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Abstract

Inadequate requirements engineering is considered to be one of the top causes for software
development project failure today. One of the major problems is the lack of processes,
techniques and automated tool support available to developers for specifying requirements.
We thus set out in our research to improve requirements specification methodology by
enhancing the approach that is most popular at the moment - use case modelling. Despite
their popularity, use case models lack structure and precision, which makes formal analysis
of such models impossible. In our proposal, we amend traditional use case models with
formal structure and semantics to make them suitable for automated analysis.

The enhanced use case modelling method that we propose is called Susan (“S”ymbolic
“us”e case “an”alysis), which facilitates analysis of use case models using model checking.
We also developed a software tool called SusanX to construct, manipulate and analyse
Susan models. The analysis feature of the tool is implemented using the publicly available
NuSMYV model checker, which allows verification of finite state systems for behavioural
properties expressed in temporal logic. A number of generic properties that can be used
for verification of any Susan model are built into the SusanX tool. Additionally, SusanX
permits the user to define model-specific properties for verification. This is done through
property specification patterns, which allow one to express logic properties without knowing
the details of the underlying formalism.

In order to evaluate how valuable Susan and the SusanX tool are in solving real-world
problems, we performed a case study of a Cash Management System (CMS). The case study
was done in collaboration with an established South African software development company,
which provided us with the requirements specifications for the system. We successfully used
the Susan notation to model the CMS requirements and performed various analyses on the
models with SusanX. The state of the requirements specifications was considerably improved

through this process and numerous errors were discovered during the SusanX analyses.
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Chapter 1

Introduction

It is fairly common knowledge that today only one out of every three software development
projects is completed successfully. The latest CHAOS Surveys by the Standish Group [sta03]
report that 15% of projects fail outright, and 51% are late, run over budget or provide
reduced functionality. On average only 54% of the initial project requirements are delivered
to the client. Inadequate definition and understanding of project requirements by developers
is considered to be one of the main causes for project failure.

Before any software system can be built, it is necessary to establish its exact require-
ments. System requirements include a precise description of the functionality that the
system must provide, as well as the design and implementation constraints imposed by its
environment [KS98]. Requirements that define the desired functionality and behaviour of
the system are called functional, while other qualities and constraints to which the system
must conform are given by its non-functional requirements [BS03]. In a software devel-
opment, project, a combined definition of functional and non-functional requirements is
usually called a Software Requirements Specification (SRS) [KruO1]. There are several de-
sirable characteristics for a SRS, the most important of which are unambiguity, correctness,
completeness and consistency [IEE84]. Producing a SRS that possesses these characteristics
has proven to be a very challenging and yet crucial task. Without a reliable requirements
definition accurate project planning is impossible, system design and implementation are
bound to contain errors, and the final system cannot be validated to determine whether it
satisfies the needs of the client.

For many types of systems, missing or incorrectly implemented functionality is more
devastating to the client than the system not conforming to all its non-functional require-

ments such as performance or usability. For example, for non-real-time systems the client
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can usually tolerate the fact that the system response-time is not as quick as was origi-
nally desired. In this research we address the issues concerning the handling of functional
requirements of software systems. In the rest of the dissertation, we refer to “functional
requirements” as simply “requirements” in order to make our discussion more succinct.

A number of interrelated software engineering processes deal with system requirements,
which are collectively called requirements engineering. The names and definitions of these
processes vary slightly from one source to the other, but the most widely used ones are as
follows [KS98, NE0O, MC92].

e Requirements elicitation is concerned with collecting information from the or-
ganisation of the client and using it to identify system requirements. This involves
studying the application domain and existing systems, establishing the stakeholders
for the system and their individual needs, negotiating with them where necessary.

Elicitation is the most communication-intensive process of requirements engineering.

e Modelling and analysis are used to visualise, structure and verify requirements
once they have been elicited from various sources. In software engineering, a model
is an abstract description of a system from a particular perspective, used to enhance
the developers’ understanding of that system [BS03]. Techniques for modelling soft-
ware requirements vary greatly and include informal graphical modelling and rigor-
ous mathematical approaches. Requirements analysis is concerned with reasoning
about and examination of the captured requirements to ensure that they fulfil cer-
tain desirable properties. Analysis of requirements is essential for identifying missing

requirements, inconsistencies and logical errors early in the development cycle.

e Documentation of requirements results in a SRS, which is textual but often aug-
mented with models created during the modelling process. In fact, the latest trends in
software engineering such as Model Driven Architecture [mda02, Fra03], place models

rather than documents at the centre of all the development processes.

e Requirements management is necessary for controlling the changes of require-
ments that almost inevitably occur during the course of any development project. It
involves continuous monitoring of requirements right up to the end of implementa-
tion of the system. When changes are encountered, they must be reflected in all the

development work done up to that point.
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All of the requirements engineering processes described above are not yet well under-
stood and are prone to error. Furthermore, related activities such as traceability from
requirements to design and implementation also present developers with many challenges.
The two requirements processes that are overlooked the most by the industry are modelling
and analysis of requirements, and requirements management. In our research we focus on
the former - modelling and analysis of requirements.

Several methods for modelling and analysing requirements have been proposed by re-
searchers, but few have been accepted in the industry. Even though it has now been estab-
lished that a reliable definition of requirements is essential for project success, developers
are still reluctant to invest a sufficient amount of time in requirements engineering. As a
result, requirements modelling and analysis are often completely left out or not performed
effectively. In turn, this results in developers not having proper insight into systems be-
ing developed and poor requirements leading to poor final products. This problem can be
remedied by making requirements modelling and analysis methods more adequate for their
intended tasks and more accessible for the industry developers.

The work described in this dissertation is concerned with improving the existing methods
for modelling and analysis of requirements. Three main aspects characterise a requirements

modelling and analysis method:

e A notation describes how a requirements model is to be constructed and interpreted,
in other words its syntax and semantics. A requirements notation can be textual,
symbolic, diagrammatic or a mixture of these three. It can also vary in its formal

foundation.

e An analysis technique defines a way of checking a requirements model against
certain properties. It either predefines these properties or provides a means for the
user to define them. The modelling notation influences the way in which analysis can
be performed. Informal requirements models can only be checked manually, while

formal models can often undergo rigorous automated analysis.

e Tool support automating requirements modelling and analysis tasks is essential for

effective and efficient use of a particular method [Ebe97].

We set out in our research to study and bridge the gap posed by the lack of an ade-

quate method for requirements modelling and analysis. The following section describes the
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approach that we took in order to achieve this and gives an overview of our solution to the

problem.

1.1 Synopsis

The focus of our initial background research was on the existing methods for modelling and
analysis of software system requirements. It was necessary to establish the desirable criteria
for such methods before we could propose improvements in the area. An overview of the

criteria that we identified is given below.

1. Suitability: The modelling notation must be suitable for representing information
about software requirements and sufficiently expressive for capturing requirements at

a detailed level.

2. Understandability: Requirements models must be comprehensible and sufficiently easy

to navigate.
3. Unambiguity: Models in the notation must have a precise interpretation.

4. Rigorous analysis: The analysis technique must be rigorous producing useful and
reliable results. The goals of the requirements analysis must be clearly defined and

acknowledged by the user of the method.

5. Tool support: Construction and analysis of models must be automated by one or more
software tools. Analysis of models must provide the user with results in a reasonable
amount of time. Guidance with modelling and analysis of requirements must also be

provided by the tools supporting the method.

Our evaluation of the available methods revealed that while some of them have many
advantages, few can be highly rated on all of the above criteria. Consequently, we decided
to bring together the best elements of several existing approaches to formulate an enhanced
solution for requirements modelling and analysis. The diagram in Figure 1 depicts the
solution that we propose in this dissertation.

Figure 1 shows how we use some existing techniques as building blocks to construct
our enhanced method for modelling and analysis of software requirements. We base our

notation on the approach to capturing and modelling requirements that is the most popular
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Figure 1: Enhanced Method for Requirements Modelling and Analysis

at the moment - use case modelling [BS03, BRJ99], shown in block (2) in the diagram.
This technique was first presented by Ivar Jacobson [Jac92], but it is now considered to
be a part of the Unified Modelling Language (UML) [BRJ99]. Requirements models in
the use case notation are semi-formal and usually consist of diagrams supplemented by
text. They are well-suited for representing functional requirements for software systems.
Despite their popularity, use case models lack structure and exact semantics, which makes
rigorous analysis of such models impossible. In our proposal, we amend traditional use case
models with a formal syntax and semantics to make them suitable for automated analysis,
as represented by block (2) in Figure 1.

Rigorous analysis of formalised use cases is enabled with model checking [CES86, QS81]
in our solution, as illustrated in block (6) in Figure 1. Model checking is the process of
algorithmically determining whether a behavioural model satisfies certain specification prop-
erties, which are usually expressed in some form of temporal logic [CES86]. Our amendment,
of the use case notation facilitates creation of high-level behavioural models that capture
the desired functionality of a system, and these are then analysed with model checking.

In this research we utilised the NuSMV model checker [CCGR99, CCGT02] as the
analysis engine for our requirements models. NuSMV is a state-of-the-art symbolic model
checker, which is based on Binary Decision Diagrams. It verifies finite state-transition
models expressed in a prescribed NuSMV input language. In order to make use of this
tool, we defined a mapping from our formalised use case models to NuSMV programs.

Specification properties for NuSMV analysis must be expressed in Computational Tree
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Logic (CTL) [CE81] or Linear Temporal Logic (LTL) [Pri57, Pri67, Pnu77]. Our solution
shelters the developer from the complexities of temporal logic in two ways. First, we define
a number of generic analysis properties shown in block (5) in Figure 1. These can be used
to analyse any requirements model, which allows the developer to check models without
providing any extra input. Second, we make use of property specification patterns [DAC9S,
DACY99] that allow one to construct simple analysis properties in terms behavioural patterns
and model elements. Specification patterns appear in block (4) in Figure 1 as part of the
proposed analysis technique.

