
Analytic simplification of animated characters

Bruce Merry∗

ARM

Patrick Marais†

University of Cape Town

James Gain‡

University of Cape Town

(a) rest-pose LOD, 337 influences (b) AS LOD, 338 influences (c) inf. simplification, 341 influences

Figure 1: Three forms of influence simplification with comparable influence counts. (a) Traditional simplification based on the rest pose
collapses the knees and ankles. (b) Simplification in animation space, our first contribution, improves the rear ankles and the tail. (c)
Influence simplification, our second contribution, further improves the front legs and the curve of the neck and back.

Abstract

Traditionally, levels of detail (LOD) for animated characters are
computed from a single pose. Later techniques refined this ap-
proach by considering a set of sample poses and evaluating a more
representative error metric. A recent approach to the character
animation problem, animation space, provides a framework for
measuring error analytically. The work presented here uses the
animation-space framework to derive two new techniques to im-
prove the quality of LOD approximations.

Firstly, we use an animation-space distance metric within a pro-
gressive mesh-based LOD scheme, giving results that are reason-
able across a range of poses, without requiring that the pose space
be sampled.

Secondly, we simplify individual vertices by reducing the number
of bones that influence them, using a constrained least-squares op-
timisation. This influence simplification is combined with the pro-
gressive mesh to form a single stream of simplifications. Influence
simplification reduces the geometric error by up to an order of mag-
nitude, and allows models to be simplified further than is possible
with only a progressive mesh.

Quantitative (geometric error metrics) and qualititative (user per-
ceptual) experiements confirm that these new extensions provide
significant improvements in quality over traditional, naı̈ve simplifi-
cation; and while there is naturally some impact on the speed of the
off-line simplification process, it is not prohibitive.

CR Categories: I.3.7 [Computing Methodologies]: Computer
Graphics—Three-Dimensional Graphics and Realism — Anima-
tion; I.3.5 [Computing Methodologies]: Computer Graphics—
Computation Geometry and Object Modeling — Geometric algo-
rithms, languages, and systems

Keywords: character animation, simplification

∗e-mail:bruce.merry@arm.com
†e-mail:patrick@cs.uct.ac.za
‡e-mail:jgain@cs.uct.ac.za

1 Introduction

Character animation brings a static model to life by defining how
its geometry changes over time. In real-time applications (such as
games), the standard approach is to model a stick-figure skeleton,
or rig, then weight the influence of each bone on each vertex of the
model, or skin. The animator may then control the bones of the rig,
and the skin will deform accordingly.

Level of detail (LOD) refers to a class of techniques for manag-
ing the complexity of highly detailed models. Multiple representa-
tions of the base model are created, with varying amounts of detail,
each of which should approximate the original as well as possible.
The most appropriate representation is then selected for the task at
hand. Standard applications include rendering (with distant models
at lower detail), compression, and progressive transmission [Hoppe
1996].

In this paper, we address the problem of combining the fields of
character animation and level-of-detail. Traditionally, LOD repre-
sentations of an animated character have been produced by apply-
ing a static LOD algorithm to a single pose of the character, namely
the rest pose in which the model was created. Since this is only de-
signed to be a good approximation in that pose, the quality in other
poses may suffer. Figure 1(a) shows an example of this: the rest
pose has the horse standing straight, so the naı̈ve approach elimi-
nates the geometry necessary to represent the ankles and makes a
poor approximation to the tail in the pose shown.

Our approach is based on a particular method of character skin-
ning, animation space, which represents vertices as points in a
high-dimensional space. We measure the error of approximations
directly in this space, rather than in any particular pose. Figure 1(b)
shows the advantage of this strategy.

Standard LOD techniques work by reducing the geometric detail
of models — eliminating vertices, edges and faces. However, the

Figure 2: The collapsing-elbow and candy-wrapper effects are
well-known flaws in SSD.

cost of either storing or rendering a model depends on the number
of influences of bones on vertices: in our implementation, a vertex
with four influences takes roughly three times as long to transform
as a vertex with only one influence. A further contribution is in-
fluence simplification, an LOD technique that removes influences
from vertices, and adjusts the remaining influences to minimise the
resultant error. We also demonstrate that influence simplification
may be combined with a progressive mesh in a unified framework.
Figure 1(c) shows an example of this.

We start with general background on character animation and LOD
in Section 2. Section 3 covers previous approaches to merging the
two fields. Sections 4 and 5 describe our two contributions, namely
progressive meshes in animation space and influence simplification.
We finish with results in Section 6 and conclusions in Section 7.

2 Background

2.1 Character animation

There are many algorithms used for character animation; Collins
and Hilton [2001] provide a survey. We will describe only two ani-
mation methods here: skeletal subspace deformation (SSD) and an-
imation space (AS) [Merry et al. 2006]. Both are real-time skeletal
animation methods, meaning that an animator positions the bones
of the model, and this in turn drives the skin. The relationship be-
tween the bones and the skin is controlled by a set of weights.

2.1.1 Skeletal subspace deformation

In the case of SSD, there is a scalar weight for every bone-vertex
pair. Most of these weights are zero, since for example, it makes
no sense for the position of a wrist bone to have any influence on
the feet. We refer to the non-zero weights as influences: the bone is
said to influence the vertex.

