
CROSS-LAYER RACM DESIGN FOR

VERTICALLY INTEGRATED WIRELESS NETWORKS

A dissertation submitted to the Department of Computer Science,
Faculty of Science at the University of Cape Town
in fulfilment of the requirements for the degree of

MASTERS

in

COMPUTER SCIENCE

— Paolo P Pileggi —

Supervisor

Professor Pieter S Kritzinger
University of Cape Town, South Africa

Co-supervisor

Professor Giuseppe Iazeolla
University of Rome ‘Tor Vergata’, Italy

c© Paolo Pietro Pileggi

ABSTRACT

IEEE 802.16 wireless metropolitan area network (WMAN) technology is an improvement on its wireless local
area network (WLAN) counterpart, namely IEEE 802.11, in that it provides longer range and higher bandwidth
capabilities. More importantly, it specifies a connection-oriented medium access control layer (MAC) and schedul-
ing services to support quality of service (QoS) in IEEE 802.16 networks. However, in the standard, scheduling
and connection admission control (CAC) mechanisms are left unspecified, leaving this for network operators to
decide. This allows implementers to create market and performance advantages, making it a rich field of research
and performance analysis.

Typically, researchers studying scheduling and admission control in such wireless networks consider these re-
source and connection management (RaCM) algorithms in isolation: They investigate (1) schedulers while fixing
the admission control processes or using static connection scenarios and (2) admission controllers while fixing the
scheduling processes.

We hypothesize that there exists an interdependent relationship between RaCM components which is an essen-
tial aspect to cross-layer inter-RaCM algorithm design.

In order to prove our hypothesis that you cannot consider the scheduler and the CAC in isolation, where it
involves the performance of IEEE 802.16 networks, we require a performance model: Analytic modelling is
an ideal solution but the system is far too complex. Experimental test beds are expensive, making hardware
experimentation another impractical solution. The only other feasible solution is simulation.

General simulation environments, such as NS2 and OMNeT++, offer IEEE 802.16 libraries and some degree
of development community support. However, for several reasons, as we shall discuss, we developed our own
deep simulator – a discrete-event simulation model of an IEEE vertically integrated wireless Internet scenario.
In particular, we concentrate our effort on the fixed IEEE 802.16 WMAN (802.16-2004), simulating admission
control and scheduling processes exactly.

Both the machine model and workload model play an integral part in obtaining useful performance data: Our
machine model includes particular MAC and physical layer (PHY) functions of the standard, such as framing,
adaptive modulation and coding, fragmentation, and so on, as well as the admission control and scheduling al-
gorithms. For the workload model, we developed a Markov Modulated Arrival Process (MMAP) by combining
existing traffic models of different Internet applications, such as VoIP, P2P, etc. Each application is associated with

i

one of the IEEE 802.16 traffic categories (TCs). The MMAP generates both connection– and packet level data,
maintaining traffic volume ratios, as reported by previous studies of Internet application traffic volumes.

Performance metrics of delay and jitter are calculated per TC connection. This allows a comparison of the
quality of experience (QoE) of an individual user for the duration of a connection. At the connection level, we
report the blocking probability.

By simulating the RaCM with various admission control and scheduling configurations, we were able to show
that there is a significant difference in performance when using different CAC and scheduler combinations. Al-
though hardly surprising, it is still proof that one cannot simply consider either in isolation, as is done in various
performance studies reported in the literature. This interdependent relationship should be considered when design-
ing complementary admission control and scheduling algorithms.

ACKNOWLEDGEMENTS

Professor Kritzinger Thank you for your words of wisdom and for being there when the drama escalated (and
when it didn’t) – for simply being a friend.

Professor Iazeolla You’ve been on board with me and Prof Kritzinger since the start of this MSc. What I have
learnt from you is most certainly priceless. Grazie mille!

Professor Tim Dunne, thank you for the informative and insightful discussion on statistical analysis of the
results.

To those of you close to me, thank you for the support.

Dar es Salaam

2 December 2009

iii

Contents

Abstract i

Acknowledgements iii

Contents iv

List of Figures vii

List of Tables x

1 Introduction 1
1.1 Problem Statement . 2

1.2 Dissertation Contribution . 3

1.3 Dissertation Outline . 3

2 Background 5
2.1 IEEE 802.16 Preliminaries . 5

2.1.1 Operation Modes . 6

2.1.2 Medium Access Control Layer . 7

2.1.3 WirelessMAN-SCTM Physical Layer . 10

2.2 State of the Art . 14

2.2.1 Scheduling . 14

2.2.2 Connection Admission Control . 18

2.2.3 Scheduler and Admission Controller Co-operation . 20

2.3 Performance Modelling . 20

2.3.1 Machine Model . 21

2.3.2 Workload Modelling . 21

3 Analytical Framework 26
3.1 Connection Admission Controller . 26

3.2 Scheduler . 26

3.3 Framework Outline . 27

3.4 BS and SS Architectures . 27

3.5 Multi-modal Property . 29

4 Performance Model 30
4.1 BS Model Architecture Fixed-line Interface Extensions . 30

4.2 System Performance Model . 31

iv

CONTENTS – v –

4.3 Network of Queues Model . 33

4.4 Deep Simulation . 36

4.5 Performance Metrics . 36

5 System Components 39
5.1 Design . 39

5.1.1 SS UL and BS DL Schedulers . 39

5.1.2 BS UL Scheduler . 42

5.1.3 BS Real-time performance estimation . 43

5.1.4 Connection Admission Controller . 43

5.1.5 Workload Generator . 45

5.2 Implementation . 47

5.2.1 Schedulers . 47

5.2.2 Connection Admission Controller . 47

5.2.3 Workload Generator . 47

5.3 Testing . 47

5.3.1 SS UL and BS DL Schedulers . 49

5.3.2 BS UL Scheduler . 49

5.3.3 Connection Admission Controller . 50

5.3.4 Workload Generator . 50

6 Steady-state Analysis 51

7 Experimentation 56
7.1 Hypothesis . 56

7.2 Experimental Design . 57

7.2.1 Independent Variables . 57

7.2.2 Methodology . 57

7.2.3 Model Parameterisation . 59

7.3 Results . 64

8 Conclusion and Future Work 68

Bibliography 69

A Simulator Development 75
A.1 Design . 75

A.1.1 Simulation Engine Design . 75

A.1.2 Simulator Event Design . 77

A.2 Implementation . 89

A.2.1 Simulation Engine Implementation . 89

A.2.2 NoQ Implementation . 89

A.2.3 Component Interface Specifications . 90

A.2.4 Program Execution and File Formats . 93

A.2.5 Output Data Processing . 93

A.3 Testing . 94

– vi – CONTENTS

A.3.1 Simulation Engine Tests . 94
A.3.2 Simulator Event/Integration Tests . 95

B Testing Artifacts 96
B.1 Schedulers . 96

B.1.1 SS UL and BS DL Schedulers . 96
B.1.2 BS UL Scheduler . 96

B.2 CAC . 97
B.3 Workload Generator . 97
B.4 Simulation Engine . 98

C Performance Data Filtering 99
C.1 Initial transient . 99
C.2 Rare event activity-region . 100

List of Figures

1.1 The vertically integrated wireless Internet scenario with the IEEE 802.16 backhaul 2

2.1 IEEE 802.16 air-interface protocol stack, taken from the 2004 standard [27] 5

2.2 Point-to-multipoint topology . 7

2.3 Centralised mesh topology . 7

2.4 Data units showing their flow and relationship in context of the IEEE 802.16 MAC and PHY . . . 8

2.5 Fragmentation of one large MAC SDU into multiple smaller MAC PDUs 9

2.6 Concatenation of multiple small MAC SDUs into one large MAC PDU 9

2.7 MAC SDU format . 10

2.8 MAC PDU format . 10

2.9 TCSPDU format . 10

2.10 TDD frame structure taken from the standard . 12

2.11 DL subframe periods . 13

2.12 UL subframe periods . 13

2.13 Abstraction of the actual system components to form the system model 21

3.1 Roles of, and relationship between, the CAC and scheduler from the CAC’s perspective 26

3.2 Roles of, and relationship between, the scheduler and CAC from the scheduler’s perspective . . . 27

3.3 Information flow between the scheduler and CAC and data flow 28

3.4 BS model architecture . 28

3.5 SS model architecture . 29

4.1 BS model architecture extended to include the fixed-line interface 31

4.2 System performance model . 32

4.3 Request admission-notification process . 32

4.4 Abstracted functional frame . 33

4.5 Network of queues model abstracting the INET fixed-line source and Fin server 33

4.6 Network of queues model model abstracting wireless UL data at the N SSs per TC 34

4.7 Network of queues model model abstracting both wireless and fixed-line data at the BS per TC . . 34

4.8 Network of queues model model abstracting both wireless and fixed-line BWRs at the BS per TC . 35

4.9 Network of queues model model abstracting both wireless and fixed-line data and BWRs at the BS
per TC . 35

4.10 Example detailing the delays experienced by network traffic . 38

5.1 BS DL and SS UL PFC for arrivals at the buffers . 40

5.2 BS DL and SS UL PFC for serving PDUs from the buffers . 41

5.3 Process Flow Chart for the threshold-based QoS-aware CAC . 44

vii

– viii – LIST OF FIGURES

5.4 Scenario of a system actor using the MMAP WLM . 45

5.5 UML class diagram of the workload generator-related classes . 48

6.1 Network of queues annotated for stability analysis . 51

6.2 Link utilisations for a changing UL data frame ratio, with λ = 4.4 Mbps and S = 6 54

7.1 Conceptual system activity levels and components involved . 56

7.2 Mean UGS delay for different workload intensity settings, showing the different RaCM configura-
tions’ results . 64

7.3 Mean rtPS delay for different workload intensity settings, showing the different RaCM configura-
tions’ results . 64

7.4 Mean UGS jitter for different workload intensity settings, showing the different RaCM configura-
tions’ results . 65

7.5 Mean rtPS jitter for different workload intensity settings, showing the different RaCM configura-
tions’ results . 65

7.6 Mean UGS throughput for different workload intensity settings, showing the different RaCM con-
figurations’ results . 65

7.7 Mean rtPS throughput for different workload intensity settings, showing the different RaCM con-
figurations’ results . 65

7.8 Mean BE throughput for different workload intensity settings, showing the different RaCM con-
figurations’ results . 66

7.9 Mean overall throughput for different workload intensity settings, showing the different RaCM
configurations’ results . 66

7.10 Mean UGS blocking probability for different workload intensity settings, showing the different
RaCM configurations’ results . 66

7.11 Mean rtPS blocking probability for different workload intensity settings, showing the different
RaCM configurations’ results . 66

7.12 Standard deviation of UGS delay for consecutive 1000s intervals, showing the different CAC con-
figurations and different workload intensity settings . 67

7.13 Standard deviation of rtPS delay for consecutive 1000s intervals, showing the different CAC con-
figurations and different workload intensity settings . 67

A.1 Overview of the simulator development process . 75

A.2 Basic simulation engine PFC, showing the main components and their interactions 76

A.3 Abstracted functional frame showing the four relevant events identified 77

A.4 Network of queues model, abstracting both wireless and fixed-line data and BW requests at the BS
per TC, showing the 5 identified events . 78

A.5 Basic simulation engine PFC with the process flow blocks of the event routines 79

A.6 EOULSF PFC . 80

A.7 NEXTDIUC PFC . 81

A.8 EODLSF PFC . 82

A.9 NEXTUIUC PFC . 83

A.10 SSARR PFC . 84

A.11 FARR PFC . 85

A.12 WARR PFC . 86

LIST OF FIGURES – ix –

A.13 EOSWDL PFC . 87
A.14 BWRARR PFC . 88
A.15 UML class diagram of the simulation engine-related classes . 89
A.16 UML class diagram of the NoQ-related classes . 90

C.1 Mean number of UGS connections in the system versus simulated time, showing the assumed
initial transient . 99

C.2 Mean number of rtPS connections in the system versus simulated time, showing the assumed initial
transient . 100

C.3 Mean number of UGS connections in the system versus simulated time, showing the assumed rare
event activity-regions . 101

C.4 Mean number of rtPS connections in the system versus simulated time, showing the assumed rare
event activity-regions . 101

List of Tables

2.1 Air interface alternatives . 6
2.2 Typical applications of each TC, taken from the 2004 standard [27] 9
2.3 Baud rates and channel sizes for a roll-off factor of 0.25 taken from the 2004 standard [27] 12
2.4 Relevant mandatory profile (profP1t) parameters as specified by the standard 14
2.5 Scheduler features identified, showing the objective typically sought after 18
2.6 P2P connection-level distribution models and associated parameter values, taken from Erman et

al. [19] . 23
2.7 VoIP connection-level parameters drawn from a VoIP trace, taken from He [23] 24
2.8 UL and DL HTTP packet-level workload parameters . 25
2.9 HTTP connection-level workload parameters . 25

5.1 BS DL and SS UL scheduler variable definitions . 41
5.2 Test case template . 48

7.1 Physical Layer parameter values selected for the baseline model 59
7.2 Workload model parameter values for the system . 61
7.3 CAC parameter values for experimentation . 62
7.4 System scheduler parameter values for experimentation . 63
7.5 Experiment execution parameter values . 63

A.1 PFC variable definitions . 78
A.2 Simulation program command-line input parameters . 93
A.3 BWR trace file entry attributes . 94
A.4 PDU trace file entry attributes . 94

x

CHAPTER 1

INTRODUCTION

Wireless local and metropolitan area network (WLAN/WMAN) technologies, more specifically IEEE 802.11 (or
wireless fidelity, WiFi) and IEEE 802.16 (or wireless interoperability for microwave access, WiMAX), are well-
suited to enterprise networking since wireless offers the advantages of rapid deployment in places that are difficult
to wire. However, these networking standards are relatively young with respect to their traditional mature high-
speed low-latency fixed-line networking counterparts. It is more challenging for the network provider to supply
the necessary quality of service (QoS) to support the variety of existing multimedia services over wireless tech-
nology. Wireless communication is also unreliable in nature, making the provisioning of agreed QoS even more
challenging.

Considering the advantages and disadvantages, wireless networks prove well-suited to connecting rural areas
to the Internet or as a networking solution for areas that are difficult to wire. The focus of this study specifically
pertains to IEEE 802.16 and the part it plays in an IEEE vertically integrated wireless Internet (WIN): IEEE 802.16
is a wireless broadband backhaul technology, capable of connecting local area networks (LANs), wireless or fixed-
line, to the Internet via a high-speed fixed-line link. Figure 1.1 shows the WIN application where the IEEE 802.16
backhaul has a base station (BS) which connects multiple subscriber stations (SSs). Each SS acts as a gateway that
provides backhaul access to a user environment (ENV) and ultimately, the Internet. In this study, the ENV is an
IEEE 802.11 wireless network.

Resource and connection management (RaCM) is important in the IEEE 802.16 backhaul network because it
controls the resources between the ENVs and the Internet. It therefore has a significant impact on the QoS of the
services supported. Amongst providing other functions, the BS provides Internet gateway functionality for its SSs
and implements two interfaces, namely the wireless IEEE 802.16 interface, connecting BS and SSs and, in our case,
the fixed-line Internet interface that connects the BS to the Internet. The BS manages QoS by sharing resources
between the multimedia connections requested by the users, which originate in the ENVs and the Internet. The
network must enforce connection admission control (CAC) and scheduling protocols to maintain acceptable QoS
for admitted connections. These connections carry typical Internet data, such as hypertext transfer protocol (HTTP)
and Voice over Internet Protocol (VoIP) data, which are mapped onto one of the traffic categories (TCs) specified
in the IEEE 802.16 standard. Only once a connection has been granted service may it start generating and sending
its content data to its destination. Each content datum of a granted connection is associated with the TC that the
connection subscribed to and receives service accordingly.

1

– 2 – Chapter 1 — Introduction

Figure 1.1: The vertically integrated wireless Internet scenario with the IEEE 802.16 backhaul

1.1 PROBLEM STATEMENT

IEEE 802.16 specifies a connection-oriented MAC and scheduling services that connections subscribe to in or-
der to promote better QoS management within and across IEEE 802.16 networks. However, the standard does not
specify any scheduling or CAC algorithms, leaving this up to the network operator to decide. This gives imple-
menters the opportunity to create performance advantages and provides a rich field of research and performance
analysis.

As already pointed out, admission control and scheduling have a significant impact on the QoS of the network,
where both are responsible for sharing the available resource amongst user connections. While the scheduler
manages resource at the packet-level, the CAC manages connection-level resource sharing. From this, the question
arises:

What are the roles of, and the relationship between, the CAC and scheduler in the IEEE 802.16 fixed

network?

IEEE 802.16 is still relatively recent and receives a great deal of attention from both industry and research
communities. Hence, in this dissertation, we investigate how admission control and scheduling jointly influence
the QoS in the IEEE 802.16 Internet backhaul application. Understanding the synergism between the CAC and
scheduler will aid the design of better admission control and scheduling algorithms and ultimately lead to more
effective QoS control within the network.

An appropriate traffic model is needed to avoid under- or over-estimation of system performance. Very little
data exist of these networks and therefore, the next question is

How can IEEE 802.16 connection-oriented workload be modelled?

The dissertation will show by means of a simulation study, that there exists a synergy between the IEEE 802.16
CAC and Scheduler when it comes to maintaining QoS. This relationship should be exploited for the design of

Chapter 1 — Introduction – 3 –

joint CAC and scheduling mechanisms, resulting in better RaCM design.

1.2 DISSERTATION CONTRIBUTION

This dissertation makes three contributions to the state of the art of RaCM and IEEE 802.16 performance
modelling for QoS analysis.

• Scheduling and CAC Analytical Framework
The analytical framework [26], presented in Chapter 3, describes the explicit roles of, and the relationships
between, the IEEE 802.16 Scheduler and CAC. These are described in context of the protocol layering
of the standard. Data flow through these layers and components are described. The framework can be
used to develop IEEE 802.16 network performance models for each of the operation modes, described in
Section 2.1.1, and is used to develop the simulation model in this study.

• IEEE vertically integrated wireless Internet discrete-event deep simulator
IEEE 802.16 is a very complex technology. Therefore, to be absolutely sure that it is modelled correctly in
every detail, we developed a discrete-event simulator where we were sure of the implementation, settings
of the various parameter values, and much else. Our simulator investigates the performance of the scenario
shown in Figure 1.1. The analytical framework, described in Chapter 3, is used to develop the system
performance model, described in Chapter 4. Documented in Chapter 5, are the specific CAC, schedulers
and workload model implemented. The simulator development, described in Appendix A, generates both
connection– and packet-level performance data used to analyse the QoS of the IEEE 802.16 backhaul.

• Connection-oriented Workload Model
Even though workload modelling is not the focus of this study, a connection– and packet-level workload
model was developed. Traffic models, based on related work, such as by Walters [64] and He [23] for
HTML and VoIP traffic, respectively, abstract the connection request process and the packet-level behaviour
of specific applications that should subscribe to one of the TCs, described in Section 2.1.2. The packet-
level model is a one-dimensional Markov chain that determines which underlying traffic model is generating
traffic, while connection-request generation streams generate admission and deletion requests in parallel for
the different traffic models.

1.3 DISSERTATION OUTLINE

This dissertation is organised as follows.

Chapter 2: Background
In this chapter, we provide a detailed description of the IEEE 802.16 standard. Since the standard specifies
different network modes, our configuration is identified; only the relevant parts of the standard are detailed
in Section 2.1. In Section 2.2, the existing literature in scheduling and admission control for IEEE 802.16
networks are surveyed and the state of the art is presented. In Section 2.3, performance modelling techniques
are highlighted and, in Section 2.3.2, efforts in workload modelling for wireless and Internet workloads are
surveyed.

Chapter 3: Analytical Framework
In the analytical framework [26], we consider both the CAC and scheduler separately; we identify the re-

– 4 – Chapter 1 — Introduction

spective roles to describe the explicit relationship between these components. In Section 3.3, we describe
data flow through both components and the IEEE 802.16 protocol stack. BS and SS model architectures
are presented in Section 3.4, after which the extensions of the framework to all other modes of operation,
identified in Chapter 2, are described.

Chapter 4: Performance Model
This chapter presents the software engineering artefacts. The abstraction of the actual system (given in
terms of requirements) is translated into software artefacts (the various high-level models), continually being
refined. By ensuring that all these models capture the features of the system, the simulator should be valid,
provided the system implementation is correct.

In particular, the analytical framework is first extended to include the fixed-line Internet interface at the BS.
The system performance model (SPM) is consequently derived and the abstracted time division duplexing
frame is then discussed. The SPM is then used to develop separate network of queues (NoQ) models for the
various parts of the SPM, where after these NoQ models are combined to form one NoQ model to base the
simulation model development upon. Lastly, in Section 4.4, we discuss and motivate the development of a
deep simulator for performance analysis of this study. Section 4.5 identifies the performance metrics to be
observed in the context of the NoQ.

Chapter 5: System Components
In this chapter, we present the design, implementation and testing of the admission control and scheduling
processes. Each component implements the respective component interface(s) specified by our simulator.
Our simulator development is reported in Appendix A.

Chapter 6: Steady-state Analysis
This chapter presents a mathematical analysis of system utilisation of the uplink and downlink wireless
channel servers. The analysis is used to select parameters that should ensure the system is operating in
steady-state conditions and both uplink and downlink utilisation is unity. The analysis is used to maximise
of both link utilisations.

Chapter 7: Experimentation
This chapter first highlights the hypothesis and proposes how we aim to prove it. Thereafter, we describe
our approach to data analysis. Finally, the results are presented and discussed.

Chapter 8: Conclusion and Future Work
This chapter concludes this study and mentions possible future work.

CHAPTER 2

BACKGROUND

IEEE 802.16-2004, also referred to as fixed WiMAX, is the WirelessMANTM standard for broadband wireless com-
munication capable of spanning metropolitan areas. IEEE 802.16e-2005, mobile WiMAX, specifies the medium
access control (MAC) and physical (PHY) layer amendment for combined fixed and mobile operation in licensed
bands. Since mobility is not in the scope of this project, IEEE 802.16-2004 will be the focal point of this work.

2.1 IEEE 802.16 PRELIMINARIES

The standard specifies two air-interface protocol layers, namely the medium access control layer (MAC) and
the physical layer (PHY). Figure 2.1 shows the data/control plane of the protocol stack, showing the various MAC
sublayers and service access points (SAP), where data protocol units are communicated between adjoining layers
through the SAPs.

Figure 2.1: IEEE 802.16 air-interface protocol stack, taken from the 2004 standard [27]

5

– 6 – Chapter 2 — Background

The MAC, detailed in Section 2.1.2, consists of the service-specific convergence sublayer (SS CS), the MAC
common part sublayer (MAC CPS) and the security sublayer, where the security sublayer is out of the scope of
this work and is therefore ignored. The standard-defined scheduling services and the various data units that pass
through the MAC, are then described.

The IEEE 802.16 standard specifies five different air interfaces. These are summarized in Table 2.1. In Ta-

Designation Applicability Options Duplexing Operation
options

WirelessMAN-SCTM 10 – 66GHz TDD/FDD LOS
WirelessMAN-SCaTM Below 11GHz AAS/ARQ/ TDD/FDD NLOS

licensed bands STC
WirelessMAN-ODFMTM Below 11GHz AAS/ARQ/ TDD/FDD NLOS

licensed bands Mesh/STC
WirelessMAN-OFDMATM Below 11GHz AAS/ARQ/ TDD/FDD NLOS

licensed bands STC
WirelessHUMANTM Below 11GHz AAS/ARQ/ TDD NLOS

licensed exempt Mesh/STC
bands

Table 2.1: Air interface alternatives

ble 2.1, adaptive antenna system (AAS) exploits more than one antenna to improve the coverage and the system
capacity. Similarly, spacetime coding (STC) is a method employed to improve the reliability of data transmission
in wireless communication systems using multiple transmit antennas. STCs rely on transmitting multiple, redun-
dant copies of a data stream to the receiver in the hope that at least some of them may survive the physical path
between transmission and reception in a ‘good enough’ state to allow reliable decoding. Mesh refers to the network
architecture and automatic repeat request (ARQ) has its usual meaning. Line of sight (LOS) and non-LOS (NLOS)
mean just that. The WirelessMAN-SCTM interface PHY specification, described in Section 2.1.3, is suitable for
our application and is the PHY1 we choose to model.

Four modes of operation, called operation modes, are identified. These modes are a combination of the topology
that the network is operating in and the connection admission grant paradigm implemented.

2.1.1 Operation Modes

A network can operate either in a point-to-multipoint (PMP) or a mesh (MSH) topology. A PMP network,
as shown in Figure 2.2, resembles a single-hop star topology and is managed by one centralised base station
(BS), responsible for sharing the wireless medium amongst, and relaying traffic between, its associated subscriber
stations (SS). SSs may not communicate directly with one another if the network is operating PMP.

A MSH network is characterised by a multi-hop environment where SSs not only communicate directly with the
BS but also directly with each other. The MSH may either be centralised, as shown in Figure 2.3, or distributed.
In a centralised MSH, resource management is the sole responsibility of the BS whereas, in a distributed MSH,
control is shared between two or more BSs.

Since IEEE 802.16-2004 is connection-oriented, a connection admission controller (CAC) must be implemented
at the station(s) managing resource allocation, i.e. the BS(s). Two admission paradigms exist, namely grant-per-

1Henceforth PHY is assumed to refer to the WirelessMAN-SCTM interface

Chapter 2 — Background – 7 –

Figure 2.2: Point-to-multipoint topology Figure 2.3: Centralised mesh topology

connection (GPC) and grant-per-subscriber-station (GPSS). GPC admission controllers receive bandwidth (BW)
requests (BWR) from SSs for individual connections and resources are allocated to each connection by the system
scheduler, located at the BS(s). The scheduler informs each SS of individual connection schedules and the SS
adheres strictly to this schedule.

Systems that implement GPSS allow an SS to make BWRs for an aggregated group of connections. Moreover,
the BS scheduler informs each SS of its allocated resource and the SS is responsible for sharing its resource
amongst the connections it manages. GPSS systems are more scalable than GPC systems. However, in GPSS the
SSs are required to implement an additional scheduling algorithm to share its aggregated bandwidth (BW) grant
amongst the associated connections.

