
Compression of dense and regular point clouds

Bruce Merry∗

University of Cape Town
Patrick Marais†

University of Cape Town
James Gain‡

University of Cape Town

Abstract

We present a simple technique for single-rate compression of point
clouds sampled from a surface, based on a spanning tree of the
points. Unlike previous methods, we predict future vertices using
both a linear predictor, which uses the previous edge as a predictor
for the current edge, and lateral predictors that rotate the previous
edge 90◦ left or right about an estimated normal.

By careful construction of the spanning tree and choice of predic-
tion rules, our method improves upon existing compression rates
when applied to regularly sampled point sets, such as those pro-
duced by laser range scanning or uniform tesselation of higher-
order surfaces. For less regular sets of points, the compression rate
is still generally within 1.5 bits per point of other compression al-
gorithms.

CR Categories: I.3 [Computer Graphics]: Picture and image
generation— [E.4]: Coding and information theory—Data com-
paction and compression

Keywords: compression, point clouds, range scanning, spanning
tree

1 Introduction

Many model acquisition techniques, such as laser range scanning,
produce dense sets of 3D points. A mesh may later be created
from these points, but this can be a time-consuming process [Turk
and Levoy 1994]. On the other hand, systems such as QSplat
[Rusinkiewicz and Levoy 2000] are able to directly render points,
and easily support such features as multiresolution rendering. There
are thus clear applications for high-quality point-cloud compres-
sors. While mesh compression is a mature field [Alliez and Gots-
man 2004], point cloud compression is still relatively new. Further-
more, the bulk of the existing research either focuses on progressive
techniques, whereby a model is streamed and displayed at progres-
sive higher detail but at the expense of compression performance, or
resamples the point cloud to make it more amenable to a particular
form of compression.

Our contribution is a single-rate point-cloud compressor that is
optimised for densely and regularly sampled models. The grid-
like structure shown in figure 1 is a characteristic of such models,
and can arise from range scanning [Levoy et al. 2000], stereopsis
[Faugeras 1993], isosurface extraction [Lorensen and Cline 1987]
or resampling [Eck et al. 1995].

∗email: bmerry@cs.uct.ac.za
†email: patrick@cs.uct.ac.za
‡email: jgain@cs.uct.ac.za

c© ACM, 2005. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistri-
bution. The definitive version to appear at AFRIGRAPH 2006.

Figure 1: The bunny model, showing the regular grid patterns. The
inset shows a close-up of part of the surface where two scans have
been joined.

Section 2 reviews previous work on point cloud compression. Our
technique, based on a spanning tree of the vertices, is presented in
section 3. We present results in section 4 and conclude in section
5.

2 Related work

Here we will review only point-cloud compression; for a discussion
of mesh compression, refer to the survey by Alliez and Gotsman
[2004].

The first class of point-cloud compressors are progressive coders.
These begin by encoding a coarse representation of the point cloud,
followed by a stream of refinements. Users who download the
stream over a network can begin viewing the coarse representation
almost immediately, and see refinements as they arrive. Gandoin
and Devillers [2002] base their approach on a kd-tree: the space
is recursively split in half, and the number of points in one half is
encoded (the number in the other half being implicit). Empty cells
are not further subdivided. They also show how this can be used to
encode a mesh, by encoding extra refinements for the connectivity.
Peng and Kuo [2003] adapt this approach to an octree, and indicate
only whether each subcell is occupied. They obtain better results
by using connectivity information to guide the encoding, but do not
report the cost of encoding the connectivity information. Botsch
et al. [2002] use a similar octree encoding, but apply it to the inter-
section of the surface with a voxel grid (i.e., the sampling resolution
is equal to the voxel resolution).

Waschbüsch et al. [2004] use a bottom-up approach. To create a
lower-resolution model, the points are grouped into pairs and each
pair is replaced by a single point at the midpoint. The offset from
the midpoint to the original points is encoded and used during de-



compression to reconstruct the original points. The offset is en-
coded in a local coordinate system to take advantage of the fact that
the point cloud represents a surface.

