 i f random . rand int (1 , 2 ) <= 1 :
19 s s s p i r e s h a p e = ” cy l i nd e r ”
20
21 s s s p ok e e x t en t s = vec3 ( random . rand int (3 , 8 ) ,

s p a c e s t a t i o n r a d i u s / 2 . 0 , random . rand int (3 , 8 ) )
22
23 s s c e n t r e r a d i u s = random . rand int (7 , 15 )
24 s s c e n t r e e x t e n t s = vec3 ( s s c e n t r e r a d i u s ,

random . rand int (10 ,30) , s s c e n t r e r a d i u s )
25 s s c en t r e s h ap e = ” e l l i p s o i d ”
26 i f random . rand int (1 , 2 ) <= 1 :
27 s s c en t r e s h ap e = ” cy l i nd e r ”
28
29 s s s p i r e t ow e r s c a l e f a c t o r = vec3 ( random . uniform (0 . 5 , 0 . 9 ) ,

random . uniform (0 . 4 , 0 . 6 ) , random . uniform ( 0 . 5 , 0 . 9 ) )
30
31 s s t ow e r t o p s c a l e f a c t o r = random . uniform ( 0 . 5 , 0 . 8 )
32 s s t owe r t op p r e s en t = True
33 i f random . rand int (1 , 2 ) <= 1 :
34 s s t owe r t op p r e s en t = False
35
36 #################################
37 # The ac tua l shape grammar r u l e s .
38 #################################
39
40 def s p a c e s t a t i o n ( parent ) :
41 parent . a c t i v e = False
42
43 #make r ing us ing sub t ra c t i on
44 r ing = Node ( ” e l l i p s o i d ” )
45 r ing . p o s i t i o n = vec3 (0 , 0 , 0 )
46 r ing . ex t ent s = sp a c e s t a t i o n e x t e n t s
47 r ing . tags = [ ” r ing ” ]
48 r ing . p r i o r i t y = 0
49
50 s ub t r a c t i v e r i n g = Node ( ” cy l i nd e r ” )
51 s ub t r a c t i v e r i n g . p o s i t i o n = vec3 (0 , 0 , 0 )
52 s ub t r a c t i v e r i n g . ex t ent s =

s p a c e s t a t i o n s u b t r a c t i v e d i s k e x t e n t s
53 s ub t r a c t i v e r i n g . add i t i v e = False
54 s ub t r a c t i v e r i n g . p r i o r i t y = r ing . p r i o r i t y − 1
55
56 #make s p i r e
57 s p i r e = Node ( ” s p i r e ” )
58 s p i r e . p o s i t i o n = vec3 ( s p a c e s t a t i o n r ad i u s , 0 , 0 )
59 s p i r e . ex t ent s = s s s p i r e e x t e n t s
60 s p i r e . tags . append ( ” s p i r e ” )
61 s p i r e . setSymmetry ( ” r o t a t i o n a l ” , vec3 (0 , 0 , 0 ) , vec3 (0 , 1 , 0 ) ,

s pa c e s t a t i on num sp i r e s )
62 s p i r e . p r i o r i t y = sub t r a c t i v e r i n g . p r i o r i t y − 1
63
64 #add spokes
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65 spoke = Node ( ” spa c e s t a t i on spok e ” )
66 spoke . p o s i t i o n = vec3(− s p a c e s t a t i o n r a d i u s / 2 . 0 , 0 , 0)
67 spoke . ex t ent s = s s s p ok e e x t en t s
68 spoke . o r i e n t a t i o n = mat3 . r o t a t i on (math . p i / 2 , vec3 (0 , 0 , 1 ) )
69 spoke . tags . append ( ” spoke” )
70 spoke . setSymmetry ( ” r o t a t i o n a l ” , vec3 (0 , 0 , 0 ) , vec3 (0 , 1 , 0 ) ,