Considering the topologies and admission paradigms described, four operation modes are therefore identified,
each representing a topology-admission paradigm combination. The operation modes are

1. PMP topology with GPC admission control

2. PMP topology with GPSS admission control

3. MSH topology with GPC admission control

4. MSH topology with GPSS admission control

The WirelessMAN-SCTM PHY supports both PMP and MSH topologies. GPC is not supported. As Chapter 4
reports, we model the PHY in operation mode 2, i.e. PMP, GPSS. In Chapter 4 the BS CAC, the uplink (UL) and
downlink (DL) BS schedulers and the UL SS scheduler are discussed.

2.1.2 Medium Access Control Layer

Service-Specific Convergence Sublayer

The SS CS communicates network protocol data units (NPDUs) with the upper network layer and MAC service
data units (SDUs) with the lower MAC CPS through the CS SAP and the MAC SAP, respectively. NPDUs are
mapped onto particular connections and delivered to the MAC CPS as SDUs by the sending entity, as shown in

– 8 – Chapter 2 — Background

Figure 2.4. At the receiving entity, SDUs are received from the MAC CPS by the SS CS and the original NPDU is
extracted and delivered to the network layer again.

Figure 2.4: Data units showing their flow and relationship in context of the IEEE 802.16 MAC and PHY

Two SS CSs are specified by the standard, namely asynchronous transfer mode (ATM) CS and the packet CS.
The relevant CS here is the packet CS since it is used for all packet-based protocols, particularly Internet Protocol
(IP) which is the protocol our model is concerned with.

MAC Common Part Sublayer

The MAC CPS communicates SDUs with the upper SS CS and MAC Protocol Data Units (PDUs) with the
lower-lying PHY (after passing through the security sublayer) through the MAC SAP and PHY SAP, respectively.

The MAC CPS defines fragmentation and concatenation features, shown in Figures 2.5 and 2.6, respectively.
Fragmentation is where, at the sending entity, an SDU larger than a certain length is divided (fragmented) into
smaller parts (called fragments), where each fragment becomes the payload of a separate MAC PDU. Once the
receiving entity has received all fragments of an entire SDU, the fragments are joined (defragmented) and the
original SDU is recovered. Concatenation, on the contrary, is where, at the sending entity, multiple SDUs are be
joined together (concatenated/packed) to form one MAC PDU. This MAC PDU, on entering the MAC CPS of the
receiving entity, is broken into its individual SDUs and these recovered SDUs are separately delivered to the SS
CS. The PHY profile specifies that both fragmentation and concatenation is mandatory but that these features may
be turned off on a per-connection basis. In this study, fragmentation will be used for all connections to limit the
maximum size of data PDU. Concatenation will be ignored.

Scheduling Services

IEEE 802.16-2005 defines five scheduling services, called traffic categories (TC), to which connections may
subscribe. Internet traffic, typically hypertext transfer protocol (HTTP), Voice over Internet Protocol (VoIP), Video
Streaming, peer-to-peer (P2P) and file transfer protocol (FTP) in wireless networks, must be categorised into these
five TC. The four TCs, defined in IEEE 802.16-2004, are extended by including the extended real-time Polling
Service (ertPS) for the mobile system. Mention of ertPS is included here for completeness only but it is not
considered for the system in this study. The five TCs are the following:

Chapter 2 — Background – 9 –

Figure 2.5: Fragmentation of one large MAC SDU
into multiple smaller MAC PDUs

Figure 2.6: Concatenation of multiple small MAC
SDUs into one large MAC PDU

• Unsolicited Grant Service (UGS) is designed to support real-time applications with strict delay requirements.
These are applications that generate fixed-size data packets on a periodic basis, such as T1/E1 and VoIP.

• Real-time Polling Service (rtPS) is designed to support real-time applications with less stringent delay re-
quirements. These applications generate variable-size data packets on a periodic basis, such as moving
pictures experts group (MPEG) streaming video.

• Non-real-time Polling Service (nrtPS) is designed to support delay-tolerant data streams with minimum rate
requirements. Different from rtPS, nrtPS connections have to utilize random access transmit opportunities
for sending bandwidth requests. The nrtPS is suitable for Internet access with a minimum guaranteed rate
and for ATM GFR connections.

• Best Effort (BE) is designed to support data streams for which no minimum transmission rate is required and
therefore may be handled on a space-available basis, such as HTTP. Neither throughput nor delay guarantees
are provided. The SS sends requests for bandwidth in either random access slots or dedicated transmission
opportunities.

• Extended real-time Polling Service (ertPS), added in 802.16e-2005 (or Mobile-WMAN), supports real-time
applications where the applications require guaranteed data rate and delay. This service is for applications
that would typically, in 802.16-2004, subscribe to the rtPS service even though they may behave similarly
to UGS traffic at times, such as VoIP with silence suppression.

A summary of typical applications subscribing to each of these TCs, taken from the standard, are shown in Ta-
ble 2.2. Since the MAC is connection-oriented, connections that wish to receive service from the network need

Category Typical application
UGS E1 transport, VoIP (without silence suppression)
ertPS VoIP (with silence suppression)
rtPS MPEG video
nrtPS FTP with guaranteed minimum throughput
BE HTTP

Table 2.2: Typical applications of each TC, taken from the 2004 standard [27]

to request subscription to one of the TCs. Should the request for admission be successful, the connection should
receive service based on the TC it is subscribed to. Therefore, data transmitted over the network are BWRs, for
requesting new or service change per connection, and connection data, the actual connection content.

– 10 – Chapter 2 — Background

Data Units

The data units already mentioned in this section are the NPDU, the MAC SDU and the MAC PDU. Additionally
there is the optional transmission convergence sublayer (TCS) PDU, situated in the optional TCS of the PHY that
accepts variable-length MAC PDUs through the PHY SAP and forms fixed-length TCS PDU. The TCS PDU is
included in the data units description for completeness but is not modelled since its purpose is beyond the scope
of this work. Figure 2.4 shows both the flow from network to air relationships between the four data units and
their position in the IEEE 802.16 protocol stack for both sending and receiving entities. The process description to
follow is simply reversed in the case of the receiving entity.

On the sending entity’s side, NPDUs are accepted through the CS SAP by the SS CS to form the MAC SDU.
As shown in Figure 2.7, the NPDU is packed into an SDU and associated to some connection. The payload header
suppression index (PHSI) is shown in the figure.

Figure 2.7: MAC SDU format Figure 2.8: MAC PDU format

The variable-length MAC PDU is delivered to the TCS of the PHY through the PHY SAP as the fixed-length
TCS PDU. Each TCS PDU consists of a pointer to the start of the first next MAC PDU of the current TCS PDU,
as shown in Figure 2.9.

Figure 2.9: TCSPDU format

The scheduler must decide which MAC PDUs to place next into the TCS PDU. Once the MAC PDUs are place
in the TCS PDU, they are transmitted. The TCS PDU is not modelled explicitly. In our study we model MAC
PDUs transmitted over the medium once they have been selected for transmission.

2.1.3 WirelessMAN-SCTM Physical Layer

The PHY can only support LOS communication and implements either TDD or FDD operation in the 11 to
66 GHz frequency bands. It allows both PMP and MSH topology but only supports GPSS. The duplexing option
modelled is TDD, since it appears to be the more popular choice than frequency division duplexing (FDD).

Framing

The IEEE 802.16-2004 standard defines a frame as

“A structured data sequence of fixed duration used by some PHY specifications.”

Chapter 2 — Background – 11 –

Transmission over the PHY is framed in both UL and DL according to the TDD frame structure, as shown in
Figure 2.10. Each TDD frame consists of n physical slots (PS), where each PS consists of four modulation
symbols. The value of n, as shown in Equation 2.1, is fixed for all frames during system operation and is a
function of the symbol rate SR and frame duration chosen by the network operator. The symbol rate SR = 1

T ,
where T is the symbol period of the communications system, is in turn a function of the BW BW and the roll-off
factor β, as shown in Equation 2.2.

n =
SR× frame duration

4
PSs (2.1)

SR =
BW − 0.088

1 + β
(2.2)

The roll-off factor, β, is a measure of the excess BW of the filter, i.e. the BW occupied beyond the Nyquist BW of
1

2T . If we denote the excess BW as ∆f , then β can be calculated using Equation 2.3.

β =
∆f
(1
2T)

=
∆f
SR

2

= 2T∆f (2.3)

Table 2.3, taken from the standard, shows baud rates and channel sizes using Nyquist square-root raised, cosine
pulse shaping [4], with a roll-off factor of β = 0.25. The recommended frame duration is 1 ms and n is shown for
various baud rate and modulation type combinations. The 3 modulation coding schemes (MCSs) allowed by the
standard are QPSK, 16-QAM and 64-QAM, where a symbol represents 2, 4 and 6 bits, respectively.

The modulation type and the symbol rate (symbols per second) therefore play a role in determining system
bandwidth. The specified permissible frame durations (0.5, 1 and 2 ms) determine the number of physical slots in
a frame. The frame duration thus does not influence the capacity of the channel, only the capacity of a frame.

The TDD frame is logically divided into two sub-frames, for DL and UL transmissions, with an adaptive sub-
frame boundary. DL bandwidth is defined with the granularity of one PS while UL bandwidth is defined with
the granularity of one minislot (MS), where one MS is 2m PSs (0 ≤ m ≤ 7). The standard also specifies that,
in the DL, TDM bursts may be transmitted with different robustness profiles: QPSK being more robust than 16-
QAM, 16-QAM being more robust than 64-QAM. These robustness profiles also apply to the TDMA transmission
periods in the UL. For example, data begins with QPSK modulation, followed by 16-QAM, followed by 64-QAM.
For simplicity, one burst profile is assumed for the DL TDM and UL TDMA bursts in this study, 16-QAM and
QPSK, respectively, since multiple burst profiles imply a variable bandwidth from frame to frame. If so, arbitrarily
choosing a channel bandwidth of 25 MHz and a frame duration of 1 ms, an overstated channel capacity of 80 Mbps
(see Table 2.3) is calculated.

Note that the standard specifies that the portion of the DL frame used for transmitting the MAPs must be sent
using QPSK modulation for maximum likelihood of error-free reception. Moreover, there are preambles that must
be sent at the beginning of each new SS transmission on the UL for synchronization. Also, the ULMAP should be
larger for a larger number of SSs scheduled to transmit during the frame.

In the model we shall ignore the synchronization effects and simply assume that a frame lasts 1 ms. Assuming
the same duration for the DL and UL subframes and that the MAPs sizes in relation to these sub-frames are
significantly small, the effective frame size is (40+80)

2 × 106 × 10−3 bits. That is, each frame is of maximum size

– 12 – Chapter 2 — Background

60 Kb, and will be considered as the “chunks” of data removed (or placed into) the MAC memory buffers by the
physical transmitter/receiver at the rate of 103 per second.

Figure 2.10: TDD frame structure taken from the standard

Channel Symbol Bit rate Bit rate Bit rate Recommended Number of
size rate (Mb/s) (Mb/s) (Mb/s) Frame Duration PSs/frame

(MHz) (MHz) QSPK 16-QAM 64-QAM (ms)
20 16 32 64 96 1 4000
25 20 40 80 120 1 5000
28 22.4 44.8 89.6 134.4 1 5600

Table 2.3: Baud rates and channel sizes for a roll-off factor of 0.25 taken from the 2004 standard [27]

Functional Frame Periods

As illustrated in Figures 2.11 and 2.12, a variety of periods are identified within the logical structure of the TDD
frame. Each period serves a specific function understood by all parties in the network. These functional frame
periods of interest are

• DL and UL MAP information,

• DL TDM bursts,

• UL management and bandwidth request contention, and

• UL TDMA bursts.

The transmit/receive transition gap (TTG) and receive/transmit transition gap (RTG) are periods during which no
modulated data are transmitted, allowing BS and SSs to switch between transmit and receive states. Additionally,
the DL sub-frame has as its first functional period the DL burst preamble, and each UL TDMA burst is prefixed by
an SS transition gap (SSTG). The these periods are used for synchronisation of BS and SSs and are not considered
in this study. The DL burst preamble, MAP information, DL TDM bursts and TTG make up the DL sub-frame,
shown in Figure 2.11, while the UL contention, UL TDMA bursts and RTG constitute the UL sub-frame, shown
in Figure 2.12. The maintenance opportunities period is used for general management of network entities, such as
initial ranging of an SS, and is also not considered in this study.

Chapter 2 — Background – 13 –

Figure 2.11: DL subframe periods

Figure 2.12: UL subframe periods

The DLMAP and ULMAP both consist of information elements (IEs) that, in the case of the DLMAP, describe
the DL MCS to be used and when the DL profile is to be in effect. In the case of the ULMAP, IEs indicate the UL
TDMA profiles, indicating whether the profile is either a connection contention period or an SS UL transmission
opportunity. SS UL transmission opportunities, for purposes of this study, indicate which SS may transmit, the
MCS to be used and when the transmission may occur. The DLMAP is approximately 64 bits (excluding 4 padding
bits when necessary) plus the the variable length chain of DL IEs, where each IE is 20 bits long. The ULMAP is a
approximately 56 bits (excluding 4 padding bits when necessary) plus an additional 32 bits per UL IE.

During the DL TDM burst, the BS transmits data per connection from the BS buffers to the SSs. Each SS
evaluates the SSID in the PDU header to determine which belong to itself. During connection contention, SSs
transmit BW request PDUs to the BS in contention mode, employing a truncated exponential backoff process to
manage collisions. SSs transmit data PDUs, in a polling-based manner, along the UL during UL TDMA bursts
assigned to the individually. In this study, it is assumed that no collisions occur when BWRs are transmitted.

Backhaul System Profile

For each air interface in Table 2.1, the standard specifies a set of system profiles. Each profile specifies MAC
and PHY parameters separately.

The WirelessMAN-SCTM air interface is the PHY investigated in this study and hence the basic packet MAC
profile2 applies. It specifies that fragmentation and concatenation features are mandatory but are optional per
connection. As mentioned before, in this study, fragmentation is used for all connections; it ensures a maximum
length for a MAC PDU. However, concatenation is ignored for all connections.

The relevant mandatory PHY parameters for the 25MHz WirelessMAN-SCTM PHY TDD profile3 are given in
Table 2.4.

2profM2 in the standard
3profP1t in the standard

– 14 – Chapter 2 — Background

Parameter Value
Operation mode TDD
Frame duration 1 ms
DL modulation QPSK and 16-QAM
UL modulation QPSK
Roll-off factor 0.25
Symbol rate 20 MBaud
PS per frame 5000 PSs

Table 2.4: Relevant mandatory profile (profP1t) parameters as specified by the standard

2.2 STATE OF THE ART

It is widely accepted that, in the case of traditional fixed-line networks, scheduling and admission control both
play an integral role in providing acceptable QoS to users. Arguably, due to the scarce nature of wireless resource
and standard-specific details of the technology, these play an even greater part in QoS-management in 802.16
wireless networks. Moreover, these are co-responsible for maintaining QoS. Therefore, recent efforts in scheduling
and admission control development are surveyed not only in isolation but also as a singular cooperating toolset:
the resource and connection management (RaCM) unit.

2.2.1 Scheduling

Scheduling is a management activity aimed to optimise a system’s performance given certain performance
criteria. In computer science, specifically in the field of communication networks, a wide variety of schedulers
exist [5, 36, 31], each exploiting specific system features and attempting to solve a particular set of optimisation
problems. Schedulers are developed with different objectives in mind, such as ensuring that packets are delivered
with the minimum delay. Maintaining QoS is integral to the success of wireless networks, especially when the
network intends to support the wide variety of multimedia applications used in the Internet – as the backhaul
studied here does. It is in part the responsibility of the scheduler to maintain QoS: Many schedulers have been
developed for maintaining QoS in similar, such as Asynchronous Transfer Mode (ATM) [51], technologies. As
in ATM, a scheduler is designed specifically for the network it is to maintain the QoS for. To adapt previously
designed schedulers for IEEE 802.16, such as those found in ATM networks, designers must consider not only
similarities between the technologies but also take note of the differences, such as variable PDU length, in the case
of IEEE 802.16, versus fixed cell size, in the case of ATM. Such differences, no matter how subtle they may appear,
could result in the development of an inadequate scheduler for the IEEE 802.16 network. Similar to ATM, IEEE
802.16 supports multi-class service differentiation and thus, given more than one service category, the scheduling
algorithms might aim to, say, minimise the delay and optimise the utilisation of a specific, or multiple, service
categories.

Another consideration that must be made regarding IEEE 802.16 scheduling is the subschedulers that make
up the system scheduler. In a PMP IEEE 802.16 network, three subschedulers are responsible for resolving BW
contention and determining the transmission order of user data amongst all network stations, namely the BS UL
scheduler, BS DL scheduler and SS UL scheduler, distinguished by Cicconetti et al. [14]. UL BW is shared
amongst the admitted connections (GPC) or the individual SS admitted aggregated requests (GPSS) by the BS UL
scheduler. In the case of GPC, the SS UL scheduler selects data for transmission from the SS buffers according
to the ULMAP (predetermined by the BS). In the case of GPSS however, data per connection must be selected

Chapter 2 — Background – 15 –

during the SS aggregated connection grant period (specified in the ULMAP). The latter is achieved by the SS UL
scheduler. The BS DL scheduler, selects data from the BS buffers and packs these into the DL frame; the BS DL
scheduling algorithm determines the data selected.

Since the SS and BS UL schedulers are either respectively responsible for the order of data arrivals at the BS
buffers, the UL scheduler(s) and DL scheduler must manage QoS at the packet-level for the entire network. It
is therefore vital that one is not mislead to believe that, since one UL scheduler outperforms another, the UL
scheduler(s) being compared are an acceptable choice for QoS management within the network when studied in
complete isolation from the DL scheduler. Ali et al. [3] reports a comparative study of UL schedulers in PMP
WiMAX networks however, even though they mention the significant relationship between CAC and scheduling,
no consideration is made for the BS DL scheduler. Consequently, they report the average delay at an SS rather than
average delay across the entire network. This is problematic: The UL scheduler may be effective along the UL
but it may prove too difficult a task (maybe even impossible) to design a practical solution for the DL scheduler.
The UL scheduler(s) may, for example, cause a respectively small average delay at an SS, which may in turn result
in an unacceptably large average delay at the BS. Ultimately this combination may lead to poor end-to-end QoS
experienced by the user. The UL and DL schedulers should therefore be designed to complement each other since
these must cooperatively assist to maintain QoS.

Extending the reach of the taxonomy described by Ali et al. [3] by including DL scheduling algorithms, schedul-
ing algorithms can be classed into three categories, namely

• homogeneous,

• hybrid, and

• opportunistic algorithms.

Most traditional schedulers are classified to be homogeneous algorithms. These are the traditional communication
schedulers and typically do not change based on dynamic input parameter sets. The combination of homogeneous
schedulers, through various arrangements, are then classified as hybrid schedulers. Opportunistic schedulers may
be extensions of either homogeneous or hybrid algorithms but need not be. They exploit network conditions (such
as channel status) by employing a dynamic scheduler that adapts itself to suit these changing network conditions.

Many of the familiar schedulers found in traditional fixed-line networks are located in the class of homoge-
neous schedulers. Considering the QoS parameters specific to IEEE 802.16 TCs, latency-rate schedulers [59]
prove a popular and sensible starting point for selecting such an algorithm. In fact, Cicconetti et al. [14] identify
a combination of deficit round robin (DRR) BS DL and SS UL schedulers and a weighted round robin (WRR)
BS UL scheduler from this class of schedulers. They found that, in their performance study of a network operat-
ing these schedulers under two traffic scenarios, the average delay of UL traffic is higher than that of DL traffic.
They attribute this finding to, inter alia, overhead introduced by physical preambles since all SSs with admitted
connections are scheduled to transmit in each UL subframe. Their main contribution is, however, that it is pos-
sible for these traditional fixed-line schedulers to be used to provide QoS guarantees to the service differentiated
IEEE 802.16 traffic. Furthermore, with these schedulers employed and by considering additional traffic scenarios
which include the four IEEE 802.16-2004 scheduling services, they show that rtPS is very robust and adheres to
multimedia delay requirements [15].

– 16 – Chapter 2 — Background

Another homogeneous scheduler, as identified by Ruangchaijatupon et al. [53], is the earliest deadline first
(EDF) scheduler. The work conserving nature of this scheduler makes it an appealing choice since the aim of
scheduling is not only to maintain acceptable QoS for all types of connections but also to maximise BW utilisation
of the wireless medium. Also, as Ferrari and Verma [20] show, a general multi-class version of EDF is well-suited
for scheduling real-time traffic in wide area networks.

Combining a variety of homogeneous algorithms result in hybrid schedulers, as studied by Wongthavarawat
and Ganz [67]. By selecting homogeneous algorithms to schedule SS UL per TC and employing a strict priority
scheduler to switch between these subschedulers, their study shows that their scheduling and CAC solution pro-
vides QoS support for all TCs. They select EDF for rtPS, similarly motivated as before. For nrtPS they employ a
weighted fair queueing (WFQ) [18] scheduler that ensures fairness amongst nrtPS connections and maximises BW
utilisation since WFQ is work conserving. Since there are no QoS parameters associated with BE traffic, a first in
first out (FIFO) scheduler is employed to manage BE scheduling.

Chen et al. [11] also employ a hybrid scheduler in their proposed service flow management architecture for TDD
operation. In their study, they consider not only admission control and scheduling, but also buffer management –
where buffer management is beyond the scope of this study because it is a low-level operating system function and,
although important, is very much dependant on the manufacturer. They study the performance of the network with
both DL scheduler and CAC cooperating. However, in their study, they primarily focussed on the DL scheduler.
Similar to Wongthavarawat and Ganz, they propose a hierarchical scheduler with EDF rtPS, and WFQ nrtPS
schedulers for both UL and DL scheduling. For BE traffic, Chen et al. employ round robin (RR) UL and DL
schedulers. The RR scheduler is more complex than FCFS (employed by Wongthavarawat and Ganz) but should
not have any impact on QoS since BE does not make any QoS demands in IEEE 802.16. They select a deficit fair
priority queue (DFPQ) to schedule between the multiple TCs and find that their service flow management strategy
can meet QoS requirements of the existing TCs in terms of BW and fairness. No mention is made of the delay and
jitter QoS experienced by the applicable service classes supported by the network.

Opportunistic schedulers are more aware of the context and dynamic nature of the environment than homoge-
neous and hybrid schedulers. Attempting to exploit the network conditions may result in better scheduling deci-
sions and ultimately lead to higher BW utilisation and more effective QoS management. Rath et al. [52] develop an
opportunistic scheduler by enhancing the homogeneous DRR scheduler in an attempt to satisfy multi-class delay
requirements, called the opportunistic DRR (O-DRR) scheduler. The algorithm tries to limit the number of SSs
scheduled on the UL by specifying a set of SSs that may be scheduled, say set S, and then schedules SSs in the
frame by selecting from set S. It is their polling algorithm that exploits the present conditions of the network, i.e.
determines the set of SS may be scheduled.

Tang et al. [61] choose to extend the class of hybrid schedulers by proposing an opportunistic scheduling ar-
chitecture based on three criteria. The first is service differentiation, achieved by employing various schedulers,
such as WFQ and WRR, for the different scheduling services, in the same way hybrid schedulers were described.
The second aims to exploit the fact that the DL/UL frame boundary is dynamic, i.e. DL and UL frame sizes may
vary on a frame-by-frame basis. If it becomes necessary to transmit more traffic along the UL, which may be the
case when there is more priority traffic in need of service along the UL, then more of the frame could be allocated
to UL transmission than DL. Thirdly, they propose that the status of the SS should be a criterion for scheduling
traffic per station, i.e. SS differentiation based on the SS priority. The authors suggest that allocation of BW at
the BS may be dealt with as an optimisation problem and they provide potential objective functions. Their efforts

Chapter 2 — Background – 17 –

in proposing an architecture for scheduler design are not investigated further by means of a performance model.
Their architecture is included in this survey merely to illustrate how a hybrid scheduler may be used as the basis
for developing an opportunistic scheduler.

Liu et al. [37] take a cross-layer design approach to developing their opportunistic scheduler. They claim that
their scheduler is highly flexible and scalable, offers low implementation complexity, uses BW efficiently and
maintains acceptable QoS. Ali et al., in their study of UL schedulers, compare the Liu et al. scheduler to a variety
of schedulers from all categories and find that this cross-layer scheduler performs poorly. However, taking into
account that Ali et al. make no consideration of the DL scheduler, it is not entirely clear how well this scheduler
will perform with a complementary DL scheduler and CAC configuration. Furthermore, Ali et al.represent cross-
layer schedulers using this single cross-layer design and therefore no fair conclusion, regarding the performance
of cross-layer designed schedulers in general, can be drawn. They conclude that to address the poor performance
of this scheduler, a modification is necessary. Their conclusion highlights the tendency of opportunistic schedulers
to become more complex than homogeneous and hybrid schedulers.

Considering the frame structure of IEEE 802.16, Sayenko et al. [55] propose an opportunistic scheduler based
on the RR scheduler, motivated by the simplicity and speed of implementing such a scheduler. Their algorithm
considers connection parameters, traffic priority, class type, BW request or queue size and modulation and coding
scheme (MCS). Their scheduler is independent of the particular PHY implemented, an appealing feature. It is
clear from this work that achieving generality of the scheduler may come at a cost, such as algorithm complexity.
However, complexity can be reduced, as Sayenko et al. do, by selecting a simple homogeneous scheduler as the
platform from which to develop an appealing opportunistic scheduler. Complexity is undesired since it results in
a practical problem; where the duration of a frame is 1 ms, it is arguably the case that 1000 scheduling decisions
can made per second.

Sayenko et al. [55] suggest that IEEE 802.16 should comprise three major stages. First, the scheduler must
allocate the minimum number of slots required by each connection to maintain acceptable QoS. Thereafter, should
there be unused slots, these may be shared amongst connections and lastly, timing requirements may be managed
though the ordering of, and grouping into bursts of, the assigned slots. They claim that, with the primary aim of
scheduling in IEEE 802.16 being the provision of basic QoS, the first stage is mandatory. However, in their work,
they distinguish between basic and premium QoS, which is related to revenue functions and not the immediate con-
cern of this dissertation. Tang et al. [61] similarly incorporate a revenue cost function by suggesting a classification
of SSs as having either Bronze, Silver or Gold status and differentiating between these station accordingly.

