
Copyright © 2003 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
© 2003 ACM 1-58113-643-9/03/0002 $5.00

Accelerating Ray Shooting Through Aggressive 5D Visibility Preprocessing

Adrian Sharpe Matthew Hampton Shaun Nirenstein
Department of Computer Science

University of Cape Town

James Gain Edwin Blake∗

Abstract

We present a new approach to accelerating general ray shooting.
Our technique uses a five-dimensional ray space partition and is
based on the classic ray-classification algorithm. Where the original
algorithm evaluates intersection candidates at run-time, our solution
evaluates them as a preprocess.

The offline nature of our solution allows for an adaptive sub-
division of ray space. The advantage being, that it allows for the
placement of a user set upper bound on the number of primitives
intersected.

The candidate sets produced account for occlusion, thereby re-
ducing memory requirements and accelerating the ray shooting pro-
cess. A novel algorithm which exploits graphics hardware is used
to evaluate the candidate sets. It is the treatment of occlusion that
allows for the practical precomputation of the ray space partition.
This algorithm is called aggressive since it is optimal (no invisible
primitives are included), but may result in false exclusion of visible
primitives. Error is minimised through the adaptive sampling.

CR Categories: I.3.3 [Picture/Image Generation]: Photorealism
I.3.5 [Computational Geometry and Object Modelling]: Ray Shoot-
ing I.3.7 [Three-Dimensional Graphics and Realism]

Keywords: Ray shooting, ray casting, ray tracing, global illumi-
nation, visibility

1 Introduction

Ray shooting is a simple but computationally expensive task that is
fundamental to many algorithms in computer graphics. Stated sim-
ply, the problem is to find the nearest intersection of a ray with a set
of geometric primitives, with respect to the ray origin. Ray shoot-
ing is used to calculate form factors for radiosity, to create photon
maps, and is, of course, the central component of both classic and
Monte-Carlo ray tracing. In this paper we present a new approach
to accelerating ray shooting.

A naı̈ve approach requires that every ray is tested against every
geometric primitive in the scene. In order to reduce the number
of ray-primitive intersection tests required, researchers have devel-
oped a range of acceleration schemes. The most popular schemes
use spatial subdivisions, such as binary space partition (BSP) trees
or uniform grids. The goal of such schemes, is to trivially reject
those parts of the scene which cannot be intersected by a given ray.

∗{asharpe, mhampton, snirenst, jgain, edwin}@cs.uct.ac.za

With the same objective in mind, we propose an approach based
on Arvo and Kirk’s [1987] ray classification technique. The orig-
inal algorithm subdivides the scene using a 5D partition of ray
space1. The algorithm classifies the query ray into a 5D cell and
returns a candidate set of primitives associated with this cell. Our
key contributions are:

1. An algorithm which fully preprocesses the scene, effectively
precomputing all candidate sets. This allows for more effi-
cient ray shooting after a once-off preprocess.

2. An upper bound on the candidate set size at run-time. This
may be used to obtain upper time bounds for run-time render-
ing.

3. A new technique for computing the candidate sets. Graphics
hardware is exploited to accelerate the preprocess. Adaptive
sampling is used to minimise error.

4. We present a method which accounts for occlusion within
the candidate sets. This increases the performance of the ray
shooting by trivially rejecting all hidden primitives, while si-
multaneously decreasing the memory requirements (to feasi-
ble levels) for a full preprocess.

We begin with a brief discussion of related literature. In Sec-
tion 3 we discuss the 5D processing of ray space. In this section,
our subdivision algorithm is presented, and our technique for gen-
erating candidate sets is described. In Section 4 we present some
preliminary results.

2 Previous Work

Since Rubin and Whitted [1980] introduced bounding volumes,
there has been much research devoted to ray-shooting acceleration
schemes. Most methods use 3D spatial subdivision in conjunction
with a ray traversal algorithm. Each cell or voxel contains a list
of the primitives that are fully or partially contained within it. The
ray traversal algorithm traverses the cells along a ray in order. The
list of the nearest cell is tested first, so that if an intersection point
is found within the boundary of the cell, no further cells need be
tested. However, if no intersection is found, or the intersection point
is outside the cell’s boundary, the primitive list within the next cell
must be tested.

These schemes perform reasonably well in the average case
(since a ray is more likely to first intersect the near primitives that
are tested first). However, a ray may still be tested against a num-
ber of cells and their contained primitives before an intersection is
found.