We called the proposed notation and analysis technique described above Susan, which
stands for “S”ymbolic “us”e case “an”alysis. The construction, manipulation and analysis
of the formalised use case or Susan models is automated by the software tool that we created
called SusanX, which is represented by the tool support block (3) in Figure 1. SusanX
translates Susan models to the NuSMV input language for analysis and also interprets

results produced by the model checker in terms of the original models.

1.2 Original Contribution to the Research Field

While using several existing techniques and tools, our approach is novel from a number of
different perspectives described below.

Our method of formalising and analysing use case models is original. Several
attempts have been made to improve and formalise use case models. For example, Haus-
mann et al [HHT02] propose refining use cases with UML activity diagrams and expressing
their pre- and post-conditions in terms of UML collaboration diagrams. This approach al-
lows for static analysis of conflicts and dependencies in use case models. Back et al [BPPP99]
formalise use cases with contracts defined in refinement calculus, which facilitates rigorous
analysis of use case models for properties such as “achievability” and safety. The complex-
ity of the mathematical notation underlying this approach and the absence of tool support
automating the analysis makes this technique impractical. Our proposed solution enhances
use case modelling by facilitating automated dynamic analysis of the models while keeping
the complexities of the analysis hidden from the developer.

We applied model checking in a domain where it has not been used before.
The use of model checking has proved to be very successful in verifying hardware designs,

and recently its application to software models has notably increased [CAB*98, RDHO03,
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EP02]. Cheng et al [CCMS02, MCO01] have developed a framework and a number of tools
for translating UML class and state diagrams to formal specifications that can be simulated
and analysed by model checkers. The NuSMV model checker has been used for verifica-
tion of business process models, where state automata representing business models were
translated to the NuSMV input language [KTK02]. We introduce a different application of
model checking - analysis of high-level behavioural use case models, and we investigate the
suitability of NuSMYV for this purpose.

We proposed and investigated the usefulness of a generic analysis technique
for requirements models. The advantages of rigorous analysis have always been offset
by the effort and special skills required from the developers. A lot of work has gone into
making these rigorous techniques more accessible. Our generic analysis option can be run by
the developer with a “push of a button”. The characteristics or properties that models are
checked for during this type of analysis have not been applied in use case modelling before.
In our work, we also examine another way of reducing the obstacles faced by developers
when using formal analysis techniques - employing specification patterns in construction of

analysis properties for use case models.

1.3 Objectives, Scope and Limitations

As explained before, the problem that initiated this research was the apparent inadequate
state of requirements modelling and analysis methods available to the industry. As we
learnt more about this problem and reviewed the work relevant to the field, we formulated

the precise objectives for our research. These were to,

1. Enhance the standard use case modelling approach, so that unambiguous use case

models can be constructed that are suitable for rigorous analysis by model checking,.

2. Select a suitable model checker for the analysis of formalised use case models and define
a mapping from the use case models to the input language of the model checker. In
addition, determine how results produced by the model checker can be interpreted in

terms of the original use case models.

3. Develop a means for the developer to control the analysis of the formalised use case
models, while hiding the details pertaining to model checking. This includes providing

an accessible way for specifying behavioural properties for the analysis.
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4. Build a prototype software tool to construct, manipulate and analyse formalised use

case models.

5. Carry out a case study whereby a real system is modelled and analysed according to
the proposed method using the developed tool. Evaluate the results of the case study

and draw conclusions on the usefulness of the proposed approach and the tool.

6. Make recommendations for future work in the field of requirements modelling and

analysis.

The scope of this research work has been limited to the duration of a Master of Sci-
ence programme at the University of Cape Town. More specifically, the following scope

restrictions and assumptions have been made.

e Although some aspects of our work can be applied to systems in any general engineer-
ing discipline, in this dissertation we concentrate only on the development of software

systems.

e Only the problems pertaining to modelling and analysis of requirements are considered
in this work, not the problems of the entire requirements engineering field. We assume

that solving these problems in isolation is reasonable.

e This research does not specifically address non-functional requirements of software

Systems.

1.4 Dissertation Outline

This dissertation first gives essential background on requirements engineering aspects rele-
vant to our research and the fundamentals of model checking. Then it describes in detail
our proposed requirements modelling and analysis method, Susan. The development of the
SusanX software tool is explained with reference to the important design and implementa-
tion details. Finally we share our experience in the performed case study, draw conclusions
and make recommendations for future work. The chapter outline for the dissertation is as
follows.

Chapter 2 provides the reader with background on the field of requirements modelling

and analysis and surveys the existing work in the area.
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Chapter 3 first explains the standard use case modelling approach, including its strengths
and weaknesses. The main illustrative example of a telemedicine system used throughout
the dissertation is introduced. This is followed by an overview of the strategy that we
employed to formulate our improved requirements modelling and analysis method. A com-
parison of our work with previous efforts in developing use case modelling is also provided.

Chapter 4 contains important background theory on model checking and an overview
of the existing model checking tools. Our choice of the NuSMV model checker is justified,
after which the essential details of the NuSMYV input language are provided.

Chapter 5 describes the Susan notation in detail. The mapping from Susan to the
NuSMYV input language and the interpretation of verification results produced by the model
checker are explained. This is followed by a description of the different analyses of Susan
models that we propose.

Chapter 6 shows how all the theory previously described was implemented in the
SusanX tool.

Chatper 7 presents the completed case study of a Cash Management System (CMS).
The case study experience and the obtained results are evaluated in this chapter.

Chapter 8 concludes the dissertation and suggests directions for further work.



Chapter 2

Methods for Requirements
Modelling and Analysis

In this chapter we first discuss the importance of modelling and analysis in the field of
requirements engineering. Subsequently, we explain the possible notations, analysis tech-
niques and tool support that can be employed by a requirements modelling and analysis
method. Then we describe and draw a comparison of the existing methods and justify our

choice of use case modelling as the basis for Susan.

2.1 Importance of Modelling and Analysis of Requirements

We begin by providing a few definitions that are essential to the discussions in the remainder

of this dissertation.

Modelling: As in other domains, in software engineering, modelling is primarily done
to create a representation of a system that allows one to reason about and analyse
that system. A good model expresses complex aspects of a system in a manner that
makes them more comprehensible and is less expensive to create than the system
itself [Ebe97]. A requirements model for a software system is any abstract description
of what is required from that system. These models often consist of a combination of

diagrams, symbols and text.

Structural and behavioural models: A structural model emphasises static parts of a
system, such as its architecture for example. A Unified Modelling Language (UML)
class diagram is a typical example of a structural model. A system’s functionality

or behaviour over time and space is depicted in a behavioural model. Such models

13
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generally show communication between the different parts of the system, as well as
between the system and its environment. Behavioural models often contain some

structural information about the system as well.

Analysis and verification: In the domain of requirements engineering, analysis is the
process of studying and refining requirements [Ins90]. Verification is an analysis ac-
tivity that confirms that a system is being built correctly. The goal of requirements
verification is to check that requirements for a system are correct, complete, consistent

and unambiguous [Ins90, Ebe97].

At present, the main trends in software engineering are concerned with replacing ap-
proaches based on documentation with model-driven development [mda02]. The main goal
of the modelling trends is automation of as many of the software development activities as
possible. The long-term vision is to be able to generate a complete system implementation
from design or even requirements models without having to manually program the solution.
Several tools such as IBM Rational Rose and Rational Software Architect already provide
a certain degree of code generation from software design models.

Unlike design for example, requirements engineering activities have always been based
primarily on documentation rather than models. One of the reasons for this is that when
requirements are elicited from the client, they are expressed verbally. Hence, it is easier for
the developers to write down their interpretation of these requirements than transform them
into modelling concepts. On the other hand, software designs are naturally created using
diagrams or other modelling constructs to explain how a system should be built. However,
modelling as a technique for capturing information has a number of advantages that apply
to design as well as requirements engineering.

Firstly, model representations are usually more concise than textual descriptions and
can convey large amounts of information succinctly. Consequently, models are easier to
analyse than lengthy documents. Secondly, models are more traversable or “traceable”, as
it is more often referred to in software engineering. This once again makes models easier to
understand and navigate than text. Thirdly, models have the power to express requirements
more precisely than natural language, which is inherently ambiguous. A precise model can
be analysed rigorously by formal techniques such as model checking and theorem proving,
which are described further on page 17. Analysis of requirements definitions is essential to

ensure that they capture requirements in a correct, consistent and complete manner. Several
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methods have been proposed to improve requirements engineering with these benefits of

modelling. However, few of these methods have succeeded in practice as we explain shortly.

2.2 Notations, Analysis Techniques and Tool Support

In Chapter 1, page 5 we distinguished between three aspects characterising a requirements
modelling and analysis method: notation, analysis technique and tool support. Some addi-

tional detail on these is given below.

2.2.1 Notation

As mentioned already, in the context of requirements modelling a notation describes how a
requirements model is to be constructed and interpreted. A model can consist of diagrams
and textual elements such as characters, symbols, abbreviated expressions and annotations.

Modelling notations can be classified into the following categories.

e Informal. Open-ended and flexible notations without precise interpretations fall into
this category. Models in such notations usually consist of ad-hoc diagrams produced by
developers to communicate their ideas to others or supplement documents. Informal
models can often be understood by non-technical stakeholders. However these models
cannot be used to convey information in an unambiguous manner, are not suited to

rigorous analysis and are prone to contain inconsistencies and incompleteness [Ebe97].

¢ Semi-formal. Notations that define a set of valid elements to be used in a model
and restrict the ways in which these can be put together are semi-formal, provided
that overall models still do not have a precise interpretation. Semi-formal models are
mid-way between informal and formal notations. They are more suitable for analysis

than the informal models and more comprehensible than the formal models.

e Formal. Formal modelling notations have a well-defined syntax and semantics. Al-
gebraic and logic notations are prime examples of notations in this category. The
main advantage of formal models is that they provide an unambiguous way to express
information and can be rigorously analysed for properties such as correctness, com-
pleteness and consistency. However, considerable effort and skill are usually required

to build formal models, which is why formal notations are not often used in practice.
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2.2.2 Analysis technique

Analysis of requirements models can be performed with a number of different goals, and it
is essential that the developer understands these goals. Requirements model analysis can

be carried out to,

1. Provide developers with a better understanding of the system. Examining individual
model elements, how they relate to each other and work together can be very effective

in improving the developers’ understanding of the system and its requirements.