Fleishman et al. [2003] base their approach on an implicit surface
defined by the points — the moving least-squares (MLS) surface.
They sample an initial (low-resolution) point set from the MLS
surface, then encode a sequence of refinements of this point set.
Ochotta and Saupe [2004] resample the MLS surface at full reso-
lution, then use wavelet techniques to encode a set of height-fields
describing the surface. Since both schemes resample the surface,
the compression is inherently lossy.

Progressive geometry encoders suffer from a common problem: at
the coarser levels of the hierarchy, the distance between points is
larger and thus relationships between points are more expensive to
encode. Waschbüsch et al. [2004] partially address this problem
by limiting the number of levels in the hierarchy, but the hierar-
chy cannot become too shallow as the coarsest level is essentially
uncompressed.

An alternative to progressive encoding is single-rate encoding,
where the entire compressed file must be available before the model
can be properly viewed. Taubin and Rossignac [1998] compress the
geometry of a mesh using an approach similar to our own, in which
a spanning tree is built over the edges of a mesh. The spanning tree
is constructed in a spiralling pattern from a root vertex. The goal
of this algorithm is to construct a tree with long runs of valence-2
vertices, that can be efficiently run-length encoded. Each vertex of
the tree is predicted using a linear combination of the ancestor ver-
tices, and a correction to the prediction is encoded. This technique
was originally developed for triangle meshes and cannot trivially be
adapted to point clouds (because the spiral construction is based on
the triangles of the mesh), but the spanning tree idea is nevertheless
important.

Gumhold et al. [2004] again use a similar approach based on span-
ning trees. Points are added to the tree in a pre-determined order,
with each point being attached to the parent that best predicts the
new point. One of two simple predictors is used: either the child
point is predicted at the location of the parent, or the difference be-
tween parent and child is predicted to be the same as the difference
between the grandparent and the parent.

3 Spanning tree compression

Our method is based on similar ideas to the encoding of Taubin and
Rossignac [1998] and Gumhold et al. [2004]; however, by using
different heuristics and multiple predictors we obtain better com-
pression ratios.

Initially, all coordinates are quantised to some fixed number of bits,
as is done for most compression schemes. Although Lee et al.
[2002] have shown that better results can be obtained by quantising
in a local coordinate system that is aligned to the surface, global
quantisation has the advantage that a point cloud may be decom-
pressed, edited, and recompressed without introducing additional
loss. This makes our scheme “lossless” in the same sense that im-
age formats such as PNG [Randers-Pehrson 2003] are “lossless”,
even though they quantise colour values to 8 bits per channel.

A rooted spanning tree is then constructed over the points of the
model. Each point is predicted from its ancestors in the spanning
tree, and corrections to these predictions are encoded. We have sev-
eral predictors, so the choice of predictor is also encoded. Finally,
the connectivity of the tree must be encoded to allow decompres-
sion.

The construction of the spanning tree has two conflicting goals.
Since the structure of the tree must be encoded, the tree should
have an easily encoded structure. The simplest tree would be just
a path with no branches. However, geometry data constitutes the
bulk of the code, so it is important to use a tree that generates good
geometry predictions. This is most easily ensured by using short
edges, which in turn may require more branches in the tree.

In order to eliminate very long edges, and also to reduce running
time, we initially identify all edges of some maximum length. The
maximum we have chosen is the longest edge of the minimum span-
ning tree, which we denote L. From Kruskal’s minimum spanning
tree algorithm [Sedgewick 1990, p. 458], it is clear that this is the
smallest global bound that will yield a connected graph.

The compression stage proceeds as follows:

1. Build a minimum spanning tree, and identify the longest edge.
This spanning tree is used only to determine L, and is imme-
diately discarded.

2. Build a graph containing all edges that are no longer than L.

3. Construct a spanning tree of this graph. This is the spanning
tree used for compression.

4. Assign a predictor and correction to every point other than the
root.

5. Encode the choice of predictors and the structure of the span-
ning tree.

6. Encode the corrections to the predicted positions.

Some of these steps are implemented in parallel, but logically they
can be treated as separate passes. We now describe the individual
steps in more detail, in the order 4, 3, 5, 6 (step 3 is described after
step 4 because it depends on some of the concepts from step 4).