Arvo and Kirk [1987] describe a subdivision of 5D ray space,
that eliminates this costly traversal of cells. A 5D cell is defined by
a parallelepiped of ray origins in 3D (which we will call the origin
box) and a range of ray directions. It has a natural manifestation in
3D as a beam. If a beam does not intersect a primitive then no ray
in the 5D cell can either. This property is used to find a relatively
small candidate set for each cell.

1Each ray can be uniquely defined by an origin in 3D space along with
two spherical angles for direction

95

Figure 1: A beam that intersects many polygons, but few are possi-
bly visible from the origin box due to occlusion. The polygons in
the candidate set are solid, while polygons that are occluded or are
outside the beam are shown in wire frame.

A ray need only be tested against the candidate set of the cell
that contains it. Classifying a ray requires at most one tree traversal
(this is reduced further in practice by using a caching scheme). In
the context of [Arvo and Kirk 1987], the purpose of the 5D subdivi-
sion is to function as a caching mechanism. The candidate sets are
evaluated lazily, the premise being that the cost of the candidate set
computation would be amortised over successive “cache hits” (i.e.
successive rays with the same classification).

Unfortunately this method is very memory intensive because of
the deep level of subdivision required before candidate sets are suf-
ficiently small [Simiakakis and Day 1994]. This is further exacer-
bated by the highly conservative nature of these candidate sets. The
implementation presented by Arvo and Kirk is conservative, firstly,
because occluded primitives are not culled from the candidate sets
(see Figure 1), and secondly, because the beam used is a conser-
vative overestimate of the optimal beam. This results in primitives
outside of the beam, being included as candidates.

Arvo and Kirk compensate for their conservative approach by
truncating the candidate sets. Primitives that are further than a
specified distance from the origin box are omitted. The beam is
capped by a truncation plane and if a ray does not intersect any
primitives in the candidate set, it is projected onto the truncation
plane and reclassified. This can be effective in many cases, but the
initial advantage of a single tree traversal and candidate set per ray
is lost. It would be better to evaluate which primitives are occluded
and remove them.

Nirenstein et al. [2001] describe an aggressive visibility tech-
nique that uses visibility cubes to determine visibility from 3D re-
gions (in all directions). A visibility cube (strongly related to the
radiosity hemi-cube [Cohen and Greenberg 1985]) is created by
treating each face of a tiny cube surrounding the view point as an
independent depth buffer. The scene is rendered onto the buffers
using a distinct colour index for each polygon. The buffers are read
back and the indices present represent the polygons visible from
that point. The rendering can be accelerated with modern graphics
hardware. See [Nirenstein et al. 2001] for details.

An aggressive visibility solution is optimum in that no invisible
primitives are included, but may result in false exclusion of visible
primitives. The technique samples visibility adaptively over the sur-
face of each cell while building a k-d tree of visibility cells. Niren-
stein et al. successfully accelerate the rendering of large scenes
(millions of polygons) with acceptable error.

Our technique is similar to that of Sudarsky and Gotsman [1999],
however, their subdivision scheme is optimised for visibility
culling, rather than ray shooting. Furthermore, their sampling does

not exploit graphics hardware (thereby compromising either time or
accuracy), nor does it effectively use the information of previously
cast rays to minimise error.

3 5D Preprocessing

Our solution to the ray shooting problem is an adaptation of the
aggressive visibility technique of Nirenstein et al. to choose can-
didate sets for a 5D subdivision similar, to that of Arvo and Kirk.
Using an aggressive technique results in an optimum candidate set
being chosen for each 5D cell (with minimal false exclusion). All
visibility determination is performed offline as a preprocess.

The algorithm may be summarised as follows:

Generate initial set of cells V
Set primitive budget to threshold
for each c ∈V do

Subdivide(c)
next c

procedure Subdivide(c)
Compute Candidate Set of c
if ElementsIn(c)≥ threshold then
{c−,c+}← Split(c)
Subdivide(c−)
Subdivide(c+)

end if
end procedure

procedure {c−,c+}← Split(c)
Choose 5D splitting hyperplane for c such that:

ElementsIn(c−)+ElementsIn(c+) is minimised
Return {c−,c+}

end procedure

3.1 The Initial Classification

Only those cells whose origins lie within the 3D bounding volume
of the scene need be evaluated. For those rays with origins lying
outside, but still intersecting the bounding volume, the origin can
be moved to the point of intersection and reclassified.

