
Particle Swarm Optimization with Spatially Meaningful Neighbours

James Lane, Andries Engelbrecht and James Gain

Abstract— Neighbourhood topologies in particle swarm op-
timization (PSO) are typically random in terms of the spatial
positions of connected neighbours. This study explores the use
of spatially meaningful neighbours for PSO. An approach is
designed which uses heuristics to leverage the natural neigh-
bours computed with Delaunay triangulation. The approach is
compared to standard PSO sociometries and fitness distance
ratio approaches. Although intrinsic properties of Delaunay
triangulation limit the practical application of this approach
to low dimensions results show that it is a successful particle
swarm optimizer.

I. INTRODUCTION

Particle swarm optimization is a powerful, yet simple
population based optimization strategy, particularly well
suited for finding extrema in continuous non-linear functions
[1]. The approach is derived in part from the interesting
way flocks of birds and swarms in nature search for food.
Kennedy and Eberhart, developed the approach by stream-
lining and adapting a simulation of flocking birds in 1995
[1].

In PSO a set of particles find an optimum through an
iterative process in which particles sample a search space and
then adjust their search directions to sample near to their fitter
neighbours. Neighbours are those particles which can share
information. The set of neighbour-connections between all of
the particles forms the swarm’s topology or sociometry [2]
and affects the swarms exploitation and exploration behavior
[3].

In standard PSO topologies there is no spatial significance
between neighbouring particles as neighbours are random in
terms of their relative positions. Neighbourhoods are also
typically static, being computed once-off during initializa-
tion. This contributes to the standard PSO being a fast
and simple high dimensional optimizer. Spatially meaningful
topologies, on the other hand, have the additional overhead
of computing neighbours, though they do present some
significant advantages:

1) "Near neighbour interactions" introduce diversity in the
Fitness Distance Ratio (FDR) PSO through recombi-
nation of nearby particles. This is helpful for avoiding
premature convergence [4].

2) Sub-groups of particles near each other are able to
find and explore multiple local peaks in multimodal
problems, as demonstrated by the Fitness Euclidean
Ratio (FER) PSO [5].

James Lane and James Gain are with the Department of Computer
Science, University of Cape Town, and Andries Engelbrecht with the
Department of Computer Science, University of Pretoria, South Africa
(email: {jlane, jgain}@cs.uct.ac.za, engel@cs.up.ac.za).

3) Dynamic neighbour connections are beneficial for in-
troducing diversity [6].

4) Dynamic topologies are useful for tackling multiobjec-
tive optimization problems [7].

5) Spatial neighborhoods facilitate the formation of niches
[8].

Current spatial approaches require quadratic time to find
neighbours [5]. Delaunay triangulation (DT) presents a
means of spatially subdividing a set of points in expected
near linear time in low dimensions, 2D and 3D [9]. This re-
search explores the use of Delaunay triangulation to achieve
a spatial topology, by computing the closest surrounding
neighbours for each particle. Our approach uses spatially
meaningful heuristics to leverage the set of local Delaunay
neighbours to explore diversely, work more immediately on
common optima and as a swarm converge on the global best
position. Our contributions include:

• researching Delaunay triangulation as a spatial sociom-
etry in PSO and comparing it to standard approaches
and other spatial approaches (FER and FDR PSO) in
low dimensions (2D, 3D and 4D),

• heuristics which leverage Delaunay neighbours for ac-
complishing diversity, local exploitation and global con-
vergence,

• a new low-dimensional dynamic-spatial PSO with di-
rected connections and

• a classification schema for PSO sociometries.
A synopsis of DT is given next including a background
of PSO with a focus on neighbourhood topologies, a clas-
sification schema for sociometries and related work. Our
approach is presented in section III and results in section
IV. Technicalities, limitations and application areas are then
discussed. Conclusions are drawn and future work suggested.

II. BACKGROUND

A. Delaunay Triangulation

Delaunay triangulation spatially sub-divides a set of points
into triangles in 2D (tetrahedra in 3D and simplices in
4D), where the endpoints of the simplex (an n-dimensional
equivalent of a triangle) edges lie on the circumference of the
circumcircle (a circle with none of the other points inside it)
[10]. Figure 1, Shows an example of a 2D DT. The Delaunay
triangulation defines natural neighbours and is a useful
spatial data structure for finding the nearest surrounding
neighbours of a set of points. Delaunay triangulation has
a worst case time complexity of O(n! d

2 "+1), where d is
the dimension of the points. In practice though, computing
DT is significantly faster than this worst case which is
experienced for certain manufactured point sets [10]. In 2D

Fig. 1. Delaunay triangulation of a set of points.

the worst case time complexity is O(n log n) [9]. In 3D it is
O(n2) though “for all practical purposes three-dimensional
Delaunay triangulations appear to have linear complexity"
[11]. In 4D there are algorithms which compute the DT in
O(n3) [9].

