
MIRMaid: An interface for a content based Music
Information Retrieval test-bed

A DISSERTATION SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE,
FACULTY OF SCIENCE

AT THE UNIVERSITY OF CAPE TOWN
IN PARTIAL FULFILMENT
OF THE REQUIREMENTS

OF THE DEGREE
OF

Masters in Philosophy in Information Technology

By
Candice Lynn Cloete

February 2006

Supervised by
Dr. Hussein Suleman

Acknowledgements

Like all dissertations, this dissertation could not be completed without the help and support of countless

people over the past few years. I would therefore like to give my sincerest thanks for their help with this

dissertation.

First of all I want to thank my supervisor Dr. Hussein Suleman, for his support, attention to detail and

guidance. I cannot imagine having a better advisor.

Next I want to thank Mr. Donald Cook for his guidance, as well as graciously allowing me to use some of his

contacts in the Computer Music field.

I also want to thank people involved in the Music Technology Group at Stellenbosch University and
particularly Mr. Theo Herbst, for helping me procure test subjects and for answering many questions.

I also want to thank the past and present members of the Advanced Information Management laboratory at
UCT, for their support, and other individuals who acted as patient test subjects.

I would also like to thank the past and present students from the Masters in Information Technology

group, for their help, in particular Samuel King and Victor Katoma, for their support and friendship.

I would also like to thank the National Research Foundation for their research grant.

I would like to thank my parents Windsor Cloete and Rachel Terblanche, for their patience and support as

well as Freddy Taggar, for his support and my brother Kevin Cloete, for keeping me laughing through many

frustrating moments.

i

Abstract

Music Information Retrieval (MlR) is the interdisciplinary science of retrieving information from music and

includes influences from different areas, like music perception and cognition, music analysis, signal

processing, music indexing and information retrieval [Futrelle & Downie, 2003] .

To produce the most efficient MlR systems, test-beds are commonly used to test different combinations of

parameters against each other. The purpose of this dissertation was to investigate the composition of

algorithms for MlR systems by constructing an interface that could form part of a test-bed. It differs from

other interfaces and frameworks that are used in MlR test-beds because it is focused on small scale test-

beds.

MIRMaid is an acronym for Music Information Retrieval Modular aid and is an interface that allows different
content based retrieval tasks to be compared against each other to find optimal combinations of retrieval
parameters for specialised problem domains.

The dissertation describes the process of how the MIRMaid interface was developed, modified and

refined.

A big challenge was to design the user experiments in a way that considered potential users of the interface

while using the test subjects I had at my disposal. I decided to use the simplest queries to highlight basic

similarities between novice and potential expert users. The performance of the interface was judged by user

ratings on a questionnaire. The interface performed reasonably well with expert users and novice users.

Despite these results there were a few interesting observations that were returned from the user

experiments related to the experiment design and the task explanations.

Some suggestions are also provided for extending the interface to allow it to be used with other types of

data. The possibility is also investigated for using the interface as a tool for simplifying the process of

integrating modules from different sources.

Keywords
Music Information Retrieval,test-bed, interoperability, interface, audio content extraction

ii

Index
Acknowledgements... i
Abstract... ii
Chapter 1..1

1 Introduction... 1
1.1 Problem Statement... 1
1.2 The Solution.. 1
1.3 Thesis Structure.. 2

Chapter 2..4
2 Theoretical Background..4

2.1 Overview... 4
2.2 Data Mining and Musical Digital Libraries...4

2.2.1 Musical Digital Libraries.. 4
2.2.2 Test-beds...5

2.3 The Structure of Digital Audio Data.. 5
2.3.1 Sampling..5
2.3.2 Quantisation noise and resolution... 6

2.4 Psychoacoustics, sound perception and music cognition...7
2.5 Basic Signal Processing operations..8

2.5.1 Fundamental Frequency estimation.. 8
2.5.2 Event Detection and Windowing... 9
2.5.3 Feature extraction... 9
2.5.4 Matching.. 10
2.5.5 Transcription Models... 11

2.5.5.1 Set based models.. 11
2.5.5.2 Hidden Markov Models.. 12
2.5.5.3 Audio Fingerprinting...12
2.5.5.4 Self-Organising Maps.. 13

2.6 Summary...13
Chapter 3..14

3 Frameworks and Toolkits..14
3.1 Overview... 14
3.2 Information Retrieval Frameworks.. 14

3.2.1 CLAM...14
3.2.2 M2K... 16
3.2.3 MARSYAS... 18
3.2.4 MUSART... 18

3.3 Music processing languages...19
3.3.1 Matab...19
3.3.2 Octave... 21
3.3.3 Labwindows...22
3.3.4 Nyquist...22

3.4 External Libraries.. 23
3.4.1 Machine learning libraries... 23
3.4.2 Music processing libraries... 23
3.4.3 Visualisation.. 24

3.5 Other Tools... 24
3.5.1 Sphinx-3.. 24
3.5.2 WEKA.. 24

3.6 Summary...25
Chapter 4..26

4 The MIRMaid Interface... 26
4.1 Overview... 26
4.2 Structure..26

4.2.1 Test-bed Structure...26

4.2.2 The repositories...26
4.2.3 Modules... 27

4.3 The Interface... 28
4.3.1 Design Goals... 28
4.3.2 Interface Elements.. 29

4.3.2.1 The "Choose a repository" component.. 29
4.3.2.2 The "Select Transformations" component... 30
4.3.2.3 Adding Transformations Frame... 31
4.3.2.4 Use case Control component.. 32
4.3.2.5 Sound loading/recording component... 33
4.3.2.6 Matching/Evaluate/Execute the query... 34
4.3.2.7 Presentation of Results..34

4.3.3 Interface development...36
4.3.4 Strategic positioning of the framework.. 36
4.3.5 Interviews.. 36
4.3.6 Improvements on the interface..39

4.4 Description of development tools used... 40
4.5 Summary...40

Chapter 5..41
5 Experiment and Questionnaire Design... 41

5.1 Overview... 41
5.2 Population Selection... 41
5.3 Experiment Design..42
5.4 The Tasks... 42
5.5 Arranging outcomes from the interface...43
5.6 Questionnaire Design..43

5.6.1 Subject profile..44
5.6.2 Interface and task based questions...44

5.7 Justification for not using time measurement as an evaluation tool..................................45
5.8 User observation... 45
5.9 Confounding variables.. 46
5.10 Summary...46

Chapter 6..47
6 Data Analysis and Results of the Experiment.. 47

6.1 Overview... 47
6.2 Sample population analysis.. 47
6.3 Results Summary..49
6.4 Discrepancies between results from task based and interface based statements........... 50
6.5 Evaluation of design results.. 51

6.5.1 Measurement of design goals... 51
6.5.1.1 Adequacy... 52
6.5.1.2 Simplicity..53

6.5.1.2.1 Intutiveness ... 53
6.5.1.2.2 Learnability...54

6.5.1.3 Usability... 54
6.5.1.3.1 Layout.. 55
6.5.1.3.2 Navigation.. 56

6.6 Problems with the MIRMaid interface... 57
6.6.1 Navigation..57
6.6.2 General layout and operation logic..58
6.6.3 Controlling query options...59
6.6.4 Finding and Loading Sound Clips... 59

6.7 Summary...60
Chapter 7..61

7 Future Work.. 61
7.1 Overview... 61
7.2 Interface Enhancements... 61

7.4 Future testing of the test-bed and the interface.. 65
7.5 Summary...66

Chapter 8..67
8. Conclusion... 67

Appendices...69
A1 Task explanation used during the project.. 69
A2 Instructions to the first task used in the interface... 70
A3 Instructions to the second task used in the project ... 71
A3 Questionnaire used in the project ..72

Bibliography..74

List of Tables

Table 6.1 Summary of user profile in terms of music and computer training..................... 48
Table 6.2 Results summary from the questionnaire test subjects..................................... 49

List of Figures

Figure 3.1 : Image of a CLAM flow control schedule.. 15
Figure 3.2: Image of M2K workspace with flow control network... 17
Figure 3.3 : Image of the MATLAB workspace..20
Figure 3.4 : Image of the Octave environment.. ..21
Figure 3.5 : Image of the labwindows environment...22

Figure 4.1 : Image of the "Choose a repository 11 element within the interface.............................29
Figure 4.2 : Image of the choosing transformations element within the interface...........................30
Figure 4.3 : Image of the adding transformation element..31
Figure 4.4 : Image of the control form... 32
Figure 4.5 : Image of the sound recording element within the interface... 33
Figure 4.6 : Image of the matching element within the interface.. 34
Figure 4.7 : Image of the results screen..35
Figure 4.8 : Image of the second results screen... 35
Figure 4.9 : Image of the main screen of the first interface..37
Figure 4.10: Picture of the main screen of the interface after the interview.................................... 39

Figure 6.1: Population Composition..47
Figure 6.2: Indicates the percentage of subjects who could complete the task that they were set..52
Figure 6.3 : Graph of the responses from the layout question in the questionnaire......................... 53
Figure 6.4 : Graph of the responses from the navigation question in the questionnaire.................. 54
Figure 6.5 : Graph of the responses from the intuitiveness question in the questionnaire...............55
Figure 6.6 : Graph of responses from the question if the interface was difficult to learn or not........56
Figure 6.7: This figure illustrates the current navigation path of the current interface......................57

Figure 7.1 : Image of how the interface could look like in the future... 61
Figure 7.2 : New navigational path over one frame...62

Chapter 1

1 Introduction

1.1 Problem Statement

Over the last ten years the discipline of Music Information Retrieval (MlR) has grown very fast,

mostly without consensus on uniform data representations, common evaluation standards and

common guidelines for interaction amongst different MlR frameworks. As a result there are many

tools, music processing frameworks, test-beds, synthesis libraries and synthesis languages built to

aid information retrieval varying in scope and language implementation that are unable to interact

with each other directly and effectively.

Most of the frameworks designed for audio signal processing attempt to be comprehensive

solutions but result in many core signal processing classes being duplicated across different

frameworks. The differences in implementation are either due to internal structural differences in

frameworks or that classes are implemented in different languages. At the same time there is only

minimal support provided for including modules and classes from other frameworks.

Each framework has its own rules for accessing data, using storage and presenting file formats.

There was no freedom to combine different objects from different locations without having to

convert them first to another form manually or translating the module into the format that the

framework accepts. This situation got to a point that compiling and running even the most simple

programs in many frameworks became very complex. This situation also makes it difficult to test

different MlR strategies used in different MlR systems.

1.2 The Solution

A comprehensive study would tackle the problem of interoperability between different music

processing frameworks within three areas: 1) modular interoperability, how modules from one

framework can be directly imported into other frameworks without any internal changes in the

module; 2) data interoperability, how to package and transport annotated audio data so it is

archive, processing and framework neutral, without loosing information or creating problems when

1

processing data and 3) framework integration, how one framework can access classes and tools in

other frameworks without having to manually import classes from one framework to another by

accessing one framework though the command line.

Within the context of these problems we decided to concentrate on module integration. This

involved creating an interface for a content based Music Information Retrieval test-bed to

investigate the compositions of algorithms for music manipulation in MlR systems simplifying the

process of integrating modules successfully from different sources.

The future work chapter also explores the option of embedding the interface into a proposed

International Music Information Retrieval Laboratory (IMIRSEL) [Downie, 2003] but not as a rival to

bigger and well established evaluation frameworks, like M2K, as this interface is more geared

towards handling small specialised repositories.

The dissertation expands on possibilities for extending the MlR frameworks and covers some

scenarios of what could happen if the test-bed would include different types of data, other than

audio data. It also proposes automatic testing of different combinations of test metrics for the same

retrieval task and the same set of data against each other without having to do it manually.

This project also give suggestions on how modules from different frameworks can be combined

and different combinations of modules tested against each other.

1.3 Thesis Structure

The first chapter and second chapter gives an overview of concepts, test-beds and frameworks

that are currently used in music information retrieval, and attempts to justify the existence of the

interface by relating it to other projects. It also discusses similarities, differences and problems in

different projects.

The third chapter describes the interface development process and gives a description of how the

interface works.

The fourth chapter deals with how user experiments were designed to test the interface that was

built. First the justification behind the population selection is given and then the procedure for

testing the interface was explained. This chapter also gives some explanations on how the

questionnaire was constructed.

2

The fifth chapter presents the results that were returned from the experiments and gives details on

the overall working of the interface.

The last chapter gives some suggestions on how the interface can be extended in different ways. It

also presents suggestions for how a production quality test-bed can be implemented.

3

Chapter 2

2 Theoretical Background

2.1 Overview

This chapter gives an overview of signal processing, signal analysis, audio data and music digital

libraries. It also lays a conceptual basis for discussing the test-bed and other related concepts in

the rest of this thesis.

2.2 Data Mining and Musical Digital Libraries

2.2.1 Musical Digital Libraries

Musical Digital Libraries are a type of Digital Libraries that contain music in different formats. These

include sheet music scores, bibliographic data, metadata, audio files and event based forms, like

MIDI. There are very few collections that are both extensive and public, due to copyright restraints.

One solution is to use music in the public domain or those published under the Creative Commons

License agreement. The other solution, if copyrighted clips are necessary, is to return audio

characteristics back from queries instead of sound clips. If the characteristics were re-combined it

would make a reasonable but very low quality reproduction of the sound clip [Typke,2004]. Over

the last few years copyrighted collections were used less often. One criticism against using music

under Creative Commons Licences are that the songs are less known than their commercial

counterparts and consequently less useful in query by humming tasks.

Most of the digital libraries and repositories available in the past retrieved digital audio records by

querying the repositories by metadata, like composer, song title, performing artists or the

publication date, indexes or text queries.