2. FExpose errors, inconsistencies and incompleteness in the model. The first version of a,
requirements model is very unlikely to be error-free, consistent and complete. A num-
ber of analysis and adjustment cycles are necessary to get a model into an adequate
state. In spite of this, proving absolute correctness, consistency and completeness of

a requirements model is a conceivably impossible task.

3. Show that certain constraints hold in the model. Typically a system is required to
provide functionality under certain constraints that are defined as non-functional re-
quirements for the system. In this case, a model of the functional requirements can

be analysed to check that it satisfies these additional constraints.

Currently, there are a number of analysis techniques that have application in different
areas of software engineering including requirements engineering. The salient of these are

briefly described next.

e Manual inspection. This category refers to examining models by-hand either in an

ad-hoc manner or according to a structured process.

e Static analysis. All the techniques for checking the structure of models fall into this
category. This type of analysis can be applied to models in semi-formal and formal
notations. For behavioural models, static analysis is typically performed as a prelude

to further analyses involving model execution.

e Animation. Automated walk-through of behavioural models is called animation,
simulation or meta-execution. The manner in which animation is performed largely
depends on the modelling notation used. Most of the time, the effect of each step

through the system’s behaviour is shown during the trace and the user instructs the



CHAPTER 2. METHODS FOR REQUIREMENTS MODELLING AND ANALYSIS 17

animation tool when and how the next step should be executed. Animation is very
useful in providing developers with insight into behavioural models that are expressed

in semi-formal or formal notations.

e Model checking. Formal behavioural models expressed as systems of state transi-
tions can be analysed using model checking techniques [CES86, QS81]. Model checking
determines whether a model satisfies a given property by exhaustively searching all
of its possible behaviours. In addition to a formal model description, model checkers
require the user to provide a specification of verification properties stated in tempo-
ral logic [BCG88]. At the end of the analysis, a model checker reports to the user
whether the given property is satisfied by the model. In case of a negative result,
most model checkers generate a counter-example trace showing how the property can
be violated. This analysis technique is very effective in verifying models for desirable
properties or constraints, but its major drawback is that the time taken by analysis

grows exponentially with the size of the model.

e Theorem proving. Similar to model checking, theorem proving can be used to
determine whether a formal behavioural model satisfies a certain property [BM&4,
Fit96]. However, for this analysis technique models need to be described by a series
of axioms and hypotheses expressed in a form of logic, which is also used to write the
verification properties. The analysis process shows whether it is possible to derive a
given property from the model by using the principles of the underlying logic. This
process requires guidance of an expert to be effective and efficient, which is why

theorem proving is not commonly used in practice.

2.2.3 Tool support

In the vigorous software development industry of today a requirements modelling and analy-
sis method must be supported by a software tool if it is to be used in practice. Many editors
are currently available for different requirements modelling notations. Some of these ad-
ditionally provide organisation and management features, such as grouping of models into
packages, configuration management and version control. Tools for modelling notations
that are suitable for analysis provide different degrees of analysis automation. On the one
hand, a tool can automate the complex analysis computations but still require close guid-

ance by the user. On the other hand, certain tools fully automate the entire analysis process
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needing no input from the user other than the actual requirements model. Guided analysis
requires more work from the user and possibly special skills to make effective use of the
process. However while fully automated analysis is much less demanding from the user’s
point of view, it can be inflexible and limited when compared to the guided option. Tools

that offer both analysis options can be very advantageous.

2.3 Existing Requirements Methods

We surveyed numerous methods that are currently available for modelling and analysis
of software requirements. Many of these methods focus mainly on the modelling aspect,
without defining or suggesting analysis techniques to be used on requirements models. We
suggest two possible reasons for this: either modelling notations underlying the methods
are not suitable for analysis purposes or the methods were not sufficiently developed to
include analysis techniques. The methods surveyed varied greatly in the measure of guidance
provided to the user in applying the method. Below is a list of the most significant of these

methods and a brief description of each.

ALBERT: The Agent-oriented Language for Building and Eliciting Real-Time require-
ments was developed at the University of Namur, Belgium [DBDP94]. This method
can be used to model in detail the intended behaviour of real-time systems. ALBERT
prescribes a formal modelling notation based on temporal logic and in addition to that
provides users with less formal diagrams to capture the high-level aspects of models.
A software tool called GraphTalk (registered trademark of Rank Xerox) can be used
as an editor for certain parts of ALBERT models.

CORE: The COntrolled Requirements Expression method was introduced by Mullery in
1979 [Mul79]. This method models requirements in terms of viewpoints that are used
to represent all entities that interact with, affect or have an indirect interest in the
system [KS98]. CORE models consist of tables and simple structural and data flow

diagrams.

KAOS: Knowledge Acquisition in autOmated Specification is a goal-driven method pro-
posed in 1991 by van Lamsweerde et al [vLDDD91, DvLF93]|. It borrows several
notions from the theories of Artificial Intelligence, the most important one of these is

that of an agent. An agent is an entity that has characteristics like autonomy, social
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ability, reactivity and proactivity. The notation underlying KAOS is predominantly
textual, where certain aspects of models are formalised with first order temporal logic.
The method is supported by an editor called GRAIL [DDMvL97].

RML: The Requirements Modelling Language was first presented in 1982 [GMBS&2]. This
language prescribes a textual or code-like notation for modelling system behaviour,
which has a formal semantics and can be mapped to first order predicate calculus.
Modelling with RML is supported with a software tool called ACME [GFST91]. After
some experimentation RML was criticised for its rigidity and an improved version

called Telos was developed to make it more flexible [MBJ90].

Sequence diagrams: UML offers sequence diagrams to capture required system behaviour
by showing interactions between the system and its environment. Interactions are
expressed as messages passed between the system and entities in its environment with
emphasis on the time ordering of events. UML advocates using sequence diagrams
in combination with use case models. Most available UML modelling tools provide
editor support and sometimes animation facilities for sequence diagrams. Rational

Rose and Telelogic Tau UML Suite are just two examples.

Tropos: Tropos is an agent-oriented methodology that is a recent development proposed in
2001 by Bresciani et al [BPGT01, GMP02|. This methodology encompasses the entire
software development process, but places a great emphasis on modelling and analysis
of requirements which is why we include it in our discussion. Tropos requirements
models are based on agents and notions such as beliefs, goals, actions and plans.
Tropos prescribes semi-formal diagrammatic notations for requirements models during
early and late requirements analysis stages. A number of analysis techniques based

on principles from Artificial Intelligence are defined for Tropos requirements models.

Use case modelling: The main idea behind the use case approach was first proposed by
Jacobson [Jac92], but now use case modelling is considered to be a part of UML. Use
case models provide a way to demonstrate what is required from a system without
specifying any of its internal behaviour. The use case notation consists of simple
diagrams that are often supplemented by textual descriptions. Typically all tools
that provide UML modelling facilities support use case modelling. In the recent years

this method has become increasingly popular in the industry.
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Z: The Z method was developed by the Programming Research Group at the Oxford Uni-
versity Computing Laboratory in the late 1970s [Spi92]. It provides a way for precisely
expressing behaviour of software systems in a notation based on set theory and first
order logic. The main elements of Z models are schemas that are intended to be sup-
plemented by informal explanations to make them more comprehensible. Z schemas
can be used to describe state variables, operations within a system and invariant
conditions that must not be violated. These descriptions get lengthy and difficult to
understand for a system of a moderate size. Numerous tools have been developed for
7 modelling and analysis, FuZZ is one example. A similar approach is the Vienna
Development Method (VDM) [Jon90, JS90] that was developed prior to Z at the IBM

Laboratory in Vienna.

Table 1 classifies each one of the methods in terms of the modelling notation that they
use, the type of analysis they allow and their tool support. We use the following categories

for these three characteristic aspects of a requirements modelling and analysis method:

e Notation: informal, semi-formal, formal

e Analysis technique: manual inspection, static analysis, animation, model checking,

theorem proving, other

e Tool support: editor, management, gquided analysis, fully automated analysis

Method | Notation | Analysis technique | Tool support

ALBERT formal - editor

CORE semi-formal static analysis -

KAOS formal - editor

RML formal static analysis editor, guided analysis

Sequence diagrams | semi-formal animation editor, management, guided analysis

Tropos semi-formal other -

Use case modelling | semi-formal manual inspection editor, management

Z formal static analysis, editor, guided analysis
theorem proving

Table 1: Overview of Existing Methods

The methods that we looked at are so diverse that it is difficult to draw a direct com-

parison between them. Nevertheless we assessed them on the basis of the desirable criteria



CHAPTER 2. METHODS FOR REQUIREMENTS MODELLING AND ANALYSIS 21

for a requirements modelling and analysis method defined in Chapter 1 on page 7, in an
attempt to evaluate their relative merit. These criteria are suitability (SUIT), understand-
ability (UNDERSTAND), unambiguity (UNAMBIG), rigorous analysis (ANALYSIS) and
tool support (TOOL). This assessment was done using documented critiques of the methods
as well as our own judgement. The results are shown in Table 2. In the table we use W to

indicate that the method satisfies a criterion and [ that it does not.

| Method | SUIT ] UNDERSTAND | UNAMBIG | ANALYSIS | TOOL |
ALBERT g g | O |
CORE | | g O O
KAOS O O | O |
RML O O | O |
Sequence diagrams g | (] (] |
Tropos (] ] (] (] O
Use case modelling | ] (] (] |
7 O O | | |

Table 2: Assessment of Existing Methods

The most important of the criteria used in our comparison above is suitability. Many
powerful and well-established methods exist for capturing system behaviour at a detailed
level, such as Statecharts [Har87] for example. However, they cannot be used effectively
to represent software requirements that state what a system must do rather than how it
must to it. As can be seen from Table 2, only two out of all the methods are suitable
for representing information about software requirements. The first of the two methods is
CORE, which has not achieved acceptance by developers in the industry. The other method
is use case modelling, which unlike CORE is being widely used in practice for modelling
software requirements.