At this point, we introduce some notation. Let v be a vertex that is
to be animated, wi be the weight corresponding to this vertex for
bone i, and Gi be the matrix that transforms from the local space

defined by bone i to model space. Variables marked with a hat (Ĝ
and v̂) indicate values in the rest pose, while variables without a
hat refer to the current pose of an animation. Between the rest pose

and the current pose, each bone i is transformed by GiĜ
−1

i , and
SSD transforms v̂ into v by a weighted linear combination of these
transformations:

v =
X

i

wiGiĜ
−1

i v̂ where
X

i

wi = 1. (1)

The transformations in Equation (1) are generally rigid (rotations
and translations), but their linear combination may not be rigid. As

a result, SSD has well-known shortcomings (shown in Figure 2),
but despite this, it remains popular for real-time applications due to
its simplicity, efficiency, and the established base of modelling tools
and rendering systems that support it. Nevertheless, there are many
proposed algorithms that address these flaws [Sloan et al. 2001;
Mohr and Gleicher 2003a; Kavan et al. 2008; Wang and Phillips
2002; Merry et al. 2006].

2.1.2 Animation space

Animation space is one approach to address the flaws in SSD. In

Equation (1), one can define pi = wiĜ
−1

i v̂, and thus write SSD as

v =
X

i

Gipi =
`

G1 · · · Gb

´

0

B

@

p1

...
pb

1

C

A
. (2)

The matrix and vector above are labelled G and p, and referred to
as the animation projection matrix and the animation-space position
of the vertex, respectively. This substitution increases the degrees
of freedom, and is not reversible (that is, given an arbitrary pi, it
is not possible to construct corresponding wi and v̂). The extra
degrees of freedom make it possible to overcome the flaws in SSD
by judicious selection of the vector p. The only restriction is that
p, the sum of the homogeneous components of the pi vectors, is 1.

This is equivalent to the requirement that
P

wi = 1 in SSD, and
ensures the convention that v has a homogeneous weight of 1.

Apart from addressing the flaws in SSD, AS has two advantages
that concern us here. Firstly, it is a generalisation of SSD, and thus
the algorithms presented in Sections 4 and 5 can be applied to exist-
ing models created with SSD. More importantly, those algorithms
depend on the L2,2 metric of animation space, which measures the
root-mean-squared geometric distance between points, with the av-
erage taken across all poses. Let E[f(x)] be the expected value of
f(x), where x is a random variable. The L2,2 distance between p

and q is defined as a norm on the difference s = p − q, with G
being the random variable:

‖s‖2,2 =
q

E
ˆ

‖Gs‖2
2

˜

=
p

E[sT GT Gs]

=
p

sT E[GT G]s.

(3)

The expectation E[GT G] is labelled P , and called the expectation
matrix. Merry et al. [2006] show how this matrix may be estimated
from a combination of samples (such as from a pre-defined anima-
tion) and assumptions about the independence of joints. Note that
P depends only on the probability distribution of poses, and is in-
dependent of the vertices. Thus, it is practical to estimate P once
from thousands or even hundreds of thousands of poses (e.g., ev-
ery frame in several hours of animation). The number of samples
used does not change the cost of evaluating the L2,2 metric, which
is quadratic in the number of influences on p and q.

2.2 Level of detail

Most level-of-detail schemes for polygonal models are based on the
progressive mesh [Hoppe 1996]. This is a data structure that rep-
resents a sequence of simplifications, each of which collapses an
edge to a single vertex and removes up to two faces from the model
(see Figure 3). A typical progressive mesh scheme uses a priority

queue to rank potential edge collapses according to some metric on
the local neighbourhood, and repeatedly applies the best collapse
[Hoppe 1996; Garland and Heckbert 1997]. This yields a sequence
of meshes M = M0, M1, . . . , Mn where each differs from the pre-
vious one only in a small neighbourhood. Luebke [2001] provides
a survey of the wide variety of level-of-detail schemes, including
those based on progressive meshes.

An important consideration in rendering modern characters is tex-
ture: a model will typically have high-detail colour information,
and sometimes lighting information such as normal or specularity,
associated with the surface by means of a parametrisation. If the
texture coordinates are poorly approximated, the textures will ap-
pear to slide across the surface, even if the geometry is accurate.
Appearance-preserving simplification (APS) is a method that ad-
dresses this directly: the metric of a simplified representation is a
conservative approximation of the maximum distance between the
original and simplified representations, with the distances measured
between points that have the same texture coordinates [Cohen et al.
1998]. An additional innovation is that the original model may be
sampled to produce a normal map, allowing the original normal in-
formation to be texture-mapped onto the simplified model and thus
yielding high-fidelity lighting. This makes APS advantageous even
for models with no existing parametrisation, as by first computing a
parametrisation one may take advantage of this high-fidelity light-
ing.