Currently there are music digital libraries that query a repository on the content audio file itself as is

done in the Medlex/Greentstone project [Bainbridge et al. 2004] and other projects. These projects

allow for queries to be added via text, event based data (like MIDI), sound clips and vocal queries

(humming). Vocal queries are either done by matching it directly against audio input, irrespective of

audio format or compression status.

4

Most tools available for querying datasets use a variation of converting the original audio signal

first to either a symbolic form, a transformed form, or a preprocessed form.

After this matching algorithms can be applied and matching performed. Examples of this can be

found in [Sandler,2001], [Batille & Cano, 2000] and others.

2.2.2 Test-beds

A test-bed is an environment in which different theories can be rigorously tested and experimented

with. Through this process successful tools can be identified and deployed in music digital libraries

and in music content based search engines [UIUC DU Glossary,1998].

A test bed contains raw and modified data. Each song has associated sets of data, each version of

the data having been processed by different transformations. Test beds also contain software

tools, repositories and other tools to access, evaluate and manipulate the data in the test bed. On

occasion test beds also have execution environments con figured for testing.

There has been a lot of talk about creating a big unified test bed across different continents and

research labs, with controlled access and strong security to convince companies to part with their

copyrighted collections of music, like the ones that are available for other information retrieval

disciplines, ego TREC for video data. The IMIRSEL (International Music Information Retrieval

Systems Evaluation Laboratory) and MIREX projects will be discussed in the next chapter.

2.3 The Structure of Digital Audio Data

To get Digital Audio Data from a mechanical sound wave an analog-to-digital converter is used.

The analog-to-digital converter converts sound waves into a digital form which is then stored in a

file. This process in commonly referred to as sampling [Steiglitz,1996].

2.3.1 Sampling

Sampling is the act of converting time from continuous to discrete quantities by taking snapshots

(called samples) of an incoming signal at set intervals and putting the result together to form a

discrete signal. The sample rate (sampling frequency) is the rate at which samples are generated

5

over the course of one sinusoidal wave in one second and is measured in Hertz (Hz).

 To accurately sample a continuous signal, the sampling rate must be at least twice as high as the

value of the highest frequency present in the signal needing to be sampled. Not doing this will

result in aliasing in which a frequency of a sample can be ambiguous.

The common sampling rate used in sound synthesis programs is 40 100Hz, because it caters for

the upper limit of human hearing, but conserves sound fidelity and conserves computer memory.

2.3.2 Quantisation noise and resolution

The higher the resolution of the sound the better the quality of the sound. The resolution depends

on the size used for the word to represent the sample. If the resolution is too high you have what is

called quantisation noise. This adds to the random noise that was already present in the original

analogue signal. The audio data is stored as a sequence of bits approximating the signal.

The simplest way in which audio data is stored is as a sequence of bits, that is not altered in any

way, after analogue to digital conversion. This is commonly referred to as raw audio data. Raw

audio data is stored in a file that specifies other information, like the data format and the

resolution/bit rate of the sampled sound.

The bit rate is the number of bits that are used to describe a single sample. This has an effect on

the the fidelity of the sample, the dynamic range that can be achieved and how accurately the

sound can be reproduced from its analogue form [Sun Microsystems, 2000].

Data formats tell you how to interpret raw sampled audio data. The samples can either be obtained

by reading a file, or samples can be be captured using a microphone input. Information that data

formats can contain are the number of bits in the sample rate, the number of channels, the Frame

rate, the Frame size(in bytes) and the byte order [Sun Microsystems, 2000].

In order for a sound to be captured or played back by any device, the data format of the sound you

are capturing or playing needs to be specified [Sun Microsystems, 2000].

File formats specify the structure of a file and include information on the format of data in the file.

File formats also include descriptive information. File formats differ from one another in their

structure [Sun Microsystems, 2000].

Raw audio formats are typically based on open formats and can almost be universally played by all

6

audio applications irrespective of their operating system. These include the Microsoft's .wav

format, Sun's .au format for UNIX's and Apple's AIFF format. These file formats store mostly

uncompressed PCM-encoded raw audio signals in a single binary file [Reiss & Sandler 2004].

Compressed formats can either be done without loss of data, but there is both a computational and

a size cost involved, or lossy compression where you lose some of the information when encoding

the data. This is important for information retrieval, as encoding distorts the original saved form in

the file. By preprocessing and low frequency sampling, the signal becomes drastically modified and

loss of the stereo image can cause even robust similarity measures to fail [Reiss & Sandler 2004].

Exchange formats and wrappers encapsulate audio data. These wrappers carry custom metadata

attributes and audio data in a variety of formats. These wrappers can also allow annotations to be

associated with resources like the original sound clip via bindings/components.

XML can be used as a structural wrapper for music data, to give additional information about the

sound wave besides the file format, like metadata or information about the program that created

the wave. XML is also a convenient way to describe low level music descriptions with the help of

the MPEG-7 audio standard description tools. These description tools help to describe music and

other multimedia content.

There are two parts to the MPEG-7 audio standard - the first is the descriptors, defining the syntax

and the semantics of each feature together with the description schemes that define the

relationship between components, semantics and syntax. The second is the description definition

language, which ties back to XML since XML is used to textually represent content descriptions

[Zoia, Zhou, Mattavelli, 2001].

2.4 Psychoacoustics, sound perception and music cognition

Music has five different facets that can be distinguished by the brain as making up a unique identity

of a piece of music. The most important factors in listening to music are the timbre, pitch and

duration facets. This is why these facets are also the most commonly used when extracting salient

data from audio recordings.

The timbre facet refers to the feature that allows one to distinguish between two sounds that are

equal in pitch, loudness, and subjective duration. The temporal facet concerns itself with the

duration of musical events. The pitch facet is generally defined as the perceived quality of a sound,

7

which is the number of oscillations per second [Downie 2003]. The Harmonic facet allows the brain

to distinguish between pitches when two or more pitches sound at the same time.

It is possible for both humans and computers to separate and distinguish between these different

facets in monophonic queries. The problem comes in if the song displays polyphony. Polyphony

occurs when multiple monophonic signals are present in one audio channel.

It is easy for the brain and the ear to make value judgements and distinguish between the separate

facets within polyphonic melodies when many sound sources enter the ear. This is not the case

with computers. The implications are that different signal processing operations are necessary in

separating polyphonic signals to allow value judgements to be made in terms of the five facets and

by extension retrieval of musical data from a database based on sound.

2.5 Basic Signal Processing operations

Basic Signal Processing operations are important for extracting relevant characteristics from raw

audio data.

2.5.1 Fundamental Frequency estimation

Fundamental Frequency (F0) estimation is an important extracting conceptually relevant

characteristics from data,like loudness, rhythm and pitch.

Fundamental Frequency is the name given for the perceived pitch of a periodic sound

[Steiglitz,1996]. Fundamental Frequency estimation is the process of analysing an acoustic signal

to estimate the predominant fundamental frequencies within a mix of signals.

For information retrieval this process is important, since it is used in pitch tracking and transcription

for both monophonic and polyphonic audio signals. Fa is also used for separating different "voices"

where the entire signal is mixed in one channel of polyphonic signals.

There are four basic groups of F0 estimation methods; these are Time-domain frequency

estimation, spectral pattern matching, frequency domain periodicity estimation and Auditory

motivated methods [Klapuri,2004].

8

Many Time-domain frequency estimation methods use Autocorrelation Function (ACF) based

algorithms. In autocorrelation the maximum value in ACF is taken as the 1/F0 period. It is used in

polyphonic retrieval which is based on probabilistic time inference methods and other methods that

use pitch as the main determinant for estimating matching methods [Klapuri, 2004].

Spectral interval based pattern matching is based on the periodic magnitude spectrum of harmonic

sounds. It works better for sounds that exhibit inharmonicity, as intervals do not remain constant

but are more stable [Klapuri, 2004].

Auditory motivated methods use human auditory perception as a template for how computer

systems should perform F0 estimation and by extension pitch extraction. For each stage of human

hearing there is a process that simulates the functionality of the ear. A criticism against auditory

models is that it can be computationally expensive, because analysis needs to be carried out using

multiple channel auditory filterbanks [Karjalainen & Tolonen, 1999].

An important issue in fundamental frequency detection is that sometimes one predominant

frequency within a sound wave frame cannot be identified. This causes complications for systems

that do sinusoidal separation automatically.

2.5.2 Event Detection and Windowing

Windowing is a way of segmenting audio data into notes by using event detection. The spikes in an

amplitude envelope is used to detect if a musically relevant event occurred [Steiglitz,1996], for

example, if a note is played by an instrument or sung.

Data files are sometimes windowed into overlapping frames, with each frame representing one

event so that there is only one distinguishable musical event per frame. There are different rules

for segmenting musical data, and it depends on what type of processing is performed on the data

and what the required size of the envelopes is.

2.5.3 Feature extraction

The biggest challenge in feature extraction is to get the most efficient and fault tolerant error

models to take out the effect of human error and other anomalies when extracting features from

9

audio clips and human singing queries.

Originally most matching systems relied only on melodic contour information to compute feature

vectors. One of the first pitch tracking algorithms implemented was pitch extraction by finding the

peak of the autocorrelation function of the signal, using prominent peaks in the signal spectrum to

apply autocorrelation algorithms to it [Haus, Pollastri, 2001]. This popular method was error prone

due to the note segmentation processes. [Zhu & Shasha 2000]. The four other most common

approaches to extracting pitch data for matching was to compare profiles of pitch direction, pitch

contours, pitch-event strings or intervallic contours [Selfridge-Field,1998].

The research was extended by converting sung queries into temporal data. Acoustic information is

converted into relative intervals and used in making feature vectors. [Kosugi et.al. 2000] Another

purely temporal solution is to use a time series database approach, which involved treating music

as a time series. This allows for the use of well developed techniques from time series databases

to index the music for fast similarity queries [Zhu & Shasha 2000]. Most recent features used,

include various combinations of temporal data features and pitch duration pairs [Haus & Pollastri

2001].

2.5.4 Matching

Matching is the comparison of two feature sets against each other to see how similar they are.

After extracting perceptually relevant features from frame segments, distance functions are applied

to relevant information. At the moment, this is the main way of matching temporal, harmonic and

pitch data, or a combinations of these features [Typke, 2004]. There are many methods and

concepts adapted to audio feature matching from the video and text retrieval fields, as well as from

conventional music notation and symbolic data retrieval.

The two main methods for matching are exact matches and transposed matches. In an exact

match, specific pitch information is matched, and is the main matching method used by audio

fingerprinting and other brute force transcription models. In transposed matching, intervalic

information is used to match records against each other and returns more results but less accurate

matches than with exact matching.

There are different types of transposed matching methods associated with different variations and

anomalies that happen in queries. These include: Matching with deletions, repetition identification,

10

overlapping repetition identification, transformed matching, distributed matching, chord recognition,

approximate matching and evolution detection, where the search pattern tracks gradual change of

the feature or feature set that is being matched against [Crawford & lliopolos,1998].

2.5.5 Transcription Models

Transcription is the act of transforming an acoustic signal into a form from which musical

parameters can be extracted. The transcription methodology and methods applied to extracted

data is directly dependent on the original form of the signal and the method that will be used for

matching the data.

There are a wide range of transcription models, explaining how data should be extracted,

transcribed and then matched. These include N-gramed models in which music is transcribed to N-

gramed words according to different formulae. N-gramed models allow text retrieval methods to be

used on musical data. Hidden Markov Models, in which different sets of data is extracted from the

same audio data and then combined to match different records statistically, auditory models and

various brute force methods of matching queries to records in a repository.

2.5.5.1 Set based models

Set based methods are used both for feature extraction of notated and audio data. These methods

use feature extractors to convert raw digital audio files into feature sets that can then be treated in

the same way as sets of notes [Typke, 2004].

Common examples of set based models are N-gram models. N-gram models reduce symbolic

musical material into N-gramed sequences of intervals, which is then indexed and used in inverted

files. [Futrelle & Downie, 2003] It is useful because it narrows the field of potential target records in

an indexing scheme, because of its coarse granularity, since N-grams either match queries exactly

or not at all.

N-grams works in the following way: N-grams are formed from sequences of intervals. A set of N-

grams are then computed for the complete query and for each target by looking at the n pitch

intervals and I0I ratios beginning at each successive note. Similarity is then calculated by counting

the numbers of N-grams in the query that match the N-grams in the target [Dannenberg & Hu,

2004].

11

2.5.5.2 Hidden Markov Models

Hidden Markov Models (HMMs) are statistical predictive models to predict the maximum likelihood

of a note being present in a frame and then matching frames from possible target and query

records. Different features are extracted from each frame and can be used to create training sets.

These can include Mell Spaced Frequency cepstral coefficients(which convert multiplicative to

additive signals), energy measures and first and second derivatives of the frame that is being

investigated [Shih et AI.,2003].

Then a selection of features are chosen from the multiple features extracted from the segmented

note parts, which would best represent the specific HMMs [Shih et aI. ,2003].

After the features have been chosen each note is modelled as a HMM. A duration model is then

added to account for the differences in the different note lengths. After this the training process

starts. First you take a rough estimate of what the note is and then you must decide what the

maximum likelihood is for the note, to improve the accuracy of the model. Then you have the

recognition process where you encode the note and label its duration. After this the maximum

likelihood of a note being the correct note is chosen to represent the note. [Shih et al.,2003]

2.5.5.3 Audio Fingerprinting

Audio fingerprinting is the process of using compact signatures derived from perceptually relevant

features to match extracted features from a query against similar stored target information in the

database [Cano et al. , 2005].

In Audio fingerprinting, fingerprints, are preprocessed to extract sequences of bits of a fixed length

described by a feature extractor. [Typke, 2004].

These audio fingerprints are then stored in a database index, along with pointers to the places in

the recordings where they occur. The database itself typically consists of inverted lists where a list

is held of all audio files whose feature vector contains the corresponding fingerprint. This model

differs from the other models because these features do not have to have anything to do with

human perception of music on the recording [Typke, 2004]. This makes it fault tolerant to many

factors like background noise and bad singers, that other models have problems with.