The original objective of our work was to bridge the gap posed by the lack of an adequate
method for modelling and analysis of software requirements. In order to do this, we could
have formulated a completely novel approach that was superior to the existing methods
discussed in this section. Instead of re-inventing the wheel however, we decided to improve
the most successful of the surveyed methods - use case modelling. As shown in Table 2, the
use case approach lacks an unambiguous notation and a rigorous analysis technique. We

extend the standard use case modelling with these in our enhanced method called Susan.
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This concludes our discussion of the methods for requirements modelling and analysis.
In this chapter, we explained the importance of the modelling and analysis activities dur-
ing requirements engineering. Furthermore, we introduced the predominant techniques for
modelling and analysing software requirements and compared them on the basis of several

characteristics and criteria.



Chapter 3

Use Case Modelling

In this chapter we first provide background on use case modelling and explain the benefits
and drawbacks of this technique. Next we introduce an example of a telemedicine system,
to be used throughout the dissertation, and show how its requirements can be modelled
with use cases. Furthermore, we explain how the Susan method improves the standard use

case modelling approach and compare Susan to related work.

3.1 Fundamentals of Use Case Modelling

Use case modelling is one of the only approaches to defining software requirements that
allows one to represent the intended behaviour of a system without specifying how it should
be implemented. Booch et al [BRJ99] state that use case models can be used “to visualize,
specify, construct, and document the intended behavior of your system during requirements
capture and analysis”. In fact, the use case approach can be used to model behaviour of
sub-systems, components and even individual classes, in addition to entire software systems.

Requirements captured in use case models provide an outside view of the interaction
between a system and its environment. The main elements of these models are actors and
use cases. Actors are used to represent entities that interact with the system, while use cases
define services that the system must provide. Before embarking on a detailed discussion of

this method, it is important to define and distinguish between the following three concepts.

Use case: A use case describes a service that the system is required to provide to an actor.
This service is expressed as a collection of possible scenarios of interaction between

the system and its environment needed to yield the value of the service to the actor.

23
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A use case must have a name that describes the service underlying the use case, and

this name is used to refer to it.

Use case diagram: Actors and use cases have graphical representations, which are used
to capture the relationships between these modelling elements in a use case diagram.
This diagram provides an overview of the people and other entities that interact with

the system and their requirements.

Use case model: A complete use case model consists of one or more use case diagrams
and additional descriptions of the scenarios associated with each use case in the model.
A use case diagram alone does not contain sufficient detail to serve as a requirements

model on its own.

Actors in use case modelling can be human or other automated systems that interact
with the modelled system, but are not part of the system themselves. In fact actors do not
just represent entities in a system’s environment, but rather correspond to a coherent set of
roles that these entities play when interacting with the system. For example, a particular
person can be embodied as several actors in a use case model if he plays different roles when
using the system.

A use case description usually consists of a number of flows, which are essentially se-
quences of events depicting scenarios of the system interacting with its environment. Typi-
cally, a use case has one main flow and a number of alternative or exceptional flows. Flows
for a use case can be expressed in natural language, captured in sequence diagrams or state
machines, or in another appropriate manner. Additionally other details such as priority,
trigger event, pre-conditions and post-conditions are often defined for use cases.

Diagrammatically, use cases are shown as ellipses or bubbles and actors as stick figures.
Figure 2 shows how the elements of use case models can be related to each other and how

these relationships are reflected in diagrams. These relationships are explained below.

(a) Association: Actor receives value from the system through Use case. Associations
also represent interaction between actors and the system. This is the only valid

relationship between an actor and a use case in use case modelling.

(b) Actor generalisation: Actor 1 inherits all the use case associations from Actor 2.
This relationship can be used to distinguish between general and more specialised

roles represented by actors.
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Figure 2: Relating Elements in Use Case Models
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(c) Use case generalisation: Use case 1 inherits behaviour from Use case 2, in a similar

way to class generalisation.

(d) Use case include: Flows of Use case 2 are contained within the flows of Use case 1.

The include relationship can be used to show that the same behaviour is shared by

a number of use cases. By organising use cases with this relationship, one can avoid

describing the same behaviour several times.

(e) Use case extend: Use case 1 can be optionally extended by the behaviour of Use

case 2. The flow of Use case 1 “can but does not have to” contain the behaviour of

Use case 2. Contrast this with include relationship where Use case 1 “must” include

the behaviour of Use case 2.

The most important relationship that underlies use case modelling is the association

between an actor and a use case. Surprisingly, this relationship has the least comprehensi-

ble definition and is most misunderstood by users of the method. Booch et al provide this

ambiguous definition: “An association between an actor and a use case indicates that the

actor and the use case communicate with one another, each one possibly sending and receiv-

1ng messages”. The confusion arises from the open-ended nature of the use case modelling

approach. Originally, use cases represented the different ways in which actors could use the

system - hence the name “use case”. Subsequently, people began to associate one use case
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with multiple actors to show all entities that the system interacted with during execution
of the use case. Today, development teams usually adopt and agree on a definition of the
actor and use case association that they find the most suitable to their particular context.

Several sets of guidelines for use case modelling have been proposed over the years [Coc00,
ASJ01], all of which are informal and often contradictory. The Rational Unified Process
(RUP) [KruO1] that prescribes effective usage of the Unified Modelling Language (UML)
during different development phases provides, limited support for use case modelling as
such. Furthermore, no specific technique for analysis of use case models accompanies the
method. This can be primarily attributed to the informal nature of use case modelling.

In the next section we provide an evaluation of the use case modelling approach by
considering its strengths and weaknesses. This is followed by an elaborate example of a use

case model in Section 3.3.

3.2 Pros and Cons of Use Case Modelling

Booch et al advocate three main purposes for use case modelling. Firstly, use case models
provide a means of communication between all of the system stakeholders because they can
be understood even by non-technical people. Secondly, use case modelling and analysis allow
developers to get better insight into a system’s requirements. Lastly, use cases can be used
to validate a system all the way during the development process. In this dissertation, we
primarily look at use case modelling as a method for modelling and analysis of requirements.
With this particular purpose in mind, the main strengths of the use case modelling method

are as follows.

1. The approach is relatively simple and flexible. The fundamentals of use case modelling
are straightforward, which makes it easy to learn the basics of the approach. The
flexibility arises from the fact that there is no unique way prescribed for constructing
or using use case models. Additionally, the level of detail that use case models contain

is flexible.

2. Use case models show the “what” and the “who” without the “how”. The goal of
requirements specification is to identify “who” the stakeholders for the system are
and “what” they require from the system. Use case models are well-suited to capture
this type of information without showing “how” the system needs to be built, which

is a design concern.
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3. Stakeholders can understand use case models. Use case models are high-level and
their graphical nature makes them intuitive and easy to grasp for clients and other
stakeholders. Hence, developers can use these models as a basis for discussion with
stakeholders, as well as get stakeholders to review models that capture functional

software requirements.

4. Use case modelling is well-integrated into the development process. It naturally inte-
grates into the software engineering process if UML is used during the other develop-

ment phases.

Above and beyond these strengths of use case modelling, the approach suffers from

several weaknesses explained next.

1. Effective use case modelling is challenging. Although it is easy to learn the basics of
use case modelling, effective use of this approach is not a simple task. The lack of a
standard and consistent set of guidelines and the extensive flexibility of the approach

make construction and manipulation of use case models difficult.

2. Textual use case descriptions lack structure. There is no prescribed structure for
textual use case descriptions. In other words, there is no stipulated set of attributes
that must be specified for a use case, neither are there formats set down for commonly
used use case descriptions. Consequently, one can never be assured of the level of

detail, type of content or presentation of use case descriptions.

3. Use case models are ambiguous. Supplementary use case descriptions are usually given
in natural language, which is inherently imprecise, making use case models ambiguous.
Additionally, certain graphical elements of use case models are poorly defined. The
ambiguous nature of the association between an actor and a use case makes it difficult
to identify use cases, and also obscures interpretation of already created use case

models.

4. It is impossible to analyse use case models for correctness, completeness or consis-
tency. Use case models are not based on a formal syntax or semantics. Textual
supplements to diagrams are usually in natural language, and as a result cannot be
analysed in any formal way. This means that the only way a use case model can be

analysed for qualities such as correctness, consistency and completeness is by being
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checked by a human reader. Naturally, this becomes more difficult and unreliable as

the amount of information in the model increases.

3.3 Illustration of Use Case Modelling

In the following chapters that describe our proposed requirements modelling and analysis
method, we use a telemedicine system called MuTI as an example. We begin by presenting
a use case model for this system to demonstrate the standard use case modelling method.
MuTI stands for Multimodal Telemedicine Intercommunicator and is a system that was
developed during a research project at the Computer Science department of the University
of Cape Town by Chetty et al for use in rural areas of South Africa [CTB04]. The main
purpose of the system is to facilitate communication and exchange of data between doctors
and nurses situated in remote locations in rural areas. For example, MuTI allows a nurse
at a clinic to consult a doctor at a remote hospital before sending a patient there. Nurses
and doctors can exchange images and other data during a consultation, which allows for
some patients to be diagnosed without the physical presence of a doctor. In this way, the
limited resources of the rural community are used more efficiently and health-care becomes
accessible to more people.

MuTlI is a custom telemedicine system that was developed for and tested in a specific
area in the Fastern Cape province of South Africa. This area is not covered by a fixed
network and the only available network is wireless, which is not reliable at all times. These
special conditions are taken into account in the MuTI system, as it provides two modes
of communication: synchronous and asynchronous. In the synchronous mode, users can
interact in real-time such as for example with Voice over the Internet Protocol (IP). The
asynchronous mode allows a user to prepare data that needs to be sent across to another
user, after which that data is stored locally and forwarded to its destination when the
network connection is available. With this mode of communication, users can exchange
medical data in a manner similar to electronic mail. The medical data that nurses and
doctors deal with consist of patient profiles and medical records, which can include text,
images and audio.