Sander et al. [2001] make several modifications to APS, including
a “memoryless” form of the metric. When considering a candidate
collapse that would transform Mi to Mi+1, they take the cost of the
collapse to be the deviation between Mi and Mi+1, rather than the
deviation between M0 and Mi+1 as in standard APS. This reduces
memory requirements and simplifies the implementation. They also
use the half-edge collapse, in which one end-point of an edge is
collapsed to the other, rather than both end-points being collapsed
to a new vertex. This constrains simplifications to lie within the
convex hull of the original model, and so convex regions tend to
lose volume as they are simplified. The advantage of the half-edge
collapse is that there is no need to optimise the location of a newly-
introduced vertex, and indeed no new vertices need to be introduced
and stored.

3 Related work

While both character animation and LOD are mature fields, there is
relatively little research on combining them, and most techniques
consider generic animation without taking advantage of the struc-
ture of skeletally-animated characters.

Geometry videos [Briceño et al. 2003] extend the idea of geometry
images [Gu et al. 2002] to animations. A geometry image is an
encoding of a model into an image via a parametrisation: the three
colour channels of each pixel contain the X, Y and Z position of
a point on the model. A geometry video is simply a sequence of
geometry images, which is compressed using techniques from the
field of video compression.

Shamir and Pascucci [2001] use a single progressive mesh com-
puted from one pose. They improve on the naı̈ve algorithm by us-
ing a directed acyclic graph (DAG) indicating the dependencies be-
tween simplifications, and dynamically adjusting a cut through this
DAG. This approach has previously been used for view-dependent
LOD [Xia and Varshney 1996], but in this case the “view” depends
on the view-point in time. Additionally, they propose mechanisms
to handle changes in attributes (such as vertex colour), connectivity
and topology. Similar approaches have been used by Kircher and

Garland [2005] and Payan et al. [2007], which start from a sim-
plification from the first frame and make progressive updates over
time.

Deformation-sensitive decimation (DSD) [Mohr and Gleicher
2003b] is closer to our approach. A single progressive mesh is
constructed, and only the originally computed representations are
used (as opposed to a cut through a dependency graph). Instead of
run-time adjustments, the edge collapse metric is modified to take
a set of poses into account. The authors use a quadric error metric
[Garland and Heckbert 1997], averaged over a number of sample
poses. Huang et al. [2006] add an extra term to penalise simpli-
fications of areas that undergo deformation, and also dynamically
adjust a graph-cut at run-time to improve the quality of each frame.

The methods discussed above are all designed for a general anima-
tion, rather than specifically for a character animation. DeCoro and
Rusinkiewicz [2005] adapt DSD to characters animated with SSD,
which accommodates two improvements. Firstly, sample poses are
automatically generated with stratified random sampling, based on
a specified probability distribution for each joint. Secondly, the
quadrics for each vertex are transformed back into the reference
pose, and may be added to give a single quadric during the ini-
tialisation phase. As a result, the more computationally-intensive
simplification phase has no additional cost over a static LOD im-
plementation.

Dynamic adjustment of a graph cut is relatively expensive, and is
not well-suited to current GPU designs [Dietrich 2000]. The other
methods listed here are based on modifications of the error met-
ric, and require no specific run-time manipulation. In other words,
the simplifications can be used as replacements for naı̈ve, rest-pose
simplifications, with no modifications to the renderer. However,
the production of the simplifications during pre-processing is rel-
atively expensive due to the sampling, as some part of the algo-
rithm is at least O(SV) for S samples and V vertices. Although
DeCoro and Rusinkiewicz [2005] report reasonable results with 16
samples, it would be more satisfying to separate the estimation of
the pose-space probability distribution from per-vertex/edge opera-
tions. Animation space achieves this: only certain moments of the
distribution are needed to compute the L2,2 metric, and these can
be computed (analytically or by numerical means) from a speci-
fied distribution, or estimated from a supplied animation sequence,
where it is practical to use thousands of samples.

If sampling is used, then our algorithm has complexity O(SB +
B2 + I2V + V log V) for S pose samples, B bones, I influences
per vertex and V vertices; the terms are respectively for estimat-
ing per-bone probability distributions, computing P from these,
measurements of the L2,2 metric, and for maintaining the prior-
ity queue. In a typical model, B is quite small (under 100) and I is
even smaller (under 10) regardless of the number of vertices, so in
the case of many samples and vertices, we expect our algorithm to
perform significantly better than one with an O(SV) term.

4 Progressive meshes in animation space

We base our approach on appearance-preserving simplification
(APS). Apart from its intrinsic advantages, APS works well in
this context because it uses a parametrisation to determine the cor-
respondence between different representations of a model. This
would otherwise be quite difficult and costly to determine in a high-
dimensional space such as animation space.

Figure 3 shows the neighbourhood of an edge collapse in param-
eter space. Within each region, or cell, of the diagram, both Mi

v1

v2

v
′

Figure 3: Appearance-preserving simplification, showing an edge

collapse v1v2 → v′ in parametric space. Dashed lines represent
the new neighbourhood, and dots represent the corners of cells.

(the mesh immediately prior to the collapse) and Mi+1 (the mesh
produced from Mi by the collapse) are linear in the parametric co-
ordinates, and hence so is the vector representing the difference be-
tween corresponding points. Since these cells are convex, it follows
that the maximum difference between Mi and Mi+1 occurs at one
of the cell corners, marked by dots in the figure.