12

2.5.5.4 Self-Organising Maps

Self-Organising Maps are artificial neural network algorithms that are used to cluster similar pieces

of music together and classify them [Typke, 2004]. The clusters are ordered in a rectangular two

dimensional grid. Information about the clusters is stored within the self organising map neural

network as plain ASCII files. Audio files are stored as their corresponding feature vectors. Matching

is performed by the network in a nearest neighbour manner [Typke, 2004].

2.6 Summary

In this chapter we reviewed some fundamental concepts that will be used further in the project. We

aimed to create a conceptual space from which to view the project in terms of where my project is

positioned and how it fits in within the field of information retrieval. This is why a broad overview of

storage structures for digital audio data like repositories and musical digital libraries were given.

We then moved on to discuss perceptually relevant parts of music that are necessary factors for

formulating queries for audio databases. After this we discussed the fundamentals of digital audio

data and how sampling, audio file formats and audio formats relate to one another. We then moved

on to give summaries of different processing techniques and feature extraction methods that are

used in extraction, matching and retrieval.

13

Chapter 3

3 Frameworks and Toolkits

3.1 Overview

This Chapter surveys frameworks used in the design of content based audio query systems,

projects directly related to music information retrieval and external libraries providing functionality

to certain frameworks.

3.2 Information Retrieval Frameworks

3.2.1 CLAM

CLAM is an object orientated music processing framework developed by Universitat Pompeu

Fabra in Spain. CLAM includes components for tasks for managing audio and MIDI devices, signal

processing classes and embedding and integrating visualisations from multi platform third party

graphical tool kits [Amatriain & Arumi.2005].

The system is organised as processing objects deployed as an interconnected network as can be

seen on figure 3.1. Each processing object is able to access processing data tokens and then

modify them according to the algorithm that is implemented by the particular processing object.

Processing composites are created when different processing objects are interconnected as a

network. Flow control schedules guides how these different processing objects, composites and

sometimes whole networks interact with each other in the order specified in the flow control

schedule. Flow control schedules are executed at runtime [Amatriain, 2004].

14

Figure 3.1: Image of a CLAM flow control schedule

There are processing classes for handling both asynchronous data, in which data is fed into the

processing class via an open port, and continuous data, where data is from released from controls

whenever an event is triggered.

One of CLAM's big strengths is that it contains many complex audio processing algorithms

including some for spectral modelling and transformations, feature extraction and classification. It

also is platform independent, and can compile on UNIX, MacOS -X and Microsoft Windows

platforms.

Although CLAM is object orientated, it exists within the broad CLAM framework. The implications

are that processing objects can not operate independently outside the CLAM framework, because

objects within the framework are incompatible with any other processing objects from other

frameworks, even if the data share the same file format and programming language.

Individual core objects have many dependencies on other objects within the framework. There are

also many dependencies on third party libraries. This necessitates the use of an external build tool,

15

because of the complicated connections between the different objects. This makes it difficult to

compile small objects, because of so many other objects have to be included in the composite

object.

There is also a visualisation module available in CLAM version 0.7.0 for the Microsoft Windows

operating system. Its two uses are to graphically inspect objects and to aid debugging. It was

designed so that it can be easily decoupled from the rest of the CLAM framework. The visualisation

module infrastructure can be used with other visualisation toolkits like FLTK. [Amatriain,2004]

There is no support for importing modules from other programming languages and different

frameworks. [Amatriain,2004] [Amatriain & Arumi,2005].

3.2.2 M2K

M2K is a project initiated by the MTG Group at Indiana University initially intended as an extension

and add-in for the D2K Data Mining framework. This is one of the biggest collaborative initiatives

between different working groups involved in music information retrieval with various individuals

and groups contributing different modules written in Java to extend the framework. [IMIRSEL,2004]

[IMIRSEL,2005]

Another purpose of this initiative was to create a framework for MIREX, which is a competition in

which different research groups are given the opportunity to test their systems using a set of

standardised test queries and results.

D2K itself provides an integrated framework and includes tools for browsing and configuring M2K

modules, testing M2K modules and viewing generated visualisations. The system provides an

intuitive interface to see and manipulate graphical high level abstractions of modules, with modules

changing position by being manipulated through drag and drop functionality.

Both D2K and M2K as well as the core modules are written in Java, making the system platform

independent. To build new modules or to configure modules you intend using, a number of

parameters must be set for each, including: the command it will run and any parameters that must

be passed to it, a working directory to run the command in, either a manually set output filename or

an extension to add to the input filename to produce the output filename, and an algorithm calling

format String, which will be used to produce the command that will be run on the command line.

Developing M2K applications in D2K then involves assembling processing modules into an

itinerary characterising the data flow between modules. Itineraries can then be run as stand-alone

16

applications on clusters of machines, but you have to write all the itineraries in Java.

[IMIRSEL,2004] [IMIRSEL,2005]

Once an itinerary has been developed, it can be used as a module in any other itinerary, allowing

for applications of arbitrary complexity.

There are two types of external integration modules available to import other languages and

binaries into the D2K framework. One of the external integration modules is specifically designed

to import experiments from Matlab. A general purpose version will run the commands and output

the results to the D2K console. The Matlab version has the ability to direct the output to the Matlab

console window.

One of the potential problems of the D2K framework, is that it is proprietary software, although it is

available freely for academic use. M2K is not totally dependent on the D2K data mining framework.

An alternative to using D2K with M2K is using an open source framework called Celerity. Celerity is

also written in Java. The only difference is that there is no visualisation module in the Celerity set-

up.

This framework would benefit by having an independent operational module, that would almost

completely automate the process of annotating and wrapping pre-existing modules from other

frameworks for import it into M2K. [IMIRSEL,2004] [IMIRSEL,2005]

Figure 3.2: Image of M2K workspace with flow control network

17

3.2.3 MARSYAS

MARSYAS is a framework that allows expert users to build sound analysis and synthesis software.

Naive users can interact with the system with high level scripts and graphical user interfaces, while

expert users would interact with the framework directly and be able to create new native types and

classes by writing and modifying code [Tzanetakis,2001].

Basic modules of the framework are called mar systems and include functionality to implement

basic data processing tasks. Mar systems are combined to form data flow networks that are called

composites. These composites can be modified and controlled in real time.

The conventions that each mar system must follow are: that each Mar system's main method must

support the method in which two arguments (both arrays of floating point numbers) are used to

represent slices, each mar system must support the process method that handles the data flow

and the update method should handle the control messages. The consequence is that new mar

systems are difficult to build from scratch, so one has to extend already existing systems to get a

new mar system.

The biggest distraction in interacting with the framework is that individual mar systems have many

interdependencies on other mar systems. This makes it difficult to produce small independent mar

systems. The same problem is present in the CLAM framework.

This framework is biased towards GNU/Linux distributions, with many features missing from the

Windows distribution present in the other one. There is also no native visualisation environment to

use with MARSYAS. [Tzanetakis,2001]

MARSYAS is largely independent of external libraries as opposed to CLAM which is very reliant on

them. MARSYAS outputs results in .aiff format which is used by the Weka machine learning tool

kit. Some of the MARSYAS code was adapted to be used in the M2K toolkit.

3.2.4 MUSART

MUSART (Music Analysis and Retrieval Technology) is a fully operational audio content based

retrieval system. In addition to the basic repository of collections of queries, analysis software and

search tools are also included. What makes this project interesting is that it allows different

approaches of extraction to be directly compared by allowing a variety of analysis subsystems to

18

be integrated within a single architecture, allowing objective comparison between different

approaches.

The MUSART system includes music retrieval techniques like - Hidden Markov Modelling, fixed

frame melodic contour matching with dynamic time warping and a phonetic streams [Birmigham

et.al.,2003].

The records are preprocessed using a collection of tools to build abstract representations of the

music The extracted information is then translated to multiple representations. Queries are also

translated, and a search engine is used to search the database. It is designed in this way so that

various modules and representations can work together, in parallel, or in sequence, to achieve

more refined searches.

MUSART uses sung queries from three different groups as target queries. From these queries

MUSART automatically builds a thematic index of the pieces in its database. This reduces the

amount of data in the source database by only including the themes of the piece of music.

Disadvantages of this strategy is that the target queries could match parts of the database that

were already excluded by the preprocessing stage [Birmigham et.al.,2003].

The output from the tests include statistical information about the search results. There are

different separate databases of target queries, source songs as well as intermediate

representations. There is also a separate file for each query that lists all the correct targets. Tests

of the search systems are also in a results directory containing text output summary for future

analysis.

3.3 Music processing languages

Music composition languages are mostly aimed at music synthesis as opposed to analysis, but it is

included here because in the bigger context of broad frameworks these play a big role in the

creation of music systems. They sometimes provide processing models for signal processing.

3.3.1 Matab

Matlab is a high level language for technical computing and provides an interactive environment for

19

the development of algorithms, data visualisation, data analysis, numeric computation and building

graphical user interfaces [Mathworks, no date].

The main workspace layout in Matlab has various elements. There is the Matlab Editor which

provides standard text/code editing and debugging features, the M-Lint Code Checker that

Analyses code and recommends changes to improve its performance and maintainability and the

Matlab Profiler that records the time spent executing each line of code.

The real advantage of using the Matlab environment for music processing applications is that there

are several add-on tool boxes available to Matlab users to extend the environment for music and

signal processing. These include the Bayesian tool box that includes many conditional probability

distributions and various probability-based algorithms, the auditory toolbox, the netlab toolbox and

the SOM (Self Organising Map) toolbox for Matlab.

Functions exist to integrate Matlab based algorithms with external applications and languages,

such as C, C++, Fortran, Java, COM, and Microsoft Excel. Matlab code can also be called from C

and Fortran using the Matlab engine library. Other frameworks also make an effort to

accommodate Matlab users by allowing Matlab to be used within them.

The big problem with Matlab is that the framework is proprietary, which means that add-ins to the

language cannot be redistributed. An example of the Matlab workspace can be seen in Figure 3.3.

Figure 3.3: Image of the MATLAB works pace

20

3.3.2 Octave

Octave is a high level interactive language. It provides a framework that is comparable with Matlab

and caters for numerical modelling and graphic visualisation of musical data. Matlab programs can

be ported into Octave.

Octave can do arithmetic for real and complex scalars and matrices, solve sets of non-linear

algebraic equations, integrate functions over finite and infinite intervals, and integrate systems of

ordinary differential and differential-algebraic equations [Eaton,1998].

Octave uses the GNU readline library to handle the reading and editing of input. Two and three

dimensional plotting is fully supported using gnuplot. The underlying numerical computations are

done using standard Fortran packaged in a library of C++ classes. If possible, the Fortran

subroutines are compiled with the system's Fortran compiler, and called directly from the C++

functions. For this reason octave is not that platform independent and operates only on UNIX like

systems and requires the GNU C++ compiler. An example of the Octave environment can be seen

in Figure 3.4.

Figure 3.4: Image of the Octave environment

21

3.3.3 Labwindows

Labwindows is a C programming and development environment which mostly deals with

developing measurement applications. It includes a large set of run-time libraries for instrument

control, data acquisition and analysis. It includes tool kits for digital signal processing, but also UI

design, data analysis and visualisation, built-in instrumentation libraries (GP IS, DAQ, analysis)

and Instrumentation-based user interface controls (graphs, knobs) [National lnstruments

Corporation,2006].

 An example of the Labwindows environment can be seen in Figure 3.5.

Figure 3.5: Image of the Labwindows environment

3.3.4 Nyquist

Nyquist is an open-source language environment for sound analysis and synthesis. It is

implemented in C and C++ and runs on Win32, OS X and Linux.

Nyquist offers a powerful and efficient functional programming model for signal processing, and is

particularly good at working with large amounts of data because it automatically streams data

rather than allocating large arrays in primary memory [Lamere,2005]. In addition to audio

processing, Nyquist offers a full Lisp interpreter, with which you can create your own custom signal

processing classes using Xlisp, an object orientated subset of the LISP language.

22

3.4 External Libraries

External libraries are important because provide key functionality for frameworks to handle music

signal processing, machine learning and visualisation, so that there is no need to replicate

processes and classes within the framework that have been implemented very efficiently

somewhere else or do not form part of its core functional classes.

Interaction is uniform with classes that look like any other class in the framework, the interaction

details with the actual library being taken care of by the framework. But you also have the problem

of having different library distributions for different platforms. To distribute a program written in the

framework, you have to include all the libraries or DLL's that are used indirectly. These are mostly

standard and everyone uses them.

There are many varied libraries that offer support for frameworks that are written in Matlab and

C++. There are a lot less libraries available for languages like JAVA. Many of the libraries that are

available, have support is skewed towards Unix/Linux platforms.

Many of the frameworks have optional or core dependencies on other projects and external

libraries that are necessary for the frameworks to function.

3.4.1 Machine learning libraries

Machine learning libraries range from ones that train different algorithms to neural optimisation

development, to ones that solve various regression and classification problems. The libraries also

support many types of conditional probability distributions, decision nodes, utility nodes, chance

nodes and many different inference algorithms, pattern recognition and implementations of several

popular auditory models [Lamere, 2005].

3.4.2 Music processing libraries

The core function of music processing libraries provide methods for controlling 1/0 of audio data

and enable basic MIDI input and output classes. Other functions are to simplify interaction with

computer audio hardware and to allow sound samples to be accessed though standard library

interfaces.

23

3.4.3 Visualisation

There are three uses for visualisation toolkit libraries in frameworks; 1) To provide functionality for

plotting graphs and representing other numerical data 2) To create custom interfaces and provide

tools from within frameworks to create user interfaces for applications and 3) To create

visualisation environments for the framework itself while allowing users to interact with the

underlying classes at a higher abstraction level.