B. Particle Swarm Optimization

Particle swarm optimization is a population based search
strategy which finds an optimum by stochastically “flying" a
set of particles through a search space. Particles iteratively
sample a region between and beyond their own individual
prior best position and the position of their most successful
neighbour(s). In doing so, fitter positions may be found.
Updating their individual best positions, the particles change
their search directions to explore these new fitter positions.
Through this process the particles converge on the maxi-
mum/minimum.

Equation (1) is the commonly used constriction factor
velocity update equation for the standard (Canonical) PSO
[12]. The equation causes a particle i, to oscillate around
its individual best and neighbour best positions, dampening
the velocity, and influence of these terms by a constriction
factor χ. The velocity update moves a particle to a random
position between and beyond its current position (Xi), its
previous individual best position (Pi) and its most successful
neighbour’s best position (Pn):

Vi = χ[Vi + c1r1(Pi −Xi) + c2r2(Pn −Xi)] (1)

where Xi is the particles current position and Vi is the
particles velocity. Components are point-wise multiplied with
each other. Typically χ is set to 0.729, in combination with
c1 = c2 = 2.05 [12]. c1, and c2 scale the individual and
neighbour contributions (which act as attractors) so that
the particle searches around them. r1 and r2 are tuples of
uniform random numbers in the range [0; 1], which introduce
the stochastic component. A random number is computed
for each dimension being point-wise multiplied. Figure 2
illustrates how this equation works. The neighbourhood
best positions (Pn) are computed each iteration before the
velocity update step by running through the set of particles
which comprise each particles neighbourhood and choosing
the fittest of these. Individual bests are updated each iteration
for each particle if the new position is fitter than the particle’s
previous best position.

Fig. 2. A 2D illustration of the velocity update equation and the region to
which it will move a particle. The scaled, shifted and constricted velocity
results in a stochastic region to which a particle will move.

The positions (Xi) of the moving particles form an
“explorer-swarm" responsible for exploring the search space.
The personal bests (Pi) of the particles may be thought of as
a “memory-swarm" [5]. The memory swarm is significantly
more stable than the explorer swarm, since it consists of the
best points found so far by the individual explorer particles
which are only updated if better points are found.

C. Neighbourhood Topologies
Figure 3 shows the most common topologies (neighbour-

hood structures) used by PSO: the star topology in which all
particles are connected to all others, the ring neighbourhood
for which each particle is connected to two others and the
Von Neumann topology where each particle links to four
others in a cubic-lattice type arrangement (this is essentially
a ring topology but with four neighbours) and on the far
right, Delaunay neighbours. Neighbourhood structure affects

Fig. 3. The standard Random-Static topologies (Star,Ring,Von Neumann)
and Spatial meaningful-Dynamic Delaunay neighbourhood structure.

the performance and convergence of PSO significantly [13]
since it determines the rate at which information propagates
through the swarm. This greatly influences the swarm’s
exploitation and exploration behaviors. For instance, the
fully connected star topology exhibits fast convergence with
little exploration, best positions and fitness information being
relayed directly to the entire swarm. Slow convergence with
greater exploration is observed in the ring topology, which
has few connected neighbours, since it takes longer (several
iterations) for information to pass through the links to the

other particles giving the swarm "more time" to explore. This
makes a PSO using the ring topology less prone to being
trapped in local extrema [14].

Typically, neighbour particles are determined in the ring
and Von Neumann topologies simply by using the dif-
ferent particle’s indices (particles are connected as neigh-
bours based solely on their array indices). This results in
a spatially random topology, since there is no correlation
between a particle’s position in relation to its neighbour’s
positions. The randomness in terms of the related spatial
layout between neighbours in the ring and Von Neumann
topologies juxtaposed to the natural spatial neighbours found
by Delaunay triangulation is evident in figure 3. The star,
ring and Von Neumann topologies are static in that their
neighbour connections are set at initialization and do not
change throughout the search, even if the particles change
position in relation to each other. Static topologies have
minimal computational overhead since they do not require
re-computation and only a single linear pass is needed to
update neighbourhood bests.