This is all that is needed to compute the memoryless APS metric
for a candidate collapse. While Cohen et al. [1998] try several
possibilities for placing v′, Sander et al. [2001] restrict v′ to coin-
cide with either v1 or v2, and we have followed this as it reduces
the number of cell corners to consider, as well as simplifying the
implementation.

In animation space, the situation is no different: we simply replace
the Euclidean metric with the L2,2 metric when measuring the de-
viation at cell corners.

The standard form of APS, in which the deviation is measured be-
tween M0 and Mi+1, is more complicated. Measuring the exact
Hausdorff distance is prohibitively expensive, so a conservative ap-
proximation is used instead. A bounding box is associated with
each face, which bounds the vector between any point on that face
and the corresponding point in M0. These are combined with the
offset vectors at the cell corners to produce updated bounding boxes
for the faces in the new neighbourhood. The primary advantage of
this form is that it provides guaranteed error bounds. However,
the memoryless form generally produces results of similar quality,
while being simpler to implement and more time- and memory-
efficient to execute [Sander et al. 2001].

The standard form of APS can be adapted to animation space, but
doing so accentuates the disadvantages of this form. Bounding
boxes must now be stored and manipulated in animation space,
which has four dimensions per bone. The approximation quality
is also poor if the bounding boxes are axis-aligned, because the
axes are not conjugate with respect to the expectation matrix P (re-
call that the L2,2 norm is defined as ‖s‖2

2,2 = sT P s). Instead, we
use bounding parallelepipeds with sides parallel to the eigenvec-
tors of P , which produces better results. Unfortunately, it destroys
the sparsity of animation-space coordinates, further increasing time
and memory requirements.

5 Influence simplification

In adapting APS to animation space, we have thus far treated ver-
tices as atomic entities which all cost the same to store or render. In
animation space, however, the cost to store a vertex is directly pro-
portional to the number of bones that influence it. The rendering
cost is more implementation-dependent, but the number of influ-
ences is still a significant consideration.

We now describe influence simplification, a method for reducing
the number of influences on a vertex in an optimal way. Given a
vertex, an influence simplification removes one influence from the
vertex, and also modifies the remaining influences so that the new
vertex is as close to the original as possible in the L2,2 metric.

Let p be a vertex in animation space. Without loss of generality,
suppose p is influenced by bones 1, 2, . . . , k, and that we wish to
eliminate the influence from bone k (we try to eliminate each in-
fluence of p in turn, and take the simplification with the minimum
deviation). The simplification will replace p with p + s, subject to
the constraints:

1. s is influenced by (at most) bones 1 through k.

2. sk = −pk, to cancel the influence on p.

3. s is a vector, i.e., s = 0 (recall that s is the sum of the homo-
geneous components of s).

4. ‖s‖2,2 is minimal subject to the above.

Both p and s have non-zero coordinates only in those dimensions
of animation space corresponding to the first k bones, and working
only within this subspace improves the performance of the optimi-
sation. Let p̃ and s̃ be the coordinates of p and s in this subspace,

and P̃ be the submatrix of P consisting of the first k rows and
columns. The optimisation can then be reformulated as minimis-

ing s̃T P̃ s̃ subject to As̃ = b, where A is a 5 × 4k matrix and b a
5-vector that together encode constraints 2 and 3 above.

This is a relatively straightforward optimisation problem when P̃ is

non-singular. Write P̃ as UDUT , where U is orthogonal and D is

diagonal. This is possible because s̃T P̃ s̃ ≥ 0 for all s̃, and hence

P̃ is non-negative definite symmetric. Let C = P̃
1

2 = UD
1

2 UT ,
let s̃′ = C s̃ and let A′ = AC−1. The problem may now be rewrit-
ten as minimising ‖s̃′‖ (the Euclidean norm) subject to A′s̃′ = b,
which is simply a matter of projecting the origin onto the subspace
defined by the constraint. The same approach applies when it is
singular (which is not unlikely [Merry et al. 2006]), but some extra
steps must be taken to regularise the problem.

This process is quite slow. The computational cost can be amor-
tised by noting that the most expensive steps, namely computing

the diagonalisation of P̃ and manipulating A, do not depend on p

but only on the set of bones that influence it and the influence that
is to be removed. We cache the results of these expensive compu-
tations and re-use them on nearby vertices, which often have the
same influences. Cache hit rates are very close to 100%, and this
optimisation produces at least an order-of-magnitude speedup.

5.1 Combination with progressive meshes

Apart from defining the optimisation, the L2,2 metric can be used
to measure the deviation of an influence simplification. Since both
APS and influence simplification define deviations in terms of the
L2,2 metric between two points in correspondence, the two types

Figure 4: Edge updates from an influence simplification. When the
central vertex is simplified, the edge collapses corresponding to the
solid edges must be updated.

Figure 5: Test models: cat, arm, cyberdemon, mancandy and cylin-
der. The horse model is shown in Figure 1.

of simplification can be interleaved in a single sequence of simpli-
fications. For memoryless APS, this is quite straightforward. The
priority queue of potential simplifications now contains both edge
collapses and influence collapses. When a half-edge collapse is per-
formed, the vertex that was eliminated must also be removed from
the priority queue, apart from the usual book-keeping common to
all progressive mesh algorithms. When an influence is removed
from a vertex, every edge incident on a triangle containing this ver-
tex must be updated in the priority queue (see Figure 4), and if the
vertex still has more than one influence, it must be re-evaluated for
further simplification.