Examples of these are the qt library that provides a complete application development framework

for creating applications using C++ , and the MFC library that provides a collection of classes that

can be used in building application programs. The wxWidgets class library allows the compilation

of graphical C++ programs on a range of different platforms, by defining a common API across

platforms that uses the native graphical user interfaces on each platform [Lamere,2005].

3.5 Other Tools

3.5.1 Sphinx-3

Sphinx-3 is a speech recognition system that is used by MlR researchers to calculate mell spaced

cepstral coefficients. The S3 decoder is based in the Viterbi search algorithm. Its input is pre-

recorded audio specifically pre-recoded speech. This is done by the front end of the module. Only

the acoustic model is used by MlR researchers [Seltzer, 2002][Ravishankar,2004].

3.5.2 WEKA

WEKA is a machine learning system written in Java, initiated by the University of Waikato in New

Zealand and stands for Waikato Environment for Knowledge Analysis. It provides implementations

of learning algorithms and includes tools for transforming datasets. The main functions of the

WEKA environment are to feed datasets into a learning scheme and to analyse the resulting

classifiers and to extract information from the resultant data. It also allows users to access the

libraries from their own Java programs in order to write their own machine learning algorithms.

Several learning schemes can also be applied and their performance compared. All the learning

schemes have the same command-line interface and they are all measured by a common

24

evaluation module [Witten & Frank, 2000].

WEKA is a non real time system and only takes text input and only accepts CSV and .arff data

files. WEKA modules has to be written in Java or use the data structures and transforms/filters

available in WEKA [Witten & Frank, 2000].

3.6 Summary

This chapter gave an overview of different tools and frameworks that create content based MlR

systems. This chapter documents a few attempts at the creation of test-beds and testing

architectures for both event based (e.g. MIDI) and audio content based MlR to show in which ways

interoperability and direct testing has been achieved. As this is the foundations from which the

interface was built. This chapter also gives an overview of tools, libraries and music processing

languages available so that the complexities of testing different components created with different

tools can be fully appreciated.

25

Chapter 4

4 The MIRMaid Interface

4.1 Overview

This section presents an interface for a test-bed called MIRMaid, an acronym for Music Information

Retrieval Modular aid. The interface allows different combinations of parameters to be combined

and tested against each other to determine an optimal set of parameters for different problem

domains in content based audio retrieval systems.

The repository of the test-bed contains different versions of each audio file, which are processed

by different transformations. Different transformations are applied to the data through independent

modules that are imported form other music processing, data mining or signal processing

frameworks. These transformations can then be combined with the help of the interface into

different combinations, in which one's performance can be directly compared against another.

4.2 Structure

4.2.1 Test-bed Structure

The test-bed consists of three different elements: the repository that houses two collections of

audio data files, each collection containing different versions of the same files that have been

processed by different transformations; the processing transformation modules that transform

audio records; and the interface, which allows users to link different modules in any order and

execute queries and query comparisons.

4.2.2 The repositories

There are two kinds of audio data objects that can be distinguished between in the repository: The

first is the audio/sound clip, which is the original piece of music that has not undergone any type of

26

transformation; and feature vector, which is a sound clip that has undergone one or more

transformations.

Each data object, regardless of whether it is a feature vector or a sound clip, would be

encapsulated in an interchange format. The metadata will provide both high and low level data on

file type, file format and other important information like behaviour and content. This would be done

to make sure that all data objects' information can be easily and consistently accessed and to

make it easier for data to be incorporated into larger test-beds.

Each sound clip in the repository will have a set of corresponding feature vectors. Each feature

vector would have undergone processing by a specific transformation module or module network.

Each time a new module is added by the user to the test-bed, a new feature vector set is created

for each collection in the repository.

This speeds up the comparison process, as it minimises the execution time by decreasing the

number of feature vectors or sound clips needing transformation at each stage of the process.

4.2.3 Modules

Modules represent the smallest computational units in the test-bed. They are little programs that

represent transformations of the data in the repository.

All modules are in the form of binary programs, and specify the format of the data they want

imported and the format that the data is in after being processed. They are created by external

frameworks in any language and packaged in binary format, before they are imported into the test-

bed. The import process relies on the user to give correct information about the input and output

format of the modules they are importing into the test-bed. There are two big requirements for the

modules that could be imported into the test-bed: the input and output formats for the module have

to be specified and modules have to be able to be executed on their own and not be dependent on

other external libraries or classes.

The modules can either be executed alone or they could be linked as a network of objects, that can

be called module composites. Modules can be ordered in the network in any order provided that

the input format of the current module corresponds with the output format of the previous module.

Both modules and module composites will have corresponding feature vectors.

27

The repository and the modules will further be expanded on in the Future Work Chapter. The rest
of this chapter and the next two chapters will be dedicated to the discussion on the development of
the interface.

4.3 The Interface

4.3.1 Design Goals

We set out three primary design goals for the interface.

The interface had to be simple enough to be used by novice users who only have basic knowledge

of music but who are computer proficient. Even though this group of users has no prior exposure to

MlR frameworks and test-beds, making the interface simple enough to be used by novice users

would ensure that the interface will be intuitive enough for expert and specialist users.

The interface had to be usable. If the interface is usable it would ensure that the interface is

practically applicable to MlR needs and could actually be used in real world situations if the rest of

the test-bed was implemented. It should include functionality that complements MlR analysis tools

and test-beds that expert and specialist use.

The interface had to be adequate. It should be designed so that it would perform adequately in

common tasks associated with using the test-bed.

28

4.3.2 Interface Elements

The interface consists of different interface elements. Each element correlates to a discrete task

executed by the user to execute a query.

4.3.2.1 The "Choose a repository" component

Figure 4. 1 : Image of the "Choose a repository" element within the interface

In the "Choose a repository" component (Figure 4.1). potential users can choose a collection of

music from the repository or specify a custom repository on the system or network which they

would like to use in a query or comparison.

29

4.3.2.2 The "Select Transformations" component

Figure 4.2 : Image of the choosing transformations element within the interface

The choose transformations component (Figure 4.2) allows transformation modules to be selected,

combined and ordered into module networks, that are then applied to the chosen collections in the

repository. This component allows transformations to be ordered by either pressing the "Move Up"

or "Move Down" buttons in a desired order.

This component also has to return error messages. If one of the modules selected is not

compatible with the rest of the modules chosen, in the desired order, this interface component

should show an error message saying that the selected module network combination was unable

to be executed.

If there are desired transformations that are not present in the list they can be added through the

transformation window, by pressing the "Add" button below the "List of Available transformations"

list.

30

4.3.2.3 Adding Transformations Frame

Figure 4.3: Image of the adding transformation element

New transformations are added through the transformations form (Figure 4.3) after the "Load

Transformations" button is pressed on the interface. This form should support standard input and

output formats used by other frameworks. If there is no suitable format users will be able to specify

their own custom format.

With some output and input formats there are many complicated parameters that need to be

specified. Many novice users would only know the basic parameters of the format and would have

to guess the rest so that they can continue with the query. This problem was solved by using

default values for users who do not specify any extra information even if it is required as described

in [Tidwell, 2005]. This functionality was not necessary for simpler and better defined formats.

There is a fine equilibrium in the trade-off between requiring too much information from the user

and getting enough information so that processing modules can be correctly executed. Requiring

too much information induces users to guess the parameters that they do not know to continue

with thequery, causing transcription errors. Requiring too little information restricts the flexibility of

the modules. Some implications are that if there are any errors the information specified by users

31

the one format may be seen as two different formats. There would also be incorrect conversions

that may end up corrupting many of the correct annotations and queries that use the corrupt

annotations. There would be false incompatibility between transformations that will be processed

consecutively. Therefore drop-down boxes and buttons were used in order to add new file formats.

4.3.2.4 Use case Control component

Figure 4.4 : Image of the control form

The use case control form (Figure 4.4) allows the user to navigate back to areas that they have

already visited but need to visit again, in order to add multiple repositories or groups of

transformations to preform comparative queries. All queries pass through this component after

users have selected transformations. The component is activated through the "Select

Transformation" button on the interface. The simplest way to implement this component was to use

radio buttons on a pop-up screen.

32

4.3.2.5 Sound loading/recording component

Figure 4.5: lmage of the sound recording element within the interface

This sound loading element (Figure 4.5) allows users to either add a new query by humming into a

microphone or choose a sound clip from a sound clip collection, in order to do a known item spot

query on a repository after user selected transformations has been applied to the data in the

repository. This component also allows a query to be saved and later loaded from memory, so that

the query does not need to be entered every time you want to repeat the same query with other

parameters or a different repository.

33

4.3.2.6 Matching/Evaluate/Execute the query

Figure 4.6 : Image of the matching element within the interface

The "matching" element (Figure 4.6) essentially consists of one button. The button causes either a

comparative query or a known item query to be executed.

Update and Status areas give feedback on where users are in the query process and what

parameters they have chosen. Update areas also provide prompts for the current task they are

doing.

4.3.2.7 Presentation of Results

Results are presented to the user in two different ways. The results are either returned as a set of

collated statistics representing the comparison that was required by the query, or a set of records

in a graph returned by a spot query.

The two different forms that present the data have slightly different formats for presenting the data

in. The first form (Figure 4.6) presents the results from spot queries as a ranked list in order of

relevance. This table also allow you to press buttons so that you can start and stop playback of

34

sound clips.

Figure 4.6: Image of the results screen.

The second frame (Figure 4.7) presents the results from the comparative query back as a graphic,

on the performance of the compared variables of the query. This element also included a button

allowing users to start a new analysis.

Figure 4.7: Image of the second results screen

35

4.3.3 Interface development

We used an evolutionary prototype approach when we built the interface. This consisted of a

combined analysis and requirements specification stage, after which we implemented a basic

prototype interface and held informal interviews in which the first iteration of the interface was

evaluated and modified. After experimentation the interface was modified again to reflect the

changes and feedback from the experimentation.

The initial analysis stage and requirements specification stage took the form of an extensive review

to figure out where exactly the interface would positioned for the test-bed. We did informal

interviews with users who had expert knowledge of music, signal processing and computers, but

were not involved in music information retrieval. These informal interviews were to verify the

feasibility of the interface.

4.3.4 Strategic positioning of the framework

One gap we identified in other test-beds and were that there were little support for inclusion of

small specialised repositories, like ones containing African traditional music. The other problem we

identified was that better tools were needed to combine modules built in different frameworks, so

we decided to position my interface in a way that it would satisfy the needs of users who want to

import pre-built modules quickly and easily and test-bed users who wish to perform an experiment.

Most of the lower level details, like formatting data or tuning modules to interact with each other are

hidden from the users unless they specifically request control over lower level details.

4.3.5 Interviews

We conducted both individual and group interviews. All the interviews were done with the help of

an initial interface prototype (Figure 4.8). This was done to facilitate discussion on the interface and

to give a concrete visual representation of the prospective system for both expert and novice

users. This interface was basic and only contained broad elements and vague representations of

the elements that would eventually be represented in the interface.

The reasons for the interviews was to determine the best placement of the various interface

elements and get a perspective on what users that closely resemble future users of the interface

wanted in order for them to perform queries using the interface.

36

Figure 4.8: Image of the main screen of the first interface

The group interviews were in the form of an informal discussion in which the scope of the study

was first explained, what exactly my interface planned to do and different aspects of the proposed

interface. Then a walk-through of the interface was done and we discussed attributes like

navigation, layout and browsing.

Four subjects were interviewed. They were all involved in research in Computer Music and had

expert knowledge of music, and were very proficient in using computers for music sequencing and

analysis. Two of the subjects we interviewed had expert knowledge in audio retrieval methods and

the other two subjects understood all the principles involved in audio retrieval at a more general

level.

There was a clear split in opinion at the end of the discussion between the interview subjects in

which direction they saw the interface developing. The non-specialist expert users (users with only

a basic understanding of the tasks involved in audio-based retrieval, but who are experts in terms

of signal processing and other music related disciplines) argued for the process to be as simple as

possible and shielding them from the underlying complexity of the modules.

The specialist expert user required more transparency of the system both in terms of information

37

on the modules that have already been imported into the system and customising modules in the

framework itself. The opinion expressed by the expert user was also that the interface would

benefit from more transparent interaction within the individual modules.

One of the expert users suggested that visualisation could be added for presenting the results on

the results form by using Matlab visualisation tools. A gap was also identified in processing and

returning results from queries.

The interface walk-through showed up many problems, things to watch out for and future

improvements to the interface.

The first possible improvement highlighted by the walk-through was program flow. There was no

clear way in which users knew what navigation path to follow to execute a query and in which

sequence they should perform the tasks.

The second possible improvement highlighted was the need for proper error trapping. There were

instances during the walk-through where users could change key variables and processes midway

through specifying query parameters that could impact directly on the results returned from the

query.

The third possible improvement highlighted was decreasing the number of hops in navigation

where users had to go backwards and forwards and even hop over some elements to execute a

query.

The user interface also had way too much white space, with all the areas not clearly enough

defined and without any clear grouping of elements.

38

Figure 4.9: Picture of the main screen of the interface after the interview

4.3.6 Improvements on the interface

After the interviews were completed the interface was modified as is shown in Figure 4.9.

One of the big changes to the interface was that order was created to the navigation by adding

numbers to the different panels of the interface. This was to allow users to follow stepwise to

execute a query.

Elements were reordered in the interface to improve the program flow so that each element would

flow naturally and logically into another with the least number of steps to complete an average

query using the interface.

An extra layer of guidance was added to the query process though progressive enabling. This

ensured that users would not be able to corrupt the query process or the parameters that were

already specified.

The space on the interface was more effectively distributed by adding more elements and options

for users. Different areas of the interface were also more clearly defined by creating borders

around separate interface elements to create a cohesive grouping of elements representing one

39

distinct step in the query process.