The variety of aforementioned schedulers describes the progress being made regarding schedulers for UL and
DL in IEEE 802.16 networks. By grouping these into three broad classes, their characteristics are better understood.
Comparing schedulers belonging to the same class, or across different classes, are also easier to interpret since the
benefits and short-comings of these classes are well understood. Furthermore, when designing a new scheduler,
understanding the class that the scheduler belongs too will steer the designer away from making design choices
that will lead to undesired results.

Considering the IEEE 802.16 network specifically, the three classes of schedulers are useful but still somewhat
broad. There is room for improvement: The classification presented can be augmented by identifying the features
a network provider may want its scheduler to exhibit. Table 2.5 lists the 5 features identified from the literature
studied and gives the objective typically sought after by network providers.

– 18 – Chapter 2 — Background

Feature Objective
Revenue Maximise
User satisfaction Fairness through differentiation
QoS Maintain sufficient QoS
Utilisation Maximise
Complexity Low: simplicity, fast execution

Table 2.5: Scheduler features identified, showing the objective typically sought after

Since the network provider operates a business, whose main objective should be to make a profit, revenue

maximisation is a feature typically expected of a scheduler. At first glance, it may seem that, since the scheduler
manages traffic at the packet-level, it depends on the particular business model of the network provider whether
this feature is relevant. However, this assumes that the scheduler has no control over connection-level revenue
maximisation, which is arguably not the case, as shown by Sayenko et al. [55]and Tang et al. [61]. Furthermore,
the network provider would want users (being either SSs, connections or the human users themselves) to feel like
they are being treated fairly – to avoid losing them. Ideally, the scheduler should provide service to users according
to their status in the network (as Tang et al. propose, where users are grouped per SS) in order to maintain user

satisfaction.

It goes without saying that an important feature of the scheduler is maintaining QoS. However, if the CAC only
admits 1 connection service to the network, it would be difficult not to maintain QoS. Therefore, the scheduler
should strive to maintain sufficient QoS level when the network must support a workload that places it under stress.
The QoS parameters that the scheduler maintains should correspond to the QoS the network provider guarantees.
Maintaining QoS may also lead to a better revenue maximisation.

Maximising utilisation is not critical if revenue is maximised, QoS is maintained and users are satisfied. How-
ever, finding a scheduling solution that does all this is a very difficult (if not impossible) task. It is likely (but
may not always be the case) that through increasing network utilisation, users may be more satisfied and revenue
might increase. In the case of the WFQ [18] scheduler, the work-conserving behaviour ensures that, while any
of the buffers are backlogged, the server may not be idle. If the scheduler was non-work conserving, the BW
utilisation would decrease – as would the revenue (in the case of a packet-level business model) and arguably, the
users satisfaction.

Lastly, the scheduler cannot be too complex. As mentioned before, time is short and the scheduling algorithm
executes as many as 1000 times per second [55], as is the case in this study. Low complexity is desired, not only
due to its high execution frequency but also for practical implementation purposes and to aid the design of other
cooperating components, such as the CAC.

These features are not necessarily only applicable to scheduler design: As you will discover next, they are
applicable to CAC design as well. This is not surprising since it has always been maintained that the scheduler and
CAC cooperate to maintain QoS.

2.2.2 Connection Admission Control

Since IEEE 802.16 is a connection-oriented technology, a connection management mechanism is incorporated
to maintain QoS. In part, the necessity of CAC arises from the general perception that it is more desirable to refuse
a connection on attempt of establishment than to terminate the connection during the lifetime of its operation,

Chapter 2 — Background – 19 –

where the latter is a likely consequence of a continuation of QoS degradation.

In Section 2.2.1, it was suggested that CAC functions in tandem with scheduling to maintain acceptable QoS for
the various TCs. It is however, necessary to distinguish clearly between the influence of the scheduler(s) and CAC
in terms of QoS control. The IEEE 802.16 scheduler schedules connection content data passing through the MAC
layer, i.e. QoS at a packet-level: It decides when the individual packets (PDUs, in the case of the IEEE 802.16
MAC) should be transmitted over the medium. On the other hand, the CAC evaluates BWRs at the network layer,
i.e. QoS at a connection-level: It decides whether a new, or existing, connection may be admitted over, or receive
a different BW allocation in, the network.

The rationale behind employing an admission control mechanism is illustrated by the following example: As-
sume a network with both an UL and DL capacity of 80 Mbps and assume one TC, having each connection with
a minimum BW requirement of 1 Mbps. In the case where each connection utilises all of its minimum BW, the
network can only support a maximum of 80 simultaneous connections without rendering the service incapable of
proper functionality. The CAC therefore restricts resource usage when it foresees that the available resources are
insufficient to provide the necessary resource for the connections receiving service at present. The threshold-based
CAC that considers the number of connections with QoS demands, analysed by Niyato et al. [39], is a basic CAC
that aims to regulate the number of QoS-requiring connections based on a threshold value determined and spec-
ified by the network operator. The authors present a Markov-model to analyse fairness and QoS performance by
considering both CAC and scheduling in differentiated services (DiffServ) [8] wireless networks. Their schedul-
ing mechanism is based on the packetised version of generalised processor sharing (GPS) [48] and they assume
a two-state Markov channel error model. They find that, by separating the QoS-sensitive queues from BE traffic,
QoS can be assured. Furthermore, they consider the issues and approaches to developing effective CAC for QoS
provisioning in 4G wireless networks [40]. In their survey, they describe the different criteria that the CAC may
use to make its decision but they primarily focus on cellular networks. An example that could be adapted to suit
IEEE 802.16 technology, takes a pricing-based approach: Hou et al. [25] propose a cost function that considers
maximisation of both service provider revenue and BW utilisation.

A fairness approach is also taken by Msadaa et al. [38], targeted at making efficient and fair use of available
resources. BE connections are always accepted since there are no QoS requirements associated with this TC. For
all non-BE connections, the maximum sustained traffic rate is used as a parameter to determine whether the request
is to be granted. The authors seem to neglect the other deadline QoS constraints of connections, such as delay and
jitter. However, Chandra and Sahoo [10] take CAC to the extreme case where the CAC first tries to schedule
the new connection in the frame (together with the other currently admitted connections) to determine whether to
accept the request. This is a complex process and hence, a time consuming approach and may prove impractical
to implement. Also, if the scheduler does not schedule connections in the way that the CAC determines whether
there is enough resource to schedule the new connection, the CAC may admit connections that will not receive
the necessary QoS during its lifetime. The authors neglect to consider whether the accompanying scheduler(s) are
a practical solution and to what extent these provide QoS. Furthermore, complications arise when attempting to
schedule connection data explicitly: Packet lengths vary and channel error is unpredictable.

A less complex dynamic admission control scheme is proposed by Wang et al. [65]. TCs are prioritised, with
highest priority given to UGS traffic and, as most CACs do, the BS sets aside a fixed amount of BW per flow.
Degradation levels are introduced to manage the QoS provided to nrtPS traffic since the BW of this TC may vary
between maximum and minimum BW requirement parameters. Wang et al. also neglect deadline QoS constraints.

– 20 – Chapter 2 — Background

When developing a CAC and schedulers, it is important to keep in mind the QoS demand parameters required by
the various TCs. If a rtPS connection has some jitter QoS requirement, how can an rtPS connection be admitted
with any degree of QoS jitter-guarantee?

2.2.3 Scheduler and Admission Controller Co-operation

Developing suitable CACs and schedulers for IEEE 802.16 networks not only demands careful consideration
for these components in isolation but also for the cooperative effort made by these for the network to be capable
of delivering QoS to the TCs supported. Each component is responsible for sharing the same wireless resources
amongst the same users. It would be detrimental to the network’s QoS if the QoS policies of these two components
contradict each other. In fact, with complementary policies in place, QoS can be maintained to a larger degree.

In the literature surveyed in Sections 2.2.1 and 2.2.2, it is apparent that there is a general tendency towards
considering either CAC or scheduling as the primary contributor to maintaining QoS. It is reasonable to claim that,
since CAC and scheduling maintain QoS in tandem, development of these RaCM components should occur with
equal attention paid to both components. Moreover, UL and DL scheduler(s) are often considered in isolation of
one another. Ali et al. compares UL schedulers in a network where the CAC remains unchanged. Poorer QoS
achieved by a scheduler when compared to another could be as a result of the complementary nature of the specific
CAC. Arguments made by the authors about comparisons of the schedulers experimented with may be invalid
since the CAC may be the reason for a scheduler under-performing.

RaCM component designers can take a minimalist approach to CAC and schedulers design – where researchers
typically initially consider one QoS parameter, cater for service differentiation between two TCs, and so forth.
These designs can then be developed further and become better suited to the system it must operate in. This
evolutionary development allows for a better selection of features to include in the algorithm design.

Another benefit is that the minimalist approach allows developers to do away with the algorithms that are too
complex, or rather, these unwanted features are not included in the algorithm design. A simplistic algorithm should
execute faster than a complex one, which is important when some algorithm may need to execute, as explained
before, at most 1000 times per second. Additionally, to reduce the complexity of opportunistic algorithms, they
should be designed from the beginning using less complex algorithms. Dynamic functions should consider the
performance criteria used to exploit present network conditions, where these criteria are determined by network
status information variables that affect or describe the QoS parameters specified by the various traffic types.

2.3 PERFORMANCE MODELLING

A system consists of 2 components: the actual machine and the actual workload. The machine represents the
hardware and software configuration of the system while the workload is the traffic load generated and/or supported
by the machine. Both workload and machine play important roles in the resulting system performance thus, when
developing a system model, both must be modelled with careful consideration. As shown in Figure 2.13, the system

model comprises a workload model and a machine model, which are abstractions of the actual workload and actual
machine of the actual system, respectively.

Chapter 2 — Background – 21 –

Figure 2.13: Abstraction of the actual system components to form the system model

2.3.1 Machine Model

As mentioned before, the machine model abstracts the hardware and software configuration of the system.
There are 3 main techniques used in performance modelling, namely analytic modelling, simulation and hardware
experimentation. However, these techniques may be combined when developing a performance model.

Analytic models are fast since they are mathematical formulae that provide instantaneous results. However,
these models are usually more difficult to develop, more complex and involve a greater amount of (unrealistic)
abstraction than other modelling techniques.

Hardware experimentation is an unrealistic choice because it is expensive, requires particular physical environ-
ments and configuration and is prone to hardware error. Additionally, it is difficult (and impossible in some cases)
to isolate certain components of a system under study. However it allows for the most realistic model of network
performance.

Lastly, simulation modelling involves mimicking the system using a computer program. Various techniques
exist to improve the performance of a simulator in terms of memory usage and execution time [34]. Simulation
allows one to obtain better performance measurement than analytic models since more realistic assumptions can
be made. Also, simulation is a cheaper option than hardware experimentation since, typically, a single powerful
machine is necessary to run the program.

2.3.2 Workload Modelling

Representing workload adequately and as accurately as possible is a crucial aspect of network performance
modelling. If the workload model does not capture the salient features of the network traffic, one cannot expect
useful performance data. It is typically the case that Poisson processes are used to model network arrivals, even
though it has been shown on numerous occasions, that workload characteristics, such as inter-arrival time (IAT) and
packet length, are not always simply exponentially distributed [49]. Frost et al. [21] and Adas [1] outline several
traffic models used in broadband networks that capture salient statistical characteristics of the actual network traffic
and categorises modelling techniques in light of the characteristics of traffic types or profiles.

Since the 802.16 backhaul application supports traffic carried over the wireless Internet, Internet traffic is rele-
vant to this study. Recently models, by Klemm et al. [32] and Salvador et al. [54], abstract the IP traffic workload
process using a Batch Markovian Arrival Process (BMAP) and a discrete-time BMAP (dBMAP), respectively,
and Hernández et al. [24] present discrete-time heavy-tailed chains to model Internet traffic as a superposition of

– 22 – Chapter 2 — Background

discrete-time on–off sources, capturing the self-similarity and long-range dependence workload characteristics.

Instead of modelling workloads using analytic techniques, measured traffic datasets (called traces), such as the
Community Resource for Archiving Wireless Data At Dartmouth (CRAWDAD) [69], can be used to for traffic
generation. The trace is used as is (after processing of the raw trace) or representative distribution(s) (and their
associated parameters) are determined to form part of an analytic model. An advantage of using a trace is that it
samples the true workload of the network. However, whether the sample is representative of all traffic depends on
various factors, such as trace duration, which time of day the trace represents, etc. A major drawback of a trace
is that the data collected is very specific. Not only is it network-specific, but it may be recorded pre– or post-
process, i.e., it may be collected either before or after certain system process(es) have taken effect. For example,
the UNC/FORTH Archive of Wireless Traces, Models and Tools [47] makes available a university-wide wireless
network trace – a collection of post-distribution coordination function (DCF) data, where the DCF is the medium
access control protocol for the IEEE 802.11 wireless local area network technology. Additional drawbacks of a
trace include the need for a large amount of post-processing, insufficient information available and an immense
volume of data in the raw trace.

Since no IEEE 802.16 backhaul-specific traces are available at present, models of the different Internet services
expected in this network are surveyed. In a study by Schulze and Mochalski [56], the volumes of different Internet
services are surveyed: P2P is by far the largest constituent of Internet traffic. In 2007, Schulze and Mochalski [56]
found that 69.25 %, 83.46 %, 63.94 %, 48.97 % and 57.19 % of Internet traffic in Germany, Eastern Europe,
Southern Europe, the Middle East and Australia, respectively, was P2P traffic. A small percentage of Internet
multimedia traffic was VoIP calls. Grouped together with Skype (P2P voice), only 0.92 %, 0.57 % and 0.51 % of
Internet traffic in Germany, the Middle East and Australia, respectively, were voice calls. In the Middle East and
Australia, video streaming is insignificant whereas, in Germany, it constituted 7.75 % of Internet traffic. Lastly,
HTTP traffic made up 10.05 % and 26.05 % of Internet traffic in Germany and the Middle East, respectively.
Traffic types not surveyed are either not relevant to this study or make an insignificant contribution.

Relevant to this study, P2P, VoIP, streaming video and HTTP traffic are considered in turn, focussing on both
content data (at the packet-level) as well as connection-level models. Each of these Internet services subscribe to
a specific IEEE 802.16 TC and together, constitute almost all Internet traffic: VoIP and real-time video streaming
services subscribe to UGS and rtPS TCs, respectively. However, both P2P and web browsing traffic is considered
to subscribe to the BE TC.

Peer-to-peer

In a peer-to-peer (P2P) network, content files (including real time data, such as telephony traffic) are shared be-
tween machines, called peers. Contrary to the client-server architecture, in pure P2P each and every peer operates
as both client and server machines and may initiate a communication session. Examples of P2P applications are
Napster [46], Kazaa [45], Gnutella [44] and BitTorrent [43], where BitTorrent traffic was most prevalent in the
Internet in 2007 for all countries surveyed [56].

Accurate characterisation and analysis of P2P traffic have become more challenging with the development
of modern P2P applications. Early P2P systems used TCP and fixed ports to communicate, making traditional
port-based traffic monitoring and classification an effective and robust approach. However, contrary to these first
generation P2P applications, present-day P2P systems disguise their traffic by continually changing between TCP
and UDP connections and jumping ports. Traffic identification is thus a non-trivial task, not to mention the accuracy

Chapter 2 — Background – 23 –

attainable.

Perényi et al. [50] propose a heuristic P2P traffic identification method and characterise modern P2P systems
using their method to obtain performance data. Robust P2P traffic properties were used to associate packets with
the various P2P applications supported. They used their “trustiness” measure, describing the ratio of packets of a
certain size belonging to a specific application, to conclude that the typical packet size for BitTorrent traffic is 128
bytes. Their results show that P2P packet sizes are not fixed however, no accurate attempt can be made since a
large portion of traffic is unknown.

Distribution models for web and P2P connection-level behaviour were determined from a large edge network
by Basher et al. [7]. They found that P2P IAT is heavy-tailed and, specifically, BitTorrent session duration is long-
tailed whereas Gnutella session duration is heavy-tailed. Each characteristic was found to be best-represented by a
piecewise continuous function, similarly to Klemm et al. [2], whereas Erman et al. [19] found that session IAT and
duration were better modelled using a two-stage hyperexponential- and lognormal distribution, respectively. The
distribution models determined by Erman for BitTorrent traffic are shown in Table 2.6, together with the associated
parameter values, where the two-stage hyperexponential distribution PDF is given by Equation 2.4.

H2(x) = pλ1e
−λ1x + (1− p)λ2e

−λ2x (2.4)

Model Function/Distribution Parameters
IAT Two-stage hyperexponential p = 0.6575,λ1 = 0.0566, λ2 = 0.3653
Duration Lognormal µ = 8.16, σ = 1.33

Table 2.6: P2P connection-level distribution models and associated parameter values, taken from Erman et al. [19]

Also considering the differences between web and P2P traffic, particularly Kazaa, Gummadi et al. [22] attribute
the differences to Kazaa objects being immutable; web objects change more frequently than P2P objects and need
to be ‘fetched’ repeatedly.

Voice over IP

A variety of encoding/decoding algorithms (codecs) exist for speech encoding, many of which are standardised
by the Telecommunication Standardization Sector of the International Telecommunications Union (ITU-T)4. Of
these standards, G.711 [29] is a pulse code modulated (PCM) high bit-rate (64 Kbps) ITU-T standard, used in
telephone networks and supported by most VoIP providers, that results in high quality voice communication. To
ensure delay remains as low as possible, no compression is performed by G.711. Compression processing can
contribute significantly to delay, especially when 8000 byte samples are taken per second, which is the case for
G.711.

When modelling voice traffic, the speech process is considered. For the unidirectional flow of data, two relevant
events (or states) are identified and need to be modelled, namely the talk-spurt and silence. As detailed by Adas [1],
this ON–OFF activity process is modelled by a two-state Markov model, where the ON state represents the talk-
spurt and the OFF state represents the silence period: In the ON state, the speaker is speaking and voice data
is generated. In the OFF state, no data is generated since the speaker is silent. As recommended by the ITU-T
artificial conversational speech standard (P.59) [30], the sojourn time in the ON and OFF states are exponentially

4Available on-line: http://www.itu.int/ITU-T/, 4 May 2009.

– 24 – Chapter 2 — Background

distributed with mean values of of λON = 1.004 s and λOFF = 1.587 s, respectively, with respective average
talk-spurt and silence periods of 38.53 % and 61.47 %. They determined this information by averaging results
reported by various relevant studies.

While in the ON state, packet-level data are generated. Voice generates constant bit rate (CBR) traffic and thus
packet IAT and size are deterministic. The values for packet IAT and size depend on the codec used. As Seger [57]
explains, for the G.711 codec, the 64Kbps stream comprises packets containing at least one 8 bit voice sample
(payload). In addition to the payload, network overhead per packet requires a real-time protocol (RTP) header of
12 bytes, a user datagram protocol (UDP) header of 8 bytes and an Internet protocol (IP) header of 20 bytes, i.e.
total header size of 12 + 8 + 20 = 40 bytes. Since 8000 samples must be transmitted per second and considering
the ratio of the payload versus the total header size, it is sensible then that multiple samples constitute a single
payload, where the number of samples per payload varies, depending on the codec and parameters used. Seger and
Chuah [13] mention payloads of 80 and 160 bytes for G.711 voice packets, respectively, and a packet IAT of 20
ms.

He [23] models the connection-level VoIP characteristics by fitting distributions to call IAT and duration data
using a trace of a network serving both VoIP and transmission control protocol (TCP) traffic. Call IAT was found
to be exponentially distributed while call duration followed the Pareto distribution. Furthermore, since different
workload intensities were noted during different periods of the day, three sets of parameters were determined for
selected times of the day. These parameters are shown in Table 2.7.

Time of day Call IAT parameters Call duration parameters
09:00 – 10:00 λ = 6 minutes α = 1, κ = 0.547
16:00 – 17:00 λ = 5 minutes α = 0.88, κ = 0.6
17:00 – 18:00 λ = 10 minutes α = 1.21, κ = 0.472

Table 2.7: VoIP connection-level parameters drawn from a VoIP trace, taken from He [23]

Real-time Video Streaming

Video streaming is a real-time application that includes applications for e-learning, video conferencing and
Video on Demand (VoD).

Ideally, data should arrive and play out continuously without noticeable interruption. However, fluctuations in
network conditions constrain this service’s ability to perform. In an attempt to minimise the unwanted fluctuations,
an adaptive streaming server may be commissioned to monitor the network conditions and adapt the quality of the
stream to minimise interruptions, as described by Cranley and Davis [16].

Like for VoIP, different codecs are used to deliver streaming video over the Internet. Two techniques, namely
CBR and variable bit rate (VBR), may be employed. CBR is used by applications requiring fixed data rates contin-
uously available during a connection’s lifetime and a relatively tight upper bound on transfer delay. Uncompressed
audio and video typically employ the CBR technique. VBR encoding is designed to work optimally in high band-
width scenarios and is especially suited for encoding content that is a mixture of simple and complex data. Fewer
bits are allocated to the simple parts of the content while enough bits remain to produce good quality for the more
complex portions.

Chapter 2 — Background – 25 –

Recent studies by Shin and Ryu [58] and Xu [68] model VBR real-time video service with the Pareto distribu-
tion. Shin and Ryu suggest that the time between frames, each frame made up of 8 video packets, is 100 ms. Video
packet IATs follow the truncated Pareto distribution with a mean value of 6 ms, a maximum value of 12.5 ms and
distribution parameters k = 2.5 and α = 1.2. Packet sizes are also truncated Pareto distributed with a maximum
value of 125 bytes and distribution parameters k = 20 and α = 1.1.

Web Browsing

Studies, such as those by Walters [64] and Choi [12], identify similar distributions, for web browsing traffic, to
each other. Walters, following Staehle et al. [17], developed an analytic workload model for individuals browsing
the web from packet traces of web traffic over a fixed-line network. The model comprises the distribution functions
of specified mathematical families and their derived parameters for workload information parameters, such as web
client IAT.

Walters [64] determined that the Weibull and lognormal distributions best fit the trace for IAT and packet lengths,
respectively, with the relevant packet-level parameters given in Table 2.8. As shown in the table, IAT parameters
are the same for both UL and DL traffic however, are significantly different for packet sizes. DL packet sizes are
significantly larger than UL packet sizes, as expected. IAT was measured at millisecond resolution and the packet
size at byte resolution.

Component Distribution Parameters
Web client request IAT (UL & DL) Weibull γ = 0.371, α = 315778.506
Non-cached web client response size (DL) Lognormal ς = 7.401, σ = 1.405
Web client request size (UL) Lognormal ς = 5.883, σ = 0.331

Table 2.8: UL and DL HTTP packet-level workload parameters

Furthermore, the connection-level parameters are given in Table 2.9. These parameters include the connection
request IAT and connection holding time. The browsing inter-session time models the time between the end of a
browsing session and the beginning of the next and was measured at minute resolution since the second resolution
was found too small, with parameter values of larger than 15 minutes and a maximum of 480 minutes. Holding
time was modelled by the number of web user requests per browsing session and the number of web client request

per user request.

Component Distribution Parameters
Browsing inter-session time Gamma γ = 0.645, α = 102.342
Number of web user requests per browsing session Pareto α = 1, β = 0.558
Number of web client request per user request Lognormal ς = 2.155, σ = 1.377

Table 2.9: HTTP connection-level workload parameters

CHAPTER 3

ANALYTICAL FRAMEWORK

Chapter 2 describes the IEEE 802.16 protocol layers and surveys the state of the art admission controllers and
schedulers for such networks. In this chapter, an analytical framework is introduced for developing IEEE 802.16
performance models. It accounts for admission control and scheduling components but queue management and
routing are not considered. It highlights the respective responsibilities and relationship between the IEEE 802.16
Connection Admission Controller (CAC) and scheduler, different from the work done by Cicconetti et al. [14].
Their location in the protocol stack and the data flow through these layers, through the CAC and scheduler, is
described. High-level BS and SS model architectures are developed and it is explained how these architectures
are suited to model all four operation modes described in Chapter 2. These model architectures are combined and
extended in Chapter 4, reporting on the performance model developed.

3.1 CONNECTION ADMISSION CONTROLLER

The CAC is responsible for connection-level management of the network, either admitting or denying bandwidth
(BW) requests (BWR). A BWR is either a Dynamic Service Addition (DSA) request, (a connection requesting
admission to the network) or a Dynamic Service Change/Deletion (DSC/DSD) request. On arrival of a BWR, the
CAC obtains information from the scheduler regarding the status of the medium, as shown in Figure 3.1. Based on
these two inputs, the CAC evaluates the BWR and informs the scheduler whether the connection is admitted.

Figure 3.1: Roles of, and relationship between, the CAC and scheduler from the CAC’s perspective

3.2 SCHEDULER

The scheduler manages up-link (UL) and down-link (DL) transmission (by the radio) by obtaining information
from the scheduler’s virtual queues [14] and MAC memory buffers, respectively. It then executes the scheduling

26

Chapter 3 — Analytical Framework – 27 –

algorithms, for both UL and DL, shown in Figure 3.2. The virtual queues are memory buffers updated by the CAC
for the scheduler to know amongst which connections to share the medium. The MAC memory buffers hold the
actual data routed through the BS. ULMAP and DLMAP information is decided for the succeeding MAC frame
MAP and is communicated as MAP information with the SSs.

Figure 3.2: Roles of, and relationship between, the scheduler and CAC from the scheduler’s perspective

3.3 FRAMEWORK OUTLINE

In the left-hand part of Figure 3.3, the protocol stack shows the data flow for UL and DL traffic arriving at and
departing, respectively, from the BS. On the right-hand side, the relationship between the scheduler and CAC are
shown as discussed above.