Similarly, it is possible to combine influence simplification with
standard APS, yielding collapse costs that are a conservative bound
on the L2,2 distance between any two corresponding points, by
making appropriate updates to the per-face bounding boxes. How-
ever, we will see that this produces poor results, so we will not
elaborate further on it.

6 Results

6.1 Quality

We used six models to test our implementation, shown in Figures 1
and 5. Cylinder is an artificial example (a simple cylinder with a
bend in the middle) produced by fitting an animation-space model
to a set of examples [Merry et al. 2006]; horse, cat and arm are more
realistic models produced with the same fitting process. Cyberde-
mon is a character from Doom III (copyright Id software and used
with permission), and mancandy is a demonstration model from the
Blender test suite, with two steps of Catmull-Clark subdivision ap-
plied.

In Figure 1, we compare our methods of simplification against tra-
ditional LOD based only on the rest pose. In all cases, we are using
memoryless APS, and we have chosen representations whose num-
ber of influences are as similar as possible. It is clear that in this
(non-rest) pose, animation-space simplification correctly preserves
detail in the joints, and that influence simplification allows more
geometric detail to be kept.

In 1(c) we also show a worst-case scenario for influence simplifica-
tion: a vertex in the chest is approximated as well as possible, but in
this pose the error is relatively large, and leads to a protrusion. Of
course, this level of detail would normally only be used for distant
models, and so this error would not be noticeable.

The rest pose of the mancandy model has most joints in a bent pose,
so using the L2,2 metric contributes little. Figure 6 shows a close-up
of the hand, where this metric improves the shape of the wrist and
of the bottom finger. Influence simplification significantly improves
the curvature of the palm.

Figure 7 shows graphs of the root-mean-square (RMS) geometric
deviation of a number of models simplified using three methods,
plotted against the number of influences in the model. The means
are taken over both the surface of the model and the frames of an
animation. Because the errors span many orders of magnitude, the
errors are shown relative to rest-pose simplification for clarity.

The horse and cat models indicate that influence simplification
combined with standard APS (dashed red) does not give reliable
quality, although the results are better for the other models. The
solid lines represent memoryless APS, which is the preferred form
for our method. Simplification in animation space, even without in-
fluence simplification, consistently produces results that are better
overall, and are slightly worse only with extreme simplification of
some of the models.

Introducing influence simplification has more variable results. Gen-
erally it makes an improvement, in some cases by an order of mag-
nitude, but in the case of mancandy the results are worse for in-
termediate levels of detail. We conjecture that the disappointing
results for mancandy are caused by large translation components in
the model’s joint matrices, which are poorly handled in our estima-
tion of P from sample poses. Since large translations are anatom-
ically implausible, we do not expect this to be a serious problem
in general. It is also worth noting that for the influence counts in
question, the absolute error is less than 10−4 — less than the quan-
tisation error of many “lossless” compression schemes [Alliez and
Gotsman 2004] — and so the difference is unlikely to be visible
even when the model is in the foreground.

Influence simplification is particularly beneficial in two areas. Dur-
ing the initial simplification steps (to the right in each graph), su-
perfluous influences may be eliminated at very little cost. While
this effect is most obvious in the artificial cylinder model, it is also

(a) rest-pose LOD, 3000 influences (b) AS LOD, 2997 influences (c) inf. simplification, 3000 influences

Figure 6: Mancandy’s hand at a low level of detail. The most visible artefacts are in the silhouettes of the upper wrist and lower palm.

clearly present in the real-world cyberdemon model, where almost
250 influences are removed before the graph is even visible above
the axis. This also suggests that influence simplification may be
used as a method to restrict the number of influences in a model,
possibly allowing different levels of detail to be selected depending
on hardware capabilities.

The second area in which influence simplification excels is extreme
simplification. For an influence count where a pure progressive-
mesh algorithm is forced to apply all legal edge collapses, using
influence simplification allows some detail to be preserved while
instead eliminating some influences. Furthermore, influence sim-
plification is able to produce representations with fewer total influ-
ences than is possible with only edge collapses. Since APS cannot
apply collapses that alter the texture space covered by the model,
this is not a trivial concern.

6.2 User tests

Geometric error is not necessarily a good indicator of perceived
quality. For example, displacing every vertex by a fixed amount will
yield a large geometric error but there will be no apparent loss of
quality, while displacing only a random 50% of the vertices by the
same offset will yield less geometric error but will look far worse.
We conducted tests with users to validate the results of the geomet-
ric error tests.

Each test sample involved showing a user a pair of short video clips
(7–8 seconds). Each video showed a number of copies (typically
100) of the same animated character. Within each pair, the content
was the same, as was the camera path (an inward spiral to show a
range of angles and distances), and only the LOD mechanism dif-
fered. Rather than showing the videos side-by-side, which would
have allowed the user to make pixel-level comparisons, we showed
the videos sequentially so that they would be evaluated qualita-
tively. After the videos were shown, the user was asked to select
which one was better, with a forced choice.