Predictive defaults were placed in editable slots to make it easier for potential users of the interface

to complete the most commonly requested queries.

4.4 Description of development tools used.

Development tools used were Visual Studio. NET run on a computer with Windows XP, the Eclipse

and Netbeans IDE's using the Java SDK 1. 4 platform.

4.5 Summary

This chapter started of explaining different components that make up the interface and how they

relate to each other. After that there was a discussion on how the interface was developed and the

interview process that helped improve the layout and structure of the interface.

The design of the evaluation system for the interface will be discussed in the next chapter.

40

Chapter 5

5 Experiment and Questionnaire Design

5.1 Overview

This chapter explains the experiment and questionnaire design for the user experiments to

evaluate the interface. The evaluation strategy chosen for testing the interface was a combination

of a user experiments, a questionnaire and user observation to get an overall assessment of

aspects of the interface design.

The evaluation was aimed at answering two questions: whether the interfaces is user friendly and if

the interface is intuitive. This was done primarily through a questionnaire, which was filled out after

the experiment was completed. Test subjects were monitored throughout the experiment to see if

they have any problems or had any questions either on the tasks or on aspects of the interface.

5.2 Population Selection

The population sample included both novice users and expert users. The novice users interacted

with the interface for the first time while some of the expert users have already been exposed to

the interface in previous iterations of its design.

A big concern in the constitution of the overall sample population was that even amongst expert

users there are only a few people who would normally find the interface relevant to the activities

they are involved in. We aimed to get as many expert users as possible, but that was a challenge

since not many people involved in computer music were able to take part in the experiment. We

relaxed the requirements for classification of expert users since we were never going to get a true

reflection of the population. We decided to supplement the few expert users with a lot more novice

users, since the interface was as simple as possible to cater to the needs of novice users.

The experts group can again be subdivided into two groups - a group who are not involved in the

41

task of musical data mining/information retrieval itself and a group whose expertise lies more in

music creation and musicology. The main requirement for classification as an expert user is that

the subjects have to have expert knowledge of computer music or at least music.

The requirements for classification in the novice user group was less rigid. The minimum

requirement for subjects were that they had to be computer literate. The same tasks were set for

expert and novice users.

5.3 Experiment Design

The experiment tested how effective the layout and overall logical structure of the interface was.

The experiment was to confirm that all of the sample set of users were able to perform the task that

they were set successfully.

Each experiment was done once by all the participants in the interval of three days, in which users

were allocated a slot in which they performed the experiment and filled out the questionnaire.

Volunteers signed up for a slot beforehand. For the duration of the experiment a room was

allocated specifically for user tests. Two days were allocated to expert users and three days

allocated to novice users. Testers did the experiment in individual slots. Subjects were not allowed

to observe the previous tester doing the task, and a ten minute interval between subjects was

arranged.

The order of the experiment was as follows: 1) The consent form was signed. 2) the user did the

experiment, 3) the user completed the questionnaire, and 4) users were allowed to give comments

on both the questionnaire and the interface in general. The assumption about the population

performing the experiments were that they would have basic computer proficiency. This was a

valid assumption since the population consisted exclusively of Music Technology and Computer

Science masters students.

5.4 The Tasks

The tasks were selected in a way that would make the most sense to novice users of the interface.

Users were given broad guidelines on how to perform the tasks and encouraged to ask questions if

they had any problem with the tasks they would perform. Copies of the tasks that were given to the

42

users can be found in Appendix A2 and Appendix A3. Below a summary of the tasks are given.

In the first task the participant was asked to query one test-bed by using a sound clip from Vivaldi's

Four Seasons, located in a folder on the local disk drive of the computer the experiment was

performed on, for finding the list of records in the test-bed that satisfied the parameters that had

been specified beforehand.

In the second task the participant was asked to execute a query that returns a graph that shows

the overall performance of selected parameters in matching given a particular music collection.

5.5 Arranging outcomes from the interface

Despite the fact that the interface was only an prototype, we needed to get a more realistic idea

how real users would react to the interface. We arranged the outcomes from the interface using a

modified version of the Wizard of Oz technique [Web source, 2006] where humans simulate the

response by a system and the users are unaware that the system is not real. Typically the Wizard

observes the actions of the user from another room and manipulates the responses to user actions

in real time.

The user experiments were arranged beforehand to reflect how the system would respond to

actions that are performed through the interface. Each task modified so that it would respond in a

realistic manner to the actions initiated by the user.

5.6 Questionnaire Design

The purpose of the questionnaire was to find out if the interface is successful in being both user

friendly and useful. The information we extracted from the questionnaire was: the profile of the test

subject, the classification of users (as an expert user or as a novice user); information on how

users rate the task flow of the interfaces, their overall impressions of the interfaces and if there

were specific areas in the interfaces that were ambiguous or if they at any point had a problem

performing the tasks.

The questionnaire was administered after users completed the tasks set for them. One of the

factors considered when deciding on the length of the questionnaire was the cumulative time it

43

would take the users to perform both tasks.

The questionnaire had two parts: the first part asked profile questions to test subjects and the

second part dealt with interface and task related statements.

5.6.1 Subject profile

The reasoning behind the subject profile questions was to find out how proficient experimenters

were with using computers and with music manipulation software. We avoided asking these types

of questions directly, since people either tend to over estimate or underestimate their experience

levels.

From the questions we did ask we were able to group subjects into different categories. The first

group were expert users who have both knowledge of music processing and a high proficiency in

using computers and music manipulation software. The second group were novice users who

either have basic or no knowledge of music. The third group consisted of users who were

musicians/musicologists, without a high proficiency in using computers.

5.6.2 Interface and task based questions

The main purpose of these questions was to find out if the overall flow of the workspace was

intuitive, if there were any elements overlooked in the previous iterations of the interface design

and if the interface performed effectively in the tasks set for the experimenters.

We tried to limit ourselves to a maximum of ten questions, because near the end of a long

questionnaire, fatigue sets in and people start replying to questions at random or leaving spaces

blank and ignore the more informative open ended questions at the end of the questionnaire. This

part of the questionnaire was structured as a set of statements in which experiments were asked to

judge statements on a non-numeric scale of five different alternative ratings ranging from positive

to negative.

The first set of questions was concerned with the task itself, because task recall degrades as soon

as their focus shifts to something else. On interface based questions experimenters are always

able to go back to the interface to help them answering questions. The main objective of the first

44

set of questions was to asses the perceived difficulty of the tasks to the user. From these

responses it is also possible to get feedback on issues in the interface that was not directly asked.

The second set of questions dealt with interface related questions and focused mostly on usability.

A copy of the questionnaire can be found in the appendices as Appendix A4.

5.7 Justification for not using time measurement as an evaluation tool

Task based and subjective measurement of the interface allows for sufficient measurement of the

interface. When you get to a more specific level time based evaluation will make more sense.

Measuring time on a prototype instead of an operational production system would ignore time

based variables like, loading time, processor speed and program execution speed.

5.8 User observation

Only one user performed the experiments in one session. This allowed easy observation of test

subjects to: 1) help whenever there was a problem; 2) observe the order in which experimenters

executed the steps of each task and 3) control any critical situations that might have impacted on

the execution of the experiment.

The observational technique that was used was requiring users to think - aloud, unless it interfered

with their ability to do the experiments. This was one of the main reasons why the tasks were not

timed.

After the questionnaire was completed there was a short post-task walk through if the experimenter

did not think aloud while performing the tasks, to discuss alternative task executions that were not

pursued by the user and reflect back on the actions in a more robust and meaningful way than

would be possible through the questionnaire.

45

5.9 Confounding variables

A small pilot study was done ahead of the main user experiments to determine any obvious

usability or technical problems to reduce confounding factors on the experiments.

The pilot study was executed on a mobile computer without a mouse attached. The absence of a

mouse had a big impact on the time it took to complete the user experiments. As a result of this

information, a mouse was added to the computer settup for the experiments as this would have

been a confounding factor in perceived difficulty when dealing with the interface even when timing

the execution of the experiments was not an issue.

The other confounding factor that had an impact on execution time was excessive background

noise. This was controlled by isolating users from other people by doing the experiments

individually in a closed room.

5.10 Summary

This chapter dealt with how the user experiment was set up. Firstly the population selection was

discussed and how it will influence experiment design. Then the design of the experiments were

explained and purpose behind them. Afterwards the questionnaire was discussed and the reasons

behind some of the questions in the questionnaire. Lastly confounding variables were discussed

that might have had an impact on the study.

46

Chapter 6

6 Data Analysis and Results of the Experiment

6.1 Overview

This chapter presents and analyses the results from the first set of user experiments of the

MIRMAid interface, whose set-up was explained in the preceding chapter.

6.2 Sample population analysis

Figure 6.1: Population Composition

Figure 6.1 shows the population composition of all the test subjects in the user experiments. There

were two groups of users that took part in the user experiments. The first group were expert users

from the Music Technology Masters students at Stellenbosch University. The second group were

Masters students in the Computer Science department at UCT.

There were four expert users who took part in the user experiment from Stellenbosch University.

47

Population Composition

Expert Users
Novice Users

4

10

All the users from the Stellenbosch University testing venue were assumed to be expert users.

This assumption was later confirmed through the responses to the questions that asked if test

subjects either used or wrote music manipulation software. This method allowed users to be

classified as expert users as well. All 4 test subjects at the Stellenbosch University test venue were

confirmed to be expert users. They all had formal music training and rated themselves as either

good or fair on the computer proficiency question.

Table 6.1 : Summary of user profile in terms of music and computer training.

Table 6.1 shows the composition of the sample population in terms of musical training and

computer proficiency from both testing venues and includes all 14 test subjects who took part in

the experiment. All the test subjects at the UCT test venue either fell into "None" or "Informal"

music training categories, which means that most of the test subjects overall had elementary

knowledge of music. There were no users at UCT who were re-classified as expert users. All the

test subjects were proficient in using computers.

All the participants who participated in the user experiments were between the ages of 18 and 35.

All the equipment was identical in both test venues and the test venues themselves were very

similar. The test venues did not have any obvious impact on how the experiment was conducted or

on the results that were returned from them.

48

Good Fair
Music
Training None 4 0

Informal 6 0
Formal 3 1

6.3 Results Summary

Table 6.2: Results summary from the questionnaire

Table 6.2 summarises all the responses from the questionnaire from all the test subjects who took

part in the user experiments. In the fist row of the table there is a non-numeric scale of five different

alternative ratings ranging from "strongly agree" to "strongly disagree", corresponding to the rating

system that was used in the questionnaire by test subjects to react to the statements they were

presented with.

The feedback from the questionnaire can be grouped into three different categories. The first group

present responses from the task-based questions. This group included questions that enquired if

the instructions given to perform the experiment were understandable and if the tasks were

perceived difficult. Responses from this category were important, as they indicated the weighting

that should be placed on the effect of task difficulty on the execution of the task and the

49

Agree Neutral Disagree

The task was difficult 0 1 1 7 5
I understood instructions 2 7 2 3 0
Group 1
I got stuck 0 7 2 2 3

I Accomplished both tasks 0 9 4 1 0
I requested help 0 8 3 2 1
Group 2
The interface was difficult to learn 0 1 3 8 2

The interface does it's job well 2 8 3 0 1
I know where I am in the interface 1 7 1 4 1
I know at which step I am in process 1 6 3 3 1

3 6 5 0 0
I can correct mistakes 1 5 3 5 0
I get lost in the interface 0 2 3 6 3

The feedback is helpful 1 5 5 2 1

1 10 1 2 0
Group 3

Excellent Good Average Poor Very poor
Intuitiveness 0 8 4 1 1
Overall 0 9 4 1 0
Layout 2 6 4 2 0

Strongly
agree

Strongly
disagree

I know how to execute all steps
required

Actions for transformation selection is
clear

performance of the interface.

Most of the participants indicated that they had no problems understanding the instructions to the

task. There were one participant who indicated he had problems with understanding the task itself.

There was one participant who found the tasks difficult - the rest of the participants (both novice

and expert users) did not find the tasks difficult.

In contrast to this many test subjects indicated that they had to request help from the experimenter.

All the test subjects indicated that they got stuck somewhere in the interface. In contrast to this

most test subjects were able to complete both tasks successfully. Only one of the test subject

indicated that he was unable to complete both tasks successfully.

The second group of responses correspond to interface and experiment based questions on the

interface. The test subjects rated the interface well on all of the interface based questions.

Within this group the statement responses can be further subdivided into two groups. The first

group are statements that generally measure performance of the interface on certain concrete

aspects, and the second group of statements are more indirect or more abstract.

The third group of responses represents opinions on three major aspects of the interface -

navigation, layout and intuitiveness. A different scale is used here, ranging from "excellent" to "very

poor".

Some responses from questions are combined into one composite measurement for one design

goal. Together they give a more reliable overview of the design goal than would have been

possible otherwise by taking individual questions as goal proxies. This increases the reliability of

the results obtained through the interface.

6.4 Discrepancies between results from task based and interface based
statements

There is an interesting relationship between the responses to most of the interface based

statements in general and the task based statements. This is particularly true for the two

statements: "I got stuck somewhere in the interface" and "I needed help". In all the interface based

questions the test subjects rated the interface extremely favourably on most of the interface based

50

questions, yet most of the test subjects indicated that they got stuck in the interface somewhere

and that they needed assistance with something in the interface.

We decided to investigate this matter by going back to the open ended question in the

questionnaire that asked where subjects got stuck, and grouped the responses into different

categories: responses given by expert users and responses given by novice users.

Amongst expert users, there were two test subjects who did not get stuck in the interface. There

was one subject who had a neutral response. He gave the location of the error as being at the

"Load Transformations" button when trying to execute a query in the second task. The other test

subject got stuck in the interface because of confusion between numbering used on the interface

and on the task instructions.