Each MuTI user is given a unique identifier name, a User ID. When one user wishes to
communicate with another, the User ID of the target user needs to be provided as well as

the location where he is running a MuTT application. Each location is identified by a MuTI
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address.

The main features of MuTI are outlined below.

e Secure login. All users need to log in and be validated by the MuTI system before

they can have access to any of its services.

e Address book. Each user can maintain an address book that allows quick access to

addresses and other details of the user’s contacts.

e Dynamic online status for contacts. At all times, the user can see which contacts in
the address book are online and which are offline. If response time is important, seeing

the online status of the contacts helps the user to decide which contact to consult.

o Voice calls. The users can call each other using the Voice over IP technology, which
compensates for the absence of traditional telephones in the area. In order to place
a call, the caller must provide the User 1D of the callee and the MuTI address of
the callee’s location. The caller can either type in these details or select one of the

contacts from the address book.

e Storage of patient data. A MuTT user has a number of patients, whose personal details
are stored in the system. Each medical record created by the user must be attached
to a certain patient. A medical record for a patient can consist of text files, images

and audio recordings.

e Erchange of medical records between users. Once a medical record is created, it can
be sent to remote MuTI user. Received medical records get stored under the profile of
the corresponding patient. If no such patient exists on the receiver side, a new patient

profile is created.

e Arrangement of doctor appointments. A nurse may refer a patient to a doctor, in
which case she can request an appointment with that doctor through MuTIl. Once the

doctor accepts or rejects the appointment, the nurse is informed.

The use case diagram in Figure 3 captures the requirements for the MuTI system. As
can be seen, it depicts actors, use cases and their relationships. All the MuTI features
described before are refined and represented by use cases in the diagram. For example, the

Voice calls feature is supported with the Place call and End call use cases. Sometimes,
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use cases are drawn inside a rectangle representing the system boundary to emphasise that
actors are entities outside the system. However since the behaviour of only one system can
be modelled in a single use case diagram, showing the boundary rectangle is redundant.

There are two main users for this system - Nurse and Doctor. Both need to have access
to most of the services provided by the system, but have some distinct requirements for the
system as well. For example, only a nurse can request an appointment with a doctor and
only that doctor can accept or reject it. In order to represent the shared requirements, we
created an additional actor called Any user and linked both Nurse and Doctor actors to it
with the generalisation relationship. In this way, all the use case associations of the Any
user actor are inherited by the Nurse and Doctor actors as necessary.

The MuTI use case diagram shows an example of each of the three valid use case
relationships. The Validate user use case is included in the Log in use case to show that
the validation procedure takes place every time a user logs into MuTI. On the other hand,
the extend relationships used on the Log in use case show that the user is required to log
in before he can make use of the services represented by the extending use cases. Finally,
the use case generalisation is used to group related use cases. For instance, there are three
ways in which a user can Manage contacts represented by the three use cases specialising
this use case.

As an example of a supplementary use case description, consider the details of the Place

call use case.

Main flow of events:

Caller provides User ID of callee and MuTI address of callee’s location.
System checks whether callee is currently online at specified location.
Callee is currently reachable at specified location.

System sends call request to callee’s location.

ARl

Callee is not busy and accepts call.
Pre-conditions:

Caller is not currently on another call.
Post-conditions:

Call established between caller and callee.
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Alternative flow of events:

1. Caller provides User ID of callee and MuTI address of callee’s location.
System checks whether callee is currently online at specified location.
Callee is currently reachable at specified location.

System sends call request to callee’s location.
Callee is busy.

System asks caller to leave voice mail.

Caller records voice mail for callee.

System sends voice mail to callee’s location.

System receives confirmation that voice mail was delivered.

© Y 0N W

System notifies caller that voice mail was delivered successfully.
Pre-conditions:

Caller is not currently on another call.
Post-conditions:

Voice mail from caller waiting for callee.

In this case, the use case description consists of the main flow, alternative flow and
pre- and post-conditions associated with each of the flows. Here the flows are expressed
in natural language as numbered sequences of steps, but could have also been written in a
more informal manner in prose. As already mentioned, sequence or state transition diagrams

could have also been used to capture these flows.

3.4 Our Approach to Improving Use Case Modelling

Our objective in improving the standard use case modelling approach was to alleviate the
weaknesses described in Section 3.2 and at the same time retain as many of the benefits of
the approach as possible. Essentially, we wanted to formalise use case models and define an
appropriate technique for analysing the formalised models. In this section we explain how
we proceeded in developing the enhanced use case modelling and analysis method, Susan.
We first inspect the important behavioural aspects of each use case in a use case model.
Let us consider the Place call use case described in the previous section as an example.
The diagram in Figure 4 shows all the pieces of information that we have for this use case,

disregarding its relationship with other use cases in the model.
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Figure 4: Details of Place Call Use Case

There are two flows defined for the Place call use case, each of which describes a scenario
of interaction between the system and a MuT1I user represented by the Any user actor. Ad-
ditionally, each of the two flows has pre- and post-conditions associated with it. On closer
inspection of each of the flows, we notice that the flow steps contain a mixture of information
about what the system and user do and how they do it. Requirements modelling should
only concern the what aspects, while the how details should be taken care of in design
activities. Given a use case flow, we can extract the pure requirements information from it
by determining what overall effect the flow has on the system, under what circumstances
this effect takes place and what information is required by the system during the flow. Then

the flows for the Place call use case can be interpreted as follows.

Main flow of events:

What information is required? Input: Callee User ID, MuTI address for callee’s location.
Under what circumstances? If: Caller is not on another call, callee is reachable at the
specified location, callee is not busy and accepts call.

What effect? Then: Call established between caller and callee.

Alternative flow of events:
What information is required? Input: Callee User ID, MuTI address for callee’s location,

voice mail.
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Under what circumstances? If: Caller is not on another call, callee is reachable at the
specified location, callee is busy and caller decides to leave voice mail.

What effect? Then: Voice mail from caller waiting for callee.

The use case details captured above contain the essence of the Place call use case.
Altering the commonly used concept of pre- and post-condition slightly, we can include the
entire If contents into the flow’s pre-conditions and Then contents into the post-conditions.
Here we describe these details informally, but if they are formalised then rigorous analysis
can be performed of the required behaviour of the modelled system. Our proposed Susan
method is geared towards capturing precisely this type of information about use cases in
an unambiguous way.

We wanted our improved method to meet all the desirable criteria for a requirements
modelling and analysis method that we identified in Chapter 1, page 7. The formulation of
the Susan method was based on the lessons we learned while evaluating the various efforts
in the requirements modelling and analysis field. For example, in several cases we observed
how intricacies of a formal notation rendered methods uncomprehensible and unusable for
typical developers. From this we inferred that the trade-off between formality and usability
of a method cannot be underestimated.

In our view the most effective way to deal with the formality versus usability issue was
by providing the user with tools that simplify the tasks involved in building and analysing
formal models as much as possible. Hence the driving force behind the development of our
enhanced use case modelling method was automation. During every step that we took in
formalising use case models and devising analyses for them, consideration was given to how
this step would be supported by the SusanX tool accompanying our method.

Before formalising the use case modelling notation, it was important to identify the
type of analysis technique we wanted to apply to the resultant models. The type of analysis
that can be applied to a particular model is principally influenced by two factors: the
nature of the model, in other words whether it is structural or behavioural, and the formal
foundation of the underlying notation. Structural models can essentially only be analysed
by static means, while some behavioural models are appropriate for more advanced analysis
techniques such as model checking and theorem proving. Most rigorous types of analysis
require models to have formal syntax and semantics.

Use case models fall into the category of behavioural models, therefore there is a range
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of analyses that could potentially be performed on them. We decided to investigate how
model checking could be used for the purpose of analysing use case models. We chose
model checking because it is a very powerful automated analysis technique that has been
used successfully in a number of projects during various development activities [CABT98,
EP02, CCMS02, MCO01]. The only technique that offers the capability of computing the
same results is theorem proving, but it requires very specialised skills from expert users and

for this reason is not as widely used.

3.5 Existing Approaches to Formalising Use Case Modelling

Several attempts have been made to address the drawbacks of use case modelling and
formalise this method.

Hausmann et al [HHTO02] propose an approach to modelling and analysis of software
requirements based on formalising relationships between several UML diagrams with graph
transformation theory. This approach suggests that there are two main types of require-
ments models: static and dynamic. Static aspects of a system are modelled using class
diagrams, while use case diagrams capture its dynamic requirements. Inconsistencies are
often introduced when static and dynamic models are integrated, as currently there is no
adequate mechanism to check an integrated model for consistency. Hausmann et al tackle
this particular problem by defining explicit relationships between static and dynamic re-
quirements models and proposing a means of analysing them for consistency.

Behaviour of individual use cases is described by activity diagrams in this approach.
Activity diagrams give an overview of the sequential or branching flow of a set of oper-
ations within a system. For each operation appearing in an activity diagram, pre- and
post-conditions are defined as collaborations. In UML, a collaboration refers to a set of
classes or other elements that work together to achieve some common objective. Hausmann
et al draw collaborations as object diagrams showing only the elements relevant to the
particular operation. A pre-condition collaboration shows a snapshot of the system before
the operation is executed, and a post-condition collaboration shows how the objects and
their relationships change after the operation execution. These collaborations serve as a,
link between static and dynamic requirements models.

Graph transformation theory is used to formalise collaborations in models and this

facilitates rigorous consistency analysis. The aim of the analysis is to uncover potential
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consistency problems and not to prove absolute model consistency. It is performed statically
on the basis of critical pair analysis, and implemented in a tool called AGG. AGG is a tool
for graph manipulations, and hence cannot be applied directly to UML models. For practical
use of this approach, an interface between a UML tool and AGG needs to be defined and
implemented. Such an interface would allow one to export UML models to AGG for analysis
and then view analysis results in terms of the original UML models.