For each of the test models except the cylinder, we created three
progressive meshes using

(a) edge collapses, ranked on the rest pose;

(b) edge collapses, ranked by the L2,2 metric;

(c) edge collapses and influence simplifications, ranked by the
L2,2 metric.

In every case, we used memoryless error metrics. In the first set of
tests, we compared (a) to (b), with an error tolerance of 1.5, 3 or 6
pixels for (b), and a tolerance for (a) that yielded, as closely as pos-
sible, the same total number of influences across all frames of the

video. The second set compared (b) to (c) similarly, although some
samples had to be dropped as without influence simplification, it
was impossible to reduce (b) to an equivalent influence count to (c).

We had 23 volunteer test subjects, mostly students and staff at a uni-
versity. For each combination of subject, model, test type and pixel
tolerance we took two samples, one with the order of the two videos
reversed to control for ordering bias. For each subject, the order
of the samples was randomised, and also interleaved with samples
from a third test type which is not the subject of this paper. In a
pilot study, we found strong evidence of a learning effect, where
users would learn to identify specific artefacts, and were less likely
to make random choices in later samples. To control for this, we
first conducted a training phase, consisting of a third sample of each
type (with the order of the two videos being random). These sam-
ples were collected exactly as for the experiment phase and users
were not made aware of any difference, but the results from the
training phase were discarded.

In the first experiment (rest-pose versus AS), we expected that the
error tolerance would be an influencing factor, with more statis-
tical significance at higher error tolerances (since with a zero or
small tolerance, the result is indistinguishable from the ideal, ir-
respective of the LOD algorithm). We were surprised to find that
the reverse was true. At 1.5 pixels, there was a significant prefer-
ence (p < 0.002) for animation-space simplification over rest-pose
simplification, while at 3 and 6 pixels there was no statistically sig-
nificant result. We conjecture that at 1.5 pixels the errors in the
rest-pose simplifications are just noticeable to users but those of
animation-space simplifications are not, while at higher tolerances,
users are unable to distinguish between large errors with little rela-
tive difference.

In the second experiment (with influence simplification versus with-
out), the choice of scene was highly significant. This is not surpris-
ing, as some models have more redundant influences than others.
Only the horse and mancandy models showed statistically signifi-
cant results, with users preferring influence simplification. This is
in spite of the apparently poor performance of influence simplifi-
cation on mancandy shown in Figure 7, confirming that the central
areas of this graph (where influence simplification performs poorly,
but where absolute errors are minuscule) are less important.

6.3 Off-line performance

Table 1 summarises properties of the models, and shows the impact
of our improvements on the time required to produce progressive
meshes. Although the animation-space metric is more expensive
to compute, a substantial portion of the running time is devoted to
other calculations such as identifying the cell corners and maintain-

Table 1: Relative pre-processing performance of the memoryless simplification methods. 3D is traditional simplification of the rest pose,
ignoring animation; AS is animation-space edge collapses; and AS+IS is AS with the addition of influence simplifications. Cache miss rate
is the number of times that matrix factorisations are not found in the cache during influence simplification.

Model Vertices Bones Influences Time (s) Ratios Cache
per bone 3D AS AS+IS AS/3D AS+IS/3D miss rate

arm 1600 4 2.1 1.7 2.2 4.3 1.3 2.5 0.0016%
cyberdemon 2282 65 1.5 1.6 2.1 4.8 1.3 3.1 0.26%
cylinder 2426 2 2.0 2.6 3.0 5.9 1.2 2.3 0.00044%
cat 7207 26 2.2 7.8 10.3 18.8 1.3 2.4 0.0099%
horse 8431 25 2.6 9.5 13.7 26.3 1.4 2.8 0.018%
mancandy 42654 96 2.4 64.6 92.6 203.8 1.4 3.2 0.038%

ing the priority queue, and thus using the AS metric adds at most
50% overhead. It should be noted that in all three methods we used
the same code, whereas an implementation designed specifically for
the 3D case may be expected to perform slightly better.

Influence simplification is more expensive, as we must solve an
optimisation problem for each potential simplification. We cache

factorisations of P̃ and A, for the last 1024 influence sets encoun-
tered. The low cache miss rates shown in Table 1 are instrumental
in maintaining performance, and as a result, running times increase
by a factor of at most 3.2. We found that a larger cache has di-
minishing returns, and the cost of searching the cache becomes a
disadvantage.

6.4 Rendering performance

Influence simplification somewhat complicates rendering, since the
resulting models are not representable within the SSD framework.
We implemented a renderer to measure the impact on performance.
It uses geomorphing [Hoppe 1996] to smoothly interpolate between
levels of detail, and tangent-space normal maps [Peercy et al. 1997]
to reconstruct the original lighting. This requires six 4-vectors to
be used in vertex transformation for each influence on a bone: a
position and two tangents for each of two levels of detail. With the
16 per-vertex attributes guaranteed by OpenGL, this would limit a
straightforward implementation to two influences per vertex. To
avoid this limit, we encode the animation-space positions and tan-
gents into textures, which we access from the vertex shader.