D. Classifying Topologies
Figure 4 summarizes and illustrates classification criteria

for PSO topologies. A topology structure may be static
(neighbours remain fixed throughout iterations) or dynamic.
Neighbouring particles are either spatially related or random
in terms of their spatial layout. Spatial neighbourhoods are
inherently dynamic because particles moving in relation to
one another may move past each other or closer to other
particles, resulting in topology changes. Another defining
characteristic of a topology is whether the inter-particle con-
nections are directed or undirected. Directed topologies allow
one way information sharing, i.e. A→B means A can access
B’s information but not vice versa. The above classifications

Fig. 4. Classification of PSO Topologies.

are helpful for logically organizing and categorizing the vast
related literature and approaches to neighbourhood structures
in PSO. Our approach is an example of using a dynamic-
spatial neighbourhood with directed connections.

E. Related Work
Static random topologies with undirected connections such

as the star and ring neighbourhoods are the most commonly
used in PSO implementations [6]. The Von Neumann topol-
ogy has shown exceptional performance in the fully informed
particle swarm (FIPS) PSO [15]. Directed connections have

also been used with these static-random topologies. Exper-
iments with random static topologies include the use of
discrete random undirected graphs and acyclic random links
[16][17].

Dynamic random topologies for both directed and undi-
rected connections include variations such as: randomly
increasing the number of undirected neighbour connections
with successive iterations (moving the swarm from a state of
exploration to one of exploitation) [2][18], randomly chang-
ing unconnected neighbours [14] and using random discrete
structures and edge migrations for directed connections [17].
Experiments with different aspects of neighbourhoods and
network connections including effects of out degree and the
size of the population have been performed to help determine
the properties of topologies that make for successful societies
[14][6][3].

Dynamic spatial topologies in PSO are rare. Most likely
because computing neighbours is an additional overhead and
Euclidean distance is computationally expensive [18][14].
Examples of spatial neighbourhood approaches include: in-
creasing the number of connected closest neighbours [18]
and forming fully connected "clusters" after iterations based
on particles search-space locations. [19]. The FDR (Fitness
Distance Ratio) PSO computes a best neighbour position for
each particle in the swarm by maximizing the ratio between
the fitness difference of each particle for each dimension and
the absolute value of the difference between the particles
position in that dimension [4]. The Fitness Euclidean Ratio
(FER) PSO [5] is a modification of the FDR approach that
uses the Euclidean distance and memory swarm for the
purpose of finding multiple extrema in multimodal problems.
The FDR and FER are spatial approaches which parse the
entire swarm for each particle when computing best neigh-
bours whereas our approach uses the Delaunay neighbours
and heuristics. The use of Delaunay triangulation to compute
and maintain spatially meaningful neighbours is quite unlike
current approaches and is to our knowledge the first time
that spatial data structures are used to compute and manage
neighbours for PSO.

Several miscellaneous spatial extensions have been pro-
posed for PSO including collision avoidance [20], a spatial
extension which causes particles to bounce off each other to
avoid clustering [21]. Richards and Ventura [22] have used
centroidal Voronoi tessellation for generating initial starting
points for a swarm but do not use tessellation during the
actual search.

III. NATURAL NEIGHBOURS APPROACH

The approach described below uses DT and heuristics
to leverage near neighbours to work together on nearby
common extrema. The heuristics and spanning property of
DT are used to cause the swarm to progressively converge
on the global extremum.

A. Finding Neighbours Using Delaunay Triangulation
DT is used as a first step in our approach to find a

subset of closest surrounding neighbours for each particle.

The Delaunay neighbours connect particles across the swarm
so that each particle is either connected indirectly by a path
through some set of other particles or directly to every other
particle in the swarm. This is necessary, since at some point
particles must be influenced by the global best for the swarm
to ultimately converge upon it. DT plays a role in distributing
the search in a spatially meaningful way by dividing space
into Voronoi(the dual of DT) cells between particle positions
in either the explorer or memory swarm. This is advantageous
for exploration because it slows convergence on the global
best, when there are sufficient particles and hence divisions
through which information has to travel. Since Delaunay
neighbours are the closest surrounding neighbours this means
they may more immediately search local regions of the search
space with other nearby neighbouring particles than random
neighbours could.