On the UL, information from the wireless medium enters the IEEE 802.16 Physical Layer (PHY), and the MAP
maps incoming data or BWRs with a particular connection as scheduled in the previous DLMAP. This information
enters the MAC layer, either being buffered there or not, depending on the implementation, and then passes through
the Security Sublayer, MAC Common Part Sublayer (MAC CPS) and the Service-Specific Convergence Sublayer
(SS CS), in that order. The data or BWR then enter the Network layer where the CAC would consider BWRs, as
explained. Data, not destined for the BS, will be routed appropriately.

Information that does not have as destination the BS, i.e. information that must be routed to another station,
together with information generated by admitted connections of the BS itself, passes down into the MAC layer,
through the CS, CPS and Security Sublayer. Information entering the MAC CPS is queued in the MAC memory
buffers. Information about these queues is, as mentioned before, used by the scheduler to allocate or re-allocate
resources. Information enters the PHY from the MAC memory buffers according to the DLMAP and is transmitted
over the wireless medium.

3.4 BS AND SS ARCHITECTURES

Figure 3.4 shows the BS model architecture of the framework. Frames arriving at the BS were previously
scheduled on the UL as either BWR or data units to be forwarded on the DL or, less frequently, data destined for
the BS itself (not indicated in the figure). A BWR is taken up by the CAC that decides whether to admit the it and,
if so, will pass this information to the scheduler.

Information about these newly admitted BWRs as well as buffer lengths, traffic types, and so on, of current
connections are used by some scheduling algorithm to update the ULMAP and DLMAP for the next transmission.
The ULMAP essentially informs the schedulers at the SSs in the network of their turn to transmit on the UL,
assuming TDD, while the DLMAP informs the SSs which data in the frame is destined for them.

– 28 – Chapter 3 — Analytical Framework

Figure 3.3: Information flow between the scheduler and CAC and data flow

Figure 3.4: BS model architecture

Chapter 3 — Analytical Framework – 29 –

The SS model architecture is illustrated in Figure 3.5. Information arriving at the SS, as transmitted by the BS
on the DL according to the BS DLMAP, are either updates for the SS ULMAP, data to be routed through the SS,
or data destined for the SS (not indicated in the figure).

Figure 3.5: SS model architecture

The SS scheduler has not been described in detail because it adheres to the MAP specified by the BS. However,
in operation modes 2 and 4 (described in Chapter 2.1.1), the SS still adheres to the MAP schedule as dictated
by the BS, but must also manage connection transmission schedules internally since, in those modes, the SS
has been allocated resource for a group of connections. The SS therefore has an SS UL Schedule to manage these
connections – including the data to be routed. The SS MAC memory buffers are managed according to the ULMAP
and additionally by the SS scheduler in operation modes 2 and 4.

3.5 MULTI-MODAL PROPERTY

The framework described here is for the BS operating in a PMP topology with GPC admission control (oper-
ation mode 1). The framework however, and the derived model architectures, are suited to developing models of
networks operating each of the four operation modes: The framework can be extended trivially from GPC to GPSS
admission control paradigm (i.e. operation mode 2), meaning that the SS scheduler algorithm will be more com-
plex but the SS model would not change. The BS model would remain the same and the GPSS call admission may
imply fewer BWRs. Extending from operation mode 1 to 3, i.e. from PMP to MSH, means that the scheduler and
CAC at the BS will be far more complex and lead to worse performance at the BS. However, no structural changes
need to be made to the BS model. Extending from operation mode 2 to 4 can be done in the same way as was
done for extending from operation mode 1 to 3. Therefore the framework is suitable for developing performance
models of IEEE 802.16 networks operating in any one of the four operation modes. The performance model that
Chapter 4 describes, models PMP topology with GPSS admission control, i.e. operation mode 2.

CHAPTER 4

PERFORMANCE MODEL

This chapter reports the development of the system performance model (SPM) and its associated network of queues
(NoQ) models to be implemented as a discrete-event simulation model. Much care has been taken in producing
the various software engineering artefacts to ensure a valid, correct model. As the model is refined, the level of
abstraction should become clear, as motivate for the various assumptions, not already motivated in the Chapter 2,
are provided.

In this chapter, the Chapter 3 analytical framework is first extended to include a fixed-line Internet interface at
the BS; in Section 4.1, the BS model architecture, proposed in Chapter 3, is modified and described. The SPM
is then presented in Section 4.2. Also in this section, the abstracted TDD frame is described, detailing the var-
ious abstractions made. Subsequently, in Section 4.3, separate NoQ models are derived for various parts of the
SPM and ultimately, are combined to form a single NoQ model to represent the entire system. Lastly, in Sec-
tionr̃efsec:performancemetrics, before reporting the development of the discrete-event simulator, the performance
metrics are identified and discussed with reference to the system model.

4.1 BS MODEL ARCHITECTURE FIXED-LINE INTERFACE EXTENSIONS

Since only the BS has fixed-line internet connectivity in the network, to extend the analytical framework to suite
the application, i.e. to include a fixed-line interface, only the BS model architecture, shown in Figure 3.4, must be
modified. Figure 4.1 shows the modified model architecture. Data arriving at the BS are treated exactly as before
in the case of wireless arrivals. These wireless arrivals are placed in the MAC memory buffers to be forwarded to
its destination, being either another SS or the fixed-line connection internet node. Data from a wireless source is
represented by a broken arrow and, as shown in the figure, wireless arrival leave the memory buffers either over
either one of the wireless or fixed-line DL interfaces.

Fixed-line arrivals, represented by a solid arrow in the figure, are also placed in the memory buffers but, differ-
ently from the wireless arrivals, fixed-line arrivals will always leave the memory buffers over the wireless interface.
It does not make sense for fixed-line data to enter the backhaul network if its destination is not in one of the SS
subnetworks.

As shown in the figure, BWRs are treated the same for both fixed-line and wireless requests when referring to

30

Chapter 4 — Performance Model – 31 –

Figure 4.1: BS model architecture extended to include the fixed-line interface

data flow. The details of the CAC and schedulers are not represented by the model architecture.

4.2 SYSTEM PERFORMANCE MODEL

The system performance model, shown in Figure 4.2, presents a high-level abstraction of the networking appli-
cation described in Chapter 1. The aim of the SPM is to identify and describe the network structure and manage-
ment components chosen to be model. The abstracted functional frame shown in Figure 4.4 describes the frame
abstraction, i.e. DLMAP, ULMAP, DL TDM, etc.

As mentioned before, the network carries BWRs and data per connection. Data arrive at each individual SS,
where they are queued at the SS connection queues. An SS transmits data from these queues during its scheduled
period of the UL subframe to the BS. The BS, in turn, receives data according to the ULMAP it communicated
at the beginning of the current frame. Each SS employs its scheduling algorithm since the network is operating
GPSS. The BS is therefore only responsible for scheduling each SS UL time and each SS must schedule its own
per connection data transmissions. Data are transmitted from an SS to the BS over the wireless UL-server (WUL)
and from the BS to an SS over the wireless DL-server (WDL).

The fixed-line input/output physical links (Fin/Fout) at the BS concurrently accept data arrivals from, and trans-
mits data to, the internet (INET), respectively. Data is transmitted over servers Fin and Fout between the INET
node and the BS at a very high data rate such that the time taken for data to be transmitted across Fin and Fout is
close enough to zero that one may safely assume instantaneous arrival of data over each link.

In the system, BWRs arrive at an SS and are buffered there until the connection contention period, specified

– 32 – Chapter 4 — Performance Model

Figure 4.2: System performance model

Figure 4.3: Request admission-notification process

in the ULMAP, starts. During this period, BWRs are transmitted to the BS according to a truncated exponential
backoff process to help with collision avoidance and are queued at the BS CAC. In the model, BWR arrivals at the
SS are forwarded directly to the BS CAC waiting line and no collisions of BWRs are assumed. Also, all BWRs in
the CAC waiting line are evaluated at the end of the connection contention period. These assumptions are made
since the actual process is too detailed to model in addition to everything else.

As shown in Figure 4.3, at the end of the connection contention period of the current frame Fn, the CAC
processes BWRs and keeps the granted requests as connection set SA. The CAC then informs the BS scheduler of
its admission decisions during the current frame Fn. The BS scheduler does not use this information, i.e. set SA,
to calculate the new MAPs for the next frame Fn+1. Rather, the BS first informs the SSs during the frame Fn+1

of the admitted connections in SA and only uses grant request set SA information to calculate the MAP for frame
Fn+2.

The BS scheduler uses virtual queue information, together with the scheduling algorithm and QoS parameters,
to determine the new ULMAP and DLMAP. These MAPs are transmitted from the WDL to the SSs at the beginning
of the next TDD frame.

Data per connection arriving at the BS are queued at the BS MAC memory buffers. The fixed-line output and

Chapter 4 — Performance Model – 33 –

Figure 4.4: Abstracted functional frame

Figure 4.5: Network of queues model abstracting the INET fixed-line source and Fin server

wireless UL server (Fout and WUL, respectively) each have their own associated logical waiting-line structures.
However, in our model we assume that Fout is a high data rate link such that its service time is zero, resulting in
no waiting-line at this server.

Taking into consideration our abstracted SPM, we abstract the functional UL and DL frames shown in Fig-
ures 2.11 and 2.12 of Chapter 2 and provide, in Figure 4.4, the abstracted functional frame. The functional periods
shown in this frame (which we intend to model) are the MAPs, DL profiles, UL connection contention period and
the individual SS UL profiles. This frame is stripped of all preambles and the maintenance opportunities period.

4.3 NETWORK OF QUEUES MODEL

In this section we develop four network of queues (NoQ) models that are combined to form the NoQ model our
simulator is based on. All NoQ models show only one traffic category (TC) for a clearer explanation. Figures 4.5
and 4.6 show the NoQ models for the data sources, abstracting the internet UL and the UL resource sharing
between the N SSs, respectively. As shown in Figure 4.5, the INET source generates data, i.e. BWRs and data
per connection (data), served by the fixed-link UL server Fin and, since the fixed-link UL is high-speed, Fin is
assumed to enforce no delay on data. The data arrive at the BS along the fixed-link UL interface. Figure 4.6 shows
how SS sources generate data that are queued at the respective SS connection data queues. The wireless UL WUL

server serves the SS connection queues according to the ULMAP specified by the BS, where each SS executes the
SS scheduler and serves its internally managed connection queues during the UL period allocated to it. Each SS
transmits data along the wireless UL at a certain rate (specified in the IE of the ULMAP) and data arrive at the BS
along the wireless UL interface.

Data per connection arrives at the BS wireless receiver from the SS NoQ model, shown in Figure 4.6. Wireless
UL data has as destination either the fixed-line internet or another wireless SS. Data is therefore either queued at
the MAC memory buffers for wireless SS-designated data or transmitted to the internet along the Fout fixed-line
link. Data arriving from the internet at the BS along the Fin fixed-line interface, shown in Figure 4.5, has as
destination some wireless SS and is thus queued at the MAC memory buffers.

– 34 – Chapter 4 — Performance Model

Figure 4.6: Network of queues model model abstracting wireless UL data at the N SSs per TC

Figure 4.7: Network of queues model model abstracting both wireless and fixed-line data at the BS per TC

Chapter 4 — Performance Model – 35 –

Figure 4.8: Network of queues model model abstracting both wireless and fixed-line BWRs at the BS per TC

Figure 4.9: Network of queues model model abstracting both wireless and fixed-line data and BWRs at the BS per
TC

During the DL, the BS transmits data from the MAC memory buffers along the DL, as shown in Figure 4.7. The
BS scheduler is, as shown in the figure, responsible for generating the MAP information and transmitting it to the
SSs.

BWRs are generated at both the SSs and internet sources. As described in Section 4.2 and illustrated with
Figure 4.3, connections admitted and rejected during the current frame are first notified of admission or rejection
during the DL of the next frame. Only after this period will the scheduler include these admitted connections
in the MAP assembly decisions. The assumptions regarding BWR arrivals and evaluation have been described
in Section 4.2 and hence we derive the NoQ model abstracting both wireless and fixed-line BWRs at the BS per
TC, as shown in Figure 4.8. BWRs originating at the fixed-line and wireless sources are queued at the CAC. The
processed requests are then forwarded to the BS scheduler.

By combining the NoQ models shown by Figures 4.5, 4.6, 4.7 and 4.8, the NoQ shown in Figure 4.9 is realised.
This model represents the entire system to model as one NoQ model based on the framework model architectures,
TDD frame structures and SPM described in Chapters 3, 2 and 4.2.

– 36 – Chapter 4 — Performance Model

4.4 DEEP SIMULATION

There are many simulation-specific programming languages and environments that support the effective devel-
opment of simulation, such as inter alia the OPNET Modeler [28],ns2 [41], QualNet [62] or OMNET++ [42, 63].
Alternatively, one can develop one’s own simulator by implementing the simulation engine and components in a
language such as Java or C++, i.e. develop a deep simulator.

It is generally accepted that simulation tools make simulation model development easier, faster and more ef-
fective and may include features such as experimental design, advanced reporting and exploitation of computer-
architecture to improve execution speed. Users of these tools may encounter some obstacles while learning to use
them at first. Thereafter, simple simulation models may be developed fast and efficiently. However, developing
simulation models of a more complex nature is a much more challenging task; it requires users to have an expert
understanding not only of the system but of the tool used as well.

By the mere fact that such tools need to be general, they present users with certain limitations, primarily due
to the structure of the simulator in terms of the simulation paradigm followed and the language(s) used to realise
the model. For simple models these tools are appropriate but for more complex ones, they are not. Users may
want to (re-)configure the system to a larger extent and/or at a lower level, such as making changes to certain
protocols fixed in the assumptions of the tool. As one example, OMNeT++ is a modular general-purpose simulation
environment with graphical and statistical components and offers a wide range of software suites, such as its
mobility framework. However, it is seldom clear which details of the network stack are being modelled and where
the associated parameters may be found.

For proprietary reasons, commercial products may not always make clear the particular techniques used for
obtaining statistically significant [34] performance estimates. Furthermore, should the modeller require non-
conventional data analysis, as was the case for this study, or simply inspect the performance data during data
analysis, proprietary tools may not necessarily provide such functionality.

Most importantly, the accuracy of a simulation model developed, using a simulation tool, is also questionable.
A study by Cavin et al. [9] shows how different implementations of the same simulation model, each developed
using a different simulation tool, may result in a significant divergence between the results obtained from these
simulators. This is partly due to the different levels of detail provided for implementation and configuration. Sim-
ulation tools may prove very accurate if the abstraction-level and simulation paradigm supported suit the system
being modelled. Otherwise developing a deep simulator may prove not only more accurate but also more useful
by allowing the developer a greater degree of flexibility of manipulating the system model and allow the developer
greater insight into the true nature of the system.

IEEE 802.16 technology and the vertically integrated wireless Internet scenario, described in Chapters 1 and 2,
are particularly complex. Additionally, the study required specific abstractions to be made. We therefore devel-
oped a deep simulator for this study. The design, implementation and testing of our simulator are reported in
Appendix A.

4.5 PERFORMANCE METRICS

The standard addresses the following QoS parameters1:

1page 702 of the IEEE 802.16-2004 standard

Chapter 4 — Performance Model – 37 –

1. Tolerated jitter is defined as the maximum delay variation (jitter) of a connection.

2. Maximum latency defined the maximum latency between the reception of a packet by the BS or the SS on
its network interface and the forwarding of the packet on its wireless(RF) interface.

3. Maximum sustainable traffic rate defines the peak information rate of the service. The rate is expressed
in bits per second and pertains to the SDUs at the input to the Convergence Sublayer. If this parameter is
omitted or set to zero, then there is no explicitly mandated maximum rate. This field specifies only a bound,
not a guarantee that the rate is available. For the WirelessMAN-SCTMinterface the maximum value of this
parameter is 80 Mbps.

4. Minimum reserved traffic rate specifies the minimum rate reserved for this service flow. The rate is expressed
in bits per second and specifies the minimum amount of data to be transported on behalf of the service flow
when averaged over time. The specified rate shall only be honoured when sufficient data is available for
scheduling.

The BS and SS shall be able to transport traffic and satisfy BWRs for a service flow up to its Minimum
Reserved Traffic Rate. If less bandwidth than the its Minimum Reserved Traffic Rate is available requested
for a service flow, the BS and SS may reallocate the excess reserved bandwidth for other purposes. The data
for this parameter is measured at the input of the Convergence Sublayer. The aggregate Minimum Reserved
Traffic Rate of all service flows may exceed the amount of available bandwidth. The value of this parameter
is calculated from the byte following the MAC header HCS to the end of the MAC PDU payload. If this
parameter is omitted, then it defaults to a value of 0 bits per second (i.e., no bandwidth is reserved for the
flow).

Neither IEEE 802.16-2004 nor IEEE 802.16-2005 specifies a minimum rate for a service flow.

From these parameters, delay and jitter are identified as performance metrics. However, to study the utilisation
of the network operating a specific CAC and scheduler configuration, throughput should also be observed. Three
performance metric are finally chosen to describe the packet-level performance of our system, namely

• throughput,

• response time, average end-to-end delay over the backhaul network, and

• jitter, variation in delay.

The simulation of the abstracted system, described in Sections 4.2 and 4.3, must produce our performance data.
In our analysis, we focus on end-to-end quality of service across the backhaul network. The performance of the
network is observed from the point at which data enters (i.e. as data arrives at the SS connection queues, or data
arrives from the INET at the BS) until it exits the backhaul. The following is a step-by-step example detailing the
various delays experienced by traffic being served by the network and is shown in the accompanying Figure 4.10.

• At SSr, r = 1, . . . , N , on connection Crj , j = 1, . . ., MAC PDU Mrj is queued at time ti.

• At time ti+1, after Mrj experienced a queuing delay σx
rj , x ∈ {UGS, rtPS, nrtPS,BE}, SSr starts

transmitting Mrj , i.e. ti+1 = ti + σx
rj .

– 38 – Chapter 4 — Performance Model

Figure 4.10: Example detailing the delays experienced by network traffic

• Mrj starts arriving at the BS at time ti+2 with a service time delay of τUL
rj , which depends on the length of

Mrj and the UL service rate profile for SSr (i.e. mean link capacity). Therefore ti+2 = ti+1 + τUL
rj .

• Let δ be the propagation delay. At time ti+3 = ti+2 + δi, Mrj is in the BS memory buffers.

• Two cases arise:

– If Mrj is destined for the INET, it is assumed to experience no delay other than a mean delay ∆ in the
internet. Mrj therefore reaches its destination at ti+4 = ti + σx

rj + τUL
rj + δ + ∆

– IfMrj is destined for another SS, say SSs, s = 1, . . . , r−1, r+1, . . . , N , In this caseMrj experiences

∗ mean BS queueing delay ψx
rj ,

∗ mean DL transmission delay τDL
rj , and

∗ the same fixed propagation delay δ

so that in this case, Mrj reaches its destination at time t
′

i+4 = ti + σx
rj + τUL

rj + 2δ + ψx
rj + τDL

rj

The performance metrics identified and discussed so far all describe packet-level performance. In addition
to this, since we are also studying connection admission control, we are concerned with blocking probability, a
connection-level performance descriptor. This is the probability that a connection request is rejected, i.e. denied
admission on request.

CHAPTER 5

SYSTEM COMPONENTS

The development of the RaCM and workload components are reported in this chapter; each are described in
terms of design1, implementation and testing. Since our simulator, whose development is thoroughly reported in
Appendix A, was designed from the start to be modular, these components could be developed in isolation from
each other. However, certain design considerations were made when selecting RaCM component features:

Our hypothesis is that there is a synergistic relationship between the system scheduler and CAC components. On
proving our hypothesis, the premise that one should utilise the synergistic relationship between the scheduler and
CAC design when designing the RaCM, naturally follows. Therefore, in our experiments we were not concerned
with determining the optimum - or optimal - RaCM design.

However, we gave much thought to RaCM design: For the scheduler and CAC we used a state of the art
RaCM design. Moreover, in order to combine various borrowed features, innovation was necessary. Lastly, out of
necessity it was ensured that the scheduler and CAC components are compatible to interact; the necessary traffic
categories are supported, the appropriate QoS metrics are considered by both components and both CAC and
scheduler must understand which real-time performance estimations, as detailed in Section 5.1.3, are made.

5.1 DESIGN

5.1.1 SS UL and BS DL Schedulers

The same scheduling process is executed by the BS DL and SS UL schedulers2. Since this study is not primarily
concerned with partnering scheduling processes to optimise some aspect of system performance, it is necessary to
ensure that the processes selected are at least compatible with one another. By using the same scheduling process
for both the BS DL and SS UL schedulers, we ensure this compatibility.

MAC memory buffers are logically organised into four TC waiting lines: UGS, rtPS, nrtPS and BE. The QoS
waiting lines, i.e. comprising of the first three TCs, are served in turn by a work-conserving WRR scheduler.

Service quanta are assigned to each QoS waiting line. The quantum, called a data quantum in what follows,

1Design features selected for these components were taken from the state of the art design, presented in Chapter 2.
2It is not required that these processes are the same but, for the purpose of this study, this is the case.

39

– 40 – Chapter 5 — System Components

represents the amount of data to serve from the associated QoS waiting line while it has backlogged data. Since
PDUs vary in length across and within TCs, an approximation to the WRR algorithm is implemented namely, each
quantum represents the amount of data that must at least be served before the next waiting line may start receiving
service.

The BE waiting line is only served while all QoS waiting lines are empty since BE traffic makes no demand on
QoS. Wireless link utilisation is therefore increased when the QoS waiting lines are not backlogged. If a QoS PDU
arrives at its waiting line and a BE PDU is already in service, the BE PDU will first be served completely before
the QoS PDU will be put in service.

Each of the QoS and BE waiting lines are served in a FCFS fashion, with no distinction made between the
connections subscribed to the same service.

Furthermore, to control the jitter to a greater extent, the scheduler visits QoS waiting lines for a certain number
of rounds, i.e. the QoS waiting line visit frequency per frame. Weights are chosen to share the BW of each frame
amongst the TCs and are used to determine the service quanta. By increasing or decreasing the round parameter,
i.e. the number of rounds, the quanta are reduced or increased in size, respectively. In this way, jitter control is
attempted.

The configuration of the data quanta and round parameter values is fixed and specified by the service provider
at network start up. However, it is possible to enhance the homogeneous scheduler to be more opportunistic by
implementing a cost function that considers the present network conditions and updates these parameters. Our
implementation does however not consider opportunistic extensions. The BS DL and SS UL schedulers may have
different parameters configured. In fact, each SS may have its own parameter configuration.

The process flows of the scheduler are illustrated using two process flow charts (PFCs), as shown in Figures 5.1
and 5.2. Figure 5.1 shows the arrival process in isolation, which may be executing in parallel with data being
served from the waiting lines, shown in isolation in Figure 5.2. The variables used in these PFCs are defined in
Table 5.1. In Figure 5.2, there is a time delay, ∆t, between putting a PDU in service and taking it out of service.
Also, when isqp equals −1, it implies that the QoS queues are empty.

Figure 5.1: BS DL and SS UL PFC for arrivals at the buffers

In the case of the arrival process, shown in Figure 5.1, PDU PTC arrives and is evaluated in terms of its TC. If
it is not a BE PDU and if the QoS queues are empty, the queue pointer must point to the TC of PTC , the quotas

Chapter 5 — System Components – 41 –

Figure 5.2: BS DL and SS UL PFC for serving PDUs from the buffers

Variable Definition
lastInService Indicates the waiting line with the current packet in service.

isqp In-service queue pointer, pointing to the waiting line that must be served next.
ispp In-service packet pointer, pointing to the PDU in waiting line isqp to be served next.
queues TC waiting line array.

Table 5.1: BS DL and SS UL scheduler variable definitions

must be reset and the PDU must be placed at the end of the corresponding TC queue. Otherwise, and also in the
case that TC is BE, the PDU must be placed at the end of the corresponding TC queue.

Serving the PDUs from the buffers include starting the service of a PDU and thereafter taking it out of service,
as shown in Figure 5.2. To put the next PDU into service, it is first determined if all buffers are empty. If so,
the service variables are reset and the process is stopped. If the buffers are not empty, it is determined if the QoS
queues are empty:

If empty, isqp is set to −1 to indicate that the QoS queues are empty. The PDU at the front of the BE queue is
put into service and the lastInService pointer is set to point to the BE queue. After some service time ∆t, the
PDU in service is taken out of service. If isqp still equals −1, the process either stops – in the case that the buffers
are empty – or restarts.

– 42 – Chapter 5 — System Components

If the QoS queues are not empty, it is determined if the particular QoS queue (pointed to by isqp) is empty. If it
is empty, isqp visits the next QoS queue, resetting the quotas each time isqp points to 0. Otherwise, if the current
QoS TC has no more quota, isqp visits the next QoS queue, again resetting the quotas each time isqp points to
0. If the current QoS TC has enough quota to transmit the PDU, it is put into service and lastInService is set to
point to the current QoS queue. After some time, ∆t, the PDU in service is removed from the buffers, the quota is
reduced for that particular QoS TC and the process is restarted.

5.1.2 BS UL Scheduler

The BS UL scheduler must allocate portions of the UL subframe to the SSs wanting to transmit data to the
BS. The BS keeps record of connections in service and which SSs are associated with these connections. The BS
therefore knows which SSs may have data to transmit and must decide which of these SSs may transmit in the
next frame. However, to attempt fairness and to prevent starvation of BE traffic at an SS with no QoS connections
established, all SSs are to be scheduled along the UL in each frame. As already explained, scheduling too many
SSs along the UL in a single frame may results in a significant amount of wasted BW due to the preamble necessary
for synchronisation at the start of each SS BW grant. This algorithm may pose a problem for the scalability of the
network.

Also, it is possible to schedule any SS more than once in a frame. This too may lead to the wasting of BW due
to the SS preambles. The BS UL scheduler does not attempt to control jitter since this would require that each SSs
be scheduled more than one UL BW grant during each frame. Note that our assumption is that the INET source
has a dedicated fixed line UL connection to the BS and therefore it is not considered by this scheduler.