Merry et al. [2006] have previously shown that using animation-
space coordinates for rendering actually improves performance
over a straightforward SSD renderer, as the weight is pre-
multiplied. Table 2 shows the rendering performance with the
method described above at 1280 × 1024 on a GeForce 8800GTX
and a Core2Duo E6600 (clock speed 2.4GHz). With the exception
of the 1020-instance horse scene, the scenes and camera paths are
the same as those used in user testing.

The apparent drop in performance when using animation-space
simplification is due to the way error is measured: when render-
ing the naı̈ve simplifications, the tolerance is for a 2-pixel error in
the rest pose, but the actual error may be much greater, whereas the
animation-space levels of detail are chosen for an average error of
2 pixels across all poses. Thus, while sometimes slightly slower,
these representations will more accurately meet the nominal pixel
tolerance.

It should be noted that the same code-paths are used when LOD
is disabled, and in particular, geomorphing is still done. It is thus
likely the speedups will not be quite as dramatic in practise.

We had hoped that influence simplification would improve render-
ing performance, due to fewer influences needed for a given tol-

Table 2: Rendering performance in frames per second, for a nomi-
nal 2-pixel error tolerance. Captions are as for Table 1.

Model Copies None 3D AS AS+IS

arm 100 321 720 698 698
cyberdemon 102 146 215 212 214
cylinder 100 329 963 974 976
cat 100 55 311 296 296
horse 100 32 232 214 211

1020 3 25 25 25
mancandy 100 6 40 40 40

erance, and also because further simplification is possible. While
there are indeed fewer influences rendered, Table 2 suggests that
this is not the bottleneck in the rendering pipeline. Our implemen-
tation has a relatively high per-object overhead (around 15µs), but
recent extensions to the OpenGL API, such as instancing [Gold
2006] and bindable uniforms [Brown and Lichtenbelt 2008] have
the potential to reduce the overheads involved and may make influ-
ence simplification more beneficial.

7 Conclusions

We have demonstrated two improvements to the quality of LOD for
articulated characters. The first is to perform computations in ani-
mation space. Unlike previous approaches to the problem, no sam-
pling of the pose space is required. Sampling may be used to esti-
mate the matrix P , but this is done once rather than per-vertex, and
so it is practical to use very large sample sizes. While animation-
space computations allow this method to be applied to animation-
space models, it may also be applied to SSD models, and the output
is again a sequence of SSD models due to the half-edge collapse.
Thus, while our method is limited to articulated models, it is not
necessary to use animation space in either modelling or rendering.
As with previous work that samples the pose space [Mohr and Gle-
icher 2003b; DeCoro and Rusinkiewicz 2005], the algorithm is ap-
plied entirely off-line, and there is no special work to be done dur-
ing rendering. We have not done a direct comparison to this prior
work, but we expect visual quality to be at least as good due to the
analytic error computations and the use of appearance-preserving
simplification.

The second contribution is influence simplification, which elimi-
nates influences rather than geometry. This improves quality and
allows for more extreme simplification than is otherwise possible.
It is also useful for eliminating redundant influences in a base model
(independently of any run-time LOD), e.g., to meet a hardware
limitation on the number of influences per vertex. The disadvan-
tages are the additional computational cost (but only during prepro-
cessing), and the fact that output models may not be representable

within SSD. This makes it undesirable for compression or progres-
sive transmission of SSD models, but it is useful for rendering due
to the improved quality [Merry et al. 2006].

Acknowledgements

Without test models, it would have been impossible to evaluate this
research. We are indebted to Robert Sumner, J. P. Lewis, Id Soft-
ware and the Blender Foundation for making their data available.

References

ALLIEZ, P., AND GOTSMAN, C. 2004. Recent advances in com-
pression of 3D meshes. In Advances in Multiresolution for Geo-
metric Modelling. Springer.

BRICEÑO, H. M., SANDER, P. V., MCMILLAN, L., GORTLER,
S., AND HOPPE, H. 2003. Geometry videos: a new repre-
sentation for 3D animations. In Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
Eurographics Association, 136–146.

BROWN, P., AND LICHTENBELT, B. 2008. GL EXT -
bindable uniform extension. http://www.opengl.org/

registry/specs/EXT/bindable_uniform.txt.

COHEN, J., OLANO, M., AND MANOCHA, D. 1998. Appearance-
preserving simplification. In Proceedings of the 25th annual con-
ference on Computer graphics and interactive techniques, ACM
Press, 115–122.

COLLINS, G., AND HILTON, A. 2001. Modelling for character
animation. Software Focus 2, 2, 44–51.

DECORO, C., AND RUSINKIEWICZ, S. 2005. Pose-independent
simplification of articulated meshes. In SI3D ’05: Proceedings
of the 2005 symposium on Interactive 3D graphics and games,
ACM Press, New York, NY, USA, 17–24.

DIETRICH, S., 2000. Optimizing for hardware transform and light-
ing.

GARLAND, M., AND HECKBERT, P. S. 1997. Surface simplifi-
cation using quadric error metrics. In Proceedings of the 24th
annual conference on Computer graphics and interactive tech-
niques, ACM Press/Addison-Wesley Publishing Co., 209–216.