space s ta t i on num spokes )
71 spoke . p r i o r i t y = −5
72
73 #add c en t r a l blob
74 cent = Node ( s s c en t r e s h ap e )
75 cent . p o s i t i o n = vec3 (0 , 0 , 0 )
76 cent . ex t ent s = s s c e n t r e e x t e n t s
77 cent . tags . append ( ” cent r e ” )
78 cent . p r i o r i t y = sub t r a c t i v e r i n g . p r i o r i t y − 1
79
80 return [ r ing , s ub t r a c t i v e r i n g , sp i r e , spoke , cent ]
81
82 def s pa c e s t a t i on spok e ( parent ) :
83 parent . name = ” cy l i nd e r ”
84
85 subspoke = Node ( ” cy l i nd e r ” )
86 subspoke . p o s i t i o n = vec3 (0 , 0 , 0 )
87 subspoke . add i t i v e = False
88 subspoke . ex t ent s . x = parent . ex t ent s . x ∗ 0 .5
89 subspoke . ex t ent s . y = parent . ex t ent s . y ∗ 1 .2
90 subspoke . ex t ent s . z = parent . ex t ent s . z ∗ 0 .5
91 subspoke . p r i o r i t y = −10
92 subspoke . tags . append ( ” spoke passage ” )
93
94 return [ subspoke ]
95
96 def s p i r e ( parent ) :
97 parent . name = s s s p i r e s h a p e
98
99 tow = Node ( ” tower” )

100 tow . p o s i t i o n = parent . c o r n e r r e l a t i v e (0 , 1 , 0 )
101 tow . ex tent s = vec3 ( parent . ex t ent s . x ∗

s s s p i r e t ow e r s c a l e f a c t o r . x , parent . ex t ent s . y ∗
s s s p i r e t ow e r s c a l e f a c t o r . y , parent . ex t ent s . z ∗
s s s p i r e t ow e r s c a l e f a c t o r . z )

102 tow . setSymmetry ( ” r e f l e c t i v e ” , parent . po s i t i on , vec3 (0 , 1 , 0 ) )
103
104 return [ tow ]
105
106 def tower ( parent ) :
107 parent . name = ” cy l i nd e r ”
108
109 r e t = [ ]
110
111 i f s s t owe r t op p r e s en t :
112 tower top = Node ( ” cy l i nd e r ” )
113 tower top . tags . append ( ” tower” )
114 tower top . p o s i t i o n = parent . c o r n e r r e l a t i v e ( 0 , 1 , 0 )
115 tower top . ex t ent s = parent . ex t ent s ∗

s s t ow e r t o p s c a l e f a c t o r
116
117 r e t . append ( tower top )
118
119 return r e t
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B.3 Tank

1 # a simple tank , f o r use with the camouflage pattern .
2
3 ##########################################################
4 # Global parameter assignment , i n c l ud ing s t o c h a s t i c s t u f f .
5 ##########################################################
6
7 tank body length = random . rand int (100 , 180)
8 tank body width = random . rand int (60 , 100)
9 tank body he ight = random . rand int (15 , 35)

10 t ank po s i t i on = vec3 (0 , 0 , 0 )
11
12 tank body bump s i ze fac to r = vec3 ( random . uniform (0 . 5 , 0 . 9 ) ,

random . uniform (0 . 1 , 0 . 3 ) , random . uniform ( 0 . 5 , 0 . 9 ) )
13
14 t a n k s i d e i n d e n t a t i o n o f f s e t = random . uniform (−1 ,1)
15 t ank s i d e i nd en t a t i o n l e n g t h = random . uniform (0 . 5 , 1 . 5 )
16 t a nk s i d e i n d en t a t i o n r o t a t i o n = math . p i / 4 ∗

random . uniform (0 . 5 , 1 . 5 )
17
18 #r e l a t i v e to body
19 t a n k t u r r e t o f f s e t = vec3 ( random . uniform ( −0 .5 ,0 .5 ) , 1 . 5 ,

random . uniform (−0.75 , 0 . 75 ) )
20 t a n k t u r r e t s i z e f a c t o r = vec3 ( random . uniform ( 0 . 5 , 0 . 7 5 ) ,