Since the system schedules connections per SS (i.e., GPSS), the BS UL scheduler generates UL BW grants
for each SS to share amongst its connections subscribed to any of the TCs: An SS with 1 UGS connection and 4
rtPS connections admitted at present receives a single BW grant for all five connection. Additionally, each SS is
assumed to have BE traffic. This is accounted for in the BW grant. It is the responsibility of the SS to schedule
transmission for these connections’ PDUs during the BW period granted. Scheduling connections of various TCs
in one BW grant period requires that the TCs must be weighted according to the service they require – specified
by the various QoS parameters. We assume all connections subscribed to a TC has the same QoS requirements as
the other connections subscribed to that TC.

The UL transmission subframe is shared between SSs by determining a weight, called credit, per SS that defines
the portion of the UL data subframe that should be allocated to the SS: An SS is awarded a basic credit to account
for fairness and BE traffic and a certain number of credit per connection presently in-service, where each TC has a
fixed number of credits associated with it for each connection subscribed. For example, if an SS, SSi, has 2 UGS
and 3 nrtPS connections admitted at present and UGS and nrtPS connections are weighted with 3 and 5 credits per
connection, respectively, the total credits for SSi are (2× 3) + (3× 5) + 4 = 25 credits, where basic credit = 4
credits. Furthermore, if there are only 2 SSs to be scheduled and the second SS has a total of 5 credits, then the
weights for each of the SSs, SS1 and SS2, are 25

(25+5) = 5
6 and 5

(25+5) = 1
6 . The UL subframe is then divided into

BW grants, allocating the fraction of the subframe to the associated SS. This algorithm is a WRR approach to UL
frame scheduling.

Since it is assumed that all SSs use the same robustness profile, i.e. transmit using the same modulation coding
scheme (MCS, specifically QPSK), there is no need to factor the MCS into the credit calculation.

Chapter 5 — System Components – 43 –

5.1.3 BS Real-time performance estimation

As explained in Chapter 3, to evaluate a DSA request, the CAC requests real-time performance information
from the scheduler. In our system, the BS must estimate real-time network performance in terms of current mean
delay and current mean jitter for the relevant TCs. These values are an estimation of network performance for a
time-frame that represents the current network status.

In order to avoid a point of dead-lock where after no more connection requests can be admitted, we must make
sure that the estimation reflects the most recent status of network performance. To achieve this sense of recency,
we must choose an appropriate observation period and call it the observation window (Twindow s). In other words,
should the CAC request the system status from the BS at time ti, it returns the mean delay and mean jitter values
for the interval [ti − Twindow, ti].

The mean delay is calculated by summing up the local BS delay of successfully transmitted packets from the
BS to its destination per TC and dividing by the number of connections that had packets transmitted. The mean
jitter is calculated by doing the same for the jitter values per connection.

Deciding on the appropriate value for Twindow is an experiment on its own. If Twindow is chosen too small, the
network performance will appear to change too dynamically from the CAC’s point-of-view since there would not
be enough performance samples to estimate the mean values from. On the other hand, if Twindow is chosen too
large, the system could run into periods of QoS connection starvation: Assume a QoS threshold is reached (say
UGS delay). Furthermore, assume all the UGS connections end and the remaining UGS PDUs fail to decrease the
mean delay estimation below the threshold value. As the observation window passes, fewer UGS delay samples
will be included in the mean US delay estimation until the estimate falls below the threshold. In the worst case,
where Twindow = ∞, if this scenario is realised, no more QoS connections will be admitted for the CAC algorithm
detailed in Section 5.1.4, i.e. QoS connection starvation.

5.1.4 Connection Admission Controller

The CAC manages BWRs transmitted from an SS to the BS. Each BWR is associated with an SS and connection
IDs (SSID, CID) and is either a request for establishment of a new connection (dynamic service addition, DSA) or
a request for connection change of a presently in-service connection (dynamic service change, DSC, or dynamic
service deletion, DSD). Since it is assumed that every connection, subscribed to a TC, demands the same QoS
from the network as all other connections subscribed to the same TC, DSC requests are not considered here. DSD
requests are necessary for closing connections.

BWRs arrive directly at the BS CAC queue and are completely evaluated by the end of the connection contention
period since we do not explicitly model the this contention process, as stated before. Even though the system
operates in GPSS mode, the system does not issue requests for aggregated connections: Our interpretation of
GPSS is to allow and evaluate individual requests per SS at the CAC while, still true to GPSS mode, single resource
grants are made per SS by the BS UL scheduler. The SS is therefore still responsible for sharing its aggregated
resource grant amongst its connections. Our rational for sending the BWRs per connection (without aggregating
these), is that the system under study is not envisioned to have thousands (or even hundreds) of SSs. Evaluating
non-aggregated connection requests is likely to result in higher network utilisation in terms of the number of
concurrent connections at present – which translates to higher BW utilisation and arguably higher revenue for the
network provider.

– 44 – Chapter 5 — System Components

Figure 5.3 shows the PFC for the CAC. On evaluating a request, the CAC first determines whether it is a DSD
or DSA. DSD requests are always admitted since this releases resource for future connections. DSA requests for
the BE TC are also always admitted since these make no QoS demand. QoS DSA requests, i.e. associated with
UGS, rtPS and nrtPS TCs, are evaluated as follows.

Figure 5.3: Process Flow Chart for the threshold-based QoS-aware CAC

There are two aspects to consider when evaluating a DSA request for a non-BE TC: fairness and QoS. These
factors overlap; fairness considers the way in which BW is allocatable to SSs. QoS status considers the minimum
mean BW necessary for a connection to operate properly. The notion of fairness may be understood in the strict
sense of the word as being fair across all TCs and to every SS. Equally, this makes it possible to discriminate
amongst TCs and/or SSs in that the BW sharing mechanism may be used by the network provider to try and solve
some other optimisation problem such as revenue maximisation. To ensure fairness across all QoS TCs, thresholds
are put in place at the SSs and BS to limit the maximum number of connections that may concurrently be in service
per SS and BS. Additionally, there are thresholds for the total number of concurrent connections in service for the
SSs and BS regardless of the TCs. To ensure that sufficient BW is available to concurrent connections, the fairness
thresholds should consider the minimum mean BW requirements across all QoS TCs. If these parameters are not
selected correctly, QoS (in terms of BW) may degrade. In summary, the following threshold parameters must be
specified: The maximum number of concurrent connections

1. per SS per QoS TC.

2. per SS, for all QoS TCs combined.

3. at the BS, i.e. over the entire network, per QoS TC.

4. at the BS, i.e. over the entire network, for all QoS TCs combined.

The effect of admission of some TC connection on the QoS performance of other TCs is unknown and therefore
all thresholds for delay and jitter must be considered – no matter which QoS TC the DSA request is for. If any
of these thresholds have been reached, the request is denied. The BS scheduler is responsible for estimating the

Chapter 5 — System Components – 45 –

real-time network performance in terms of delay and jitter. A choice of the threshold values involves an estimation
of the effect a QoS connection admission may have on delay and jitter, not only on the connections own TC, but
also on the QoS on the other TCs.

5.1.5 Workload Generator

As explained in Section 2.3.2, we consider the system workload to constitute of VoIP, video streaming, P2P and
HTTP traffic. For all these traffic classes one needs to consider both the generation of connections and the different
characteristics of the data passing over each connection. At the packet level we us a Markov Modulated Arrival
Process (MMAP) to model traffic generation.

The workload generator generates both connection-level and packet-level traffic: For packet-level traffic genera-
tion an MMAP is implemented, where each state of the MMAP is represented by an individual traffic model (TM),
one TM per Internet application. Each of the MMAP states, i.e. each individual TM, generates connection-level
requests in parallel. To promote generality of the workload model (WLM), it was designed to be

• modular, accommodating easy and effective TM integration, and

• extensible, allowing the integration of multiple traffic generators (TGs).

MMAP Arrival Process

The WLM is an MMAP where each state represents a different TM. Figure 5.4 shows the general scenario of the
system actor (simulating machine) requesting workload information from the WLM. One of the traffic generators
returns this information, which can either be

• connection or packet IAT,

• connection holding time,

• packet size, or

• connection or packet traffic category information.

Figure 5.4: Scenario of a system actor using the MMAP WLM

There are well-known techniques, as described by Klemm et al. [32] in the MMBP (Bernoulli) case, to determine
state vector π and transition probability matrix P from measured traffic data.

Traces of Internet traffic seldom differentiate between traffic types: The application which generated an IP
packet is identified by the port number in the packet. In the case of P2P different port numbers are used and

– 46 – Chapter 5 — System Components

one can therefore not easily distinguish the P2P traffic. There are techniques, such as clustering discussed by
Symington [60], for differentiating between traffic profiles, but this is not reliably accurate to distinguish between
QoS classes.

For reasons already provided, traffic models (TMs) are implemented per Internet application. Each TM sub-
scribes to a TC in order to associate traffic generated with that TC. However, the WLM is designed such that, if
suitable traces were to become available, these can be used in the WLM. State vector π is used, where the value of
each state πi, i = 1, 2, 3, 4, representing web browsing, VoIP, P2P and interactive video streaming, respectively,
were derived from Internet traffic measurements. However, P was derived knowing that P is a stochastic matrix
and that π is a probability vector. P is derived from solving πP = π.

Connection-level Arrival Process

Each TG generates connection-level requests in parallel. However, an admission (DSA) and a deletion (DSD)
request-pair must be generated for each connection. On generation of a DSA, the partnering DSD must be gener-
ated. The DSD is scheduled to be sent after a randomly generated duration time.

Each of TG must maintain a present time variable and a list of the requests already generated, i.e. requests that
are scheduled to be sent at a later time in the simulation. The WLG makes sure that these parallel traffic streams
are synchronised by determining the earliest next request to be sent and advancing the present time values for all
generators.

P2P Traffic Model

The traffic model we used in the P2P case is based on the BitTorrent application.
Distribution models for connection inter-arrival times and durations were identified in Chapter 2.3.2. However, the
parameters for these models suggest that sessions typically last for a few hours (in fact). Since the simulation-time
resolution is measured in milliseconds, the connection-level characteristics are not modelled. P2P is managed as a
BE service in the simulation with no QoS requirements. Hence, a single P2P connection is set up at the start of the
simulation and lasts for the entire simulation.

BitTorrent packets are of fixed length and have an IAT equal to the value of propagation delay3.

VoIP Traffic Model

Taken from He [23], call IAT is exponentially distributed and call duration follows the Pareto distribution.
An ON–OFF model is implemented with exponentially distributed period durations [1, 30]. During the ON period,
packet size and IAT are deterministic.

Video Streaming Traffic Model

Real-time video traffic is represented by a video conferencing application model 4.No connection-level model
was found for this application. Since it is assumed that user-level video conferencing may behave similarly to real-
time voice (VoIP), video conferencing connection IAT is exponentially distributed with Pareto distributed duration.

3The propagation delay referred to here is that from the external environment traffic source to the SS.
4Other Internet applications that fall into this category are Video on Demand (VoD) or IPTV applications. However, in our study we only

consider video conferencing traffic.

Chapter 5 — System Components – 47 –

Video conferencing is assumed to have a relatively larger mean connection IAT since it is assumed that users use
the VoIP application more frequently, while conference sessions are assumed to last longer, on the average, than
VoIP calls. Traffic is generated in frame periods, each being a fixed number of packets in length. Between frames,
there is an inactivity period of fixed time. During frame activity, truncated Pareto distribution models are used for
both packet IAT and size generation.

HTTP Traffic Model

Distribution models for connection inter-arrivals and durations were identified in Chapter 2.3.2. For reasons
similar to those given for P2P connection-level workload modelling, a single HTTP connection is set up at the start
and lasts for the entire duration of the simulation. Packet-level distribution models are taken from Walters [64].
IAT is Weibull distributed and packet size is lognormally distributed. Since we assume that for every UL HTTP
request there is a single DL HTTP object, we account for the significant difference between UL and DL packet
sizes by sampling from two lognormal distribution models (each parametrised differently) and sample from each
with equal probability.

5.2 IMPLEMENTATION

5.2.1 Schedulers

The SS and BS schedulers were implemented according to the interface specifications provided in Appen-
dices A.2.3 and A.2.3, respectively.

5.2.2 Connection Admission Controller

The CAC was implemented according to the interface specification provided in Appendix A.2.3.

5.2.3 Workload Generator

The main entry point to the workload generator is the WLG class. The WLG class was implemented according
to the workload interface specification provided in Appendix A.2.3. It implements the MMAP structure, described
in Section 5.1.5. A generic TM class is created which is extended to implement the various TC traffic generators.
4 applications traffic generation processes are modelled:

• BitTorrent P2P traffic: implemented in the BitTorrent class

• Web browsing traffic: implemented in the HTML class

• VoIP traffic: implemented in the VoIP class

• Real-time video streaming traffic: implemented in the VideoStreaming class

Each of these classes inherit and redefine the methods of the TM class, as shown in Figure 5.5.

5.3 TESTING

As shown in Appendix A.3, the simulator was validated through the derivation of the various abstract mod-
els, carefully developed for the system under study. Our testing verifies that the simulator was built correctly,

– 48 – Chapter 5 — System Components

Figure 5.5: UML class diagram of the workload generator-related classes

acknowledging that the simulator state space is simply too large to exhaustively test every function.

Due to the component nature of the simulator, a modular testing approach was taken: CAC, schedulers and
workload generator components were tested first, reported in this section. Thereafter, the simulation engine was
tested, as reported in Appendix A.3.1. Lastly, in Appendix A.3.2, the integration of these components was tested.
Positive testing was done to ensure the simulator components affect the system state variables in the way they
should be affected. Negative tests, whereby it is tested whether the simulator “. . . does not do what it is not
supposed to do” [66], were not conducted.

Structural white-box tests were conducted to ensure that the simulator event process flows were correctly trans-
lated from PFCs into code: Integration testing, reported in Appendix A.3.2, was done by inspecting the program
source, i.e. tracing the method-chains invoked to the point where the required system state variables are affected.

Behavioural black-box tests were also done to ensure various methods operate correctly: The workload gener-
ator was tested in terms of the workload units (PDUs or BWRs) produced on invocation of the defined methods.
The SSJ library [35] was used for random number generation and is a well-known and tested statistical library.
Therefore, the random number generation source was not tested.

Where possible, test case artefacts were reported as evidence of testing. Test cases are either simple or com-
pound: the simple test case tests for a single feature or function, whereas the compound test case test for various
features in one test case scenario. Each test case consists of five fields, as shown in the Table 5.2. In Appendix B,
examples of test cases are provided. The other test cases, not provided in this appendix, are available on request.
This section only describes program source tests conducted.

Field Content
ID unique test case identifier
Description description of the test
Preconditions system state before the test
Expected results expected system state after the test
Outcome PASS/FAIL status of the test

Table 5.2: Test case template

Chapter 5 — System Components – 49 –

5.3.1 SS UL and BS DL Schedulers

Since these two schedulers implement the same algorithm, test cases needed to be constructed for only one.
The SS UL scheduler was used for testing. 15 test cases were contructed to test the various branches of the SS UL
scheduler PFC, illustrated in Section 5.1.1:

Test case S1.1: A BE PDU arrival.

Test case S1.2: Arrival of a QoS PDU where at least one QoS queue is backlogged.

Test case S1.3: Arrival of a QoS PDU where all QoS queues are empty.

Test case S1.4: Next PDU is put into service where all queues are empty.

Test case S1.5: Next PDU is put into service where only the BE queue is backlogged.

Test case S1.6: Take the currently in-service BE PDU out of service. All queues are empty afterwards.

Test case S1.7: Take the currently in-service BE PDU out of service. All QoS queues are empty but the BE queue
is still backlogged afterwards.

Test case S1.8: Take the currently in-service BE PDU out of service. QoS queues are not all empty afterwards.

Test case S1.9: Serve the next QoS PDU while all QoS queues are backlogged, except for the in-service queue
that is empty. isqp has not reached the initial queue and thus the next queue status must be checked.

Test case S1.10: There is at least one QoS queue backlogged. isqp has reached the initial queue and thus the
quotas must be reset before the next queue status must be checked.

Test case S1.11: The in-service QoS queue is backlogged and there is at least another QoS queue backlogged.
However, the in-service queue has exceeded its quota. The next PDU is put into service.

Test case S1.12: The next QoS PDU at queue, pointed to by the isqp, is put into service.

Test case S1.13: Take the in-service QoS PDU out of service. Quota must be reduced for the associated TC.

Test case S1.14: Re-transmission of a PDU already in service.

Test case S1.15: Attempt to take a PDU out of service when the buffers are empty and NO PDU is in service.

5.3.2 BS UL Scheduler

6 test cases were drawn up for the BS UL scheduler component:

Test case S2.1: Calculate the size of the MAP in bits.

Test case S2.2: Calculate and generate the DLMAP and thereafter the ULMAP.

Test case S2.3: Update the delayed pool with an empty BWR vector. To illustrate the update, the initial delayed
pool should not be empty.

Test case S2.4: Update the active pool with a non-empty delayed pool only containing DSA requests. Ensure
that all SSs and the INET each have at least 1 connection admitted.

– 50 – Chapter 5 — System Components

Test case S2.5: Calculate the new MAPs after test case S2.4 has been done.

Test case S2.6: Test deletion of connections, i.e. DSD request. Delete a request at an SS and recalculate MAPs.

5.3.3 Connection Admission Controller

4 test cases were drawn up for testing the CAC component:

Test case C1: Tests the CAC at the time of evaluation when it has no BWRs waiting to be evaluated.

Test case C2: Tests whether the CAC can evaluate multiple different requests. Furthermore, it tests the correct
evaluation of 1 BE DSA and 2 QoS DSA. The first DSA comes from the INET source and the second comes
from an SS source and both must be admitted.

Test case C3: Tests whether the CAC can evaluate a DSD request correctly.

Test case C4: Tests 3 DSAs separately. It shows how the CAC will deny a BWR if it violates any of the QoS
threshold values of fairness, delay or jitter.

5.3.4 Workload Generator

The workload generator was tested to make sure that both packet-level and connection-level data are generated
correctly. The underlying TMs for HTML, BitTorrent, VoIP and Video Streaming traffic were tested individually
for PDU generation. The MMAP workload generator was tested to ensure that it generates traffic (1) in the correct
volume and (2) for all TCs catered for.

We tested that the HTML and BitTorrent TMs generate only one DSA request each at the beginning of connec-
tion request and then disable the possibility of generating any further requests. Lastly, it was tested that the VoIP
and Video Streaming TMs generated BWRs for connections with different CIDs and that each CID was uniquely
associated with one DSA and one DSD request.

Test case W1: All TMs generate PDUs correctly.

Test case W2: MMAP WLG generates PDUs in the correct volume.

Test case W3: MMAP WLG generates PDUs for all TCs. However, if test case W2 passes and all TCs present
in the system were tested for, then this test case passes too.

Test case W4: HTML and BitTorrent generates only one DSA request each at the beginning of request generation
and disable the possibility of generating any further requests.

Test case W5: VoIP and Video Streaming TMs generate BWRs for connection with unique CIDs, one DSA and
DSD per CID.

Test case W6: Testing INETWLG traffic volume generation for varying γ and S per TC.

CHAPTER 6

STEADY-STATE ANALYSIS

Before executing any simulation, one needs to decide the values of the many parameters in the simulation. Some
of these are given in the standard, such as frame duration, MAP size and so on. Others are a system choice, such as
the number of SSs to simulate. Values for certain free parameters, such as the mean arrival rate of the various TCs
cannot be chosen, arbitrarily. The system has to be in steady state and utilisation of the radio link cannot exceed
unity. In this Chapter, we set out to find a relationship between certain parameters, and choosing values for them
while ensuring the system will remain in steady state.

Figure 6.1, derived from Figure 4.9, shows annotations appropriate for the steady-state analysis.

Figure 6.1: Network of queues annotated for stability analysis

Packets arrive at each SS queue at a mean arrival rate λ. The SS server (SS in the figure) performs certain
unspecified functions, including scheduling packets for transmission on the UL. Scheduled data are queued at the
virtual UL queue and reside there until they are to be transmitted on the UL according to the ULMAP.

On arrival at the BS along the UL and the fixed-line INET interface, packets are queued in the BS buffers. The
packets destined for the Internet are scheduled for transmission along a high-speed fixed line modem which we
assume takes negligible time. Otherwise, the BS server (BS in the figure) performs certain unspecified functions,
including scheduling packets for transmission on the DL. Scheduled data are queued at the virtual DL queue and
reside therein until they are to be transmitted on the DL according to the DLMAP.

51

– 52 – Chapter 6 — Steady-state Analysis

In both the SS and BS, the SS and BS servers are ignored in the analysis.

Next, we define the following parameters:

1. λ: mean packet-level arrival rate at an SS in bits/s

2. λi: mean packet-level arrival rate at the BS from the Internet in bits/s

3. MCSUL: fixed data modulation rate along the UL in bits/s

4. MCSDL: fixed data modulation rate along the DL in bits/s

5. S: number of SSs in the network

6. γ: mean fraction of SS traffic arrivals destined for the Internet

7. ωUL: fraction of the frame dedicated to UL data transmission

8. ωDL: fraction of the frame dedicated to DL data transmission

9. ρUL: UL subframe link utilisation

10. ρDL: DL subframe link utilisation

From Figure 6.1 we can derive the formulae for the UL and DL utilisations, ρUL and ρDL, respectively:

In the case of the UL, the arrival rate at the UL channel server is the sum of the arrival rates over all the SSs,
i.e. Sλ. The UL channel service rate is derived as µUL = ωULMCSUL since data is modulated and transmitted
along the UL at a rate of MCSUL for ωUL. ρUL is given by Equation 6.1.

ρUL =
Sλ

ωULMCSUL
(6.1)

ρDL is given by Equation 6.2: The arrival rate at the DL channel server is the arrival rate at the BS buffers of
data destined for the wireless domain. All packets arriving from the Internet are destined for the wireless domain,
at a mean arrival rate λi. On average, (1 − γ) of the traffic arriving at the BS along the UL is destined for the
wireless domain, at a mean arrival rate (1 − γ)µUL, where the arrival rate at the BS along the UL is the service
rate of the UL channel. As for µUL, µDL = ωDLMCSDL.

ρDL =
λi + (1− γ)ωULMCSUL

ωDLMCSDL
(6.2)

The over-all link utilisation is defined as ρlink = ρUL + ρDL.

The analysis assists the network operator with parametrising the network such that it is in a steady-state during
network operation. The conditions for steady-state are

1. ωUL + ωDL = 1

2. ρUL ≤ 1

Chapter 6 — Steady-state Analysis – 53 –

3. ρDL ≤ 1

As a consequence of conditions 2 and 3, ρlink ≤ 2.

One needs to, or should choose parameter values which ensure maximum ratio link utilisation. Ideally, we want
to maximise both UL and DL utilisations, while maximising the utilisation of the link ρlink as well.

We select system parameters that result in the maximisation of both UL and DL utilisation: Firstly, the number
of SSs and the PHY layer implemented must be selected by the network operator, which depends on physical
device, deployment and operating costs. These parameter values are regarded as being given.

The remaining parameter values to choose are therefore ωUL, λ and γ, noting that λi can be expressed in terms
of S, λ and γ. Selecting a value for the mean arrival rate λ may at first seem to contradict the notion that the
workload is external and not determined by the network. However, the concept of QoS means that the network
operator indeed needs to exercise connection admission control to maintain adequate service levels; the network
operator limits network traffic by implementing RaCM protocols.

From condition 1, we can substitute ωDL by 1− ωUL, in Equation 6.2. Since we wish to optimise both UL and
DL utilisations, we set ρUL = ρDL. Hence, we obtain the second order polynomial given by Equation 6.3 with
coefficients a, b and c given by Equations 6.4 through 6.6, respectively.

aω2
UL + bωUL + c = 0 (6.3)

a = (1− γ)MCS2
UL (6.4)

b = Sλ(γMCSUL +MCSDL) (6.5)

c = −SλMCSDL (6.6)

For valid parameter values,

• a ≥ 0,

• b ≥ 0 and

• c ≤ 0.

Solving for ωUL is trivial. The real root for ωUL is given in Equation 6.7, where 0 ≥ γ < 1.

ωUL =
−b+

√
b2 − 4ac

2a
(6.7)

Finally, we want to determine λ and γ for ρUL = ρDL = 1, which is the maximisation of both UL and DL
utilisations for the ωUL given in Equation 6.7.

For a chosen γ, by substituting Equation 6.7 into Equation 6.1, we derive the second order polynomial given by

– 54 – Chapter 6 — Steady-state Analysis

Equation 6.8, with coefficients d and e given by Equations 6.9 and 6.10, respectively.

dλ2 + eλ = 0 (6.8)

d = S((1− γ)MCSUL + ρUL(γMCSUL +MCSDL)) (6.9)

e = −ρ2
ULMCSDLMCSUL (6.10)

Since, for valid parameter values,

• d ≥ 0, and

• e ≤ 0.

we obtain the positive real non-zero root of λ, given by Equation 6.11, by solving Equation 6.8, where d 6= 0.

λ = − e
d

(6.11)

As an example, consider a network of 6 nodes, MCSDL = 40 Mbps and MCSUL = 80 Mbps. Furthermore,
assume that 50% of the traffic generated by the 802.16 sources is destined for the Internet, i.e. γ = 0.5. By
choosing ρUL = 1, Equation 6.11 gives λ = 4.4̇ Mbps. As shown in Figure 6.2, ρUL = ρDL = 1 for λ = 4.4̇
Mbps. With λ = 4.4̇, Equation 6.7 gives ωUL ≈ 0.332, verified by the figure as well.

Figure 6.2: Link utilisations for a changing UL data frame ratio, with λ = 4.4 Mbps and S = 6

Keeping in mind that the analysis neither includes the MAP transmission time nor the UL connection contention
period, the utilisation predictions are over-estimates of the true link utilisations. Moreover, the analysis assumes
that the entire UL and DL sub-frames are dedicated to data transmission, i.e. all scheduling over-head such as syn-
chronisation preambles and idle periods, inter alia, are not considered. In itself, the latter assumption also implies
over-estimated link utilisation predictions. Therefore, since the conditions for steady-state operation are upheld,
the parameter relationships given in their respective equations maintain steady-state operation of the network.

Chapter 6 — Steady-state Analysis – 55 –

In conclusion, it should be the objective of the RaCM to maintain a traffic level of λ over the network. Ideally,
this traffic should mainly be made up of QoS traffic that results in maximisation of revenue according to the specific
revenue model the operator employs.