We begin by constructing six cells. The origin box of these cells
is the scene bounding box. To specify the angular bounds we note
that the direction of any ray can be associated with its dominant
axis, denoted +X ,−X , +Y ,−Y , +Z or−Z. Using this association,
Arvo and Kirk [1987] define an isomorphism between the sphere
of directions, and the surface of an axially aligned cube. It is con-
venient to initially partition the direction space by the six dominant
axes (discussed in Section 3.3.1). This leads to the six initial cells.

3.2 Adaptive Subdivision

A spatial subdivision of the 5D ray space is used to accelerate ray
shooting. At each level of the subdivision the size of the candi-
date set is reduced. At run-time, this reduces the computation cost
of finding the first ray-primitive intersection by reducing the total
number of required intersection tests.

The cost of ray intersection becomes O(logn+c), where n is the
number of cells, and c is the user defined candidate set maximum.
The logarithmic traversal time, assumes that the tree has been bal-
anced as a post-process. This is hugely beneficial, considering that
in practice, logn is very small, and c may be chosen to be arbitrarily
small. No other practical techniques limit the number of intersec-
tion tests prior to finding the first ray-primitive intersection.

96

3.2.1 Separation and Effectiveness

Separation refers to how the primitives are split and shared between
the child candidate sets. It is used to measure the effectiveness of a
subdivision. An effective subdivision will share very few primitives
between the child cell and thus have high separation. The effective-
ness of a subdivision is important for deciding how to subdivide a
cell, and whether a given subdivision is beneficial.

3.2.2 Subdivision strategies

Naı̈ve subdivision
A subdivision strategy in which each dimension is divided in turn

at each level, up to a specified maximum depth, is the simplest to
implement and test. It produces a complete k-d tree, where every
branch has the same height.
Maximum Candidate Set Size

The naı̈ve subdivision strategy is improved by changing the ter-
minating criteria so that subdivision stops early when the candidate
set size drops below a specified user maximum. A maximum depth
limit is also provided to stop subdivision from continuing indefi-
nitely. This also produces a k-d tree, however, it is not complete.
Most Separated Dimension

This strategy involves looking at the set of all possible subdi-
visions and choosing the one that gives the best separation. An
analytic solution for this is extremely expensive. However, aggres-
sive visibility sampling can also be used to perform this process.
A limited sampling of the 5 possible splitting hyperplanes is used
to approximate the separation. The subdivision with the most sep-
aration is then chosen and fully sampled. This produces an axis
aligned binary space partition tree.

3.2.3 Optimisations

For a given scene the cost of the preprocess is largely related to the
number of samples taken. We employ a number of simple optimi-
sations to decrease this overhead:

• The candidate set for a child cell is always a subset of the can-
didate set of its parent. Therefore, to determine visibility for
a child cell, only the primitives visible in the parent cell need
to be rendered. Fewer primitives results in faster rendering of
visibility samples at deeper levels of the subdivision.

• For any cell, the list of pertinent samples necessary for deter-
mining visibility is stored with the cell. These samples are
reused in child cells, if possible. A sample can only be reused
if the current subdivision does not cross its bounds (see Sec-
tion 3.3.1 and 3.3.2). Reuse can be increased by storing more
that just a visibility list with each sample, for example, by
breaking the rendering into a grid of lists. The reuse of sam-
ples drastically reduces the sampling cost, since only the split-
ting surface needs to be sampled for any subdivision.

• Caches are also implemented to facilitate the reuse of samples
across subdivision branches. This allows samples to be reused
on neighbouring cells that do not share a parent (that are in
separate branches of the tree). All requests for samples are
directed through the cache. A sample is created if it does not
already exist. Samples are eliminated from the cache when
they are no longer needed.

3.3 Constructing Candidate Sets

The candidate set for a 5D cell is the union of the primitives that
intersect the origin box and the primitives visible by rays that orig-
inate from the surface of the origin box, with direction bounded by
the angular range of the cell In order to determine what is visible
from a surface we sample the set of rays that can originate from that
surface. This is done using two complementary methods: point-
samples and area-samples. For a point-sample, we sample many

Figure 2: A visibility cube with point-sample frustum restricted to
the subset of angles required (uv bounds (0,0) to (0.6,0.5)). The
inset shows a typical rendering for a full face of a direction cube.
The shaded region is all that need be rendered for a restricted point-
sample.

rays originating from a single point on the surface (see Nirenstein et
al. [Nirenstein et al. 2001]). Conversely, for an area-sample, all the
rays sampled are parallel, but have a different origin (see [Chrysan-
thou et al. 1998]). Both can be created using graphics hardware.
The details are as follows:

3.3.1 Point-samples

Within the context of ray space, the desired point-sample is a re-
stricted visibility cube. The initial six way subdivision of ray space
means that only one face of the visibility cube need be rendered for
any sample. Furthermore, the 2 angular bounds restrict the portion
of the face that has valid samples. To ensure that the entire ren-
dering is useful, the point-sample is created by rendering the scene
using a perspective projection, where the frustum reflects the angu-
lar bounds of the 5D cell. This is illustrated in Figure 2.