random . uniform ( 0 . 5 , 0 . 8 ) , random . uniform ( 0 . 5 , 0 . 7 5 ) )
21 t ank tu r r e t doub l e = False
22 i f random . rand int (1 , 2 ) <= 1 :
23 t a n k t u r r e t s i z e f a c t o r = vec3 ( random . uniform ( 0 . 3 , 0 . 5 ) ,

random . uniform ( 0 . 3 , 0 . 5 ) , random . uniform ( 0 . 3 , 0 . 8 ) )
24 t a n k t u r r e t o f f s e t = vec3 ( random . uniform ( 0 . 5 , 0 . 8 ) , 1 . 5 ,

random . uniform (−0.75 , 0 . 8 ) )
25 t ank tu r r e t doub l e = True
26
27 #r e l a t i v e to the body
28 t a n k t r e a d o f f s e t = vec3 ( random . uniform ( 0 . 4 , 0 . 8 ) , −1,

random . uniform (−0.5 , 0 . 5 ) )
29 t a n k t r e a d s i z e f a c t o r = vec3 ( 0 . 2 5 , 1 , random . uniform (0 . 7 5 , 1 . 1 ) )
30
31 #r e l a t i v e to the body length
32 tank gun bar r e l w id th = random . uniform (0 . 0 5 , 0 . 1 )
33 t a nk gun s i z e f a c t o r = vec3 ( tank gun barre l w idth ,

random . uniform ( 0 . 4 , 0 . 6 ) , t ank gun bar r e l w id th )
34 t ank gun o f f s e t = vec3 ( random . uniform (−0.5 ,0) ,

random . uniform ( 0 , 0 . 5 ) , 0)
35
36 tank double guns = False
37 i f random . rand int (1 , 2 ) <= 1 :
38 t a nk gun s i z e f a c t o r = vec3 ( tank gun bar r e l w id th ∗ 0 . 6 ,

random . uniform ( 0 . 3 , 0 . 5 ) , t ank gun bar r e l w id th ∗ 0 . 6 )
39 t ank gun o f f s e t = vec3 ( random . uniform (−0.75 ,0) ,

random . uniform ( 0 , 0 . 5 ) , 0)
40 tank double guns = True
41
42 #r e l a t i v e to the gun
43 t a n k g un t i p s i z e f a c t o r = vec3 ( random . uniform ( 0 . 5 , 1 . 2 ) ,

random . uniform ( 0 . 2 , 0 . 5 ) , random . uniform ( 0 . 5 , 1 . 2 ) )
44 t a n k gun t i p o f f s e t = vec3 (0 , random . uniform ( 0 . 5 , 1 ) , 0)
45 tank gun shape = ” cy l i nd e r ”
46 tank gun t ip type = random . rand int (1 , 3 )
47 i f tank gun t ip type == 1 :
48 tank gun shape = ” r e c t ang l e ”
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49 e l i f t ank gun t ip type == 2 :
50 tank gun shape = ” e l l i p s o i d ”
51
52 t ank ba ck a r e a s i z e = vec3 ( random . uniform ( 0 . 3 , 1 . 1 ) ,

random . uniform ( 0 . 3 , 0 . 7 5 ) , random . uniform ( 0 . 1 , 0 . 3 ) )
53 t ank ba c k a r e a o f f s e t = vec3 ( random . uniform ( −0 .2 ,0 .2 ) ,

random . uniform (0 . 5 , 0 . 75 ) , random . uniform (−1 ,−0.8) )
54
55 #################################
56 # The ac tua l shape grammar r u l e s .
57 #################################
58
59 def tank ( parent ) :
60 parent . a c t i v e = False
61
62 r e t = Node ( ” tank main body” )
63 r e t . ex t ent s = vec3 ( tank body width , tank body height ,

tank body length )
64 r e t . p o s i t i o n = tank po s i t i on
65 r e t . tags . append ( ”main body” )
66 r e t . p r i o r i t y = 0
67
68 return [ r e t ]
69
70 def tank main body ( parent ) :
71 parent . name = ” r e c t ang l e ”
72
73 t op r a i s e d a r e a = Node ( ” r e c t ang l e ” )
74 t op r a i s e d a r e a . ex t ent s = vec3 ( parent . ex t ent s . x ∗

tank body bump s i ze fac to r . x , parent . ex t ent s . y ∗
tank body bump s i ze fac to r . y , parent . ex t ent s . z ∗
tank body bump s i ze fac to r . z )