3.1 Geometry encoding

The naı̈ve approach to geometry coding would be to directly en-
code the difference between the position of each point and that of
its parent in the spanning tree. However, while the edges in the
spanning tree may be short, they are still too long and too variable
to be efficiently encoded.

For a given point v, let v′ be the parent in the spanning tree, with
corresponding positions v and v′ in R

3. We define δv to be the po-
sition of v relative to v′ i.e., δv = v− v′. At each point we also
maintain an estimate of the unit normal to the underlying surface,
nv, and the implied “left” vector lv := nv×δv. For a surface consist-
ing of a rectilinear grid of evenly spaced points, we can expect that
δv will be either δv′ , lv′ or −lv′ (forward, left or right — see figure
2). To encode v, we indicate which predictor is used (i.e., which is
closest), and a correction to the predictor. In practice we also use 0
as a predictor, as it yields better predictions where there are sharp
changes in the surface; we refer to this as the base predictor.

We have used two approaches to encode the corrections. In the axial
scheme, each coordinate of the correction is separately encoded us-
ing progressive arithmetic coding [Witten et al. 1987]. Although we
expect the length of the correction to have some non-uniform distri-
bution (small corrections will hopefully be the most common), the
angle of the corrections is more uniform1. In the radial scheme we
encode the length (rounded to the nearest integer) using progressive

1If the normal prediction was perfect then the portion of the error parallel
to the normal could be expected to be smaller than the in-plane error, but in
practice we have not been able to exploit this.



v
′′

v
′

v
′ − lv′v

′ + lv′

v
′ + δv

′

Figure 2: The possible predictors. The bold arrow indicates the
known edge, and the estimated normal nv points out of the page.
The other arrows indicate the predicted left, forward and right
edges. The fourth predictor is at v′.

arithmetic coding. All K possible corrections with the same quan-
tised length are enumerated, and the index of the actual correction
is encoded using log2 K bits.

We also need to propagate the normal estimate over the point set.
Since the decompressor requires the normals to interpret the left
and right predictors, we must estimate the normal at each point us-
ing already available information. We heuristically determine the
normal at v from δv, δv′ and nv′ : if the angle between δv′ and δv is
at least 30◦ then we treat δv′ and δv as a basis for the tangent plane,
and set

nv = δv′ ×δv. (1)

If, however, the angle between the vectors is small, this approach
leads to instabilities. In this case, we project nv′ onto the plane
orthogonal to δv:

nv = nv′ −
(nv′ ·δv)δv

‖δv‖
2 . (2)

After either computation we of course normalise nv.

We also considered determining the normal by fitting a curve to a
set of ancestor edges. Unfortunately, our policy of favouring for-
ward edges means that the immediate ancestors are often collinear,
and the curvature of any fitted curve is a poor indicator of surface
normal.

3.2 Spanning tree construction

We construct the spanning tree over the graph of short edges in a
priority-first search manner, similar to Prim’s algorithm [Sedgewick
1990, p. 457] for minimum spanning trees. Initially, an arbitrary
vertex is designated as the root of the spanning tree. As each ver-
tex is added to the tree, its neighbours are considered as potential
children of this vertex and they are added to or updated in a priority
queue. In each step, the vertex with lowest cost is added to the tree
and removed from the priority queue (a global optimisation may
produce better results, but would of course also be prohibitively ex-
pensive).

Prim’s algorithm uses the edge weight as the cost function to pro-
duce a minimum spanning tree. We modify this cost function in
two ways:

1. We wish to favour edges that are similar to their parent edges,
because these edges will be well predicted. However, us-
ing only this metric leads to poor results overall, since edge

lengths are not constrained. We have found that the metric

Ev = log
(

‖δv −δv′‖+1
)

· ‖δv‖ (3)

produces good results over a range of meshes: the first factor
favours edges that are similar to their parent edges, while the
second penalises long edges. Finding the best metric is still
an area of future work.