CHAPTER 7

EXPERIMENTATION

7.1 HYPOTHESIS

We distinguish between two levels of system activity, namely at the connection-level and packet-level. The
connection-level includes the management of connection-related data units, while the packet-level includes the
management of PDU packets within the network.

As shown in Figure 7.1, the CAC operates at the connection-level of system activity while the scheduler operates
at the packet-level. This means that the connection-level performance, represented by A, is managed by the CAC,
while the packet-level performance, represented by B, is managed by the scheduler.

We hypothesise that there is synergism between these components: In other words, we expect that performance
measured at the connection-level is not only directly controlled by the CAC but also indirectly by the scheduler.
Moreover, performance measured at the packet-level is expected not only to be directly controlled by the scheduler
but also indirectly by the CAC. The impact that these components have on each other’s performance-levels is the
synergistic relationship between these two components within the RaCM.

In our study, we nominated connection blocking probability as our connection-level performance measure, i.e.
metric A, since it is the designated responsibility of the CAC solely to grant or deny connection requests. Further-
more, as packet-level performance indices, i.e. at B, we nominated the throughput, delay and jitter performance
metrics, as experienced by the user per connection per traffic category, since the scheduler is solely responsible for
managing PDU transmission.

Figure 7.1: Conceptual system activity levels and components involved

56

Chapter 7 — Experimentation – 57 –

To prove our hypothesis, we experimented with different CAC and scheduler configurations: Assume that we
have two different CACs, CAC1 and CAC2, and two different schedulers, SCHED1 and SCHED2. All other
system parameters remained the same throughout all experiments. We must therefore show that, by experimenting
with

• CAC1-SCHED1 and CAC1-SCHED2 RaCM configurations, i.e. fixing the CAC, we expect to observe a
significant difference, not only in scheduler performance metrics but more specifically, in the connection
blocking probability for either one or more of the traffic categories.

• CAC1-SCHED1 and CAC2-SCHED1 RaCM configurations , i.e. fixing the scheduler, we expect to ob-
serve a significant difference, not only in connection-level performance metrics but more specifically, in the
throughput, delay or jitter performance for either one or more of the traffic categories.

7.2 EXPERIMENTAL DESIGN

7.2.1 Independent Variables

The wireless Internet scenario, introduced in Chapter 1, is a fixed WMAN. This means that SSs are added to or
removed from the network on occasion, but rarely. Therefore the number of SSs in the network was fixed in all of
the experiments.

As explained in Section 7.1, we observed the system performance for different RaCM configurations. For each
experiment the arrival rate λ at each SS (in Mbps) was the independent variable.

7.2.2 Methodology

Altogether, 4 experiments were conducted. For each experiment, we changed the RaCM configuration. The 4
experiments were

1. CAC1-SCHED1,

2. CAC1-SCHED2,

3. CAC2-SCHED1, and

4. CAC2-SCHED2.

Each experiment reported both connection– and packet-level QoS performance for the system operating under
different workload intensities (as explained in Section 7.2.1). In particular, as a connection-level performance
indicator, we considered blocking probability for UGS and rtPS separately. As packet-level indicators, we consid-
ered delay, i.e. response time, and jitter experienced over the WMAN network, also for UGS and rtPS separately.
Specifically, we considered the delay and jitter per connection per TC, having defined jitter as the absolute dif-
ference in the delay of two consecutive PDUs associated with a particular connection. Finally, throughput was
considered for UGS, rtPS and BE separately, as well as for the combined (overall) case, i.e. the cumulative
throughput across all TCs; throughput was computed per TC only.

– 58 – Chapter 7 — Experimentation

There are several advanced sampling techniques, such as the repeated runs and batch means methods [34],
whereby point-estimate predictions are possible using only a few (about 30 [33, 34]) independent and identically
distributed (IID) samples. By using sufficient IID samples, one can statistically predict the accuracy of the point
estimate under consideration with a certain level of confidence [6, 33, 34].

However, we had to take into account the practicalities of the system: Due to the system’s complexity, it takes
a long time (both simulated and real time) for an accurate QoS estimation. Therefore one must consider the time-

relevance of the performance estimator: When compared to the average connection holding time, it does not make
sense to report a mean value for a network operation period many times longer. Also, when the variance in the
system performance is high over such a practically long time and varies drastically over different time intervals, as
we show in Section 7.3, mean values over the entire duration of the network life-time as a performance indicator
does not make much sense. A running mean (or moving average) is a better estimator of QoS since it relates more
accurately to the quality of experience (QoE).

Furthermore, it is not the objective of this dissertation to prove any one configuration superior. We are only
concerned with obtaining comparable data to show that inter-RaCM synergy exists. At the start of a simulation run,
the simulator does not immediately exhibit typical behaviour of the system, primarily due to starting conditions [6,
33, 34]. We inspected our performance results for the simulation runs and identified an initial transient time after
which we could start considering data samples to be representative. The initial samples, assumed to be biased,
were not considered to compute performance statistic [6]. By plotting the mean number of connections active in
the system over time, the initial transient was identified, with an example shown in Appendix C.1.

Additionally, the system connection behaviour was investigated to identify activity-regions which were likely
to be a result of some rare events. As the example in Appendix C.2 shows, the mean number of connections in
the system were inspected over time to identify regions that may be rare event occurrences. By ignoring rare event
data, we can compare performance statistics without having to consider the influence of the rare event occurrences.

We identified a section of time after the initial transient that does not contain any of these rare event occurrences,
making sure that this section was the same for each of the different experiments. We consider the data contained in
the section as consequential data, i.e. they result from the system operating a particular RaCM configuration: All
experimental variables of the baseline model, described in Section 7.2.3, were initialised to the same state at the
beginning of each experimental run for each experiment. Furthermore, the experiments generated a vast amount
of performance data. Even though this means that the samples are correlated for each individual run, the particular
correlation effects are consequential for the samples of each experiment.

Since we have consequential data, it was not necessary to employ advanced statistical techniques, such as cal-
culating confidence intervals. Due to the correlation between the consequential data samples, confidence intervals
would firstly be optimistic. Furthermore, given the particularly large number of samples obtained, the confidence
intervals would tend to zero.

The mean value of each performance estimate suffices to contrast the experiments’ results. In addition to the
mean value, the standard deviation may also be used, as shown briefly in Section 7.3.

Finally, since SSs may go into a state of deadlock due to the BS UL scheduling process, as is explained in
Section 7.2.3, and buffer management are out of the scope of this study, some PDUs are in the system for an
abnormally long time. Practically, if a connection is established but the user does not receive service for his data,

Chapter 7 — Experimentation – 59 –

the user would typically terminate the connection after some time, even though the data are still waiting to be
served by the network. These performance data were considered irrelevant since the user did not perceive the
performance at the actual time at which these data were transmitted.

7.2.3 Model Parameterisation

Baseline Model

The baseline model is the system model definition excluding the RaCM components and simulation execution
parameters. It includes the PHY layer, workload model, frame aspect ratio and fragmentation parameters. The
baseline model was devised in order to ensure that the experimental results are that of a typical or at least plausible
system scenario.

The PHY layer parameter values are listed in Table 7.1. These values are selected from the standard specifi-
cations of the system PHY layer, as outlined in Section 2.1.3. To select UL and DL data frame ratios (ωUL and
ωDL, respectively), a steady-state analysis of the system was described in Chapter 6. The frame aspect ratio and
fragmentation parameter values are also listed in Table 7.1.

Parameter Value
Frame duration (Tframe) 1ms
UL wireless modulation rate (MCSUL) 80 Mbps
DL wireless modulation rate (MCSDL) 40 Mbps
Connection contention duration (Tconn) 50µs
DL:UL frame ratio 668:332
Maximum PDU fragment size (Cfrag) 1280 bits

Table 7.1: Physical Layer parameter values selected for the baseline model

The maximum size of PDU fragments may effect the system performance: Since a PDU (or fragment thereof)
can only be sent in its entirety or not at all, if the fragment size is too large, UL BW grants to an SS will be unused.
SSs will receive transmission opportunities but may not be able to use them if the grant is too small. However, since
this study does not concern itself with this particular problem, we need only to prevent the system from entering a
state of deadlock, i.e. permanent congestion: The BS allocates UL transmission time to each SS. However, an SS
can only transmit a PDU if there is sufficient time to transmit the entire PDU. If the SS is allocated time less than
that of the fragment size it will not be able to transmit that PDU/fragment. If the BS is not able to allocate enough
BW during system operation to an SS, that SS becomes deadlocked.

We also know that all SSs are scheduled along the UL during each frame. Furthermore, in our system, all SSs
are treated equally in terms of workload and scheduling process parameter values. Therefore we must determine
the PDU fragment size Cfrag (in bits), such that 0 < Cfrag ≤ CS

UL, where CS
UL is the mean amount of data that

each SS may be able to send per UL frame for some number S of SSs.

Considering the MAP transmission time TMAP and connection-contention period Tconn, TUL is given by Equa-
tion 7.1. Furthermore, we chose Tconn = 50µs, ωUL = 0.332 and S = 6, and TMAP is given by Equation 7.2.

TUL = ωUL × (Tframe − TMAP)− Tconn (7.1)

– 60 – Chapter 7 — Experimentation

TMAP =
140 + 32× S

MCSDL
(7.2)

With Cfrag = CS
UL, where CS

UL = TUL×MCSUL

S , we must select Cfrag ≤ 3723 bits. As mentioned before,
this study is not concerned with the particular effect of PDU fragment size on QoS performance of the system. We
selected Cfrag = 1280 bits: Each VoIP PDU is 1280 bits long. To prevent VoIP fragments, we chose 1280 bits
as PDU fragment size. Furthermore, since we expect that HTML response objects will be fragmented and know
PDUs can not be transmitted in part in our system, a smaller fragmentation size is desired.

With Cfrag = 1280 bits, temporary congestion is still possible. Since the UL scheduler allocates UL transmis-
sion periods based on the current connection status of the system, it may be possible that an SS may experience a
period during which it can not transmit any data. However, since the connection-level behaviour is dynamic and
SSs are considered the same, the SS will recover from this congestion state at some point.

Table 7.2 shows the workload model parameters and their selected parameter values. We relied on existing
studies for each of the traffic classes we use in our system simulation, surveyed in Section 2.3.2.

The packet-level parameter values were selected considering the various studies also previously introduced
in Section 2.3.2. However, in order to manipulate the average arrival rates (over all TCs), we adjusted the IAT
parameter values of each traffic application such that all application generate traffic at a mean rate of 2 Mbps. 2
Mbps was a convenient target rate to manipulate the various traffic models to generate data at and manipulation of
this rate is achieved by the command-line workload scaling parameter, described in Appendix A.2.4.

At the connection-level, the parameter values were selected based on the survey presented in Chapter 2.3.2. The
IATs were reduced, ensuring that the transitions rates between the different TM applications were maintained. The
same was done for the mean connection duration.

The percentage of traffic P generated by each application type, was estimated using the Internet traffic study [56]
introduced in Section 2.3.2. In order to ensure that the volumes of traffic remain proportional, as given by P , we
need to adjust the transition probabilities in the workload generator with respect to the mean PDU lengths l.

Let L be the mean PDU length generated by the MMAP generator regardless of traffic type and define the
transition probability matrix (TPM) as V . L can then be expressed using l and V , given by Equation 7.3.

L =
4∑

app=1

(lapp × Vapp), app ∈ {1 = V oIP, 2 = V ideo, 3 = P2P, 4 = HTML} (7.3)

We also have the following equalities:

1. V1 + V2 + V3 + V4 = 1

2. P1 + P2 + P3 + P4 = 1

By multiplying equality 2 by L and comparing the resulting equation to Equation 7.3, it follows that Vapp ×
lapp = Papp × L, where app ∈ {1, 2, 3, 4}; rearranging, we obtain Equation 7.4. Substituting Equation 7.4 into

Chapter 7 — Experimentation – 61 –

Parameter Connection-level Packet-level

HTML

Connection Not applicable Packet IAT Weibull:
IAR (ms) • λscale = 315778.506
Connection Not applicable • αshape = 0.10494
duration • δlocation = 0

Packet UL size Lognormal:
(byte) • µscale = 5.883

• σshape = 0.331
Packet DL size Lognormal:
(byte) • µscale = 7.401

• σshape = 1.405

BitTorrent

Connection Not applicable Packet IAT Deterministic:
IAR (µs) • 512
Connection Not applicable Packet size Deterministic:
duration (byte) • 128

VoIP

Connection Exponential: ‘ON’ duration (s) Exponential:
IAR • λscale = 0.2 • λscale = 1.004
(connections/s) ‘OFF’ duration (s) Exponential:
Connection Pareto: • λscale = 0.587
duration • αshape = 1.21 Packet IAT (ms) Deterministic:
(minutes) • βlocation = 0.2 • 0.406

Packet size Deterministic:
(bytes) • 160

Video Streaming

Connection Exponential: Packets per frame Deterministic:
IAR • λscale = 0.1 (packets) • 8
(connections/s) Inter-packet time Deterministic:
Connection Pareto: in frame (ms) • 0.01
duration • αshape = 1.21 Packet IAT Truncated Pareto:
(minutes) • βlocation = 0.4 (ms) • αshape = 1.2

• βlocation = 0.0614
•Maximum = 0.0052

Packet size Truncated Pareto:
(byte) • αshape = 1.1

• βlocation = 20
•Maximum = 125

TPM, V HTML= 1%, BitTorrent= 71%, Video= 24% and VoIP= 4%
Application, P HTML= 20%, BitTorrent= 65%, Video= 10% and VoIP= 5%

Table 7.2: Workload model parameter values for the system

equality 1, we solve for L, given by Equation 7.5, since all the necessary variables are known. Finally, we can
solve for V by substituting Equation 7.5 into Equation 7.4. The resulting TPM perventages, i.e. V , is listed in
Table 7.2.

Vapp =
Papp × L

lapp
(7.4)

L =
1∑4

app=1
Papp

lapp

(7.5)

As for the packet-level arrival rate at the BS from the INET node, the mean arrival rate scaling parameters were
changed by a factor of S × γ, where S is the number of SSs in the system and γ is the percentage of SS-generated

– 62 – Chapter 7 — Experimentation

traffic destined for the Internet. In our system, we choose γ = 0.5 but clearly this is arbitrary.

Admission Controllers

We experimented with two admission controllers, described in Section 5.1.4, namely CAC1 and CAC2. In
our study, we used the same admission controller algorithm for each CAC. However, we differentiated between
the CACs by selecting different algorithm parameters. CAC1 and CAC2 parameters are listed in Table 7.3. The
number-of-connection thresholds were chosen by inspecting preliminary simulation runs with an admit-all CAC, as
to allow more voice than video over the network. The delay and jitter thresholds were selected to be of milli-second
resolution. Also, stricter threshold values were set for voice than for video.

Parameter CAC1 Value CAC2 Value
UGS delay threshold 0.100 0.050
UGS jitter threshold 0.100 0.050
RTPS delay threshold 0.300 0.150
RTPS jitter threshold 0.150 0.075
Maximum UGS connections per SS 15 15
Maximum RTPS connections per SS 10 10
Maximum UGS connections per BS 75 75
Maximum RTPS connections per BS 50 50
Maximum connections per SS 20 20
Maximum connections per BS 100 100

Table 7.3: CAC parameter values for experimentation

Schedulers

As in the case of the admission controllers, we experimented with two system schedulers, described in Sec-
tions 5.1.1 and 5.1.2, namely SCHED1 and SCHED2; each consisting of three distinct schedulers, namely the BS
UL–, BS DL– and the SS UL schedulers, described in Section 2.2.1, page 14. The same scheduling algorithms
were used for each of the system schedulers, differentiating between the two by selecting different algorithm
parameters. SCHED1 and SCHED2 parameters are listed in Table 7.4.

Scheduler parameters were selected such that either voice or video traffic would be favoured, or both would be
served the same. Therefore, SCHED2 was parametrised by adjusting various service ratios to favour the classes
differently. The real-time performance estimate time-window, described in Section 5.1.3, remained the same.

Execution Parameters

The simulation execution parameter values remained the same for each experiment. Table 7.5 shows the pa-
rameter values for all the experiments. As shown in Chapter 6, for the particular wUL selected, the system is
fully utilised at a rate of 4.4 Mbps. We therefore selected a range of traffic intensities below 4.4 Mbps for our
experiments.

From preliminary runs, it was apparent that the initial transient was over at t = 1000s. We decided to run the
simulations for 6500s because we wanted to obtain as much performance data as possible given the amount of
available RAM and ROM memory. This provided us with enough simulation time from which we could identify a
period of simulation time (the same for each experiment run) to compare the experiments.

Chapter 7 — Experimentation – 63 –

Parameter SCHED1 Value SCHED2 Value
BS UL scheduler

UGS credit per connection 4 5
RTPS credit per connection 3 2
Fairness credit per SS 3 2
Real-time performance estimate time-window 0.5s 0.5s

BS DL scheduler
UGS weight 0.2 0.8
RTPS weight 0.8 0.2
NRTPS weight 0 0
Rounds 1 2

SS UL scheduler
UGS weight 0.5 0.3
RTPS weight 0.5 0.7
NRTPS weight 0 0
Rounds 1 1

Table 7.4: System scheduler parameter values for experimentation

The initial seeding value of the random number generators is arbitrarily chosen and provided for repeatability
of the experiments.

Parameter Value
SS arrival rate (minimum) 1.6 Mbps
SS arrival rate (increment) 0.4 Mbps
SS arrival rate (maximum) 3.6 Mbps
Number of SSs 6
Simulation duration 6500s
Tracing starting time 0s
Random number generator seed 11111

Table 7.5: Experiment execution parameter values

Trace file processing parameters

Once performance data were generated by the simulation experiments, we considered the system to be no longer
within the initial transient after t = 1000s. This was determined by inspecting the number of connections metric
over time for each of the simulation runs. Then, on inspection of the number of connections results, we selected
the section from simulation time t = 4000s to t = 6000s for performance estimation and comparison. This section
was chosen by visually identifying the initial transient and rare event occurrences. Appendix C shows an example
of the identification of initial transient and rare events.

During these 2000s, blocking probability samples were taken every 5 seconds; the mean blocking probabil-
ity was calculated using these 5s-samples. We chose 5s since we had performance data for a 2000s section of
simulation time. This resulted in a sufficient representation of the standard deviation of the performance statistic.

The delay and jitter samples were first aggregated per connection and then over an entire TC. We consider a
user’s connection as already being closed if its priority traffic has a delay longer than or equal to 30s. UGS and
rtPS PDUs with delays or jitters larger than 30s were not considered when calculating delay and jitter statistics.

– 64 – Chapter 7 — Experimentation

7.3 RESULTS

We ran simulations for the four CAC/scheduler pairs and for six different arrival rates, i.e. 24 simulation runs,
in parallel, four runs at a time. Two 2.13 Intel Core 2 Duo machines with two GB of RAM each were used and
generated approximately 200 GB of trace data, taking about two weeks. The trace data were processed, requiring
several more hours. The resulting statistics are as follows:

As is found in related literature, such as by Ali et al. [3], by changing the scheduler, packet-level performance
is effected. This expectation is verified by considering the mean 1 UGS and rtPS delay and jitter as workload
intensity varies: Plots of mean UGS and rtPS delay are shown in Figures 7.2 and 7.3, respectively; mean UGS and
rtPS jitter are shown in Figures 7.4 and 7.5, respectively.

Figure 7.2: Mean UGS delay for different workload
intensity settings, showing the different RaCM con-
figurations’ results

Figure 7.3: Mean rtPS delay for different workload
intensity settings, showing the different RaCM con-
figurations’ results

Even though Ali et al. mention the importance of the CAC, which “. . . works in tandem with the scheduling
algorithm . . . ” [3], they describe the design of the schedulers without investigating the effect of the particular inter-
dependent relationships between each of the CAC-scheduler configurations. Inspecting the delay and jitter results,
it is apparent that, by operating different CAC configurations with the same system scheduler configuration, the
network performance at the packet-level is affected significantly, i.e. up to 600%, as is apparent in Figure 7.2 for
SCHED1 experiments and workload intensity 2.8 Mbps. This proves that there exists a dependency relationship:
The scheduler-managed performance is directly affected by the particular CAC employed and therefore, the sched-
uler is dependent on the CAC, although it is left for future work to determine this relationship. It should also be
pointed out that the packet-level performance is impacted differently for each of the different workload intensities.

The graphs of mean UGS, rtPS and BE throughputs are show in Figures 7.6 through 7.8; Figure 7.9 shows the
mean throughput for the combined traffic in all the categories. There does not seem to be a significant difference
in the mean throughput metric for the different experiments. This is to be expected since throughput is measured
per TC as an aggregation of connection throughputs, different from the delay and jitter metrics.

1Note that all mean values are computed using samples taken from the comparable observation period starting at simulation time t = 4000s
and ending at t = 6000s, as mentioned in Section 7.2.3

Chapter 7 — Experimentation – 65 –

Figure 7.4: Mean UGS jitter for different workload
intensity settings, showing the different RaCM con-
figurations’ results

Figure 7.5: Mean rtPS jitter for different workload
intensity settings, showing the different RaCM con-
figurations’ results

Figure 7.6: Mean UGS throughput for different
workload intensity settings, showing the different
RaCM configurations’ results

Figure 7.7: Mean rtPS throughput for different
workload intensity settings, showing the different
RaCM configurations’ results

The mean UGS and rtPS throughputs increase monotonically for an increasing mean arrival rate, as well as for
the overall TC aggregate – as one would expect. The mean BE throughput initially increases; at some point it
starts to decrease as the UGS and rtPS throughputs become sufficiently large. This illustrates how the scheduler
uses BE data effectively when there is little or no priority traffic. Additionally, Figure 7.9 shows the overall mean
throughput increasing at a decreasing rate as the wireless link becomes fully utilised.

Similarly for the connection-level performance metric, i.e. connection blocking probability, the mean blocking
probability is expected to differ when experimenting with different CACs and a fixed system scheduler configu-
ration. These differences are evident, as shown in Figures 7.10 and 7.11 for UGS and rtPS, respectively. More
importantly however, by fixing the CAC and experimenting with different scheduler configurations, it is also ap-
parent that the mean blocking probability differs significantly, i.e. up to 35% as is apparent in Figure 7.10 for
the CAC1 experiments and workload intensity 3.6 Mbps. This implies that there is a dependency relationship

– 66 – Chapter 7 — Experimentation

Figure 7.8: Mean BE throughput for different work-
load intensity settings, showing the different RaCM
configurations’ results

Figure 7.9: Mean overall throughput for different
workload intensity settings, showing the different
RaCM configurations’ results

between the CAC and scheduler components; this is a relationship in which the CAC is dependent on the particular
scheduler.

Figure 7.10: Mean UGS blocking probability for
different workload intensity settings, showing the
different RaCM configurations’ results

Figure 7.11: Mean rtPS blocking probability for dif-
ferent workload intensity settings, showing the dif-
ferent RaCM configurations’ results

The results therefore suggest that there is an interdependent relationship between the CAC and scheduler com-
ponents, as hypothesised: There is a synergism between CAC and scheduler. As mentioned before, the standard
deviation may also be used to illustrate the synergy.

Rather than repeat all the mean value results, consider the standard deviation for UGS and rtPS delay, shown
in Figures 7.12 and 7.13, respectively. Performance data where the scheduler remains the same but the CAC is
changed, are considered in particular, namely SCHED1 − CAC1 and SCHED1 − CAC2; each for workload
intensities 2.4 and 3.6 Mbps. Finally, as the independent variable, we compute the standard deviation in delay for
consecutive 1000s intervals, with the first starting at t = 1000s and the last starting at t = 4000s.

Chapter 7 — Experimentation – 67 –

Figure 7.12: Standard deviation of UGS delay for
consecutive 1000s intervals, showing the different
CAC configurations and different workload intensity
settings

Figure 7.13: Standard deviation of rtPS delay for
consecutive 1000s intervals, showing the different
CAC configurations and different workload intensity
settings

For both workload intensities, it is apparent that a significant difference in the standard deviation of UGS and
rtPS delay results for different CAC configurations, confirming once more that the scheduler is dependent on the
particular CAC employed.

An important aspect of our experimental methodology is also clearly shown in Figures 7.12 and 7.13: By
considering consecutive 1000s intervals for the same workload intensity and RaCM configuration, the standard
deviations of UGS and rtPS delay both fluctuate greatly over time. It is therefore not correct to attempt determining
the true mean of system performance indices for the system operation time tending to infinity. Rather, as just
shown, we considered a mean for a more relevant period of time, specified in Section 7.2.3.

Finally, it is important to note that, in the case of both connection– and packet-level statistics, it appears that
the extent of the degree in performance differences are not necessarily constant. This is firstly attributed to the
complex nature of the system: Again, as shown in Chapter 6, the selection of an important performance-impacting
parameter (i.e. UL/DL frame ratio) is, inter alia, a function of the arrival rate. Lastly, one must take into account
the observation interval over which performance data was observed, as explained in the previous paragraph.

CHAPTER 8

CONCLUSION AND FUTURE WORK

The objective of this project was to prove the hypothesis that there is a synergy between connection admission
control and scheduling in IEEE 802.16. This has an important implication for RaCM design: There must be a shift
from designing admission control and scheduling algorithms independently to acknowledging their co-dependence
in cross-layer RaCM design.

Typically, designers choose either one or both of these components based on the independent performance
evaluations of them. Instead, one should start with basic and simplistic admission control and scheduler skeletons
and iteratively adjust each to ultimately arrive at an optimal RaCM design. By following this methodology, one
would be designing a performance-aware RaCM rather than an admission controller and scheduler that could
possibly have a negative impact on system performance. Describing the inter-RaCM relationship, however, was
not attempted, since we only wanted to show initially that there is in fact an inter-RaCM synergy unique to each
scheduler and CAC pair.

Another factor that effects the nature of the particular synergism is the workload. The system has two layers
of workload behaviour, namely connection and packet behaviour. Since a change in connection behaviour directly
changes the impact of the admission controller on connection-level performance, it indirectly affects the scheduler;
since a change in packet behaviour directly changes the impact of the scheduler on packet-level performance, it
indirectly affects the admission controller.