In our implementation, each point-sample reveals what is visi-
ble from a point over the full range of the angular bounds of a 5D
cell. This is manipulated as a single set of items. As such, one
cannot determine in which direction a particular primitive in the set
is visible, but merely that it is visible in some direction from the
point-sample origin. This has efficiency implications, since a sub-
division of one of the angular dimensions requires that all existing
point-samples must be discarded. One cannot reuse the sample in
this case because the direction information has not been preserved.

The reuse of samples greatly accelerates the performance of this
technique, especially for large scenes. Having to discard a sample is
an expensive operation. We reduce the effect of this by breaking up
a point-sample into a number of sets, each representing an angular
region of the rendering. This is done by splitting the rendering into
a grid of separate samples on the visibility cube. When an angular
subdivision takes place the relevant lists are copied into a new sam-
ple. Although this reduces the problem to a certain degree, it does
not remove it. The only way to do so is to store the entire rendering
for each point-sample. Even with image compression, the memory
requirements for this would be excessive.

Point-sampling results in a large number of directional samples
for a small number of origins. Improving the coverage of sampled
origins, involves the evaluation of more point-samples. An adaptive
sampling of the surface is used to achieve this. The four corners of
the surface are sampled and then further samples are taken recur-
sively in the manner of a quad-tree. Termination is governed by an

97

error minimising heuristic.
We use a heuristic based on that of Nirenstein et al.. Although

this heuristic was developed for full directional visibility cubes for
determining from-region visibility, it we use it with almost no adap-
tation for our point-samples2. This heuristic uses an image based
similarity measure between adjacent samples. The user defines the
error threshold. When the number of common items is above the
threshold then subdivision stops.

The angular restriction to the visibility cube introduces a num-
ber of sampling problems, illustrated in Figure 3. Sampling can
leave significant portions of the scene un-sampled. Primitives in
these portions will be falsely categorised as not visible if the ter-
minating condition is satisfied for the outer samples. This problem
arises because all of the rays sampled by the point-samples are clus-
tered around a few key origins. The problem is further exacerbated
when the angular bounds are small, since the resulting gaps become
larger. It is particularly significant since the un-sampled regions are
near the origin box surface.

In order to improve the coverage of the ray samples and to avoid
the sampling gaps that are created by point-sampling, an alternative
sampling methodology, termed area-sampling is also used.

3.3.2 Area-samples

Rather than sampling a range of ray directions from a single origin,
an area-sample shoots parallel rays from a range of origins across
the surface. This is achieved through a generalisation of the re-
stricted visibility cube used for point-samples. Point-sampling uses
perspective projection, with the centre of projection on the surface
and the front clipping plane very near to the surface. The area-
samples use an orthographic projection in the specified direction
with the sampling surface itself as the front clipping plane.

We adaptively sample visibility from the surface starting with
four samples at the four angular extents. However, the original ter-
mination heuristic leads to unnecessary oversampling on the four
surfaces of the origin box that are orthogonal to the dominant direc-
tion. This is because the orthographic projection includes a shear-
ing operation used to achieve the desired ray direction. This shear-
ing is particularly significant for area-samples taken from these sur-
faces and stretches insignificant polygons such that they contribute
too much to the error measure. Scaling the polygons contribution
by the shearing factor produces a better weighted sampling.

Area-samples and point-samples have complementary proper-
ties. Where point-samples cannot be reused after splitting an an-
gular dimension, area-samples cannot be reused after splitting the
x, y or z dimension. The reason is the same: the only information
kept with a sample is the list of visible primitives.

There are also sampling problems with area-samples (see fig-
ure 3. Where point-samples have un-sampled regions close to the
origin box surface, area-samples leave more remote regions un-
sampled. It is also evident that point-sample gaps are larger in scene
volume, when the sampling surface is large, whereas area-sample
gaps are larger when the sampling surface is small).