The method proposed by Hausmann et al is appealing, as it has the potential of allowing
developers to build models using familiar visual techniques and at the same time benefit
from formal analysis of these models. However as presented in [HHT02], the work seems to
be incomplete especially since it is not substantiated with any application of the method in
practice. Additionally, certain elements of use case models such as generalisation, include
and extend relationships between use cases are not yet addressed by the method.

Back et al [BPPP99] formalise use case models with a precise mathematical notation
called refinement calculus [BW9S8], which is an extension of Dijkstra’s weakest precondition
calculus. Asin the method advocated by Hausmann et al, an effort is made to bring together
modelling of classes and dynamic requirements for a system. Additionally, rigorous analysis
for achievability of actor goals is proposed in this method.

According to this approach, classes with attributes and methods are defined in a formal
textual notation. The collection of all class attributes describes the state of the system that
can be changed by execution of use cases. Use cases are expressed as contract statements
that essentially state how their execution affects the system state. Once again relationships
between use cases are not taken into account by this method. In the prescribed notation,
class and use case descriptions resemble computer programs.

Achievability analysis can be performed by first defining a goal formally and then per-
forming weakest pre-condition computations to determine whether the goal can be achieved
in the given model.

This approach certainly extends use case modelling with a formal notation and an
analysis technique, however whether this is an enhancement to use case modelling is very
questionable. The work is currently not supported by any tool, which makes it difficult to
judge the potential usability of the method. However, the nature of the underlying notation
and analysis technique do not lend themselves to much automation, so our conclusion is
that although interesting, this approach is impractical.

The Susan method that we propose is based on concepts similar to those used in the
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techniques developed by Hausmann et al and Back et al, such as pre- and post-conditions.
As proposed in this dissertation, Susan equally does not incorporate the relationships be-
tween use cases and actor generalisations. However, Susan surpasses these techniques in
improving use case modelling for two reasons. First, it maintains a relatively simple mod-
elling notation while formalising use cases. Second, it is supported by a rigorous analysis
technique and a tool that automates model analysis.

In their Masters dissertation [AB95], Andersson and Bergstrand formalise use case mod-
els with extended Message Sequence Charts (MSC) [ITU96]. Their work focuses on devel-
oping a graphical yet formal notation for describing use case flows. There are no suggestions
for analysing the proposed extended models. As for tool support, only several suggestions
are given in the future work section of the dissertation.

In general, numerous efforts have been made to formalise different aspects of UML. The
UML Version 2.0 [uml03a, umml03b] has been a work in progress by the Object Management
Group for the past few years. The aim of UML 2.0 is to provide a more complete and formal
specification of the language with a special emphasis on its semantics. With respect to use
case modelling however, the new version of UML provides only a few insignificant changes.

The Object Constraint Language (OCL) [0cl03] can be used to annotate certain UML
diagrams with formal descriptions of constraints. OCL defines a relatively simple syntax
and can be used to express invariants, queries, as well as pre- and post-conditions for UML
modelling elements. The language is primarily based on the object-oriented concepts such
as classes, associations and role names. Use case models deal with entities on a higher
conceptual level, and hence applying OCL to use cases would not be practical. However,
several constructs in the devised Susan notation resemble OCL.

With this we complete the background discussion of use case modelling. In this chapter,
we presented the fundamentals of this the use case technique, illustrated its use with an
example and discussed its strengths and weaknesses. Furthemore, an introduction to our
proposed Susan method was given and related existing work on enhancing the use case
approach was described. The following chapter concentrates on model checking and the
NuSMYV tool.



Chapter 4

Model Checking and NuSMYV

In this chapter we explain model checking, discuss the strengths and weaknesses of this
verification technique and compare existing model checkers. We support our choice of the
NuSMV model checker for this project and provide the essentials of the NuSMV input

language.

4.1 Fundamentals of Model Checking

Model checking is a technique for automatically verifying finite state concurrent systems, de-
veloped independently by Clarke and Emerson [CES86] and by Queille and Sifakis [QS81]
in the early 1980s. In this context, verification refers to showing that a finite state sys-
tem model satisfies a behavioural property expressed in a formal logic notation. This is
performed by an exhaustive search of all the possible behaviours of the modelled system,
implemented by tools called model checkers. When a model checker determines that a prop-
erty is not satisfied by the model provided, it generates a counter-example trace of system
behaviour that violates the property.

Systems are viewed as Kripke structures [Kri63] in model checking. A Kripke structure
is essentially a nondeterministic finite state machine, where the states are labelled with
propositions that hold in that state. A proposition is simply a statement that can either be
true or false. A more formal definition is given below.

Let AP be a set of atomic propositions. Then a Kripke structure is represented by a
tuple M = < S, I, R, L >, where:

e S is a finite set of states.

38
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e / C S is the set of initial states.

e R C § x § is a binary relation that gives all possible transitions from one state to
another state. This relation is total, which means that Vz € S 3y € S [(z,y) € R] or

each state must have a transition defined to itself or another state in the model.

e [: S— P(AP) is a function that labels each state with atomic propositions that hold

in that state.

During model checking, all the possible sequences of state transitions in a Kripke struc-
ture are considered. Figure 5 shows how a Kripke structure is “unwound” into a computation

tree showing all the possible behaviours of the system.

() ()
0"00 ONNO

Figure 5: Unwinding a Kripke Structure

A simple Kripke structure with three states is represented by a state transition graph
on the left in the diagram in Figure 5. There is one initial state, which is shaded and
labelled a. The computation tree on the right is obtained by beginning with the initial state
and repeatedly adding on states reachable through a valid transition. Since the transition
relation must be total in a Kripke structure, all the branches in a computation tree are
always infinite. A path is an infinite sequence of states such that every pair of adjacent
states in the sequence are joined by a valid transition. It is important to note that although
branches and paths in a computation tree are infinite, the set of all reachable states or the
state space is always finite for Kripke structures.

The notation used for expressing behavioural properties for model checking is propo-
sitional temporal logic [BCG88]. This type of logic allows one to reason about system

behaviour over time. Time is viewed as a sequence of system states, which are described by
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combinations of propositions. The logic that is most commonly used in the field of model
checking is Computational Tree Logic (CTL) [CE81]. In CTL the properties are composed

of the constructors explained below. Suppose that p and ¢ are atomic propositions.

e Two path quantifiers that describe for which paths a property must hold:

— Ap (forall) : p holds for all computation paths.

— Ep (exists) : there is least one computation path where p holds.

e Four main temporal operators that describe where within a particular path the prop-

erty must hold:

— Xp (next) : property p holds in the second state of the path.

Fp (future) : p holds on some state within the path.
— Gp (globally) : p holds on all the states of the path.

— p U q (until) : ¢ holds on some state within the path and p holds on all the

preceding states.

In a CTL property, a temporal operator must always be preceded by a path quantifier.
Figure 6 gives a visual representation of a number of simple but commonly used CTL
properties. The shaded circles represent states where a proposition p holds.

In the diagram in Figure 6, (a) represents the property AG(p) meaning that p holds
on every state of every path. In this case, the property p is called an invariant. The
computational tree shown in (b) depicts the property AF(p), which means that p will
inevitably hold on every path. EG(p) implies that proposition p holds on every state of at
least one path, as shown in (¢). Lastly, (d) represents the property EF(p) meaning that p
holds on some state of at least one path.

CTL is a branching time logic, which means that several possible futures are considered
at any point in time. Alternatively to CTL, model checking can also be done using Linear
Temporal Logic (LTL) [Pri57, Pri67, Pnu77]. Only one possible future exists in LTL, thus
it reasons about paths rather than computation trees. As a result, the “possibility” of
some event cannot be expressed in a LTL property. Furthermore, several other variations
of these logics exist and are used by different model checkers. Extended Temporal Logic
(ETL) [VW94|, Linear p-calculus [HH87] and Quantified Propositional Temporal Logic
(QPTL) [SVW8T] are just a few examples of alternative temporal logics for model checking.
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(c) (d)

Figure 6: CTL Properties in a Computation Tree

4.2 Pros and Cons of Model Checking

Since invented, model checking has attracted a great deal of interest from both research
and industry arenas. The use of model checking has proved to be very successful in ver-
ifying hardware designs and recently its application to software models has notably in-
creased [CABT98, EP02, CCMS02, MCO01]. For example in [CCMS02, MCO01], Cheng et al
present a framework and a number of tools for translating class and state diagrams from
the Unified Modelling Language (UML) to formal specifications that can be simulated and
analysed by model checkers.

The appeal of model checking is justified by several advantages of this verification tech-

nique. First of all, it is fully automated and requires minimal effort on the part of the
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user. All the user needs to do is supply the model checker with a system model and provide
it with properties that need to be verified. After the commencement of the verification
process, no further user interaction is necessary until the final results are computed. One of
the important implications of this characteristic of model checking is the possibility of inte-
grating model checkers as verification engines into other modelling tools. Such integration
can provide users with a more accessible interface to verification features offered by model
checkers. For instance, consider a UML modelling tool that interfaces with a model checker
by translating a UML model into the input language required by the model checker and
subsequently interpreting verification results in terms of the original graphical UML model.
In such a scenario, the software developer can reap the benefits of powerful verification
without having to know anything about the underlying complexities. The SusanX tool that
we developed integrates the NuSMV model checker in this manner.

Another advantage of model checking is that if verification of a property fails, a counter-
example is produced to demonstrate how the property is violated within the model. The
counter-example trace can be very helpful in tracking down the source of errors in a model.
Although, there are certain properties for which a counter-example cannot be produced.
For instance, a model checker cannot produce a trace showing how a system violates a
property that expresses the possibility of some event.

Lastly, the richness of temporal logic used to specify verification properties for model
checking allows the user to express a wide variety of behavioural characteristics against
which a model can be checked. A skilled user capable of constructing complex logic proper-
ties can utilise model checkers to their full extent. However, even if a model checker is used
as a verification engine in another tool where the user is shielded from the details of the
logic notation, it is still possible to allow the user to verify commonly sought behavioural
properties. SusanX provides the user with several manageable options for controlling model
verification performed with the NuSMV engine, as explained in Chapter 6.