As is typical with most simulation studies of complex systems, our simulation runs took a relatively long time
to complete and generated vast amounts of performance data. We found that simulation runs took a relatively long
time to stabilise with respect to the mean connection holding times. Furthermore, the variance was high. This
is not unexpected since we had dynamic connection– and packet-level workload behaviour, which meant that the
system behaviour is not homogeneous. A comparable cross-section of time, i.e. continuous period/section of time,
containing a large amount of consequential data was used to gain insight into relevant system performance.

Finally, considering both the inter-RaCM design and connection– and packet-level dynamics, we are faced with
another problem: The non-homogeneous behaviour of the system makes traditional QoS performance metrics
unsuitable indicators of the quality of experience (QoE) of the average individual user. As a first step, we would
suggest that one better relates QoS to a QoE. Also, given the computational complexity and the physical memory

68

Chapter 8 — Conclusion and Future Work – 69 –

required for a simulation run, an innovative (possibly hybrid) approach is necessary for developing a more feasible
performance model. It is our opinion that, when developing the performance model, it is highly beneficial to keep
in mind that, and make allowance for, other performance impacting factors, such as channel quality, and so on.
The system is very complex and may therefore be extremely sensitive to such factors. In particular, a challenging
open problem is RaCM support of elastic media services.

We have identified and described some important aspects of the synergistic relationship between admission
control and scheduling components in this project. However, we did not describe particular implicit aspects. We
expect that each RaCM will have a unique relationship. Therefore, defining the synergism for particular RaCMs is
an interesting and fruitful avenue of future work.

BIBLIOGRAPHY

[1] A. Adas, “Traffic models in broadband networks,” IEEE Communications Magazine, vol. 35, no. 7, pp. 82–
89, July 1997.

[2] Alexander Klemm and Christoph Lindemann and Mary K Vernon and Oliver P Waldhorst, “Characterizing
the Query Behavior in Peer-to-Peer File Sharing Systems,” in Proceedings of the 4th ACM SIGCOMM

Conference on Internet Measurement 2004, Alfio Lombardo and James F. Kurose, Ed. Taormina, Sicily,
Italy: ACM, 2004, pp. 55–67. [Online]. Available: http://doi.acm.org/10.1145/1028788.1028796

[3] N. A. A. Ali, P. Dhrona, and H. S. Hassanein, “A performance study of uplink scheduling algorithms
in point-to-multipoint WiMAX networks,” Computer Communications, vol. 32, no. 3, pp. 511–521, 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.comcom.2008.09.015

[4] F. Amoroso, “On the Convolutional Square Root of a Nyquist Pulse,” Wireless Personal Communications,
vol. 1, pp. 287–290, 1995.

[5] S. Balakrishnan and F. Özgüner, “A Priority-Driven Flow Control Mechanism for Real-Time Traffic in Mul-
tiprocessor Networks,” IEEE Transactions on Parallel Distributed Systems, vol. 9, no. 7, pp. 664–678, 1998.

[6] J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol, Discrete-Event System Simulation, Third ed. Prentice-
Hall, 2000.

[7] N. Basher, A. Mahanti, A. Mahanti, C. Williamson, and M. Arlitt, “A Comparative Analysis of Web and
Peer-to-Peer Traffic,” in Proceeding of the Seventeenth International Conference on World Wide Web (WWW

’08). New York, NY, USA: ACM, 2008, pp. 287–296.

[8] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for Differentiated
Services. Internet RFC 2475,” 1998.

[9] D. Cavin, Y. Sasson, and A. Schiper, “On the accuracy of MANET simulators,” in POMC ’02: Proceedings

of the second ACM international workshop on Principles of mobile computing. New York, NY, USA: ACM,
2002, pp. 38–43.

[10] S. Chandra and A. Sahoo, “An Efficient Call Admission Control for IEEE 802.16 Networks,” in IEEE LAN-

MAN, June 2007.

70

http://doi.acm.org/10.1145/1028788.1028796
http://dx.doi.org/10.1016/j.comcom.2008.09.015

BIBLIOGRAPHY – 71 –

[11] J. Chen, W. Jiao, and H. Wang, “A service flow management strategy for IEEE 802.16 broadband wireless
access systems in TDD mode,” in IEEE International Conference on Communications, 2005, pp. 3422–3426.

[12] H.-K. Choi and J. O. Limb, “A Behavioral Model of Web Traffic,” in ICNP ’99: Proceedings of the Seventh

Annual International Conference on Network Protocols. Washington, DC, USA: IEEE Computer Society,
1999, p. 327.

[13] C.-N. Chuah, “A Scalable Framework for IP-Network Resource Provisioning Through Aggregation and Hi-
erarchical Control,” Ph.D. dissertation, University of California at Berkeley, 2001.

[14] C. Cicconetti, L. Lenzini, E. Mingozzi, and C. Eklund, “Quality of Service Support in IEEE 802.16 Net-
works,” Network, IEEE, vol. 20, no. 2, pp. 50–55, March–April 2006.

[15] C. Cicconetti, A. Erta, L. Lenzini, and E. Mingozzi, “Performance Evaluation of the IEEE 802.16 MAC for
QoS Support,” IEEE Transactions in Mobile Computing, vol. 6, no. 1, pp. 26–38, 2007. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/TMC.2007.12

[16] N. Cranley and M. Davis, “Performance evaluation of video streaming with background traffic over IEEE
802.11 WLAN networks,” in WMuNeP’05 - Proc. 1st ACM Workshop on Wireless Multimedia Networking

and Performance Modeling, A. A. F. Loureiro and W. Zhuang, Eds. ACM, 2005, pp. 131–139.

[17] K. L. D. Staehle and P. Tran-Gia, “Source Traffic Modeling of Wireless Applications,” University of
Würzburg, Technical Report TR 261, 1999.

[18] Demers, A, Keshav, S, and Shenker, S, “Analysis and Simulation of a Fair Queueing Algorithm,” Internet-

working: Research and Experience, vol. 1, pp. 3–26, apr 1990.

[19] D. Erman, D. Ilie, and A. Popescu, “BitTorrent Session Characteristics and Models,” in Proceedings of

the Third International Working Conference on Performance Modelling and Evaluation of Heterogeneous

Networks (HET-NETs’05), Ilkley, United Kingdom, 2005.

[20] D. Ferrari and D. C. Verma, “A scheme for real-time channel establishment in wide-area networks,” in IEEE

Journal on Selected Areas in Communication, vol. 8, no. 3, April 1990, pp. 368–379.

[21] V. S. Frost and B. Melamed, “Traffic Modeling for Telecommunications Networks,” IEEE Communications

Magazine, pp. 70–81, March 1994.

[22] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and J. Zahorjan, “Measurement, Modeling,
and Analysis of a Peer-to-Peer File-Sharing Workload,” in Proceedings of the Nineteenth ACM Symposium

on Operating Systems Principles (SOSP ’03). New York, NY, USA: ACM, 2003, pp. 314–329.

[23] Q. He, “Analysing The Characteristics of VoIP Traffic,” July 2007.

[24] J. A. Hernández, I. W. Phillips, and J. Aracil, “Discrete-time heavy-tailed chains, and their properties in
modeling network traffic,” ACM Transactions on Modeling and Computer Simulation, vol. 17, no. 4, pp.
17:1–17:11, Sep. 2007.

[25] J. Hou, J. Yang, and S. Papavassiliou, “Integration of Pricing with Call Admission Control to Meet QoS
Requirements in Cellular Networks,” IEEE Transactions on Parallel and Distributed Systems, vol. PDS-13,
no. 9, pp. 898–910, Sep 2002.

http://doi.ieeecomputersociety.org/10.1109/TMC.2007.12

– 72 – BIBLIOGRAPHY

[26] G. Iazeolla, P. S. Kritzinger, and P. P. Pileggi, “Modelling Quality of Service in IEEE 802.16 Networks,” in
Software, Telecommunications and Computer Networks, 2008. SoftCOM 2008. 16th International Conference

on, 2008, pp. 130–134.

[27] IEEE, IEEE Standard for Local and Metropolitan Area Networks, IEEE 802.16 Standard, 2004.

[28] O. T. Incorporated, “OPNET Modeler,” http://www.opnet.com.

[29] ITU-T, “Recommendation G.711 - Pulse code modulation (PCM) of voice frequencies,” Geneva, Switzerland,
1988.

[30] ——, “Recommendation P.59 – Artificial conversational speech,” Geneva, Switzerland, 1994.

[31] M. Kargahi and A. Movaghar, “A method for performance analysis of earliest-deadline-first scheduling pol-
icy,” J. Supercomput., vol. 37, no. 2, pp. 197–222, 2006.

[32] A. Klemm, C. Lindemann, and M. Lohmann, “Modeling IP traffic using the batch Markovian arrival process,”
Performance Evaluation, pp. 149–173, 2003.

[33] H. Kobayashi and B. L. Mark, System Modeling and Analysis. New Jersey, 07458: Prentice Hall, 2009.

[34] A. M. Law and D. W. Kelton, Simulation Modeling and Analysis. McGraw-Hill, 2000.

[35] P. L’Ecuyer and E. Buist, “Simulation in Java with SSJ,” in Simulation Conference. 2005 Proceedings of the

Winter,, 2005.

[36] J. P. Lehoczky, “Using real-time queueing theory to control lateness in real-time systems,” in SIGMETRICS

’97: Proceedings of the 1997 ACM SIGMETRICS international conference on Measurement and modeling

of computer systems. New York, NY, USA: ACM, 1997, pp. 158–168.

[37] Q. Liu, X. Wang, and G. B. Giannakis, “Cross-Layer Scheduler Design with QoS Support for
Wireless Access Networks,” in QSHINE. IEEE Computer Society, 2005, p. 21. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/QSHINE.2005.16

[38] I. C. Msadaa, F. Kamoun, and F. Filali, “An Adaptive QoS Architecture for IEEE 802.16 Broadband Wireless
Networks,” in Mobile Adhoc and Sensor Systems (MASS 2007). IEEE Internatonal Conference on, 2007, pp.
1–3.

[39] D. Niyato and E. Hossain, “Analysis of Fair Scheduling and Connection Admission Control in Differentiated
Services Wireless Networks,” in IEEE International Conference on Communications, 2005, pp. 3137–3141.

[40] ——, “Call admission control for QoS provisioning in 4G wireless networks: issues and approaches,” IEEE

Networks, vol. 19, no. 5, pp. 5–11, September 2005.

[41] NS-2, “The Network Simulator - NS-2,” http://www.isi.edu/nsnam/ns.

[42] OMNET++, “A discrete event simulation system,” http://www.omnetpp.org.

[43] On-line, “BitTorrentTM,” http://www.bittorrent.com/, 2009.

[44] ——, “Gnutella – A protocol for revolution,” http://rfc-gnutella.sourceforge.net/, 2009.

[45] ——, “Kazaa.com,” http://www.kazaa.com/, 2009.

http://doi.ieeecomputersociety.org/10.1109/QSHINE.2005.16
http://www.bittorrent.com/
http://rfc-gnutella.sourceforge.net/
http://www.kazaa.com/

BIBLIOGRAPHY – 73 –

[46] ——, “Napster Free – Listen to free streaming music online,” http://free.napster.com/, 2009.

[47] M. Papadopouli, H. Shen, and M. Spanakis, “Characterizing the mobility and association patterns of wireless
users in a campus,” Department of Computer Science, University of North Carolina - Chapel Hill, Tech.
Rep. TR04-019, Jul 2004. [Online]. Available: ftp://ftp.cs.unc.edu/pub/publications/techreports/04-019.pdf

[48] A. K. Parekh and R. G. Gallager, “A Generalized Processor Sharing Approach to Flow Control in Integrated
Services Networks - The Single Node Case,” in INFOCOM, 1992, pp. 915–924.

[49] V. Paxson and S. Floyd, “Wide-Area Traffic: The Failure of Poisson Modeling,” IEEE/ACM Transactions on

Networking, vol. 3, no. 3, pp. 226–244, June 1995.

[50] M. Perényi, T. D. Dang, A. Gefferth, and S. Molnár, “Identification and Analysis of Peer-to-Peer Traffic,”
JCM, vol. 1, no. 7, pp. 36–46, 2006.

[51] H. G. Perros, An Introduction to ATM Networks. New York, NY, USA: John Wiley & Sons, Inc., 2002.

[52] H. K. Rath, A. Bhorkar, and V. Sharma, “An Opportunistic Uplink Scheduling Scheme to Achieve Bandwidth
Fairness and Delay for Multiclass Traffic in Wi-Max (IEEE 802.16) Broadband Wireless Networks,” in IEEE

Global Telecommunications Conference (GLOBECOM ’06), 2006, pp. 1–5.

[53] N. Ruangchaijatupon, L. Wang, and Y. Ji, “A Study on the Performance of Scheduling Schemes for Broad-
band Wireless Access Networks,” in Communications and Information Technologies. ISCIT ’06. Interna-

tional Symposium on, 2006, pp. 1009–1012.

[54] P. Salvador, A. Pacheco, and R. Valadas, “Modeling IP traffic: joint characterization of packet arrivals and
packet sizes using BMAPs,” Computer Networks, pp. 335–352, October 2003.

[55] A. Sayenko, O. Alanen, and T. Hämäläinen, “Scheduling solution for the IEEE 802.16 base
station,” Computer Networks, vol. 52, no. 1, pp. 96–115, 2008. [Online]. Available: http:
//dx.doi.org/10.1016/j.comnet.2007.09.021

[56] H. Schulze and K. Mochalski, “Internet Study 2007,” http://www.ipoque.com/resources/internet-studies/
internet-study-2007, 2007.

[57] J. Seger, “Modelling Approach for VoIP Traffic Aggregations for Transferring Tele-traffic Trunks in a QoS en-
abled IP-Backbone Environment,” in International Workshop on Inter-domain Performance and Simulation,
2003, Faculty for Electrical Engineering and Information Technology, Department of Electronic Systems and
Switching, University of Dortmund.

[58] S. Shin and B.-H. Ryu, “Packet Loss Fair Scheduling Scheme for Real-Time Traffic in OFDMA Systems,”
pp. 391–396, Oct 2004.

[59] D. Stiliadis and A. Varma, “Latency-Rate Servers: A General Model for Analysis of Traffic Scheduling
Algorithms,” in INFOCOM, 1996, pp. 111–119.

[60] A. Symington, “A Hardware Testbed for Measuring IEEE 802.11g DCF Performance,” Master’s thesis, De-
partment of Computer Science, University of Cape Town, December 2009.

[61] T. W. Tang, D. Green, M. Rumsewicz, and N. Bean, “An Architecture for IEEE 802.16 MAC Scheduler
Design,” in 15th IEEE International Conference on Networks (ICON 2007), 2007, pp. 89–94.

http://free.napster.com/
ftp://ftp.cs.unc.edu/pub/publications/techreports/04-019.pdf
http://dx.doi.org/10.1016/j.comnet.2007.09.021
http://dx.doi.org/10.1016/j.comnet.2007.09.021
http://www.ipoque.com/resources/internet-studies/internet-study-2007
http://www.ipoque.com/resources/internet-studies/internet-study-2007

– 74 – BIBLIOGRAPHY

[62] S. N. Technologies, “Introducing the VisNet Network Planning Software,” http://www.scalable-
networks.com.

[63] A. Varga, “The OMNET++ discrete event simulation system,” in Proceedings of the European Simulation

Multiconference. Prague, Czech Republic: SCS - European Publishing House, 2001, pp. 319–324.

[64] L. O. Walters, “A Web Browsing Workload Model For Simulation,” Master’s thesis, University of Cape
Town, May 2004.

[65] H. Wang, B. He, and D. P. Agrawal, “Above packet level admission control and bandwidth allocation for
IEEE 802.16 wireless MAN,” Simulation Modelling Practice and Theory, vol. 15, no. 4, pp. 366–382, April
2007.

[66] J. Watkins, Testing IT - An Off-the-Shelf Software Testing Process. Cambridge University Press, 2001.

[67] K. Wongthavarawat and A. Ganz, “Packet scheduling for QoS support in IEEE 802.16,” International Journal

of Communication Systems, vol. 16, pp. 81–96, 2003.

[68] H. Xu, “Video Streaming Traffic Model for 802.16m Evaluation Methodology Document,” November 2007,
IEEE 802.16 Broadband Wireless Access Working Group.

[69] J. Yeo, D. Kotz, and T. Henderson, “CRAWDAD: a community resource for archiving wireless data at Dart-
mouth,” SIGCOMM Computer Commuication Review, vol. 36, no. 2, pp. 21–22, 2006.

APPENDIX A

SIMULATOR DEVELOPMENT

Our simulator was developed according to the process shown in Figure A.1. The simulation engine, RaCM and
workload components are first designed individually. These are then implemented and tested in turn. Once all
the components have tested correctly, they are integrated. After the integrated implementation has been tested,
component interfaces are specified. On completion of the interface implementation, version 1.0 of the simulator is
complete.

Figure A.1: Overview of the simulator development process

A.1 DESIGN

This section describes the design choices made for the simulation engine, RaCM and workload components,
where the latter two components were described in Chapter 2.

A.1.1 Simulation Engine Design

The simulation engine is event-driven, where an event represents a discrete change to one or more state variables
at a particular moment in time1. The main components of the basic simulation engine and their respective functions
are as follows.

Clock – The clock keeps track of simulation time.

1To avoid misinterpretation of the term simulation time, we define simulation time as the virtual time of the system being simulated, whereas
wall-time is defined as the real time taken for the simulation run to complete.

75

– 76 – Chapter A — Simulator Development

Calendar – The calendar, also referred to as the event list (“future events” list to some), keeps track of the the
next occurrence of each type of event that may occur.

Scheduler – Also referred to as the sequencer, the scheduler2 determines the next event to occur, advances the
clock to the time at which this event must occur and executes the event routine corresponding to this event.

Event routines – These routines are the processes that must execute to change the state variables affected by the
occurrence of a specific event.

Figure A.2 illustrates an abstract process flow chart (PFC) for the simulator and also shows the above-mentioned
components and their interactions. When the simulator is started, the simulation model is initialised using the
parameters provided to the program. Once initialised, control is passed to the scheduler. As shown in the figure,
the scheduler interacts with the calendar and the next event to execute is identified. Thereafter, the scheduler
advances the clock to the time of the next event identified. Lastly, the scheduler passes control the the event routine
process block that must execute next. On completion of the event process flow execution, simulator control is
passed back to the scheduler and this cycle continues until an end-of-simulation condition is reached. In our case,
the end-of-simulation condition is the simulation run duration and a separate event is created for terminating the
program. When control is passed to the end-of-simulation event, the simulation run is over and general house-
keeping routines are executed.

Figure A.2: Basic simulation engine PFC, showing the main components and their interactions

2The simulation engine scheduler is not to be confused with the BS or SS scheduler components.

Chapter A — Simulator Development – 77 –

A.1.2 Simulator Event Design

Event Identification

Altogether 11 events were identified: 4 events were identified from the abstracted frame, as shown in Figure A.3,
namely

• EOULSF: End of UL subframe.

• NEXTDIUC: Next DL interval usage code, representing the start of the next DL profile.

• EODLSF: End of DL subframe.

• NEXTUIUC: Next UL interval usage code, representing the start of the next UL profile, including the UL
connection contention period.

Figure A.3: Abstracted functional frame showing the four relevant events identified

The scheduler implements both an end-of-UL event and an end-of-DL subframe event even though it is possible
to reduce these events to a single event. Even though this may significantly impact the wall-time performance of
the simulator, it results in a more comprehensible model; reducing the number of events to such an extreme would
result in a more complex model that is harder to validate, ultimately discounting its credibility.

An additional 5 events were identified from the NoQ model, as shown in Figure A.3, namely

• SSARR: SS arrival, representing a PDU arrival at one of the SSs in the list of SSs.

• FARR: Fixed-line arrival, representing the arrival of a PDU from the internet at the BS wireless DL waiting-
line.

• WARR: Arrival at the wireless interface of the BS, representing the end of service of a PDU in the UL
direction from an SS and the arrival of the PDU at the BS wireless DL waiting-line or internet node.

• EOSWDL: End of service of the wireless DL server, representing just that.

• BWRARR: BWR arrival, representing the arrival of a SS or internet BWR at the BS CAC waiting-line.

Finally, 2 events were identified from the general simulator capabilities needed, namely the sampling (SAMPLE)
and end-of-simulation (ENDSIM) events. The former periodically samples dependent variables (such as queue
lengths) while the latter, as mentioned before, performs house-keeping functions at the end of the run.

– 78 – Chapter A — Simulator Development

Figure A.4: Network of queues model, abstracting both wireless and fixed-line data and BW requests at the BS
per TC, showing the 5 identified events

Event Process Flows

In this section, the 11 events are described in terms of the various process flows which may execute on occur-
rence of each. The process flows per event are presented as PFCs and necessary chart variables are defined in
Table A.1.

Variable Definition
tSIM Present simulation time.
tS Service time of a PDU.

tMAPS Time required to transmit the MAP information.
tDLSF Duration of the DL subframe.
tULSF Duration of the UL subframe.
tIE Duration of an IE of either DLMAP or ULMAP.
tSSAT Arrival time of the next PDU at some SS.
tFAT Arrival time of the next PDU at the INET.

tBWRAT Arrival time of the next BWR from either the INET or an SS.
index SSID of the SS that may transmit on the UL to the BS during the current

UL profile period. −1 implies that no SS has been selected and −2 implies
the connection contention period during which all SSs may transmit BWRs.

BSTransmit DL transmission status of the BS. true implies the BS may transmit
and false implies it may not.

Table A.1: PFC variable definitions

The event PFCs that follow descibe (in detail) the event routine process flow blocks shown in Figure A.5.

EOULSF

EOULSF indicates both the beginning of the DL subframe and the end of the UL subframe and its PFC is shown
in Figure A.6. As shown that the figure, the simulator must first determine whether the last UL profile period was

Chapter A — Simulator Development – 79 –

Figure A.5: Basic simulation engine PFC with the process flow blocks of the event routines

a connection contention period. If index == −2, then it was, and the current admitted connection list used by
the BS scheduler to generate the MAPs must be updated with the delayed connection admission list; a process
described in Chapter 4.2. All BWRs in the CAC waiting line are then served. index is set to −1 to indicate that
no SS has access to the UL medium. Next, the antenna state is changed from UL to DL. This means that the
BS’s antenna will be in transmit mode and that the SSs’ antennae will be in receive mode. Since TDD single-
carrier PHY is modelled, the antenna state is either UL or DL. The current DLMAP and ULMAP are then replaced
with the new DLMAP and ULMAP, respectively, as specified by the MAP generator of the BS scheduler. If this
DLMAP is empty, i.e. contains no IEs, NEXTDIUC is disabled3 since there may not be any DL transmission. If
the DLMAP is not empty, NEXTDIUC must be scheduled4 at time tSIM + tMAPS . Similarly then, if the ULMAP
is empty, NEXTUIUC is disabled, otherwise it is scheduled at time tSIM + tDLSF . Finally, EODLSF is scheduled
at tSIM + tDLSF and EOULSF and WARR are disabled.

NEXTDIUC

NEXTDIUC changes the system by updating the DL transmission profile. Its PFC is shown in Figure A.7. The
IE at the front of the DLMAP is used to update the modulation technique to be used during the this specific DL
transmission period, effectively changing the rate of the DL transmission, and is then removed from the DLMAP.
After this, the BSTransmit variable is set to true to indicate that the BS may now transmit along the DL. If the
wireless DL waiting lines (at the BS) have PDUs waiting to be served, the next PDU (in these waiting lines) is put
into service and EOSWDL is scheduled at tSIM + tS . Otherwise, if these waiting lines are empty, EOSWDL is
not scheduled. Lastly, if the DLMAP is empty, NEXTDIUC is disabled, otherwise, if the DLMAP is not empty,
NEXTDIUC is scheduled at time tSIM + tIE , where tIE is the duration of the IE that has most recently been
removed off the DLMAP.

EODLSF

EODLSF indicates both the beginning of the UL subframe and the end of the DL subframe and its PFC is shown
3Disabling an event involves ensuring that the event will not occur again unless explicitly scheduled to occur by some other event. The way

in which this is done in the simulator is to schedule the event to occur at time = ∞, which is the maximum value of the data primitive used
to store simulated time.

4Scheduling an event means to set the next occurrence time of that event.

– 80 – Chapter A — Simulator Development

Figure A.6: EOULSF PFC

in Figure A.6. The BSTransmit variable is first set to false since the BS may not transmit more data. Next,
the antenna state is changed from DL to UL and then EOULSF is scheduled at time tSIM + tULSF . Note that,

Chapter A — Simulator Development – 81 –

Figure A.7: NEXTDIUC PFC

as described in the PFC of EOULSF shown in Figure A.6, EODLSF and NEXTUIUC (in the case of the ULMAP
containing one or more IEs) are scheduled to occur simultaneously. Since the system must first be in the UL
antenna state before it may start transmitting along the UL, the EODLSF event routine must always execute first.
Handling of the execution order of simultaneous events is discussed in further detail in Section A.1.2. EODLSF
and NEXTDIUC are then disabled. The latter is disabled in the case that the MAP generator generated an erroneous
DLMAP that spans more of the frame than is allowed by the system specification. Lastly, EOSWDL is disabled
since the antenna changed status from DL to UL.

– 82 – Chapter A — Simulator Development

Figure A.8: EODLSF PFC

NEXTUIUC

NEXTUIUC updates the UL transmission profile by effecting the rate and specifying which SS may be transmitting
along the UL during the period specified by the next IE in the ULMAP. Figure A.9 shows the PCF for NEXTU-
IUC. As for EOULSF, the simulator must firstly determine whether the last UL profile period was a connection
contention period. If index == −2, then it was and the current admitted connection list, used by the BS scheduler
to generate the MAPs, must be updated with the delayed connection admission list; a process described in Chap-
ter 4.2. The modulation technique for UL transmission is then set, effectively updating the UL transmission rate
for the SS, according to the next ULMAP IE and index is set to the SSID of the SS scheduled for UL transmission.
The IE is then removed from the ULMAP.