2. In order to favour long runs, edges emanating from the most
recently added vertex are given higher priority than any other.
In practice, this means that as soon as any edge is added to
the tree, a walk is started from this edge and allowed to con-
tinue (always using the best outgoing edge) until there are no
unvisited vertices within a distance of L. Here the bound L on
edge length plays a role: without a bound, a walk would make
a large jump (which cannot be succinctly encoded) to another
part of the mesh rather than terminate.

3.3 Spanning tree encoding

We encode the choice of predictors and the connectivity of the span-
ning tree in a single stream. We first encode the valence of the root
with the predictors used for the children of the root. The children
are then recursively encoded (depth-first) in the order they are listed
in the parent.

We use five symbols for the encoding: B, L, R, F and T. The first
four indicate predictors used for child nodes (base, left, right and
forward). The T code terminates the list of child predictors, and
implicitly specifies the valence. For example, the sequence LFT
indicates a node with two children, one predicted left and one for-
ward.

During compression, we concatenate the symbol sequences for all
the vertices in a depth-first walk. We expect the model to be dom-
inated by vertices with one forward-predicted child, corresponding
to the sequence FT. Hence no one symbol dominates, but from each
symbol it is possible to obtain a good prediction of the next sym-
bol. We thus use context-dependent progressive arithmetic coding
[Witten et al. 1987] to encode the sequence. We order the children
in the canonical order shown above (B, L, R, F) to improve the per-
formance of this coding scheme.

3.4 Upper bound

We can obtain an asymtopic upper bound for the compression rate
in terms of the length of the longest edge of the minimum spanning
tree, L (we assume that the point set is scaled such that a quanti-
sation cell has side-length 1). Since we restrict ourselves to edges
no longer than L, every δv has a correction of length at most L (if
necessary, using the base predictor). For reasonably large L, there
are about 4

3 πL3 possible corrections that satisfy this property and
hence each correction can be encoded in 3log2 L+2.07 bits.

There are five codes used to represent the connectivity of the span-
ning tree: four predictors and a terminator. The sequence will con-
tain one T code per point (indicating the valences) and one predictor
per point (as part of its parent’s list of children). In the worst case,
all four predictors are used equally often and the entropy is 4 bits
per point (this can be achieved by using a 1-bit code for T and a
3-bit code for each predictor). If instead we only use the base pre-
dictor, we can reduce the upper bound to 2 bits per point, although
in practice this generally increases the number of bits required for
the geometry coding.



Model Points PPCC KD PCPM TG Axial Radial Gain (PC) Gain (TG)
male 148138 7.29 13.59 7.76 6.45 6.98 0.8 1.31
igea 134345 10.83 14.28 11.56 9.20 9.22 1.6 2.36
rabbit 67039 12.46 9.86 9.76 2.70
horse 48485 12.63 11.09 11.03 1.60
santa 75781 12.23 18.28 11.93 11.57 11.50 0.7 0.43
bunny 34834 14.31 14.8 18.22 13.62 11.68 11.53 2.8 2.09
armadillo 172974 12.25 11.84 12.01 0.41
fandisk 6475 12.94 20.69 14.84 12.79 12.87 0.1 2.05
buddha 543652 13.67 10.60 10.79 3.07
feline 49864 17.63 17.02 16.89 0.74
venus 50002 18.36 17.41 17.31 1.05
horse-lowres 19851 17.41 16.4 21.22 17.50 17.86 17.65 −1.3 −0.15
dinosaur 14070 19.80 18.75 18.38 1.42
face 12530 19.73 19.11 18.85 0.88
triceratops 2832 19.2 22.18 21.80 20.50 −1.3 1.68
blob 8036 20.1 21.29 21.92 21.58 −1.5 −0.29

Table 1: Compression rates of our compression, using the axial and radial offset encoders (best result highlighted). For comparison, we also
show results for other point cloud compressors (PPCC [Gumhold et al. 2004], KD [Gandoin and Devillers 2002], PCPM [Waschbüsch et al.
2004]; best result highlighted), as well as the Touma and Gotsman [1998] mesh compressor (TG). The upper half shows regularly sampled
models, while the lower half shows irregularly sampled models. All models were quantised to 12 bits per coordinate.