The set of neighbours DT provides is merely a point of
departure for our approach, since using all of the Delaunay
neighbours may result in a nearly fully connected swarm
which could lead to particles converging too quickly on a
local optimum. Figure 5 illustrates this problem in which
the DT neighbours form a topology very similar to a star
topology. The particles in the illustration will be drawn into
the center (local extremum) in the next iteration before the
particles have a chance to explore their own local regions,
causing the swarm to miss the global optimum. Particle
k(Pk), which is very close to the global optimum needs
some time or help to search locally. A heuristic is required
to meaningful break connections.

Fig. 5. Contour map with Delaunay neighbours forming an almost fully
connected topology.

B. Dynamic Connections and Heuristics
Dynamic connections present a means of introducing

diversity and are used to overcome the problem of over-
connection encountered when using all of the Delaunay
neighbours. A sociometry composed of natural neighbours
undergirds a framework (spatial context) which allows for
the design of meaningful dynamism. Our rules for choosing
connections aim to select neighbours from among the set
of natural neighbours to search together locally in common
spatial regions near to each other and yet ultimately tend
towards the global optimum. Spatially meaningful heuristics
are used to accomplish this by modulating connections.

1) Choosing Locally Cooperating Neighbours: Given a
set of Delaunay neighbours, only the connections between
particles which are cooperating to find a common local
optimum are desired. The following rules are used to decide
which particles are working together:

1) if a particle P1 is following behind another particle
P2 then a directed connection is made from P1 to P2.
This represents particles heading in the same general
direction for which the trailing particle is connected to
the leading one. Figure 6(left) illustrates this case.

2) If two particles, P1 and P2, are heading towards each
other (but not past one another) they are considered to
be cooperating and an undirected connection is made
between the two. This case is shown in Figure 6 (right).

Fig. 6. A particle is connected to a neighbouring particle if it is following
or heading towards its neighbour. This is the case when V1 · U1to2 > 0.

These two heuristics are implemented by testing when:

V1 · U1to2 > 0 (2)

In equation (2) V1 is P1’s velocity and U1to2 is the offset
vector from P1 to P2 after a move (velocity update).
Similarly, this rule may be applied to test if P2 is working
with P1. The black lines in figure 5 illustrate the subset of
Delaunay neighbours that these heuristics would choose.

Another meaningful heuristic for maintaining connections
between cooperating particles, is described immediately be-
low: Figure 7 shows the stochastic region of overlap for
two neighbouring particles. If this region is significantly
greater than a selected percentage threshold of the two
combined regions of motion, then the neighbouring particles
are highly likely to be working together in the same re-
gion. An undirected connection is maintained between these
neighbours in this case. Alternatively the region between a
particle’s personal best and neighbour best, around which a
particle oscillates, may be used in this test, see figure 2.
In our experiments the stochastic region was used rather
than the region of oscillation. These heuristics reduce and
vary the connections in the swarm. After their application
there may be particles with no connections. Such particles
are connected to the closest fittest neighbour amongst their
original set of Delaunay neighbours so that no particles are
left unconnected. Alternatively, unconnected particles may
be left to perform hill-climbing in their immediate region.

Fig. 7. Stochastic region of overlap.

2) Local Exploitation: Another useful spatial heuristic
is to attract particles to their “closest-fitter" neighbour. We
aim to cause particles nearby one another to work together
towards their closest peak, rather than their fittest peak. This
slows the rate at which the global best is passed through
the swarm and presents a way of getting local particles to
work together to improve a solution in their local vicinity.
Figure 8 illustrates this: P3 will move towards "closer fitter"
particle P4 working locally with it, rather than being drawn
away to a more distant peak by P2, even though this is the
fittest neighbour. P2 and P1 are responsible for exploring
their common local peak. This heuristic takes advantage of
particles being spread across space with interleaved sections
between them. However, if there are many particles in
the swarm and a rugged function landscape, this rule may
slow the rate of convergence on the global optimum (more
iterations will be required to find the global best).

Fig. 8. The "closest-fitter" heuristic will draw P3 towards P4 even though
P2 is P3’s fittest neighbour.