GOLD, M. 2006. GL EXT draw instanced extension.
http://www.opengl.org/registry/specs/EXT/

draw_instanced.txt.

GU, X., GORTLER, S. J., AND HOPPE, H. 2002. Geometry im-
ages. In Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, ACM Press, 355–361.

HOPPE, H. 1996. Progressive meshes. In Proceedings of the 23rd
annual conference on Computer graphics and interactive tech-
niques, ACM Press, 99–108.

HUANG, F.-C., CHEN, B.-Y., AND CHUANG, Y.-Y. 2006. Pro-
gressive deforming meshes based on deformation oriented deci-
mation and dynamic connectivity updating. In SCA ’06: Pro-
ceedings of the 2006 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation, Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland, 53–62.

KAVAN, L., COLLINS, S., ŽÁRA, J., AND O’SULLIVAN, C. 2008.
Geometric skinning with approximate dual quaternion blending.
ACM Press, New York, NY, USA, vol. 27.

KIRCHER, S., AND GARLAND, M. 2005. Progressive multiresolu-
tion meshes for deforming surfaces. In SCA ’05: Proceedings of
the 2005 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation, ACM, New York, NY, USA, 191–200.

LUEBKE, D. P. 2001. A developer’s survey of polygonal simplifi-
cation algorithms. IEEE Comput. Graph. Appl. 21, 3, 24–35.

MERRY, B., MARAIS, P., AND GAIN, J. 2006. Animation space:
A truly linear framework for character animation. ACM Trans.
Graph. 25, 4, 1400–1423.

MOHR, A., AND GLEICHER, M. 2003. Building efficient, accu-
rate character skins from examples. ACM Trans. Graphics 22, 3,
562–568.

MOHR, A., AND GLEICHER, M. 2003. Deformation sensitive dec-
imation. Tech. Rep. 4/7/2003, University of Wisconsin, Madi-
son.

PAYAN, F., HAHMANN, S., AND BONNEAU, G.-P. 2007. Deform-
ing surface simplification based on dynamic geometry sampling.
In SMI ’07: Proceedings of the IEEE International Conference
on Shape Modeling and Applications 2007, IEEE Computer So-
ciety, Washington, DC, USA, 71–80.

PEERCY, M., AIREY, J., AND CABRAL, B. 1997. Efficient bump
mapping hardware. In SIGGRAPH ’97: Proceedings of the 24th
annual conference on Computer graphics and interactive tech-
niques, ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 303–306.

SANDER, P. V., SNYDER, J., GORTLER, S. J., AND HOPPE, H.
2001. Texture mapping progressive meshes. In Proceedings of
the 28th annual conference on Computer graphics and interac-
tive techniques, ACM Press, 409–416.

SHAMIR, A., AND PASCUCCI, V. 2001. Temporal and spatial level
of details for dynamic meshes. In Proceedings of the ACM sym-
posium on Virtual reality software and technology, ACM Press,
77–84.

SLOAN, P.-P. J., ROSE, III, C. F., AND COHEN, M. F. 2001.
Shape by example. In Proceedings of the 2001 symposium on
Interactive 3D graphics, ACM Press, 135–143.

WANG, X. C., AND PHILLIPS, C. 2002. Multi-weight enveloping:
least-squares approximation techniques for skin animation. In
Proceedings of the 2002 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, ACM Press, 129–138.

XIA, J. C., AND VARSHNEY, A. 1996. Dynamic view-dependent
simplification for polygonal models. In Proceedings of the 7th
conference on Visualization ’96, IEEE Computer Society Press,
327–ff.

 0

 0.5

 1

 1.5

 2

 2.5

 0 5000 10000 15000 20000 25000

R
M

S
 e

rr
o

r

Influences

horse [8431 vertices, 25 bones, 2.6 influences/bone]

AS with influence simplification
AS without influence simplification

3D rest pose

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

R
M

S
 e

rr
o

r

Influences

cat [7207 vertices, 26 bones, 2.2 influences/bone]

AS with influence simplification
AS without influence simplification

3D rest pose

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 500 1000 1500 2000 2500 3000 3500

R
M

S
 e

rr
o

r

Influences

arm [1600 vertices, 4 bones, 2.1 influences/bone]

AS with influence simplification
AS without influence simplification

3D rest pose

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
M

S
 e

rr
o

r

Influences

cylinder [2426 vertices, 2 bones, 2.0 influences/bone]

AS with influence simplification
AS without influence simplification

3D rest pose

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 20000 40000 60000 80000 100000 120000

R
M

S
 e

rr
o

r

Influences

mancandy [42654 vertices, 96 bones, 2.4 influences/bone]

AS with influence simplification
AS without influence simplification

3D rest pose

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 500 1000 1500 2000 2500 3000 3500

R
M

S
 e

rr
o

r

Influences

cyberdemon [2282 vertices, 65 bones, 1.5 influences/bone]

AS with influence simplification
AS without influence simplification

3D rest pose

Figure 7: Simplification errors, normalised relative to those for 3D rest-pose simplification, for the six models. The dashed lines show
standard APS, while the solid lines of corresponding colours show memoryless APS. Note that simplification proceeds right-to-left along
each graph.