4 Results

Figure 3 (colour plate) shows the spanning trees generated by our
algorithm for several models. The colour of each edge indicates
which predictor was used (red for forward predictors, green and
blue for left and right predictors, and yellow for base predictors).
In some cases it appears that left and right are switched; this occurs
because we make no attempt to preserve the sign of the normal.

The top models are regularly sampled, and as a result the models
are dominated by the forward predictor and by long runs, which re-
duces the entropy of the spanning tree encoding. The bottom mod-
els are less regularly sampled, and the tree is correspondingly less
structured.

Table 1 shows our compression ratios on a range of models. The
numbers are bits per point (bpp) for the total encoding (geometry,
spanning tree connectivity and predictors). We show results with
both the axial and radial encoders described in section 3.1. We also
compare our results to those of Gumhold et al. [2004], Gandoin
and Devillers [2002] and Waschbüsch et al. [2004]2, where avail-
able. For reference, we list results for the Touma and Gotsman
[1998] mesh compressor as well. Here we have listed the combined
compression rate (i.e., geometry plus connectivity), because the ge-
ometry portion of the code cannot be used to reconstruct the point
cloud without the connectivity code. The right-most columns show
the improvement (in bpp) that we make relative to the best shown
result for point-cloud compressors and the Touma-Gotsman mesh
compressor.

The upper half of the table shows models that have been sampled
along regular grids, for which our algorithm was designed. For
these models, our algorithm gives the best compression ratios. Note
that for several models (such as the bunny), the other point-cloud
compressors are unable to out-perform the Touma-Gotsman mesh
compressor, despite not having to encode mesh connectivity. For
these models, the axial and radial coders give similar results.

The lower half of the table shows models for which the sampling
pattern is less regular. This may occur as the result of model simpli-
fication, as in the case of horse-lres (which is a simplified version

2We have listed the results reported by Gumhold et al. [2004] for the
method of Waschbüsch et al. [2004].

of horse3). Here the kd-tree compressor [Gandoin and Devillers
2002] produces better results, as it does not depend on the sam-
pling pattern. Nevertheless, our algorithm produces results that are
within 1.5 bits per point of the kd-tree compressor and very similar
to the Touma-Gotsman mesh compressor. For these models the ra-
dial coder gives better compression ratios than the axial coder in all
but one case.

It should be noted that the Touma-Gotsman compressor is no longer
the state of the art for mesh compression; we have used it because
it is freely available online, making it possible to generate a com-
plete set of results. For comparison, FreeLence [Wardetzky et al.
2005] obtains bitrates of 11.16bpv and 11.31bpv for feline and
horse-lowres respectively, but bitrates for the other models above
are not reported (also note that these results are for mean square
error equivalent to 12-bit quantisation, but that no error bound is
provided).

Table 2 shows a number of statistics regarding the compression of
the models. For the regularly sampled models (top half), the for-
ward predictor dominates and the correction lengths are much less
than L, which causes compression ratios to be well below the upper
bound.

On a 2GHz PC, compression and decompression speeds are around
10k and 75k points per second respectively. However, for sparse
point-sets (which have a larger value for L), the radial coder is less
efficient as it requires the construction of an O(L3) lookup table.
Where compression and decompression of sparse models may be
required, the axial coder eliminates this overhead, generally at the
expense of less than 0.5bpp. Gumhold et al. [2004] report compres-
sion and decompression speeds of 5k and 500k points per second
respectively for their scheme, which is also based on spanning trees
but is less sophisticated.

The compression time is dominated by the construction of the initial
graph (computation of the minimum spanning tree, and determina-
tion of all edges of length at most L). Although we use a kd-tree to
accelerate the process, our minimum spanning tree implementation
is quite crude and could potentially be optimised.

Decompression time is dominated by the progressive arithmetic

3Note that what most compression authors refer to as horse is in fact
horse-lres.