3) Convergence on the Global Best: Though particles
should investigate local extrema, they must ultimately
progress towards the global optimum. A meaningful measure
for deciding when to pull a particle away from a local peak
is the ratio of the distances between the "closest-fitter" and
"fittest" neighbours. It is also a measure of how well a peak
has been exploited. This is because particles which converge
locally on their "closest-fitter" neighbour, exploiting a local
peak, will get closer and closer to each other. This distance
will become significantly smaller than the distance to the
local fittest particle in cases where a fittest neighbour is on a
different higher neighbouring peak. Figure 9 illustrates this.
Particles P1 and P2 will converge on each other. As they
do, the distance to P2’s closest fitter neighbour becomes
significantly small in relation to its distance to P3, its fittest
neighbour. Incorporating the swarm’s diameter into this test
allows particles to dynamically adapt the depth to which they
search as the swarm contracts. This is desirable because as
the swarm progresses towards the global optimum, peaks
should be examined more closely. A local exploitation ratio
threshold may be set to some factor of the swarm’s sparseness
(n 1

d , where n is the number of particles and d is the dimen-
sion). Alternatively and more simply, the local exploitation

Fig. 9. The distance between closest fitter particles becomes increasingly
small in relation to the distance to the fittest neighbour if there is a fitter
neighbour on a higher peak.

ratio threshold may be set to a fraction of the diameter. In our
tests we let particles explore to one hundredth of the swarms
radius. Additionally we test if the distance to the closest fitter
particle is less than the local exploitation ratio. This is also
an indicator of a peak being sufficiently exploited.

When the ratio is below the local exploitation ratio thresh-
old the fittest neighbour is used rather than the closest fitter
neighbour only if the velocity of the particle is at most
twice the distance to the closest neighbour. This is to prevent
arbitrary particles which land nearby the local peak from
disrupting a local search (see particle P5 and P6). Only those
particles which are sampling the local peak with a small step
size should be allowed to move onto the fittest peak. This
rule and the spanning property of the DT (their is some path
from every neighbour to every other neighbour in the DT)
results in particles at some point converging on the global
best particle. The rate at which the particles tend to this
point is slowed by all of the rules and the spatial separation
between the particles resulting in greater exploration.

C. Integration into the Standard PSO Algorithm

Algorithm 1 Pseudo code for the PSO Natural Neighbours
algorithm.
Randomly generate initial population
Repeat

N = compute_delaunay(X1 to population_size)
for i = 1 to population_size do

if f(Xi) < f(Pi) then
Pi = Xi

Pn = chooseBestNeighbour(Ni)
for d = 1 to dimensions do

velocity_update()
position_update()

end
end

until termination criterion is met.

Algorithm 1 shows how the standard PSO algorithm is
modified to use natural neighbours and our heuristics. A new
step, “compute_delaunay", is added which returns the Delau-
nay neighbours, N , for the positions, Xi of the particles, in
the swarm. In this work we concentrate on finding the DT of
the explorer swarm. An alternative would be to compute the

DT of the memory swarm and let explorer points contribute
to improving their closest memory swarm points.

Our heuristics are integrated into the "chooseBestNeigh-
bour" procedure, which returns a neighbouring best particle
(Pn) for particle i, from i’s set of Delaunay neighbours.
Algorithm 2 shows pseudo code for determining the best
neighbour using the heuristics. Pf is the position of the fittest
neighbour and Pc the position of the closest fitter neighbour
individual bests are used rather than explorer positions.

Algorithm 2 Pseudo code for finding a particles best neigh-
bours.
input: Ni Particle i’s closest neighbours
output: Pn the best neighbour
Procedure chooseBestNeighbour (Ni)

hasConnectedNeighbours = false
Pf = min(Nk)
for k = 1 to neighbourset_size do

if working_together(Pi, Pk)and
dist(Xi −Pc) < dist(Xi −Pk)and
f(Pk) < f(Xi) then
Pc = Pk

hasConnectedNeighbours = true
end if

end
localExploitationRatio = swarm.diameter/200
if hasConnectedNeighbours and

distance(Xi −Pc)/distance(Xi −Pf) >
localExploitationRatio and
Vi < 2 ∗ distance(Xi −Pc) then
Pn = Pc

else
Pn = Pf

Return Pn

end Procedure

IV. RESULTS

Internal tests comparing DT without heuristics, heuristics
with a fully connected swarm and a combination of DT with
heuristics showed that DT found solutions using the least
amount of iterations but was the least successful at finding the
global best. Using heuristics with a fully connected swarm
was comparative to DT with heuristics. It found solutions
in slightly fewer iterations but performed marginally worse
at finding the global extremum (more connections implies
faster convergence and less exploration).