75 t op r a i s e d a r e a . p o s i t i o n = parent . c o r n e r r e l a t i v e (0 , 1 , 0 )
76
77 ba ck r a i s ed a r e a = Node ( ” r e c t ang l e ” )
78 ba ck r a i s ed a r e a . ex t ent s = vec3 ( parent . ex t ent s . x ∗

t ank ba ck a r e a s i z e . x , parent . ex t ent s . y ∗
t ank ba ck a r e a s i z e . y , parent . ex t ent s . z ∗
t ank ba ck a r e a s i z e . z )

79 ba ck r a i s ed a r e a . p o s i t i o n =
parent . c o r n e r r e l a t i v e ( t a nk ba c k a r e a o f f s e t . x ,
t a nk ba c k a r e a o f f s e t . y , t a nk ba c k a r e a o f f s e t . z )

80 ba ck r a i s ed a r e a . p r i o r i t y = −10
81
82 f r on t i nd en t a t i o n = Node ( ” tank indenta t i on ” )
83 f r on t i nd en t a t i o n . ex t ent s = vec3 ( tank body width ,

tank body height , tank body he ight )
84 f r on t i nd en t a t i o n . p o s i t i o n = parent . c o r n e r r e l a t i v e (0 ,−1 ,1)
85 f r on t i nd en t a t i o n . o r i e n t a t i o n = mat3 . r o t a t i on (math . p i / 4 ,

vec3 (1 , 0 , 0 ) )
86 f r on t i nd en t a t i o n . setSymmetry ( ” r e f l e c t i v e ” , t ank pos i t i on ,

vec3 (0 , 0 , 1 ) )
87 f r on t i nd en t a t i o n . add i t i v e = False
88 f r on t i nd en t a t i o n . p r i o r i t y = −5
89
90 s i d e i nd en t a t i o n = Node ( ” tank indenta t i on ” )
91 s i d e i nd en t a t i o n . ex t ent s = vec3 ( tank body height ,

tank body length ∗ t ank s i d e i nd en t a t i on l eng th ,
tank body he ight )

92 s i d e i nd en t a t i o n . p o s i t i o n =
parent . c o r n e r r e l a t i v e ( 1 . 3 , 1 . 3 , t a n k s i d e i n d e n t a t i o n o f f s e t )

93 s i d e i nd en t a t i o n . o r i e n t a t i o n = mat3 . r o t a t i on (math . p i / 2 ,
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vec3 (1 , 0 , 0 ) ) ∗ mat3 . r o t a t i on (math . p i / 4 , vec3 (0 , 0 , 1 ) )
94 s i d e i nd en t a t i o n . setSymmetry ( ” r e f l e c t i v e ” , t ank pos i t i on ,

vec3 (1 , 0 , 0 ) )
95 s i d e i nd en t a t i o n . add i t i v e = False
96 s i d e i nd en t a t i o n . p r i o r i t y = −15
97
98 tu r r e t = Node ( ” t ank tu r r e t ” )
99 t u r r e t . ex t ent s = vec3 ( tank body width ∗

t a n k t u r r e t s i z e f a c t o r [ 0 ] , tank body he ight ∗
t a n k t u r r e t s i z e f a c t o r [ 1 ] , tank body width ∗
t a n k t u r r e t s i z e f a c t o r [ 2 ] )

100 tu r r e t . p o s i t i o n =
parent . c o r n e r r e l a t i v e ( t a n k t u r r e t o f f s e t [ 0 ] ,
t a n k t u r r e t o f f s e t [ 1 ] , t a n k t u r r e t o f f s e t [ 2 ] )