Model Points L Predictors Correction Bits per point
Base Left Right Forward length Tree Geometry Total

male 148138 17.5 2% 2% 4% 92% 2.4 0.65 6.33 6.98
igea 134345 29.3 3% 4% 6% 87% 4.4 0.96 8.26 9.22
rabbit 67039 28.5 5% 2% 2% 91% 4.4 0.70 9.06 9.76
horse 48485 83.8 7% 6% 6% 81% 8.4 1.13 9.90 11.03
santa 75781 27.0 4% 5% 10% 80% 5.4 1.35 10.15 11.50
bunny 34834 58.7 2% 3% 4% 91% 8.4 0.74 10.80 11.53
armadillo 172974 18.5 3% 11% 17% 68% 4.9 1.97 10.04 12.01
fandisk 6475 128.8 2% 3% 9% 86% 16.9 0.97 11.91 12.87
buddha 543652 29.1 35% 15% 12% 38% 4.6 2.00 8.79 10.79
feline 49864 61.6 12% 19% 19% 51% 13.9 2.12 14.78 16.89
venus 50002 54.2 8% 19% 19% 54% 14.5 2.25 15.07 17.31
horse-lowres 19851 74.6 6% 16% 16% 62% 17.1 1.92 15.73 17.65
dinosaur 14070 79.9 17% 23% 19% 41% 18.7 2.26 16.12 18.38
face 12530 112.4 16% 20% 18% 46% 23.6 2.20 16.65 18.85
triceratops 2832 171.6 18% 10% 16% 56% 33.4 1.91 18.59 20.50
blob 8036 90.3 12% 15% 17% 56% 35.3 2.44 19.13 21.58

Table 2: Statistics of the compression of the models used. L is the longest edge in the spanning tree. Correction length is the L2 mean length
of the correction vectors. The geometry results are for the radial encoding method.

coder. If decompression speed is a concern, improvements can be
made by using a non-progressive coder and storing frequency ta-
bles in the header. This would require a two-pass compression, but
eliminate the need to dynamically update frequency tables during
decompression.

5 Conclusions

Our compression algorithm yields impressive compression rates for
models that have been regularly sampled. For less regular sam-
plings, and in particular for decimated models, the compression
rates are not as competitive but are nevertheless reasonable. Fur-
thermore, no triangulation is required, which makes our algorithm
suitable for real-time compression of point clouds whereas a trian-
gulation pass followed by a (possibly more efficient) mesh com-
pression would be too computationally expensive).

As presented, our method will perform very poorly on models with
disjoint components (due to the long minimum spanning tree edge
required to connect them), but it could easily be modified use a
spanning forest rather than a spanning tree.

While developing our compressor, we experimented with a num-
ber of cost functions for constructing the spanning tree, improv-
ing compression rates by up to 2bpp. While our heuristic produces
good results, this is clearly still a fertile area for future work. For
real-world applications, improvements to the spanning tree con-
struction are particularly attractive because the file-format and de-
compression algorithm are unaffected.

We have considered only the compression of geometry, but points
may have other associated attributes such as colours or normals.
We expect that our normal estimation method could be used for ef-
fective compression of normals. Where the normal prediction fails,
the cost of encoding a large correction would be amortised by the
improvements to the lateral predictions due to having a correct nor-
mal.

References

ALLIEZ, P., AND GOTSMAN, C. 2004. Recent advances in com-

pression of 3D meshes. In Advances in Multiresolution for Geo-
metric Modelling. Springer.

BOTSCH, M., WIRATANAYA, A., AND KOBBELT, L. 2002. Ef-
ficient high quality rendering of point sampled geometry. In
EGRW ’02: Proceedings of the 13th Eurographics workshop
on Rendering, Eurographics Association, Aire-la-Ville, Switzer-
land, 53–64.

ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNSBERY,
M., AND STUETZLE, W. 1995. Multiresolution analysis of ar-
bitrary meshes. In SIGGRAPH ’95: Proceedings of the 22nd
annual conference on Computer graphics and interactive tech-
niques, ACM Press, New York, NY, USA, 173–182.

FAUGERAS, O. 1993. Three-Dimensional Computer Vision: a
Geometric Viewpoint. MIT Press, Cambridge, Mass.