The Delaunay approach with heuristics (DTH) was eval-
uated against the star (GB), Ring (LB2) and Von Neumann
(LB4) static topologies as well as the FER and FDR (112) fit-
ness ratio approaches. FDR (112) is used in our experiments,
as this was the best performer amongst the FDR variations
as reported by Veermachaneni et al [4]. Tests were run on
five of the most commonly used benchmark test functions for
testing neighbourhood structures [6][13][4], The commonly
used sphere function was omitted from our test bed, since it

is too simple in low dimensions, approaches always find the
global best. Tests were run in 2D, 3D and 4D. Thirty trials
were run for each topology on each of the test functions for
swarms of size 10, 20 and 30 particles. Trials were terminated
after 10000 iterations. Table I shows the functions used,
the initialization domain and the terminating criteria. The
reader is referred to [14] for a detailed description of these
functions. The terminating criterion serves as the finishing-
line, it is a value for a specific test function, which if reached
indicates that the swarm is on the global peak. All functions
were tested in 2D, 3D and 4D except for Schaffer which is
a 2D function.

TABLE I
FUNCTIONS, STOP CRITERIA AND DOMAINS

Function Domain Criterion
Schaffer [-100;100] 0.00001

0.5 +
(sin

√
(x2

1+x2
2))2−0.5)

(1+0.001(x2
1+x2

2))2

Rastrigin [-5.12;5.12] 0.01
n∑

i=1
x2

i + 10− 10cos(2πxi)

Rosenbrock [-30;30] 100
n−1∑
i=1

100(xi+1 − x2
i)2 + (xi − 1)2

Griewanck [-600;600] 0.05

frac14000
n∑

i=1
x2

i −
n∏

i=1
cos(xi√

i
)xi + 1

Ackley [-32;32] 0.01

20 + e− 20e
−0.2

√ ∑n
i=1 x2

i
n − e

√∑n
i=1 cos(2πxi)

n

"Success rate" indicates the number of times an approach
reaches the criteria. It is chosen as the most significant
measure for evaluating the approaches, since it shows an
approach’s ability to find the global extremum [13].

“Number of iterations to reach the criteria" is a significant
independent measure of an approaches performance; the
median of these values is used for successful trials (see
[13]). Table 2 shows success rates and the median number
of iterations to success. A -1 indicates that 50% or more of
the trials were unsuccessful. In our tests, initial velocities
are random with magnitude at most half the search space
diameter. We also execute the update of the individual bests
before moving particles and after adjusting velocities in
order to help maintain variation between individual bests
and current position for all the approaches. In 4D, DT
computation occasionally fails (possibly due to degenerate
point sets) in which case the fully connected neighbour graph
is used.

Time tests were performed. The DTH approach, in 2D
and 3D took a few seconds longer to find solutions than
the other approaches which typically finished in under a
second. The approach in 4D depending on the number of
iterations-took from a few seconds to several minutes to find
solutions. It must be taken into account that the approach
was implemented for proof of concept rather than optimized
execution speed.

The results in Table 2 show that DTH and LB2 are

TABLE II
RESULTS - SUCCESS RATE & PERFORMANCE

in terms of success-rate either as good or better than the
other approaches, with DTH performing better in 2D on the
Schaffer function and LB2 doing the best on Rastrigrin in
3D and 4D for 10 and 20 particles. LB4 and FER are close
contenders.

In terms of iterations to success, FDR strangely converges
the fastest with GB. This is possibly due to it making velocity
updates using not only the global best but also a neighbour
best which for low-dimensions is possibly very close to the
global best, giving each particle a greater weighting towards
the global best than towards its personal best position, hence
causing premature convergence. FER is the fastest of the

more successful approaches. Depending on the function,
DTH and LB2 (the slowest of the approaches) seem to be
on par in 3D and 4D with DTH being faster in 2D.

V. DISCUSSION

A. Limitations and Drawbacks

The very Delaunay Triangulation which is so useful for
the approach becomes the obstacle to extending it to higher
dimensions. The approach is theoretically bound by its worst
case time and space complexity, making it computationally
practical only for low dimensions. Further computing De-
launay Triangulation in 4D and higher is commonly done by
finding the convex hull, which for degenerate point sets can
capriciously malfunction if sufficient numeric precision is not
used. The CGAL framework [23] used to compute Delaunay
triangulations in the implementation of this research proved
to be robust and very helpful. It supports LEDA [23], a
library of efficient data types and algorithms which handles
exact precision computation.