All the novice users got stuck somewhere in the interface except for two test subjects who

disagreed with the statement. The test subjects who agreed with the statement could be divided

into three groups: those who had problems with the naming between the interface and the task;

those who had problems with the navigation while performing the second task; and an execution

problem with the interface.

The confusion in numbering between the task instructions and the interface was an unexpected

result of making the task description as broad as possible. The problem is that most subjects

assumed that that steps to be taken for the tasks in the task description are steps as opposed to

guidelines for figuring out how to execute the tasks themselves.

Most of the testers expected that the instructions would be exactly set out for them, indicating that

there was not enough clarity in explaining this before they started the user experiments. Some of

the novice users did not understand the context of the experiments properly - they just skimmed

over the explanation of the project.

6.5 Evaluation of design results

6.5.1 Measurement of design goals

The design goals against which this interface was measured were set out in the beginning of the

interface creation process. These goals were: simplicity, usability and adequacy.

51

6.5.1.1 Adequacy

Adequacy is how sufficiently the tasks required for the user experiments were performed.

The adequacy of the interface was measured by the total number of people who completed both

the tasks that they were set. There was a question on the questionnaire that asked whether or not

the test subjects completed the tasks. Most of the test subjects indicated that they were able to

complete both tasks as is illustrated in Figure 6.2.

Figure 6.2: Indicates the percentage of subjects who agreed with the question that they where able

to complete the task that they were set.

The second measure of adequacy was the responses to the question on whether the interface

"does it's job well".

Figure 6.3: Results from the the interface does it's job well statement.

52

Strongly
agree

Agree Neutral Disagree Strongly
disagree

0

1

2

3

4

5

6

7

8

The interface does it's job well

Task completion

Strongly agree
Agree
Neutral
Disagree
Strongly disagree

On this question most of the test subjects agreed that the interface was able to do its job well as

can be seen in figure 6.3.

6.5.1.2 Simplicity

Simplicity is how easy the interface is to use.

Simplicity was measured using learnability and intuitiveness. Learnability was measured by the

responses to the direct question, "it was difficult to learn the interface". Intuitiveness was tested by

the responses to three questions: 1) If the test subjects got stuck; 2) if the test subjects needed

help, and 3) if test subjects knew what to do at every step of the query process.

6.5.1.2.1 Intutiveness

Figure 6.4 : This is a graph of the responses to the intuitiveness question in the questionnaire.

Figure 6.4 gives a summary of responses to the intuitiveness question in the questionnaire.

Intuitiveness is the measure of how easily the interface can be used only by guidance given

through the layout and structure of the interface without the help of any additional instructions.

Users were asked to directly rate intuitiveness on a scale ranging form very poor to excellent. Most

test subjects rated the intuitiveness of the interface on the scale as good or average.

53

Excellent Good Average Poor Very poor
0

1

2

3

4

5

6

7

8

Intuitiveness

Another important indication of intuitiveness was if the test subjects were sure what do at every

step of the query process. "I know how to execute all tasks required" was the statement on the

questionnaire that measured this. All of the responses to this question were either in the positive or

neutral as can be seen in table 6.2.

6.5.1.2.2 Learnability

Figure 6.5: Graph of responses from the question if the interface was difficult to learn or not.

There were many subjects who agreed with the statement that the interface was easy to learn, as

is illustrated in Figure 6.5.

The other test subjects who gave structure a poor or average rating qualified their decision by

saying that there were problems with common conventions that they would have expected from a

works pace.

6.5.1.3 Usability

Usability is a measurement for how effectively users are able to use the interface. Usability of the

interface was measured by navigation, layout and structure.

Navigation was tested by using various navigation questions asked in the questionnaire, and a

direct question on how subjects viewed the navigation of the interface. Subjects were also asked

their opinion on layout and structure of the interface directly. Other usability criteria include

questions about if the task could be adequately be accomplished or not and if subjects were able

54

Strongly
agree

Agree Neutral Disagree Strongly
disagree

0

1

2

3

4

5

6

7

8

Learnability

to correct mistakes they made while using the interface. There was a general question on usability

as well.

Good layout also has a big effect on usability of the interface.

6.5.1.3.1 Layout

Figure 6.6 : This is a graph to the responses from the layout question in the questionnaire.

Figure 6.6 gives a summary of responses to the layout question in the questionnaire. Layout is

closely related to structure and together has a cumulative effect on navigation and general

intuitiveness of the interface.

Most test subjects' responses to the layout of the interface was either good or average with only

two test subjects giving the layout of the interface poor ratings. Another good indication of the

effectiveness of layout are the responses to the statement, "I know in which step I am in the

process". Layout should indicate where users are in the interface by just how the elements are

arranged. There were seven positive responses to the question, three neutral responses and four

negative responses to the question. Although there were many comments about layout in the

comments section, the layout was overall judged as mostly "average" or "good".

55

Excellent Good Average Poor Very poor
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Layout

6.5.1.3.2 Navigation

Figure 6. 7 : This is a graph of the responses to the navigation question in the questionnaire.

Figure 6.7 gives a summary of responses to the navigation question in the questionnaire.

Navigation was tested by using various navigation related questions in the questionnaire. The main

measure though was asking testers to rate the navigation of the interface directly.

The "I get lost in the interface" question indicates that somewhere in the interface there is a

breakdown in navigation for some of the test subjects. "I know where I am in the interface" and "I

know which step I am at in the interface" questions measures transparency of the navigation. A

question that measured the flexibility in navigating through the interface was if test subjects had the

ability to correct a parameter that was set previously in the interface.

On all of navigation based questions the responses were mostly neutral. An unexpected

confounding factor in the navigation was that some of the testers assumed that the numbering on

the task sheet corresponded directly with the numbers on the interface. This caused some of the

testers to look for items in the interface prematurely or skip steps that were necessary for them to

complete the task that they were set.

This specific issue contributed to the number of people who needed to ask for help while

performing the user experiments. This information was derived from the open-ended questions at

the end of the questionnaire and will be discussed later in this chapter.

56

Excellent Good Average Poor Very poor
0

1

2

3

4

5

6

7

Navigation

6.6 Problems with the MIRMaid interface

Problems with the interface can be grouped based on feedback from the users during the user

testing and comments from the questionnaires.

6.6.1 Navigation

Navigation was a weakness that can be improved on in future versions of the interface. The

primary problem was a complicated navigation path across the interface. Figure 6.8 below shows

the easiest navigation path to follow to perform the second task set for the experiments. The green

arrows indicate the direction of the steps that were executed and the numbers show the sequence

in which actions on the interface were performed.

Figure 6.8 : This figure illustrates the current navigation path of the interface.

Although jumping in the navigation was minimised drastically from the first iteration of the interface,

two jumps remained and caused many of the test subjects to request help as can been seen in

Table 6.2. The navigation did not flow from one frame to the other linearly (illustrated in Figure 6.8).

Average user navigation patterns were tracked by observing their actions when performing the

tasks. They began navigation at the correct element at the top left hand corner of the interface,

57

then had problems moving on to the next element. Test subjects pressed random buttons when

they were confused over whether or not they have already completed a step or not, The same

happened when they were unable to execute a step that they believed they would be at in the

interface. This prevented them from executing steps in sequence.

Firstly, all the test subjects seemed to skip past the browse button in the first frame and only return

to the button after they have re-read the instructions or tried to access the transformations frame

unsuccessfully.

The next navigational weakness was a big jump after pressing the "Select Transformation" button.

The pop-up screen launched in the top right corner of the screen which forced the test subjects to

backtrack to previous elements in the interface. Initially this element was added to provide users an

option for adding additional repositories of queries. This disorientation was compounded when the

selection was made on the pop-up screen and the pop-up screen closed. There were then no cues

on where to start the next step in the process. A contributing factor in this confusion is that the

terminology and naming differed in the interface and the task instructions. When test subjects

found their spot in the interface again, they were generally able to continue and complete the task

without any further intervention from me or searching on the task paper.

People wanted the option of returning back to the main interface after one of the results frames

were shown.

6.6.2 General layout and operation logic

A disproportionate number of testers who got lost in the interface at some point ended up

searching for different buttons and elements on the interface. Although there was error trapping in

place for pressing the wrong buttons at random, it was very frustrating for the test subjects.

At start up all the elements on the interface have equal focus and weighting. The layout is

asymmetrical as well. Therefore layout may appear disorganised and overwhelming to some users

because they are overloaded with information on the interface.

There was a duplicate step when executing a query for the second experiment that was not picked

up or corrected during the pilot test. This affected the overall navigation of the interface negatively.

The execute query option appeared twice in the process of the second user experiment. The user

58

had to press it on the pop-up form and on the main screen to execute the query.

There was no Back or Cancel button allowing test subjects to cancel the current query process on

the interface after it has been started, or to modify any data before the query is executed.

There was also no consistency in moving from one frame to other frames. This contributed to test

subjects having problems moving from one frame element to other frame elements in a set order,

especially when moving from the first frame element to the second frame. Test subjects did not

realise that they had to press "ENTER", before they could move to the next frame. This was a

limitation of the prototype and a production interface should be able to navigate controls more

intuitively. Some test subjects even went to the menu to search for a way to move on to the next

frame. The presence of the "ENTER" button was a limitation of the prototype and a production

interface should be able to activate controls in a more intuitive and consistent manner.

6.6.3 Controlling query options

Controlling query options is the most consistent problem uncovered during the experimentation

process by the interaction of the test subjects with the interface. Query options are controlled

through a pop-up screen that appears at the top right hand corner of the interface.

A contributing factor was that this pop-up screen was not directly mentioned in the instructions to

the tasks. When the test subjects encountered the pop-up screen the purpose of the screen was

not immediately obvious, and test subjects then went back to the experiment instructions. After this

they asked for help. In the second task a lot less people had this problem again, indicating that the

problem was due to the instructions and not the interface.

The physical layout of the interface presented problems because all the elements had the same

visual weighting, confusing test subjects to where to start the tasks necessary for the query. The

logical layout of the interface created many problems as well, although all the areas in the interface

were numbered.

6.6.4 Finding and Loading Sound Clips

One consistent observation from all the users is that they were all searching all over the interface

for the button to load sound clips. Again, the elements was named differently on the interface than

on the instructions.

59

6.7 Summary

From the experimentation process it can be concluded that 1) The users felt quite comfortable

using the interface 2) The interface was useful and usable and 3) There is a lot of scope for

generalising and extending the work.

The were positive results returned from the questionnaire in terms of both task-based questions

and interface-based questions, indicating that in general the interface succeeded in the goals that

were set out for it at the beginning of the design process.

The user experimentation process also revealed a few gaps in the navigation and the program flow

of the interface. The cause of these problems were investigated and found to be a combination

between a mismatch in the numbering of the interface and the instruction sheet and the

interruption of workflow presented by the pop-up window.

The results from the experiments also highlighted the need for further experimentation to refine the

interface.

60

Chapter 7

7 Future Work

7.1 Overview

This chapter presents some future refinements to the interface and gives some details on one

possible implementation of the test-bed.

This chapter also gives possible enhancements to the interface that would be needed to convert

the interface into a conversion/portal tool that can assist frameworks to access classes and

methods from other smaller frameworks easily, cleanly and transparently.

7.2 Interface Enhancements

Figure 7. 1: Image of how the interface could look like in the future.

The interface (Figure 7.1) is a skeleton prototype of what the interface might look like in the future.

The prototype reflects the suggestions and observations that were made during user testing.

The navigation elements were separated from the form functionality and were replicated uniformly

61

throughout the rest of the frames.

There was an additional tool bar added to the top of the interface. On the toolbar panel there is still

a lot of space to add additional functions.

The interface still kept the component windows but elements were shifted around and only one

element is shown at a time to reduce visual clutter.

This iteration of the interface also attempted to conform to the standard layout formats of well

known workspaces.

Common elements from other frameworks, like command line utilities, may be included to minimise

the learning curve for users.

Figure 7.2: New navigational path over one frame

The greatest challenge to refining the interface after feedback from the first round of

experimentation was providing guided navigation. Guided navigation will have a big impact on the

quality and simplicity of the interface in the future.

Subtle changes in font and colour variations can be used to differentiate active areas in the works

pace to provide visual guidance to the user.

62

1

2

3

4

More information was also requested by many of the experimenters. This could prove important

because this would communicate to users where they are in the process and their location in

relation to broader systems. In response, better feedback should be added by providing a window

in which users can see what tasks they have already completed.

A “wizard” type of interface could also be used to break the task down to a number of smaller

interfaces shown to the user in a sequence. This could have been another way to solve

navigational problems. This was not considered for the initial interface, since observations were

needed on how people engaged with the interface, as opposed to automatically clicking the “next”

button at each screen of a “wizard” type interface.

The interface may be improved by minimising the dependence of the test-bed on importing

externally created modules by adding functionality for modules to be written in MATLAB within the

interface. This could be done by adding a MATLAB command line utility that will allow MATLAB

modules to be executed from the command line by MATLAB. This will allow users to create and

run MATLAB modules within the test-bed.

Another improvement to the functionality of the workspace would be to add a mechanism that

could allow the works pace to access data from specialised repositories and collections from

different sources on-line. An important aspect of this would be to provide authentication

mechanism to stop unauthorised access to data that is under copy protection.

This will allow the interface to fit into a broader architecture for a large scale MlR/MDL testing and

development environment as outlined in the MlR/MOL evaluation project white paper collection

[Downie, 2003].

On the results frame that is returned from the query there will be an area where there will be

support for browsing.

It would also be beneficial if the interface could allow users to switch between different modes of

evaluation or be able to convert a query made in one mode into another mode just by supplying

additional information.

The framework could support exporting successful combinations of modules that were evaluated in

the test-bed. Packaging the modules could make it easer for modules to be reintroduced back into

their originating framework or imported into compatible frameworks.

63

The interface can be changed so that it could indirectly link to each other through the workspace.