If the updated index == −2, the UL IE specifies a connection contention period. WARR is disabled and, if the
ULMAP is empty, NEXTUIUC is disabled. If it is not empty, NEXTUIUC is scheduled at time tSIM + tIE .

If the UL IE does not specify a connection contention period, the SSindex’s waiting lines are inspected. If these
are empty, WARR is disabled. If the waiting lines are not empty, the next PDU is put into service and WARR is
scheduled at time tSIM + tS . Lastly, if the ULMAP is empty, NEXTUIUC is disabled, otherwise NEXTUIUC is

Chapter A — Simulator Development – 83 –

Figure A.9: NEXTUIUC PFC

scheduled at time tSIM + tIE .

SSARR

SSARR represents an arrival at an SS in the list of SSs and its PFC is shown in Figure A.10. The SS list of next
arrival times is searched and the SS at which the next PDU must arrive is identified (called the arrival SS). The
PDU is then generated for the arrival SS.

If the arrival SS queues are not empty, no PDU must be put into service. The arrival is only put in the arrival
SS’s waiting line. On the other hand, if the arrival SS’s queues are empty, the arrival is first put in the arrival SS’s

– 84 – Chapter A — Simulator Development

Figure A.10: SSARR PFC

waiting line and then it is determined whether the arrival SS may, at present, transmit along the UL, i.e. if the
arrival SS’s SSID equals index. If the arrival SS may transmit, and since the buffers were empty, the arrival PDU
is put into service and WARR is scheduled at time tSIM + tS . Otherwise, if the arrival SS may not transmit on the
UL, the PDU is only put in the waiting line.

Lastly, the inter-arrival time is determined for the next arrival at the arrival SS and the SS arrival time is conse-
quently updated. The (earliest) next arrival is then determined from the SS arrival times and SSARR is scheduled
at time tSSAT (which already includes tSIM).

FARR

FARR represents a PDU arrival from the internet at the BS wireless DL waiting-line and its PFC is shown in
Figure A.11. The INET PDU instance is first generated and, if the wireless DL server queues are not empty,

Chapter A — Simulator Development – 85 –

the arrival PDU is put in the appropriate wireless DL waiting line and the next PDU arrival time at the INET is
determined. Otherwise, if the queues are empty, the PDU is put in the appropriate waiting line and it is determined
whether the BS may transmit data, i.e. if BSTrasnmit == true. If the BS may transmit, the PDU is put into
service, EOSWDL is scheduled at time tSIM + tS and the next PDU arrival time at the INET is determined.
Otherwise, if the BS may not transmit, the next PDU arrival time at the INET is determined. Lastly, FARR is
scheduled at time tFAT .

Figure A.11: FARR PFC

WARR

WARR represents the end of service of a currently in-service PDU at the SS that may transmit along the UL and
the consequent arrival at either the BS MAC memory buffers or the fixed-line Internet node. The PFC is shown in
Figure A.12.

– 86 – Chapter A — Simulator Development

Figure A.12: WARR PFC

The current in-service PDU, at the SS that may transmit, is taken out of service and removed from the SS
memory buffers. If the PDU’s destination is the internet, it is sent to the data sink for data collection. Otherwise,
if it is to be sent to some other SS, the PDU is put in the wireless DL waiting lines.

Next, if the transmitting SS’s queues are empty, WARR is disabled. otherwise, the next PDU is put into service
at the transmitting SS and WARR is scheduled at time tSIM + tS .

EOSWDL

EOSWDL represents the end of service of a PDU along the wireless DL interface from the BS to an SS and its
PFC is shown in Figure A.13. At the end of service, the packet is sent to the data sink which represents successful
arrival at the appropriate SS destination and it is removed from the BS memory buffers. If the wireless DL queues
are empty, EOSWDL is disabled. Otherwise, the PDU next-in-line in the wireless DL waiting lines is put into
service and EOSWDL is scheduled at time tSIM + tS .

BWRARR BWRARR represents the generation of BWR in either the internet or at some SS and the arrivals of
these requests at the BS CAC. The PFC is shown in Figure A.14.

First, the next BWR arrival source is determined (being either the INET or some). The appropriate source then
generates a BWR which is put into the waiting line at the BS CAC. The service of BWR by the CAC are dealt with
by other events already described and the reader is referred to NEXTUIUC and EOULSF. The next BWR inter-

Chapter A — Simulator Development – 87 –

Figure A.13: EOSWDL PFC

arrival time is generated by the corresponding source and the corresponding arrival time is updated accordingly.
This list keeps the arrival times of the next BWR at the INET and all SSs. Lastly, BWRARR is scheduled at time
tBWRAT , where tBWRAT is the earliest next arrival time in the next BWR arrival times list.

SAMPLE

SAMPLE signals the virtual time at which the simulator must start to record the performance data. A flag is toggled
to allow the recording of performance data. Finally, SAMPLE is disabled.

ENDSIM

ENDSIM terminates the simulation run.

Event Order

Simultaneous events that affect each other are managed by considering the structure and search algorithm used
to determine the next event to occur in the Calendar. The Calendar is organised as a one-dimensional list, where
each event type is allocated a fixed position in this list. The list is searched in a top-down fashion and remembers
the event higher up on the list as the next event in the case of simultaneous events. Order matters when the
following events occur simultaneously:

• EOULSF and WARR: EOULSF disables WARR and therefore, WARR must be before EOULSF.

• EODLSF and EOSWDL: EODLSF disables EOSWDL and therefore, EOSWDL must be before EODLSF.

• NEXTUIUC and WARR: NEXTUIUC may disable WARR and therefore, WARR must be before NEXTU-
IUC.

– 88 – Chapter A — Simulator Development

Figure A.14: BWRARR PFC

EOULSF and EODLSF may not occur simultaneously and therefore, their order does not matter. The resulting
order of events in the calendar list structure, from top to bottom, is as follows.

1. WARR

2. EOULSF

3. EOSWDL

4. EODLSF

5. NEXTUIUC

6. NEXTDIUC

7. SSARR

8. FARR

9. BWRARR

10. SAMPLE

11. ENDSIM

Chapter A — Simulator Development – 89 –

A.2 IMPLEMENTATION

The design of each system component and the event-driven simulator were translated into Java source code.
First the simulation engine was implemented. Thereafter the specific event process flows were implemented. By
implementing the process flows and the various system components, the NoQ classes are identified and defined in
terms of the necessary attributes (variables) and behaviours (methods). Furthermore, implementing these classes
leads to defining the interfaces for the various RaCM and workload model components. Different RaCM and
workload components can be implemented using these interfaces specified. UML class diagrams and interface
specifications are reported in this section. The Java source code for the various classes are available on request.

For random number generation, the Stochastic Simulation in Java (SSJ) library [35] was used. This is an open-
source library that supports random number generation of both uniform and non-uniform random variables.

A.2.1 Simulation Engine Implementation

The main entry point to the simulator is the BasicSim class. The additional basic classes created that constitute
the simulation engine are the Scheduler, Calendar and Clock classes. The Event class is used as a data structure
for communicating event information between the Scheduler and Calendar classes.

The NoQ class is the entry point that controls access to the machine and workload components of the system
simulated by the simulation scheduler. Figure A.15 shows the simulation engine classes and their relationships.
These classes were implemented first, where after the NoQ class was implemented in greater detail, as described
in Appendix A.2.2.

Figure A.15: UML class diagram of the simulation engine-related classes

The Scheduler class implements the event routines. These event routines invoke methods that correspond to the
PFCs described in Appendix A.1.2.

A.2.2 NoQ Implementation

The NoQ-related classes were created by considering the various NoQ components. The attributes and methods
were created as required by methods invoked by the event routines. As shown in Figure A.16, the main components
are the Internet, SS, BS and data destination node implemented as the INET, SS, BS and Sink classes, respectively.

The INET and SS classes both inherit from the Node class which has a WLG class for workload generation.
The SS class includes the implementation of the SS UL scheduler process. The WLG class is detailed later, in

– 90 – Chapter A — Simulator Development

Figure A.16: UML class diagram of the NoQ-related classes

Section 5.2.3.

The BS class is composed of the BSScheduler and CAC classes. The BSScheduler class implements the BS
UL and DL scheduler processes while the CAC class implements the admission control algorithm. Since the BS
calculates and generates the MAP information, IEs are communicated between the BSScheduler and NoQ classes
using instances of the IE class. Also, the BSScheduler class maintains a list of admitted connections, where each
connection is represented by the Connection class.

The Sink class consumes data PDUs that arrive at their destination. These data are written to a PDU trace file
which is later used to calculate performance metrics.

BWRs and PDUs are represented by the BWR and PDU classes, respectively.

A.2.3 Component Interface Specifications

The 4 interfaces specified for the simulator aim to promote modularity in the simulator. Different components
can be created by implementing the basic methods specified in these interface classes. The simulator will then
invoke these methods in the newly created components. These interfaces are:

Connection Admission Control Interface

The CAC class implements the CACInterface interface:

public Vector<BWR> serveBWRs(Vector<Object> qosStatus)
Evaluates the BWRs in the request queue and returns a vector containing the successfully admitted BWRs.
The QoS status at the BS MAC memory buffers is necessary as input – obtained from the BS scheduler.
qosStatus is an Object Vector that represents the current network status descriptors.

public void putInWaitingLine(BWR bwr)

Chapter A — Simulator Development – 91 –

Puts the BWR bwr in the CAC waiting ling.

BS Scheduler Interface

BSScheduler class implements the BSSchedulerInterface interface:

public Vector<IE> getNextDLMAP()
Determines and returns the DLMAP for the next frame. To determine the size of the MAP, the next ULMAP
skeleton/template must also be set up here. Note that the simulator will invoke the getNextULMAP() method
next, which will detail the IEs of the next ULMAP.

public Vector<IE> getNextULMAP()
Determines and returns the ULMAP for the next frame. Note that getNextDLMAP() was invoked just before
this method and the ULMAP skeleton were created. This method detail the IEs of the next ULMAP.

public int getMAPSize()
Determines and returns the size of the current MAP in bits.

public void updateActivePool()
Updates the list of connections currently being served by the network with the BWRs initially placed in the
delayed BWR list/pool.

public void updateDelayedPool(Vector<BWR> delayedPool)
Updates the delayed BWR pool with the BWRs in the delayedPool Vector.

public int getRate()
Gets the current DL transmission rate of the BS in bits/s.

public void setRate(int rate)
Sets the current DL transmission rate of the BS in bits/s.

public PDU takeOutOfService()
Takes the PDU currently being served out of service. The PDU is returned.

public void putInBuffers(PDU arrival)
Puts the PDU arrival in the appropriate waiting line and at the appropriate position.

public int serveNext()
Puts the next PDU into service and returns the length of the PDU in bits.

public boolean emptyWaitingLines()
Determines whether the waiting lines are empty (true) or not (false) and returns this boolean.

public Vector<Object> getQoSStatus()
Estimates the current network QoS performance and returns a Vector of Objects representation of this. This
method must be defined in conjunction the CACInterface interface.

public Vector<IE> getDLMAP()
Gets the current DLMAP as a Vector of IE instances.

public Vector<IE> getULMAP()
Gets the current ULMAP as a Vector of IE instances.

– 92 – Chapter A — Simulator Development

SS Interface

The SS class implements the SSInterface interface:

public int getSSID()
Gets the SSID of the SS instance.

public void setSSID(int ssid)
Sets the SSID of the SS instance.

public int getRate()
Gets the current UL transmission rate of the SS instance in bits/s.

public void setRate(int rate)
Sets the current UL transmission rate of the SS instance in bits/s.

public PDU takeOutOfService()
Takes the PDU currently being served out of service. The PDU is returned.

public void putInBuffers(PDU arrival)
Puts the PDU arrival in the appropriate waiting line and at the appropriate position.

public int serveNext()
Puts the next PDU in the SS waiting lines into service and returns the length of the PDU in bits.

public boolean emptyWaitingLines()
Determines whether the waiting lines are empty (true) or not (false) and returns this boolean.

public BWR generateBWR()
Generates and returns the next BWR instance.

public PDU generatePDU()
Generates and returns the next PDU instance.

Workload Generation Interface

The TM class implements the WLM interface:

double getNextBWRIAT()
Determines and returns the time before the next BWR arrival (in seconds).

double getNextPDUIAT()
Determines and returns the time before the next PDU arrival (in seconds).

BWR getNextBWR()
Determines and returns the next BWR.

double getNextPDUSize()
Determines and returns the size of the next PDU (in bits).

int getNextPDUTC()
Determines and returns the TC of the next PDU.

Chapter A — Simulator Development – 93 –

A.2.4 Program Execution and File Formats

The simulator is started by executing the BasicSim program. 12 command-line parameters are required at
execution time. Table A.2 details these parameters command-line string:

java BasicSim test_project 0 2 1 1 5 0 0.001 40000000 80000000 500 1

Parameter Example value Note
experiment name test project The name of the project, where all related files are stored

in the test project directory
debug mode 0 Mechanism to aid testing (maximum 8 modes)1

num indep vals 2 The number of different traffic intensities, i.e. the different
values that the independent variable takes on2

min SSs 1 The number of SSs the network is initially populated with
increment SSs 1 The number of SSs to increment the network by for each

workload intensity increase
sim duration 5 Duration of the simulation (simulation time) in seconds
start record 0 Time in the simulation at which to start recording

performance data in seconds
frame duration 0.001 Frame duration in seconds
DL rate 40000000 Basic DL data rate in bits per second
UL rate 80000000 basic UL data rate in bits per second
fragment size 500 Fragment size in bits
WorkloadMultiplier 1 Multiplier of packet-level workload IAT streams

Table A.2: Simulation program command-line input parameters

All other system parameters (such as the CAC, BS UL scheduler, etc. parameters) are hard-coded into the sim-
ulator program. When developing a RaCM component, the implementer must decide on the component parameter.

On completion of the program execution, trace files are generated for the simulation experiment. Connection-
level information is stored in the BWR trace file (with file extension .bwrtrace) while packet-level information
is stored in the PDU trace file (with file extension .pdutrace). In these trace files, comment lines, which are
ignored at time of post-processing, start with the hash symbol (#). BWR trace file entries are single-lined entries,
each entry consisting of the attributes described by Table A.3. PDU trace file entries are single-lined entries, each
entry consisting of the attributes described by Table A.4

A.2.5 Output Data Processing

The BWR and PDU trace files are processed in turn to determine both connection– and packet-level performance
statistics. 2 separate trace parsing programs were written in Java to parse and collect statistics from the BWR and
PDU traces, namely ConnTP.java and PacketTP.java, respectively.

1This debug facility has been provided so that the programmer can add debug hooks into the simulation source when modifying the source
in the future.

2In the case where the independent variable is the number of SSs in the system, this parameter is the smallest number of SSs in the system
experimented with.

– 94 – Chapter A — Simulator Development

Content Value
1 Request type 0=DSA, 1=DSD
2 TC value 0=UGS, 1=RTPS, 2=NRTPS, 3=BE
3 CID INTEGER
4 Source ID INTEGER
5 Destination ID INTEGER
6 Current simulation time DOUBLE
7 Admission result true=admitted, false=denied

Table A.3: BWR trace file entry attributes

Content Value
1 CID INTEGER
2 Source ID INTEGER
3 TC value 0=UGS, 1=RTPS, 2=NRTPS, 3=BE
4 Length (bits) INTEGER
5 TimeInSSQueue DOUBLE
6 TimeInBSQueue DOUBLE
7 TimeInBSEndService DOUBLE

Table A.4: PDU trace file entry attributes

Connection-level trace processing

ConnTP parses the trace file sample1.bwrtrace, generated by the simulator. Both the mean number of
connections in the system and mean blocking probability are sampled over successive 5s observation windows per
UGS and rtPS TCs. These samples are recorded in the comma separated variable (CSV) files connParse.csv
and bpParse.csv, respectively.

Packet-level trace processing

PacketTP parses the trace file sample1.pdutrace, generated by the simulator. The mean throughput is
sampled over successive 5s observation windows per UGS, rtPS and BE TCs. The PDU delays are recorded
per connection over a cross-section of simulation time, i.e. the comparable time section; the jitter samples are
recorded in the same way. The parsing program does not include the delay samples of those connections that
have delays greater than a specified maximum user-tolerated delay, after which the user is likely to close the
connection; these samples are residue data of connections that were connected via a deadlocked SS and therefore
are no longer relevant. The mean delay and jitter are calculated by computing the arithmetic means of the mean
delay and jitter experienced per connection in each TC. The mean delay and jitter are recorded in CSV files
delayParse.csv and jitterParse.csv, respectively, while the throughput samples are recorded in the
CSV file tauParse.csv.

A.3 TESTING

A.3.1 Simulation Engine Tests

Four test cases were devised to test the basic simulation engine:

Chapter A — Simulator Development – 95 –

Test case B1: The correct next event is selected for execution.

Test case B2: The clock is advanced correctly. (This is tested by reviewing the program source. The clock
variable must be assigned the time of the Event instance.)

Test case B3: The associated process flows are called correctly. (This is tested by reviewing the program source,
ensuring the appropriate method calls are made.)

Test case B4: Simultaneous events are executed in a top-down fashion.

A.3.2 Simulator Event/Integration Tests

For the network to operate in the way intended, as described by the design artefacts, it is necessary to ensure that
the event PFCs are implemented correctly. Therefore, integration testing involved inspecting the event routines,
ensuring they invoke the methods necessary to achieve what was expected. Moreover, these methods must be
invoked in the correct order specified by the PFCs. If these methods did not directly affect the intended system
state variables, the methods that they invoked in turn, were traced and inspected until all intended variables were
affected correctly. The program source was inspected manually and thus no additional test case artefacts resulted
for integration testing.

APPENDIX B

TESTING ARTIFACTS

Selected test cases (and their respective debug output) are provided in this appendix for the relevant system com-
ponents to illustrate how testing was conducted. The other test case artefacts are available on request.

B.1 SCHEDULERS

B.1.1 SS UL and BS DL Schedulers

Field Content
ID S1.1
Description A BE PDU arrival.
Preconditions System state variables are as after test case S1.13. BE PDU arrives.
Expected results BE buffer size must increase by 1 PDU.
Outcome PASS

Invoking putInBuffers(BE PDU) on an empty buffer;

* SS STATUS

isqp: -1

ispp: 0

lastInService: -1

quotas[UGS]: 6.0

quotas[RTPS]: 6.999999999999999

quotas[NRTPS]: 7.199999999999999

queues[UGS]: 0

queues[RTPS]: 0

queues[NRTPS]: 0

queues[BE]: 1

* SS STATUS

isqp: 1

ispp: 0

lastInService: -1

quotas[UGS]: 6.0

quotas[RTPS]: 6.999999999999999

quotas[NRTPS]: 7.199999999999999

queues[UGS]: 1

queues[RTPS]: 1

queues[NRTPS]: 0

queues[BE]: 1

B.1.2 BS UL Scheduler

Test case S2.2:

DLMAP size (in IEs): 1; ULMAP size (in IEs): 4

MAP size (in bits): 268

96

Chapter B — Testing Artifacts – 97 –

Field Content
ID S2.2
Description Calculate and generate the DLMAP and thereafter the ULMAP.
Preconditions S = 3.
Expected results Since S=3, there must be (as always) 1 DL IE and 4 UL IE(S SS IEs + 1 connection

contention IE). Testing for test case S2.1 again, the MAP size should be
(120 + 1x20 + 4x32) = 268 bits.

Outcome PASS

B.2 CAC

Field Content
ID C3
Description Tests whether the CAC can evaluate a DSD request correctly.
Preconditions A DSD request must be in the request queue. It must have the same ID

and TC as an already admitted connection.
Expected results The request must be admitted and the number of already admitted connections

for the Source and TC must decrease by 1.
Outcome PASS

Test C3:

BEFORE: System Variable Status:

Request queue size: 1

Total QoS requests already admitted per Source per TC [SOURCE ID,UGS,RTPS,NRTPS]: [0,0,1,0]

Total QoS requests already admitted per Source per TC [SOURCE ID,UGS,RTPS,NRTPS]: [1,0,0,0]

Total QoS requests already admitted per Source per TC [SOURCE ID,UGS,RTPS,NRTPS]: [2,0,0,0]

Total QoS requests already admitted per Source per TC [SOURCE ID,UGS,RTPS,NRTPS]: [3,1,0,0]

Admitted: 1

AFTER: System Variable Status:

Request queue size: 0

Total QoS requests already admitted per Source per TC [SOURCE ID,UGS,RTPS,NRTPS]: [0,0,1,0]

Total QoS requests already admitted per Source per TC [SOURCE ID,UGS,RTPS,NRTPS]: [1,0,0,0]

Total QoS requests already admitted per Source per TC [SOURCE ID,UGS,RTPS,NRTPS]: [2,0,0,0]

Total QoS requests already admitted per Source per TC [SOURCE ID,UGS,RTPS,NRTPS]: [3,0,0,0]

B.3 WORKLOAD GENERATOR

Field Content
ID W2
Description MMAP WLG generates PDUs in the correct volume.
Preconditions A TM vector containing 1 of each TM must be initialised. The associated

transition probability matrix (TPM) must also be initialised.
Expected results A count of the amount of PDUs generated by a long run of PDU generation must

result in the TPM being matched.
Outcome PASS

Volumes specified(TPM):

TC 0: 15%

TC 1: 10%

TC 2: 0%

TC 3: (20+55)=75%

Volumes measured:

TC 0: 0.15%

TC 1: 0.0982%

TC 2: 0.0%

TC 3: 0.7518%

– 98 – Chapter B — Testing Artifacts

Field Content
ID B1
Description The correct next event is selected for execution.
Preconditions 1 event must be scheduled at a time earlier than all others.
Expected results That event must be identified as the earliest next event.
Outcome PASS

B.4 SIMULATION ENGINE

Make sure all events initialised to INF (Double.MAX_VALUE)

Set NEXTUIUC to 100 [event: 4]

Set WARR to 150 [event: 0]

Set FARR to 20 [event: 7]

Set NEXTDIUC to 100 [event: 5]

Get next event and disable it:

Next Event :7 at time 20.0

APPENDIX C

PERFORMANCE DATA FILTERING

This appendix presents the initial transient and rare event activity-region identification. The metric used was the
mean number of connections in the system for both UGS and rtPS separately.

C.1 INITIAL TRANSIENT

Two graphs were selected to illustrate identification of the initial transient. These suffice to illustrate the ap-
proach undertaken. Figures C.1 and C.2 show the mean number of connections in the system, sampled every
5 seconds, for CAC2-SCHED2 RaCM configuration and a workload intensity of 2.8 Mbps for UGS and rtPS,
respectively. The assumed end of the initial transient is indicated on the graphs.

Figure C.1: Mean number of UGS connections in the system versus simulated time, showing the assumed initial
transient

99

– 100 – Chapter C — Performance Data Filtering

Figure C.2: Mean number of rtPS connections in the system versus simulated time, showing the assumed initial
transient

C.2 RARE EVENT ACTIVITY-REGION

Two graphs were selected to illustrate identification of rare event activity-regions. These suffice to illustrate the
approach undertaken. Figures C.3 and C.4 show the mean number of connections in the system, sampled every
5 seconds, for CAC2-SCHED1 RaCM configuration and a workload intensity of 3.6 Mbps for UGS and rtPS,
respectively. Rare/infrequent event regions are indicated on the graphs.

Chapter C — Performance Data Filtering – 101 –

Figure C.3: Mean number of UGS connections in the system versus simulated time, showing the assumed rare
event activity-regions

Figure C.4: Mean number of rtPS connections in the system versus simulated time, showing the assumed rare
event activity-regions

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement
	1.2 Dissertation Contribution
	1.3 Dissertation Outline

	2 Background
	2.1 IEEE 802.16 Preliminaries
	2.1.1 Operation Modes
	2.1.2 Medium Access Control Layer
	2.1.3 WirelessMAN-SC™ Physical Layer

	2.2 State of the Art
	2.2.1 Scheduling
	2.2.2 Connection Admission Control
	2.2.3 Scheduler and Admission Controller Co-operation

	2.3 Performance Modelling
	2.3.1 Machine Model
	2.3.2 Workload Modelling

	3 Analytical Framework
	3.1 Connection Admission Controller
	3.2 Scheduler
	3.3 Framework Outline
	3.4 BS and SS Architectures
	3.5 Multi-modal Property

	4 Performance Model
	4.1 BS Model Architecture Fixed-line Interface Extensions
	4.2 System Performance Model
	4.3 Network of Queues Model
	4.4 Deep Simulation
	4.5 Performance Metrics

	5 System Components
	5.1 Design
	5.1.1 SS UL and BS DL Schedulers
	5.1.2 BS UL Scheduler
	5.1.3 BS Real-time performance estimation
	5.1.4 Connection Admission Controller
	5.1.5 Workload Generator

	5.2 Implementation
	5.2.1 Schedulers
	5.2.2 Connection Admission Controller
	5.2.3 Workload Generator

	5.3 Testing
	5.3.1 SS UL and BS DL Schedulers
	5.3.2 BS UL Scheduler
	5.3.3 Connection Admission Controller
	5.3.4 Workload Generator

	6 Steady-state Analysis
	7 Experimentation
	7.1 Hypothesis
	7.2 Experimental Design
	7.2.1 Independent Variables
	7.2.2 Methodology
	7.2.3 Model Parameterisation

	7.3 Results

	8 Conclusion and Future Work
	Bibliography
	A Simulator Development
	A.1 Design
	A.1.1 Simulation Engine Design
	A.1.2 Simulator Event Design

	A.2 Implementation
	A.2.1 Simulation Engine Implementation
	A.2.2 NoQ Implementation
	A.2.3 Component Interface Specifications
	A.2.4 Program Execution and File Formats
	A.2.5 Output Data Processing

	A.3 Testing
	A.3.1 Simulation Engine Tests
	A.3.2 Simulator Event/Integration Tests

	B Testing Artifacts
	B.1 Schedulers
	B.1.1 SS UL and BS DL Schedulers
	B.1.2 BS UL Scheduler

	B.2 CAC
	B.3 Workload Generator
	B.4 Simulation Engine

	C Performance Data Filtering
	C.1 Initial transient
	C.2 Rare event activity-region