Though it may be possible to use approximate Voronoi
diagrams or linear programming (which may be used to
find Voronoi cell neighbours rather than compute the exact
Voronoi Diagram) to speed up computation of the Delaunay
triangulation and extend the approach to higher dimensions,
there is another issue: natural neighbours may only be mean-
ingful in higher-dimensions where the number of particles
is significant compared to the dimension. As dimension
increases for a fixed number of uniformly randomly dis-
tributed particles, the particles become increasingly sparse.
This means that, for a small set of points as the problem
dimensionality increases, the Delaunay Triangulations will
become more fully connected tending towards a star topol-
ogy. For example we counted Delaunay neighbours for ten
randomly distributed particles in increasing dimensions: in
2D there were 21 neighbours, in 3D-34, 4D-39, 5D-40 and
by 6D the swarm was fully connected with 45 neighbours.

However, any high-dimensional problem may be solved
by splitting it into many smaller dimensional problems as is
done for the cooperative PSO, provided that there are not
interdependencies among the dimensions [24].

B. Faster Neighbours

The time complexity of computing the Delaunay triangu-
lation in low dimensions is O(n log n) in 2D and 3D. This
is an improvement and no worse than the fitness distance
ratio methods which are O(n2) though time tests suggest
the comparison is not this straightforward since our approach
takes longer (in seconds) per iteration for small numbers of
particles. This may be partly due to the approach’s heuristic
tests which require a pass through all of the neighbour
connections.

A kinetic Delaunay data structure[23], could also be used
to significantly reduce the number of times the triangulation
has to be repaired. Locality is an important ingredient for
successful kinetic data structures (geometric data structures
designed to cater for motion) which our approach satisfies,

with its use of locally constrained motion and the idea of
particles working together locally.

Using the DT of the memory swarm, rather than the
explorer swarm could also cut computations since the DT
would be updated less often and extensively, only when fitter
positions are found.

C. Improving the Approach

DT has the potential for implementing dynamic velocity
updates: if each particle adjusted its velocity so that it
searches within its own Voronoi cell neighbourhood, it could
result in a more distributed and adaptive coverage of the
search space. Also, as particles converge, neighbourhood
regions will naturally contract and particles will slow down,
performing a finer search, while particles on the outskirts of
the swarm would search more broadly.

VI. APPLICATIONS

The additional overheads and complexity for computing
the DT are likely to preclude the approach to specialized
low-dimensional problems such as Mobile Robotics. One of
our aims is to use the approach for the scientific visualiza-
tion of geoscience data (typically 2D or 3D) to find and
track multiple extrema. In such applications the additional
computational cost of computing the Delaunay triangulation
is a non-issue since such spatial data structures often have to
be computed in any event. Currently we are using a memory
swarm variant to find multiple spatially distributed silhouette
points.

VII. CONCLUSIONS AND FUTURE WORK

This research explored using Delaunay neighbours as a
spatial topology for PSO. Such a topology on its own results
in particles which converge too quickly. The spatial nature
of this topology however does facilitate meaningful spatial
heuristics which modulate the connections to accomplish
local searching, diverse exploration and overall convergence.
Our approach is comparatively successful to the Standard
Ring and Von Neumann topologies in 2D, 3D and 4D
(though significantly slower in 4D). The use of Delaunay
Triangulation limits the approach to low dimensions.

Future research should explore ways of leveraging spatial
topologies, including the use of FIPS PSO, which may per-
form even better. Graph spanners may present an alternative
to DT for computing a subset of spatial neighbours. This or
the use of heuristics on their own may be a way of extending
the approach to higher-dimensions. Exploring the use of
spatial neighbours for multimodal and dynamic problems
may also prove to be fruitful.

REFERENCES

[1] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proceed-
ings of the IEEE International Joint Conference on Neural Networks,
IEEE Press, vol. 8, no. 3, pp. 1943–1948, 1995.

[2] M. Richards and D. Ventura, “Dynamic sociometry in particle swarm
optimization,” Proceedings of the Joint Conference on Information
Sciences, pp. 1557–1560, September 2003.

[3] R. Mendes and J. Neves, “What makes a successful society? experi-
ments with population topologies in particle swarms,” in SBIA, 2004,
pp. 346–355.

[4] K. Veeramachaneni, T. Peram, C. Mohan, and L. Osadciw, “Optimiza-
tion using particle swarm with near neighbor interactions,” Genetic and
Evolutionary Computation Conference, July 2003.