FLEISHMAN, S., COHEN-OR, D., ALEXA, M., AND SILVA, C. T.
2003. Progressive point set surfaces. ACM Trans. Graph. 22, 4,
997–1011.

GANDOIN, P.-M., AND DEVILLERS, O. 2002. Progressive loss-
less compression of arbitrary simplicial complexes. In SIG-
GRAPH ’02: Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, ACM Press, New
York, NY, USA, 372–379.

GUMHOLD, S., KARNI, Z., ISENBURG, M., AND SEIDEL, H.-P.
2004. Predictive point-cloud compression. In ACM SIGGRAPH
Conference Abstracts and Applications.

LEE, H., ALLIEZ, P., AND DESBRUN, M. 2002. Angle-analyzer:
A triangle-quad mesh codec. In Eurographics conference pro-
ceedings, 383–392.

LEVOY, M., PULLI, K., CURLESS, B., RUSINKIEWICZ, S.,
KOLLER, D., PEREIRA, L., GINZTON, M., ANDERSON, S.,
DAVIS, J., GINSBERG, J., SHADE, J., AND FULK, D. 2000.
The digital Michelangelo project: 3D scanning of large stat-
ues. In SIGGRAPH ’00: Proceedings of the 27th annual con-
ference on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
131–144.

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching cubes:
A high resolution 3D surface construction algorithm. In SIG-



GRAPH ’87: Proceedings of the 14th annual conference on
Computer graphics and interactive techniques, ACM Press, New
York, NY, USA, 163–169.

OCHOTTA, T., AND SAUPE, D. 2004. Compression of point-
based 3d models by shape-adaptive wavelet coding of multi-
height fields. In Proceedings Symposium on Point-Based Graph-
ics.

PENG, J., AND KUO, C. C. J. 2003. Octree-based progressive
geometry encoder. In Internet Multimedia Management Sys-
tems IV. Edited by Smith, John R.; Panchanathan, Sethuraman;
Zhang, Tong. Proceedings of the SPIE, Volume 5242, pp. 301-
311 (2003)., 301–311.

RANDERS-PEHRSON, G. 2003. Portable Network Graph-
ics (PNG) Specification, 2nd ed. W3C, October.
http://www.w3.org/TR/PNG/.

RUSINKIEWICZ, S., AND LEVOY, M. 2000. QSplat: a multireso-
lution point rendering system for large meshes. In SIGGRAPH
’00: Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 343–352.

SEDGEWICK, R. 1990. Algorithms in C, 2nd ed. Addison-Wesley.

TAUBIN, G., AND ROSSIGNAC, J. 1998. Geometric compression
through topological surgery. ACM Transactions on Graphics 17,
2, 84–115.

TOUMA, C., AND GOTSMAN, C. 1998. Triangle mesh compres-
sion. In Proc Graphics Interface, 26–34.

TURK, G., AND LEVOY, M. 1994. Zippered polygon meshes
from range images. In SIGGRAPH ’94: Proceedings of the 21st
annual conference on Computer graphics and interactive tech-
niques, ACM Press, New York, NY, USA, 311–318.

WARDETZKY, M., KAELBERER, F., POLTHIER, K., AND REIT-
EBUCH, U. 2005. Freelence — coding with free valences. In
Eurographics.

WASCHBÜSCH, M., GROSS, M., EBERHARD, F., LAMBORAY,
E., AND WÜRMLIN, S. 2004. Progressive compression of point-
sampled models. In Eurographics Symposium on Point-Based
Graphics, 95–102.

WITTEN, I. H., NEAL, R. M., AND CLEARY, J. G. 1987. Arith-
metic coding for data compression. Commun. ACM 30, 6, 520–
540.



(a) bunny (b) fandisk

(c) face (d) triceratops

Figure 3: Spanning trees for some of the compressed models. The colours indicate which predictors are used. The upper models are regularly
sampled, and the trees consist mostly of runs of forward predictions which are succinctly encoded. The lower models are less regularly
sampled and the resulting trees are less structured.