The main drawback of model checking is its performance, in other words the time it takes
to compute verification results. Since the model checking algorithm performs an exhaustive
search of all the possible execution paths of the given model, verification time increases
exponentially with the size of the model. This well-known phenomenon is named the state
explosion problem.

A great deal of work aiming to improve the performance and scalability of model check-

ing is currently in progress and significant advancements have already been made [MP04,
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DKKO02]. Many application areas such as verification of software systems could benefit from

scalable and efficient model checkers.

4.3 Existing Model Checkers

Three main types of model checkers currently exist: explicit checkers, symbolic checkers
based on Binary Decision Diagrams (BDDs) and symbolic checkers based on satisfiability
procedures (SAT). When first introduced, model checking algorithms were intended for
explicit representations of system states stored in memory as lists and hash tables. During
verification, access to state and transition information is very efficient in explicit model
checking. However, model checkers with this type of state representation are greatly affected
by the state explosion problem and memory requirements for verification quickly become
intractable with increase in model size. The most eminent explicit model checkers are
Spin [Hol97] developed at Bell Labs, Java PathFinder [VHB03, LV01] from NASA and
Mur¢ [DDHY92] made at Stanford.

The invention of the symbolic approach [McM93, JEKT90] to model checking consti-
tuted a significant breakthrough in the field. Instead of explicitly representing each reach-
able state in memory, these model checkers work with sets of states instead. The most
recognised structure for holding state information in symbolic model checking is BDDs. A
BDD provides a compact means of representing boolean functions, and these functions are
used to characterise multiple states from the system model. This approach considerably
reduces the amount of memory required by verification and allows one to model check larger
models. The first tool called Symbolic Model Verifier (SMV) implementing this technique
was developed by McMillan at the Carnegie Mellon University [McM93]. It was then im-
proved by two independent projects at Cadence Berkley Labs and I'TC-IRST. The members
of the ITC-IRST project called their enhanced model checker NuSMV [CCGR99, CCG102]
and are continuously developing and extending this tool with new features. Other symbolic
model checkers include PRobabilistlc Symbolic Model checker (PRISM) [KNP02, KNP04]
from the University of Birmingham and RuleBase [BBDEL96| from the IBM Haifa Research
Labs.

Symbolic model checking with SAT presents another technique of obtaining verification
results more efficiently. Propositional satisfiability procedures are used to check computa-

tion paths of bounded length instead of exploring the entire reachable state space. Bounded
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Model Checkers (BMC) [BCCT99] that implement algorithms using SAT can be used for
discovering errors in models, but not for proving that a model conforms to a specification
property.

The Susan method is based on use case modelling and hence it represents the required
behaviour of a system for different scenarios of use. We wanted to allow verification of
Susan models, where the possibility of use case activations could be checked. Specification
properties describing the possibility of events can be expressed with CTL, which is the
predominant temporal logic used in model checking. Therefore, we needed to select a model
checker that supported verification of CTL formulae for our research. Furthermore, we
wanted to use an established tool that has been extensively used in practice. The NuSMV
model checker met these requirements and thus we used it as our verification engine for
Susan.

In our work we utilise NuSMV for verification of CTL properties only, however the tool
also supports LTL specifications. Furthermore, recently NuSMV has been extended with
BMC using SAT algorithms. We did not experiment with this feature of NuSMV, but rather
used the standard symbolic model checking capabilities of NuSMV.

One may note that the “symbolic” part of the name Susan, which stands for “S” ymbolic
“us” case “an”alysis, refers to our particular choice of the model checking technique. If an
explicit model checker were to be used instead of a symbolic one in future research, this

method name would need to be generalised.

4.4 NuSMYV Input Language and Generated Counter-Examples

As explained already, verification with model checkers requires a description of a finite state
system in some formal language and a specification of verification properties in temporal
logic. The NuSMV tool that we used in our work prescribes its own input language for
model description and accepts verification properties expressed in terms of CTL and LTL
formulae. The NuSMYV input language allows one to define valid transition relations between
the states of a system. The system state itself is represented by state variables, which can
only be of finite data types such as boolean, scalar and fixed array. During verification, the
transitions defined in a NuSMV model are used to determine legal evolutions of the system

and thereby compute verification results.
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Figure 7: State Changes of a Traffic Light

We introduce the NuSMV language syntax with a few simple examples. Our first ex-
ample is a basic model of state transitions for a traffic light, which is shown as a state
transition diagram in Figure 7. The colour of our traffic light changes from green to yellow,
yellow to red and then red to green again. In this model, the traffic light changes its colour
when the trigger called change is set to 1. We labelled the transitions in the diagram above
in order to make it more understandable, however it could easily be turned into a Kripke
structure where only the states are labelled. This traffic light system can be represented by

the following NuSMV model, or program as it is more commonly called.

1 MODULE main

2 VAR

3 change : boolean;

4  traffic_light : {red, yellow, green};

5 ASSIGN

6 init(traffic_light) := red;
7 next(traffic_light)
8

case
9 traffic_light = red & change = 1 : green;
10 traffic_light = yellow & change = 1 : red;
11 traffic_light = green & change = 1 : yellow;
12 1 : traffic_light;
13 esac;

A NuSMYV program can consist of one or more modules, where exactly one main module
must be present. The order of the modules in a program is irrelevant, but the entry point
into the program is always defined by the main module. Our example program above

comprises only a main module, which is declared in line 1. Inside the main module, there
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are variable declarations starting with line 2 and assignment statements starting with line 5.
Two variables are declared in this program: a boolean variable change and a scalar variable
traffic_light that can take on three values (red, yellow and green). During model
checking, the values of these two variables fully describe the state of this particular system.

The transition relations are expressed by defining the changes on the system’s state
variables in the assignment statements section of a module. Initial values are assigned to
variables with the init keyword as in line 6, while the next keyword is used to specify
how the value of a variable should change in the next system state as in line 7. In the
example, initially traffic light is assigned to red. After that, a case statement is used
to conditionally assign the next value to this state variable. For instance, line 9 indicates
that if the current value of traffic 1ight is red and change is equal to 1, then the new
value assigned to traffic_light is green. Line 12 simply suggests that in all other cases
not explicitly listed in the case statement, the value of the traffic_light variable should
remain unchanged. Note that no initial value is given to the change state variable. NuSMV
assigns an initial value to such non-initialised variables nondeterministically.

Modular programming in NuSMV is very useful when describing more complicated
systems. The language allows for parameterised modules that can be reused within the
program. Our second example illustrates this and some additional NuSMV language fea-
tures.

We now consider two synchronised traffic lights, which we label A and B. Both traffic
lights change colour at the same time, but A is always one colour “ahead” of B since it is
situated some distance before B on the road. For instance, if A is green then B must be red.

The system controlling these two traffic lights is modelled in the state transition diagram

Aisred
B is yellow
Als yellow Alis green
B is green Bis red

Figure 8: State Changes of Two Synchronised Traffic Lights

in Figure 8.
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Note that no trigger is used in this example. The NuSMV program corresponding to

this system is given below.

1 MODULE next_colour(current_colour)

2 VAR

3 colour : {red, yellow, green};

4 ASSIGN

5 colour :=

6 case

7 current_colour = red : green;

8 current_colour = yellow : red;

9 current_colour = green : yellow;
10 esac;

11 MODULE main

12 VAR

13 traffic_light_A : {red, yellow, green};
14  traffic_light_B : {red, yellow, green};

16 change_B : next_colour(traffic_light_B);
16  change_A : next_colour(change_B.colour);

17 ASSIGN
18  init(traffic_light_A)
19  next(traffic_light_A)

green;
change_A.colour;

20  init(traffic_light_B)
21  next(traffic_light_B)

red;
change_B.colour;

In the above program, there is one reusable module called next_colour that captures
the legal colour changes for one traffic light. It is instantiated twice by change B and
change_A in lines 15 and 16 respectively. Note that the next_colour module has one formal
parameter called current_colour, which is assigned to the value of the traffic light B
variable in its instantiation in line 15. The second instantiation uses change B.colour as
the actual parameter for the reusable module. This actual parameter references the colour
variable declared and assigned inside the next_colour module, which is allowed in NuSMV.
Hence the change_A module instance is essentially equivalent to next_colour (next_colour
(traffic 1light B).colour). In this way, we express the synchronisation of the two traffic
lights.

Some additional NuSMV language features are introduced in the next chapter when

they are used for the Susan to NuSMV mapping. Comments begin with -- in NuSMYV.
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CTL specifications are inserted into the assignment statements section of a NuSMV
program with a keyword SPEC preceding each property. For our second example, we may
want to check that the two traffic lights in the model do not get “out of sync”. One
of the properties that need to be satisfied for this is AG ! ( (traffic_light A = red) &
(traffic 1light B = green) ). The NuSMV model checker reports that this property is
in fact satisfied in the model.

When a property is not satisfied in the model, NuSMV produces a counter-example
trace demonstrating the violation of the property. Let us construct a property that should
be reported as false by the model checker. For example, !EF (traffic light A = red &
traffic light B = yellow) states that it is not possible for A to be red and B yellow at
the same time. The following trace is produced by NuSMV.

—-- specification !EF (traffic_light_A = red & traffic_light B =
yellow) is false

-- as demonstrated by the following execution

sequence —> State 1.1 <-

traffic_light A = green

traffic_light_B = red

change_B.colour = green
change_A.colour = yellow

-> State 1.2 <-
traffic_light_A = yellow
traffic_light_B = green
change_B.colour = yellow
change_A.colour = red

-> State 1.3 <-
traffic_light_A = red
traffic_light_B = yellow

change_B.colour = red
change_A.colour = green

The counter-example trace consists of two state transitions and shows three states. For
each state, the values of state variables are given. State 1.1 is the initial state of the
system, as can be seen traffic_light_A is assigned to green and traffic_light B is
assigned to red. After two changes of the lights, our property is violated in State 1.3.