Because of their complementary nature, the best solution uses a
combination of point-samples and area-samples. The nature of the
sampling problems of each sample type suggests that more area-
samples should be used in the early stages of subdivision when the
sampled cell surfaces are large. More point-samples should be used
deeper in the hierarchy, when the cell surfaces are smaller.

Uniform sampling of origin box surfaces is required for effi-
ciency. Since child cells samples are based on their parent cell’s
visibility, it does not prove useful to adaptively sample a surface
to further depth than the parent did. No extra information can be

2The contribution that each polygon makes to the error measure is scaled
by the number of sample rays that intersect it. Nirenstein et al. use a constant
weight.

a) b)

Figure 3: Sampling problems with point-samples (a) and area-
samples (b). The polygons in the un-sampled regions (U) will be
classified as not visible (rendered in wire frame).

Scene Size Cell Sample Sub.
Depth Depth Strategy

1 roomsbig 45k 10 6 A
2 roomsbig 45k 15 6 A
3 hilltop 485k 12 6 B

Table 1: Preprocessing input parameters. A is the Maximum Can-
didate Set Size subdivision strategy while B is the Most Separated
Dimension strategy (see Section 3.2.2)

recovered. Similarly, it is not useful to render the item buffers at
the same or higher resolution for the child cells. Instead, the max-
imum adaptive sampling depth and the sampling resolution can be
reduced as the subdivision takes place. This ensures that no time
is spent rendering more samples than are absolutely necessary for
visibility determination.

4 Preliminary Results

The techniques presented in this report have been fully imple-
mented. A number of scenes were processed using a dual Pentium
4 1.7Ghz with 1.2GB of RAM and an NVidia G-Force 4 Ti 4600
graphics card. We have evaluated the performance of the prepro-
cessor, the accuracy of the visibility information and the degree of
ray shooting acceleration.

4.1 Performance

Table 1 and 2 give the preprocessing parameters and results, respec-
tively, for a number of trials using three different scenes. The length
of the preprocess depends mainly on the total number of samples
that are rendered. This number is directly related to the user spec-
ified maximum cell depth and maximum sample depth parameters.
We use both the Maximum Candidate Set Size (A) and the Most
Separated Dimension (B) strategies (see Section 3.2.2).

Both subdivision strategies effectively reduce the average and
maximum number of triangles for each candidate set. Trial 5 suc-
cessfully processed a large scene and reduced the average number
of triangles per cell to 0.11% of the original scene size. The maxi-
mum number of triangles for a cell was 2.94% of the scene size.

We have found that subdivision strategy B takes significantly
longer because of the extra processing involved in choosing the
splitting hyperplane. However, this increased preprocessing time
is balanced by a reduction in preprocessed data file size. The max-

98

Time Cells Tri/Cell Cell Depth Sample Depth File Size
h:mm Ave. Max. Ave. Max. Ave. Max. (MB)

1 0:25 5263 625 4944 9.9 10 4.7 6 29
2 1:51 82192 318 2312 14.5 15 5.0 6 143
3 38:43 17972 535 14267 11.9 12 5 6 93

Table 2: Preprocessing results.

Min. Max. Ave. St. Dev.

1 0.00% 1.79% 0.03% 0.17%
2 0.00% 9.58% 0.22% 0.98%
3 0.00% 82.19% 3.65% 10.78%

Table 3: Error rate statistics for ray traced images.

imum file size was 93Mb, only 2.5 times larger than the scene file.
This is compared to Strategy A, whose maximum file size was 50
times bigger than the scene file.

4.2 Accuracy

The accuracy of the preprocessor is evaluated by comparing images
produced using the preprocessed visibility files against images pro-
duced using a reference renderer. For our evaluation the reference
renderer used a bounding volume hierarchy (BVH) [Havran 2000]
to find the closest intersection. The reference ray tracer produces
an exact image. We calculate the number of incorrect intersections
using our 5D visibility information. Table 3 shows the accuracy
statistics of the trials.

Trial 1 and 2 produce acceptable rates of error. Trial 3 had a
higher average error rate of 3.65%, but this is acceptable consider-
ing the size of the scene and the depth of the preprocess. Unfortu-
nately, its maximum error rate was 82.19%, a substantial proportion
of the image. This image, and most of the others with error rates
above the average, had viewpoints near a falsely excluded polygon.
This polygon counted for the majority of the error.