It is suggested that the test-bed should avoid providing fully functional classes or replicating

classes found in other frameworks.

The interface could produce specifications for systems from the output that is returned for various

tests.

7.3 Data Collections

There is an undue emphasis on Western Music Audio representations in Music Information

Retrieval. Audio features are assumed to be culturally neutral but so far there has been very few

attempts to test this hypothesis [Futrelle & Downie, 2003]. The first change to the interface may be

to add a music repository. The repository could contain a number of collections - ranging from

western standard music to collections that contain specialist collections of Southern African music

that can be obtained from different sources, like the Contemporary Arts and Music Archive [CAMA,

no date].

CAMA contains both video and audio data as live recordings and studio recordings. At the moment

the records are only available from the African Studies library at UCT. The scope of the Southern

African collection may be broadened to include other forms of Southern African Music like Kwaito if

there are not enough sound clips available.

The one big disadvantage is that the database cannot be distributed since most of the music is

under copyright.

The interface could easily be extended to accept different types of data besides audio content. The

simplest departure would be to add symbolic data so that score reading/"optical recognition"

algorithm testing can also be introduced. Audio files that have other data, like bibliographic data,

attached can also be added.

The modified interface would also be able to handle testing modules for MIDl,video and text data.

Having different kinds of data in the test-bed could also allow different content based and text

based information retrieval methods to be tested against each other. In the future the interface

could support multi-modal testing. Different types of data that are available from one sound clip can

be tested. Tests can also be done for exploiting the relationship between different representations

64

of the same piece. [Downie,2003] and for more effective multi-modal retrieval.

To allow modules to act uniformly on all clips when they are converted into different annotations,

audio clips in music collections are usually converted into one common file format, e.g. .wav file

format at 44.1 Khz, 16 bits per second clips [Downie,2004].

The problem is that after clips are converted, they need to be pre-processed, to eliminate the noise

from the recording that might have inadvertently been included because of conversion to electronic

form or transfer from one format to another.

A repercussion of pre-processing is that the results returned from the pre-processed collection may

become skewed, because of error that will be introduced when re-sampling and converting the

clips from their original format.

The framework could be improved by dealing more gracefully with music clips of different sampling

rates, reflecting the differently formatted data present in the different repositories, similar to how it

would be in the real world.

7.4 Future testing of the test-bed and the interface

In order for testing of the interface to be most meaningful, various evaluation tasks from the Music

Information Retrieval Evaluation Exchange(MIREX) 2005 competition could be duplicated for

testing the interface and the test-bed. These tasks can include audio melody extraction, audio

music similarity and retrieval and audio tempo extraction [MIREX, 2005].

Modules used for these tasks may also be used and should include modules like those for audio

engineering and digital signal processing.

Once test modules have been imported another stage of user experimentation could follow. In this

round of user experimentation all the features indicated on the interface would be fully functional.

This round can then include more thorough measurements on timing, incidence of error and the

frequency of different task-based errors like failed actions.

The sample population could be modified to include a larger segment of the MlR community. This

may be done by setting up a website which can contain the interface as a Web service and allow

65

users to interact with the test-bed. An alternative would be to test the interface through a Web

questionnaire. The second way would be to modify the interface so that it is plug-in to M2K, and

users are requested to fill in a Web questionnaire.

Support could be added to the interface for creating comparative evaluations for assessing multiple

algorithms, for one retrieval task.

Support could also be added to allow users to do related queries and compare them with ones they

have already done or compare results from different evaluation modes.

In choosing external evaluation techniques there is subjective bias introduced and can be over

fitted [Futrelle,2003]. In addition evaluation results change in response to using different

assessments [Voorhees,2004]. This could be improved by adding test collections in addition to

data collections in the interface. This will also allow different metrics to be used for evaluating

different retrieval strategies for one specific information retrieval task.

This will allow the evaluation of different combinations of transformations and retrieval strategies

but each time you use a different way to test the effectiveness after which you can set up a matrix

to compare different retrieval strategies against each other.

This could be used to set up an evolutionary tournament for different test metrics on specific

retrieval tasks. The rules of the game can change and different results will be yielded. Different

combinations could be tested on multiple criteria and then the different combinations and variations

are tested through an evolutionary game.

7.5 Summary

Since most of the dissertation discussed the interface for a conceptual test bed, this chapter

concentrated more on contextualising implementations of a test-bed as well as possible extensions

to the interface and exploring paths that were not pursued in this dissertation.

This chapter further investigated ways in which the interface could be extended to support

functionality that would make the interface useful even if it is incorporated into larger frameworks

as can be done with a proposed international music retrieval test-bed [Downie,2003].

66

Chapter 8

8. Conclusion

This dissertation presented an interface for a Music Information Retrieval (MlR) test-bed in order to

investigate the composition of algorithms for music manipulation. The interface allowed users to

combine modules from different frameworks by comparing different sequences of modules to find

optimal combinations for specific problem domains.

The interface was built using an iterative process consisting of a combined analysis and

consultative stage with users, after which the interface was modified and refined. We approached

the interface building from the perspective of a total novice user, to make sure that it would be as

simple as possible.

The interface was then subjected to a set of user experiments. The user experiments were

designed to test the interface using appropriate tasks. Test subjects were then asked to complete a

questionnaire which required them to rate some interface and task based statements.

The interface was tested on its compliance with three design goals that were set at the beginning

of the design process. These design goals were adequacy, usability and simplicity.

We determined that on adequacy, both expert and novice users rated the interface well. On

simplicity, the interface was also rated as good. Although there were a few problems associated

with navigation and layout, the interface still performed reasonably well in terms of usability.

Most of the results on the different design goals were gained from the interface based questions.

From these responses it can be concluded that the interface performed reasonably well with expert

users and novice users on interface based statements.

Task based statements tested operational and concrete aspects of the interface. On task based

statements there were many interesting results returned from the questionnaire. The most

interesting results were from the statement which asked if test subjects needed to request help

from the experimenter. While the usability of the interface was rated by the test subjects as good,

all the test subjects had to request help with the interface.

This anomaly between the task based statements and the interface based statements was

67

investigated. It was revealed that the discrepancy was partially due to an extra step that was

omitted in the task instructions, and partially due to a mismatch between the numbering on the task

instructions and the numbering on the interface. It was also seen that interruptions to the workflow

of the interface was problematic and should be avoided.

A prototype skeleton of how the interface can look in the future was also created. It was modified to

reflect the results and comments gained from the user experiments. Furthermore, suggestions

were also given on how the interface can be expanded and generalised. This included suggestions

on how the interface can be enhanced and extended in different ways. This included suggestions

on extending the functionality of the interface to include tools for: 1) writing modules within the

interface; 2) accessing classes and methods from other frameworks, and 3) accessing data from

specialised collections from different sources on-line.

The scope of the interface can be broadened by accepting different types of data besides audio

content. Having different kinds of data in the test-bed could also allow different content based and

text based information retrieval methods to be tested against each other and open the possibility

for multi-modal testing.

Another key enhancement that was suggested was to allow users to switch between different

modes of evaluation. The implications are that: 1) Support could be added for creating comparative

evaluations for assessing multiple algorithms, for one retrieval task; 2) Support could be added to

allow users to do related queries and compare them with ones they have already done or compare

results from different evaluation modes, and 3) Support could be added for creating comparative

metrics for comparing the effectiveness of different metrics in evaluating different retrieval

strategies for one specific information retrieval task.

Furthermore the framework could support exporting successful combinations of modules that were

evaluated in the test-bed and produce specifications for systems from the output that is returned

for various tests.

68

Appendices

A1 Task explanation used during the project

About the experiment

The user experiments were designed to test the relevance of the interface I have built, too
see how easily transformations can be applied through the interface and to see if the
interface is working properly. The other use of the experiments are to see how you interact
with the interface by performing simple functional tasks.

The tasks that you are required to perform are quite simple tasks. The tasks will require
you to perform set queries using the interface.

I am working on the design for an interface, and as part of the process I am asking a
variety of people to attempt two tasks using it and to fill out a feedback questionnaire
afterwards, to see what elements of the design need to be changed and to see if the
interface is working properly.

In the first task involves querying the test-bed by using a sound clip from a well known
composer for finding the list of records in the test-bed that satisfies the parameters that
you had selected beforehand.

The second task involves selecting a set of parameters for extracting information from two
different repositories to evaluate the difference in search performance between the two
repositories.

After completing the tasks, you will them be required to fill out a questionnaire in which you
will document your experiences with the interface and with the tasks you have just
completed.

Please remember that you can withdraw from the experiment at any time.

Please Turn over the page for the first task...

69

A2 Instructions to the first task used in the interface

Task 1:

The task for you is to perform a spot query on the test-bed by using a sound clip from the
repository, in this case a clip from Vivaldi's Four Seasons. spot queries are done to see
how an individual query performs when it is used with a set of transformation parameters.
For this experiment you are asked to select two transformation parameters and a
collection of music you would want to use for the query and then execute it.

How to perform the task:

1. Select a collection
In this step you will specify a collection to which you will apply transformations too. Select
the "standard collection".

2. Select and Load Transformations
Select the "Auditory filter bank" and "noise filter" transformations. These are the
transformations that will be applied to the collection you chose. Please make sure that the
Auditory filter bank transformation is applied before the noise filter transformation.

4. Load a Sound Clip
Load a sample clip called 1.wav. The sample path is
myMusic>ExperimentExample_wavs>Classical> 1.wav

5. Press the query button

After this you should be presented with a screen in which lists possible matches to the
query you have entered into the system. You can click on the table and listen to the
returned clips to verify the validity of the results.

Exit the program when you are ready to do so.

That is it for the first task.

Please continue with the second task on the next page ...

70

A3 Instructions to the second task used in the project

Task 2:

This task will require you to evaluate the search performance of a set of transformations
on a single repository, this will show the performance of the transformations you chose did
in matching.

How to perform the task:

1. Open the framework workspace
Double Click the program icon on the desktop that says "MIRMaid.jar"

2. Select the collections
Select the collections called standard collection. This is the collections to which you are
going to apply transformations too.

3. Select transformations
Select the Auditory filter bank and Fourier filter transformations. These are the
transformations that will be applied to the collection you chose. Please make sure that the
Auditory filter bank transformation is applied before the Fourier filter transformation.

4. Perform the Query
Execute the query by pressing the "Perform Matching" button.

After this you should be presented with a screen which will show a graph which represents
the matching efficiency of the current combination of transformation variables you have
chosen.

Exit the program when you are ready to do so.

Thank you. That completes the tasks.
Please complete the questionnaire now, on the next Page...

71

A3 Questionnaire used in the project

72

73

Bibliography

Amatriain,X. Arumi,P. (2005). Developing Cross-Platform audio and music applications with the CLAM
framework. Proceedings of International Computer Music Conference 2005. [online]

 Available http://www. iua. upf. edu/mtg/publications/9d0455-icmc05-clam. pdf [2006, 16 February].

Amatriain,X. (2004). An Object-Orientated metamodel for Digital Signal Processing with a focus on Audio and
Music Ph.D. Dissertation. UPF. Barcelona

Bainbridge,D. Cunningham, S. Downie, J. (2004). Greenstone as a music digital library toolkit. In Int.
Symposium on Music Retrieval (ISMIR) 2004 Proceedings.42–43.

Batlle, E. and P. Cano (2000). Automatic Segmentation for Music Classification using Competitive Hidden
Markov Models. In Int. Symposium on Music Retrieval (ISMIR)2000. [online].

 Available www.iua.upf.es/mtg/publications/ismir2000-eloi.pdf [2006, 16 February].

Binu ,M. Davis, A. Zhen, F. (2003). A low-power accelerator for the SPHINX 3 speech recognition system,
Proceedings of the 2003 international conference on Compilers, architecture and synthesis for embedded
systems, October 30-November 01, 2003, San Jose, California, USA

Birmigam,W.P. Dannenberg,R.B. Wakefield,G.H. Bartsch,M. Bykowski,D. Mazzoni,D. Meek,K. Mellody,M.
Rand,W. (2003). MUSART: Music Retrieval Via Aural Queries. In Int. Symposium on Music Retrieval
(ISMIR) 2001. [online]. Available ismir2001.indiana.edu/pdf/birmingham.pdf [2006, 16 February].

Boulanger,R.(2005).CSound. [online]. Available http://www.csounds.com/whatis/index.html [2006. 16
February].

Byrd, D. Crawford, T. (2002). Problems of Music Information Retrieval in the Real World. Information
Processing and Management 38:249-272.

Cano,P. Batlle, E. Gomez, E. de CT Gomes, L. Bonnet, M. (2005). Audio Fingerprinting: Concepts And
Applications, Studies in Computational Intelligence (SCI) 2, Springer-Verlag Berlin Heidelberg.233-245.

CAMA.(no date). Contemprary Arts and Music Archive. [online]. Available http://cama.org.za [2006. 16
February).

Crawford,T.lliopoulos,C.S. Raman,R. (1998). String matching techniques for musical similarity and melodic
recognition. Computing in Musicology, Vol. 11: 73-100.

Dannenberg,R. Hu,N. (2004).Understanding search performance in query-by-humming systems. In Int.
Symposium on Music Retrieval (ISMIR)2004.[online]. Available www.isimr.org [2006, 16 February].

Dannenberg, R, Birmingham, W, Tzanetakis, G. Meek, C. Hu, N. Pardo, B.(2004).The MUSART Testbed for
Query-by-Humming Evaluation Computer Music Journal archive Vol 28(2) : 34 - 48

Downie,J.S. (2003). Music information retrieval ,Chapter 7. In Annual Review of Information Science and

Technology 37, ed. Blaise Cronin, Medford, NJ: Information Today.295-340.