[5] X. Li, “A multimodal particle swarm optimizer based on fitness
euclidean-distance ratio,” in GECCO ’07: Proceedings of the 9th
annual conference on Genetic and evolutionary computation. New
York, NY, USA: ACM, 2007, pp. 78–85.

[6] A. S. Mohais, R. Mendes, C. Ward, and C. Posthoff, “Neighborhood
re-structuring in particle swarm optimization.” in Australian Confer-
ence on Artificial Intelligence, ser. Lecture Notes in Computer Science,
S. Zhang and R. Jarvis, Eds., vol. 3809. Springer, 2005, pp. 776–785.

[7] X. Hu and R. Eberhart, “Multiobjective optimization using dynamic
neighborhood particle swarm optimization,” May 2002.

[8] R. Britz, A. Engelbrecht, and F. V. den Bergh, “Locating multiple
optima using particle swarm optimization,” Applied Mathematics and
Computation, 2007.

[9] E. Aganj, J.-P. Pons, F. Segonne, and R. Keriven, “Spatio-temporal
shape from silhouette using four-dimensional delaunay meshing,”
Computer Vision, ICCV 2007. IEEE 11th International Conference
on, pp. 1–8, October 2007.

[10] P. Cignoniz, C. Montaniz, and R. Scopigno, “Dewall a fast divide
and conquer delaunay triangulation algorithm in ed,” Computer-Aided
Design 30, pp. 333–341, April 1997.

[11] J. Erickson, “Dense point sets have sparse delaunay triangulations",”
in SODA ’02: Proceedings of the thirteenth annual ACM-SIAM sym-
posium on Discrete algorithms. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics, 2002, pp. 125–134.

[12] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability,
and convergence in a multidimensional complex space,” IEEE Trans-
actions on Evolutionary Computation 6, pp. 58–73, 2002.

[13] R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle
swarm: Simpler, maybe better.” IEEE Trans. Evolutionary Computa-
tion, vol. 8, no. 3, pp. 204–210, 2004.

[14] R. Mendes, Population Topologies and Their Influence in Particle
Swarm Performance. University of Minho, April 2004.

[15] J. Kennedy and R. Mendes, “Neighborhood topologies in fully-
informed and best-of-neighborhood particle swarms,” Soft Computing
in Industrial Applications, Proceedings of the 2003 IEEE International
Workshop, pp. 45–50, June 2003.

[16] ——, “Population structure and particle swarm performance,” in
CEC 02: Proceedings of the Evolutionary Computation on 2002.
Proceedings of the 2002 Congress. Washington, DC, USA: IEEE
Computer Society, 2002, pp. 1671–1676.

[17] A. Mohais, C. Ward, and C. Posthoff, “Randomized directed neighbor-
hoods with edge migration in particle swarm optimization,” Proceed-
ings of the IEEE Congress on Evolutionary Computation, pp. 548–555,
2004.

[18] P. Suganthan, “Particle swarm optimiser with neighbourhood operator,”
Proceedings of the Congress on Evolutionary Computation, pp. 1958–
1962, 1999.

[19] J. Kennedy, “Small worlds and mega-minds: effects of neighborhood
topology on particle swarm performance,” Evolutionary Computation
. CEC 99. Proceedings of the 1999 Congress on, vol. 3, 1999.

[20] T. M. Blackwell and P. Bentley, “Don’t push me! collision-avoiding
swarms,” in CEC ’02: Proceedings of the Evolutionary Computation
on 2002. CEC ’02. Proceedings of the 2002 Congress. Washington,
DC, USA: IEEE Computer Society, 2002, pp. 1691–1696.

[21] T. Krink, J. Vesterstrøm, and J. Riget, “Particle swarm optimisation
with spatial particle extension,” Proceedings of the Congress on
Evolutionary Computation, pp. 1474–1479, 2002.

[22] M. Richards and D. Ventura, “Choosing a starting configuration for
particle swarm optimization,” Proceedings of the International Joint
Conference on Neural Networks, pp. 2309–2312, July 2004.

[23] D. Russel, Kinetic Data Structures in Practice, PhD. Stanford
University, March 2007.

[24] F. van den Bergh and A. Engelbrecht, “A cooperative approach to
particle swarm optimization,” IEEE Transactions on Evolutionary
Computation, vol. 8, no. 3, pp. 225–239, June 2004.