101
102 tu r r e t . tags . append ( ” t u r r e t ” )
103 i f t ank tu r r e t doub l e :
104 t u r r e t . setSymmetry ( ” r e f l e c t i v e ” , t ank pos i t i on ,

vec3 (1 , 0 , 0 ) )
105 tu r r e t . p r i o r i t y = −20
106
107 tread = Node ( ” tank tread ” )
108 tread . ex t ent s = vec3 ( tank body he ight ∗

t a n k t r e a d s i z e f a c t o r [ 1 ] , tank body width ∗
t a n k t r e a d s i z e f a c t o r [ 0 ] , tank body length ∗
t a n k t r e a d s i z e f a c t o r [ 2 ] )

109 tread . p o s i t i o n =
parent . c o r n e r r e l a t i v e ( t a n k t r e a d o f f s e t [ 0 ] ,
t a n k t r e a d o f f s e t [ 1 ] , t a n k t r e a d o f f s e t [ 2 ] )

110 tread . setSymmetry ( ” r e f l e c t i v e ” , parent . po s i t i on , vec3 (1 , 0 , 0 ) )
111 tread . o r i e n t a t i o n = mat3 . r o t a t i on (math . p i / 2 , vec3 (0 , 0 , 1 ) )
112 tread . p r i o r i t y = −20
113 tread . tags . append ( ” tread ” )
114
115 return [ f r on t i nden ta t i on , s i d e i nd en t a t i on , tu r r e t , tread ,

t op r a i s ed a r e a , ba ck r a i s ed a r e a ]
116
117 def t ank indenta t i on ( parent ) :
118 parent . name = ” r e c t ang l e ”
119
120 return [ ]
121
122 def t ank tu r r e t ( parent ) :
123 parent . name = ” e l l i p s o i d ”
124
125 gun = Node ( ” tank gun” )
126 gun . ex t ent s = vec3 ( tank body length ∗

t a n k gun s i z e f a c t o r [ 0 ] , tank body length ∗
t a n k gun s i z e f a c t o r [ 1 ] , tank body length ∗
t a n k gun s i z e f a c t o r [ 2 ] )

127 gun . p o s i t i o n = vec3 (0 , 0 , gun . ex t ent s [ 1 ] ) +
parent . c o r n e r r e l a t i v e ( t ank gun o f f s e t [ 0 ] ,
t ank gun o f f s e t [ 1 ] , t ank gun o f f s e t [ 2 ] )

128
129 gun . o r i e n t a t i o n = mat3 . r o t a t i on (−math . p i / 2 , vec3 (1 , 0 , 0 ) )
130 gun . tags . append ( ”gun” )
131 i f tank double guns :
132 gun . setSymmetry ( ” r e f l e c t i v e ” , parent . po s i t i on ,

vec3 (1 , 0 , 0 ) )
133 gun . p r i o r i t y = −20
134
135 return [ gun ]
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136
137 def tank tread ( parent ) :
138 parent . name = ” cy l i nd e r ”
139
140 return [ ]
141
142 def tank gun ( parent ) :
143 parent . name = ” cy l i nd e r ”
144
145 gun t ip = Node ( ” tank gun t ip ” )
146 gun t ip . ex t ent s = vec3 ( parent . ex t ent s [ 0 ] ∗

t a n k g un t i p s i z e f a c t o r [ 0 ] , parent . ex t en t s [ 1 ] ∗
t a n k g un t i p s i z e f a c t o r [ 1 ] , parent . ex t en t s [ 2 ] ∗
t a n k g un t i p s i z e f a c t o r [ 2 ] )

147 gun t ip . p o s i t i o n =
parent . c o r n e r r e l a t i v e ( t a n k gun t i p o f f s e t [ 0 ] ,
t a n k g un t i p o f f s e t [ 1 ] , t a n k g un t i p o f f s e t [ 2 ] )

148 gun t ip . tags . append ( ” gun t ip ” )
149 gun t ip . p r i o r i t y = −20
150
151 return [ gun t ip ]
152
153 def tank gun t ip ( parent ) :
154 parent . name = tank gun shape
155
156 return [ ]
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