4.3 Ray Shooting Acceleration

The success of the technique for accelerating ray tracing depends
directly on its ability to reduce the number of intersection tests re-
quired. Table 4 highlights the performance of the technique. The×
Speedup column is relative to the naı̈ve approach (intersecting every
ray with every primitive). The speedup using our technique is com-
pared to the speedup using a bounding volume hierarchy (BVH).

For all scenes the number of intersections per ray was vastly re-
duced compared to a naı̈ve approach to ray shooting. 5D prepro-
cessing successfully reduced the size of the candidate set to a man-
ageable level. While 100 to 600 intersections per ray may not seem
impressive, it is important to realise that these figures assume the
candidate sets are not further processed (this is also why the BVH
performs better on average).

The traversal of the 5D tree requires one comparison per node,
thus with a maximum overhead of 15 floating point comparisons the
candidate size can be reduced to as little as 0.1% of the total scene

5D BVH
Size Ave. Int/Ray × Speedup Ave. Int/Ray × Speedup

1 45k 594.94 75.51 40.46 1112.21
2 45k 126.20 356.57 40.46 1112.21
3 485k 290.34 1670.45 61.96 7827.63

Table 4: Ray shooting acceleration statistics

size and consequently reduce the number of required intersections
to as little as 0.03% of the total scene size. These are promising
results, considering that a hybrid of this technique with a BSP tree
or bounding volume hierarchy offers the potential for substantial
further reductions.

5 Conclusion
We have presented a novel approach to accelerate ray shooting. An
offline 5D subdivision preprocess reduces the candidate set for a
ray to a manageable size based on both visibility and occlusion.
The results (in Table 2) reflect success in bounding both maximum
and average ray intersections per ray.

Indeed, we effectively limit the number of intersections per ray
to at most 2.5% of the scene size (but on average, less than 1%).
This is at the cost of a small error: on average, less than 4% of
rays return the incorrect primitive on very large scenes. Generally,
the average error rate is closer to 0.3% (Table 3). Furthermore, our
technique completes in practical time, even for large scenes.

5.1 Future Work

We intend to evaluate different schemes to post-process the candi-
date set lists. This should significantly improve the effectiveness
of our scheme for accelerating ray shooting. In addition, we would
like to employ more effective sampling strategies to reduce error
rates, using better error heuristics and an intelligent strategy for
combining point- and area-samples. We will continue to investigate
performance enhancements to reduce preprocess times, including
the possibility of parallelisation.

References

ARVO, J., AND KIRK, D. 1987. Fast ray tracing by ray classifi-
cation. In Computer Graphics, Annual Conference Series (SIG-
GRAPH ’87 Proceedings), vol. 21, ACM, 55–64.

CHRYSANTHOU, Y., COHEN-OR, D., AND LISCHINSKI, D. 1998.
Fast approximate quantitative visibility for complex scenes. In
Computer Graphics International 1998, IEEE Computer Soci-
ety, Hannover, Germany.

COHEN, M. F., AND GREENBERG, D. P. 1985. The hemi-cube: a
radiosity solution for complex environments. In Proceedings of
the 12th annual conference on Computer graphics and interac-
tive techniques, ACM Press, 31–40.

HAVRAN, V. 2000. Heuristic Ray Shooting Algorithms. Ph.d. the-
sis, Department of Computer Science and Engineering, Faculty
of Electrical Engineering, Czech Technical University in Prague.

NIRENSTEIN, S., GAIN, J., AND BLAKE, E. 2001.
Aggressive visibility pre-processing with adaptive
sampling. Tech. Rep. CS01-01-00, Department
of Computer Science, University of Cape Town,
http://www.cs.uct.ac.za/Research/CVC/Techrep/CS01-01-
00.pdf.

RUBIN, S. M., AND WHITTED, T. 1980. A 3-dimensional rep-
resentation for fast rendering of complex scenes. In Computer
Graphics, Annual Conference Series (SIGGRAPH ’80 Proceed-
ings), vol. 14, ACM, 110–116.

SIMIAKAKIS, G., AND DAY, A. M. 1994. Five-dimensional adap-
tive subdivision for ray tracing. Computer Graphics Forum 13,
2, 133–140.

SUDARSKY, O., AND GOTSMAN, C. 1999. Dynamic scene occlu-
sion culling. IEEE Transactions on Visualization and Computer
Graphics 5, 1, 13–29. ISSN 1077-2626.

99

100