Downie,J.S. (2003).The TREC-Like Evaluation of Music IR Systems, The MIR/MDL Evaluation Project White
Paper Collection, Establishing Music Information Retrieval (MlR) and Music Digital Library (MOL)
Evaluation Frameworks: Preliminary Foundations and Infrastructures,12-16.

Downie,J.S. Futrelle,J.Tcheng,D. (2003).The International Music Information Retrieval Systems Evatuation
Laboratory:Governance, Access and Security. The MIR/MDL Evaluation Project White Paper Collection,
Establishing Music Information Retrieval (MlR) and Music Digital Library (MDL) Evaluation Frameworks:
Preliminary Foundations and Infrastructures,3-6.

Downie,J.S. (2003).The TREC-Like Evaluation of Music IR Systems, The MlR/MOL Evaluation Project White

74

Paper Collection, Establishing Music Information Retrieval (MlR) and Music Digital Library (MDL)
Evaluation Frameworks: Preliminary Foundations and InfrastructuresDownie.J.S.[editor]

UPF. (no date). CLAM User and Development documentation, Release 0.7.0,Revision 3. [online]. Available
http://www.iua.upf.es/mtg/clam [2006, 16 February].

Eaton,J. (1998). Octave FAQ : Frequently asked questions about Octave. [online]. Available
http://www.octave.org/FAQ.html[2006. 16 February].

Flexer, A. (2005). Statistical Evaluation of Music Information Retrieval Experiments, Technical Report,
Oesterreichisches Forschungsinstitut fuer Artiticiallntelligence, Wien, TR-2005-18. [online]. Available
http://www.ofaLaUcgi-bin/tr-online00number+2005-18 [2006, 16 February].

Futrelle,J.Downie,J.S. (2003).lnterdisciplinary Research Issues in Music Information Retrieval: ISIMR 2000-
2002, Journal of New Music Research,Vol 32, 121-131.

Giorgi, Zoia,G. Zhou,R Mattavelli,M. (2002). MPEG Audio Coding and XML: samples, models, descriptors.
[online]. Available www.lim.dico.unimL iUmaxproiecUmax2002/docs/GZoiaMAX2002. Pdf [2006, 16
February]

Gomez,E. Klapuri,A. Meudic,B. (2003). Melody Descriptoin and Extraction in the Context of Music Content
Processing. Journal of New Music Research,32(1).

Gomez, E. Gouyon, F. Herrera, P. Amatriain, X. (2003). MPEG-7 for Content-based Music Processing.
Proceedings of 4th WIAMIS-Special session on Audio Segmentation and Digital Music

Gouvea,E.B. Chan.A.Mosur,R (no date). Sphinx-3 s3.X Decoder (X=5). [online].
 Available http://cmusphinx.sourceforge.neUsphinx3/#sec decoverview [2006, 16 February].

Griffin,T. (2001). Selected Writings. [online]. Available http://tim.griffins.ca/writings/ [2006, 16 February].

Haus, G., & Pollastri, E. (2001). An audio front end for queryby-humming systems. In Int. Symposium on
Music Information Retrieval (ISMIR) 2001. 65-72.

IMERSEL. (2004). International Music Information Retrieval Systems Evaluation Laboratory (IMIRSEL):
Introducing D2K and M2K . [online].Available http://www.music ir.org/evaluation/m2k1v4 ISMIR2004
Handout.pdf [2006, 16 February].

IMIRSEL. (2004). The International Music Information Retrieval Systems Evaluation Laboratory (IMIRSEL)
Project, [online].Available http://www.music-ir.org/evaluation/ [2006, 16 February].

Karjalainen,M. Tolonen,T.(1999). Multi-pitch and periodicity analysis model for sound separation and auditory
scene analysis. In icassp, Vol 2.929-932.

Klapuri, A. 2004. Signal processing methods for the automatic transcription of music. Doctoral
 Dissertation. Tampere, Finland: Tampere University of Technology.[online].Available

http://sp.cs.tut.fi/publications/theses/doctoral/Klapuri2004.pdf [2006, 16 February].

Lamere,P. (2005). Tools we use, Version 1.5. [online].
 Available http://www.music-ir.org/evaluation/tools.html[2006. 16 February].

Mathworks.(no date).Matlab 7.0.4 Product Description. [online]. Available
http://www.mathworks.com/products/matlab/descriotion1.html[2006. 16 February].

Mazzoni,D, Dannenberg,R. (2003). Melody Matching directly from Audio.Int. Symposium on Music Retrieval
(ISMIR) 2003. [online]. Available www.isimr.org [2006, 16 February].

National Instruments Corporation.(2006).What is LabWindows/CVI? [online]. Available
http://volt.nLcom/niwc/cvi/advanced.isp?node=11104 [2006, 16 February].

75

http://www.music-ir.org/evaluation/
http://sp.cs.tut.fi/publications/theses/doctoral/Klapuri2004.pdf

Pardo,B. Birmingham, W. (2003). Query by Humming: How Good Can It Get?. The MIR/MDL Evaluation
Project White Paper Collection, Establishing Music Information Retrieval (MlR) and Music Digital Library
(MOL) Evaluation Frameworks: Preliminary Foundations and Infrastructures,12-16.

Puckette, M. (no date). Pure Data. [online].Available http://www.pure-data.org/ [2006, 16 February].

Ravishankar,M. (2006). Sphinx-3 Guide. Available
http://cmusphinx.sourceforge.net/sphinx3/s3_overview.html [2006, 29 August].

Reiss J. Sandler M. (2004), Audio Issues in MIR Evaluation. In Second International Symposium on Music
Information Retrieval (ISMIR 2004) . [online].Available http:// is mir 2004.is mir .net/proceedings/p005-page-
28-paper133.pdf [2006, 29 August].

Sun Microsystems Inc. (2000). JavaSound API Programer's Guide, Chapter 2: Overview of the Sampled
Package. [online]. Available
http://iava.sun.com/i2se/1.4.2/docs/guide/sound/programmerguide/contents.html [2006, 16 February].

Selfridge-Field,E. (1998). Conceptual and Representational Issues in Melodic Comparison,Melodic
Comparison: Concepts, Procesure, and Applications. Computing in Musicology 11 .

Seltzer, M. (2002).Sphinx iii signal processing front end specification. [online]. Available
http://perso.enst/fr/sirocco/, May 2002. [2006, 29 August]

Smith, L.A.McNab, R.J. Witten I.H. (1998). Sequence-Based Melodic Comparison: A Dynamic-Programming
Approach. Melodic Similarity. Concepts, Procedures, and Applications Computing in Musicology11.1001-
117.

Steiglitz,K. (1996). A Digital Signal Processing Primer: with Applications to Digital Audio and Computer
Music. Addison-Wesley.New York.22-43

Smith,S. (1997). The Scientist and Engineer's Guide to Digital Signal Processing.California. California
Technical Publishing. 35-66

Shih,H.Narayanan,S.S.Jay Kou.C.C. (2003). Multidimenstion Humming Transcription Using Hidden Markov
Models for Query by Humming Systems, Proceedings of the ISIMR 2003. [online]. Available
www.isimr.org [2006, 16 February].

Tidwell,J. (2005). Designing Interfaces: Patterns for Effective Interaction Design,O'Reilly Media, Inc.99-125.

Typke,R. (2004). A Survey of Music Information Retrieval Systems, presented at the ISIMR 2004, Spain
Available www.isimr.org [2006, 16 February].

Tzanetakis,G. (no date). Marsyas User Manual. [online]. Available http://www.sourceforge.marsyas.org
[2006, 16 February].

Tzanetakis.G.Cook,P. (2000). Marsyas: A framework for audio analysis. Organized Sound, 4(3):169-175.
Cambridge University Press

Voorhees, E. (2004). Wither Music IR Evaluation infrastructure: Lessons to be learnt form TREC. The
MIR/MDL Evaluation Project White Paper Collection, Establishing Music Information Retrieval (MlR) and
Music Digital Library (MOL) Evaluation Frameworks: Preliminary Foundations and Infrastructures,12-16.

Walonick,D.(2004). Survival Statistics.StatPac, Inc.15 -125.

Witten, I. Frank, E. (2000). WEKA Machine learning algorithms in Java, Chapter 8 in Data Mining: Practical
Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann Publishers.
[online]. Available http://hartford.ltLcs.cmu.edu/classes/95-779/HWlweka tutorial.pdf [2006, 16 February].

Yamamuro,Kosugi, Naoko & Nishihara, Yuichi & Sakata, Tetsuo &, Masashi & Kushima, Kazuhiko. (2002). A
Practical Query-By-Humming System for a Large Music Database. In Proceedings ACM Multimedia: 333-

76

http://iava.sun.com/i2se/1.4.2/docs/guide/sound/programmerguide/contents.html
http://cmusphinx.sourceforge.net/sphinx3/s3_overview.html

342.

Zoia G., Zhou R., Mattavelli, M., (2002). MPEG Audio Coding and XML: samples, models, descriptors.
[online]. Available http://www.lim.dico.unimi.it/maxproject/max2002/docs/GZoiaMAX2002.pdf [2006, 29
August].

Zhu,Y.Shasha,D. (2003). Query by humming: a time series database approach. In Preoc. Of SIGMOD 2003.
[online]. Available http://citeseer.ist.psu.edu/zhu03query.html [2006, 29 August].

(1998). UIUC DU Glossary. [online]. Available dILgrainger.uiuc.edu/glossary.htm [2006, 16 February].

(2005). MIREX 2005. [online]. Available www.music-ir.org/mirexwiki/index.php/MIREX_2005 [2006, 16 February].

(2006). Wizard of Oz method. [online]. Available www.usabilitynet.org/tools/wizard.htm [2006, 16 February].

77

http://www.music-ir.org/mirexwiki/index.php/MIREX_2005
http://citeseer.ist.psu.edu/zhu03query.html
http://www.lim.dico.unimi.it/maxproject/max2002/docs/GZoiaMAX2002.pdf

	Acknowledgements
	Abstract
	Chapter 1
	1 Introduction
	1.1 Problem Statement
	1.2 The Solution
	1.3 Thesis Structure

	Chapter 2
	2 Theoretical Background
	2.1 Overview
	2.2 Data Mining and Musical Digital Libraries
	2.2.1 Musical Digital Libraries
	2.2.2 Test-beds

	2.3 The Structure of Digital Audio Data
	2.3.1 Sampling
	2.3.2 Quantisation noise and resolution

	2.4 Psychoacoustics, sound perception and music cognition
	2.5 Basic Signal Processing operations
	2.5.1 Fundamental Frequency estimation
	2.5.2 Event Detection and Windowing
	2.5.3 Feature extraction
	2.5.4 Matching
	2.5.5 Transcription Models
	2.5.5.1 Set based models
	2.5.5.2 Hidden Markov Models
	2.5.5.3 Audio Fingerprinting
	2.5.5.4 Self-Organising Maps

	2.6 Summary

	Chapter 3
	3 Frameworks and Toolkits
	3.1 Overview
	3.2 Information Retrieval Frameworks
	3.2.1 CLAM
	3.2.2 M2K
	3.2.3 MARSYAS
	3.2.4 MUSART

	3.3 Music processing languages
	3.3.1 Matab
	3.3.2 Octave
	3.3.3 Labwindows
	3.3.4 Nyquist

	3.4 External Libraries
	3.4.1 Machine learning libraries
	3.4.2 Music processing libraries
	3.4.3 Visualisation

	3.5 Other Tools
	3.5.1 Sphinx-3
	3.5.2 WEKA

	3.6 Summary

	Chapter 4
	4 The MIRMaid Interface
	4.1 Overview
	4.2 Structure
	4.2.1 Test-bed Structure
	4.2.2 The repositories
	4.2.3 Modules

	4.3 The Interface
	4.3.1 Design Goals
	4.3.2 Interface Elements
	4.3.2.1 The "Choose a repository" component
	4.3.2.2 The "Select Transformations" component
	4.3.2.3 Adding Transformations Frame
	4.3.2.4 Use case Control component
	4.3.2.5 Sound loading/recording component
	4.3.2.6 Matching/Evaluate/Execute the query
	4.3.2.7 Presentation of Results

	4.3.3 Interface development
	4.3.4 Strategic positioning of the framework
	4.3.5 Interviews
	4.3.6 Improvements on the interface

	4.4 Description of development tools used.
	4.5 Summary

	Chapter 5
	5 Experiment and Questionnaire Design
	5.1 Overview
	5.2 Population Selection
	5.3 Experiment Design
	5.4 The Tasks
	5.5 Arranging outcomes from the interface
	5.6 Questionnaire Design
	5.6.1 Subject profile
	5.6.2 Interface and task based questions

	5.7 Justification for not using time measurement as an evaluation tool
	5.8 User observation
	5.9 Confounding variables
	5.10 Summary

	Chapter 6
	6 Data Analysis and Results of the Experiment
	6.1 Overview
	6.2 Sample population analysis
	6.3 Results Summary
	6.4 Discrepancies between results from task based and interface based statements
	6.5 Evaluation of design results
	6.5.1 Measurement of design goals
	6.5.1.1 Adequacy
	6.5.1.2 Simplicity
	6.5.1.2.1 Intutiveness
	6.5.1.2.2 Learnability

	6.5.1.3 Usability
	6.5.1.3.1 Layout
	6.5.1.3.2 Navigation

	6.6 Problems with the MIRMaid interface
	6.6.1 Navigation
	6.6.2 General layout and operation logic
	6.6.3 Controlling query options
	6.6.4 Finding and Loading Sound Clips

	6.7 Summary

	Chapter 7
	7 Future Work
	7.1 Overview
	7.2 Interface Enhancements
	7.4 Future testing of the test-bed and the interface
	7.5 Summary

	Chapter 8
	8. Conclusion

	Appendices
	A1 Task explanation used during the project
	A2 Instructions to the first task used in the interface
	A3 Instructions to the second task used in the project
	A3 Questionnaire used in the project

	Bibliography