We have now explained the fundamentals of both use case modelling and model checking.
In the next chapter we describe how we bring these two techniques together to formulate

Susan, our method for modelling and analysing software requirements.



Chapter 5

Susan Models and Verification

In this chapter we first present the Susan modelling notation and demonstrate it with a few
examples. Next, we explain how Susan models are mapped to the NuSMV input language
and how the generated NuSMV counter-example traces are interpreted in terms of Susan

models. Finally, we discuss the verification options offered in the Susan method.

Before explaining how the actual use case notation is extended in Susan, we first present
the general view on modelling system behaviour requirements that is assumed in the Susan
method. In agreement with the standard use case approach, the system under consideration

)

is treated as a “black box” in Susan. The diagram in Figure 9 illustrates the perspective

on actor-system interaction taken by Susan, which is fundamental to the method.

1. Activate Main flow

Any user System o 2. Do these hold?
% Pre-conditions —_—
— .-

% _--"'/ Post-conditions

Actor T Alternative flow

Any user System . 4. Do these hold?
_ Pre-conditons ——————>
— .

3. No
<«

ESma40n<0n

5. Yes

m-=>»-H0

6. Change state
—_— >

Post-conditions

Figure 9: Interaction Between Actor and System in Susan
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The actor can call upon the system’s services by activating use cases. The system itself
is described by the system state, which is dynamic and changes in time as a result of use case
activations. Predicates referred to as conditions in Susan are used to collectively represent
the state of the system, where at any time the system can be queried for the value of any
one of these conditions. For instance, one of the features of the MuTI telemedicine system
introduced in Chapter 3 is the storage of patients’ medical records. One of the conditions
describing the state of the MuTI system would specify whether a particular medical record
exists within the system.

As already described in Chapter 3 and shown in Figure 9, each use case is associated
with a number of flows and each flow has pre- and post-conditions. The diagram shows
what happens during a use case activation with six numbered steps. After a use case is
activated by an actor (1), the pre-conditions of its main flow are queried against the current
system state (2). Suppose that these pre-conditions do not hold (3), then the alternative
flow of the use case is considered. Pre-conditions of the alternative flow are queried (3)
and this time they are satisfied in the state of the system (4). Since the pre-conditions are
satisfied, the post-conditions of that flow are used to change the system state (5). When
pre-conditions for one of the flows hold, the use case activation is said to be successful. Note
that pre-conditions for only one or none of the flows could be satisfied by the system state
at one time, hence the order in which the flows are checked is not essential.

As explained above, use case models become more dynamic in Susan than in the standard
use case modelling approach. This new view of system requirements modelling allows Susan
to incorporate verification with model checking that explores all the possible interactions

between the actors and the system for a particular model.

5.1 Susan Metamodel

A “metamodel” is a model that describes semantics of some modelling language. This
method for expressing the constructs of a language has become common in recent years as
a result of increased popularity of graphical and object-oriented modelling [mof03]. We use
a metamodel represented as a Unified Modelling Language (UML) class diagram in order
to explain the Susan modelling notation.

We took the fundamental building blocks of models from the standard use case approach

and appended them with additional elements to facilitate construction of executable Susan
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models. The diagram in Figure 10 shows the Susan metamodel. Classes are used to represent
the modelling elements and associations denote relationships between the elements. The
labels in italics identify class roles, these show how omne element can play different roles
in different relationships. For example, the association between “Actor” and “Variable”
should be interpreted as follows: “an Actor has zero or more attributes that are instances

of the Variable class”.

Susan model
0..* initial conditions _y 0..*
. type "
Variable type Condition
0..* 0.*
0.* .| post-conditions
attributes i | e .
0 Variable parameters pre-conditions
parameters | 0..*
—> Actor Use case
0.x 1.* 0.x

Figure 10: Susan metamodel.

The aggregation relationships in Figure 10 show that a Susan model comprises four
different types of elements: actors, use cases, conditions and variable types. For each
modelling element the Susan metamodel prescribes a number of properties, which are similar
to class attributes in UML. The remaining element, variable, is auxiliary; it assists in
defining properties for the main four elements.

At the center of a Susan model there is a use case diagram that shows a graphical
representation of actors, use cases and their associations. For each actor and use case in
the diagram, textual properties are additionally defined. Conditions and variable types do
not have graphical representations; these elements are completely textual. In the exam-
ples throughout the dissertation we consistently use a readable syntactical form for Susan
modelling elements. However, our emphasis here is on the conceptual and semantic level of
Susan and hence we do not discuss the details of concrete syntax for the notation.

Each part of the Susan metamodel is described next. Since the Susan semantics is closely

related to the way in which verification is performed on the models, we refer to verification
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or model execution on a conceptual level during the following discussion.

Variable types: Each variable type in Susan is associated with a finite number of sym-
bolic values, which are essentially string literals that can only be compared for equivalence.
Two symbolic variables are equal if their values are set to identical string literals. Consider

the following two variable type definitions from the MuTI example.

Variable type 1.
Name: User ID
Values: Doctor Bosman, Sister Mary, Sister Nhlanga

Variable type 2.
Name: MuTT address
Values: Clinic A, Clinic B, Hospital

As can be seen above, a variable type is described by the name and values properties.
The cardinality of a variable type or the number of values assigned to it must be kept to
a relatively small number, as it affects the time taken by verification with model checking.

For our MuTI example, we chose a set of test values for each of the required variable types.

Actors: The Susan actor element is based on actors in the standard use case modelling.
However, the actor-use case association is slightly more restrictive in Susan. The multiplicity
for this association is “one to many” (1 to 1..*), which means that a use case can only be
associated with one actor.

Susan defines two properties for an actor: a name and a list of attributes. Attributes
describe an actor’s particulars that the system needs to access in order to deliver services to
that actor. In MuTI, every user is identified by a User ID and hence we have the following

definition for the Any user actor.

Actor 1.
Name: Any user
Attributes: 1D of type User 1D

Each actor attribute is regarded as a variable in Susan, and each variable has an asso-
ciated type as shown in the metamodel in Figure 10. In the definition of Actor 1 above, the

ID attribute is associated with the User ID variable type defined earlier.
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Conditions: Conditions are used to describe the global state of the system and to de-
clare use case pre- and post-conditions. Three properties are defined for a Susan condition:
a name, a parameter list and a truth-value. Consider the following two conditions that are

declared in the MuTI model and used to describe its state.

Condition 1.
Name: User logged in
Parameters: User of type User ID, Location of type MuTI address

Condition 2.
Name: Network available
Parameters: Location of type MuTI address

The reader may note that in the two definitions above there are no truth-values given
to the conditions. This is because a condition only becomes true or false at the time of sys-
tem verification, but at declaration time we only specify its name and parameters. During
verification, condition parameters are also assigned literal values. A condition with a truth-
value and all its parameters assigned to literal values is called a condition instance. From
the above definitions, Condition 2 has three instances during model verification: Network
available(Clinic A ), Network available(Clinic B) and Network available(Hospital). By con-
sidering the truth-values of each of these instances we can determine the network availability
at these three locations.

A number of initial conditions may be defined in a Susan model. These are condition
instances that hold or are true at the very beginning of system execution. By using initial
conditions we can specify that the network is initially available at all three locations in our

model.

Use cases: As in the standard approach, use cases represent functional system require-
ments. In Susan, a use case has five properties: a name, its associated actor, a parameter
list, pre-condition and post-conditions lists. Use case parameters describe information that
is required by the system to provide the corresponding service. When a use case is activated,
a literal value for each of its parameters is passed to the system.

Here are the properties that we define for the Log in use case in our Susan MuTI model.

Use case 1.
Name: Log in
Actor: User
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Parameters: Location of type MuTI address
Pre-conditions: User logged in(#self 1D, #uc Location) is false
Post-conditions: User logged in(#self 1D, #uc Location) is true

As can be seen in the above definition, the User logged in pre- and post-conditions
correspond to a condition that we declared earlier for the state description. As these pre-
and post-conditions are queried against the system state during verification, it is necessary
to indicate what values must be used during their evaluation. Two possible options for this
are demonstrated in the example above. The #self prefix indicates that this parameter
must take on the value of the actor attribute with the same name. Hence, #self ID refers
to the value of the ID attribute of the User actor. The prefix #uc indicates that the
parameter must take on the value of the parameter for this use case with the corresponding
name. In the example, #uc Location specifies that the value of the Location parameter for
this use case must be used for the evaluation of the condition.

There are two further options for assigning pre- and post-condition parameters for a
use case. Firstly, a parameter can be given a literal value from the corresponding type.
Secondly, the #forall prefix can be used to indicate that the condition must take effect for
all the values in this variable type. For instance, a pre-condition Network available(#forall
MuTTI address) is true means that the network must be available at all locations.

The concept of condition parameters in Susan is comparable to formal and actual param-
eters in programming languages. For example, a Java method definition contains a formal
parameter list, where the type of each parameter is specified. A method call supplies actual
parameters to the method. Eventually, at runtime all the parameters are bound to literal
values. In Susan, a condition declaration defines formal parameters for that condition and
their variable types. When that condition is used as a pre- or post-condition for a use
case, the user assigns each of the formal parameters to an actual parameter as described
above. During the verification of the system model, all the possible use case activations are
simulated. When a use case activation is simulated, the attributes of the associated actor
and use case parameters are assigned literal values. These values are then propagated to fill
the pre- and post-condition parameters of the use case. Once the pre- and post-conditions
have all their parameters assigned, pre-conditions can be queried against the current system
state and post-conditions used to alter it. A use case with values assigned to its parameters
and the attributes of its associated actor is called a use case instance.

In the Log in use case example above, there was only one flow and thus one set of pre-
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and post-conditions. If a use case has alternative flows, a pre- and post-condition set for
each flow is included in the use case definition in Susan. All the pre- and post-condition
sets for a use case are implicitly joined with the OR logical operator when they are used

during verification.

From the diagram in Figure 10 it can be seen that Susan does not support relationships
among use cases or actor generalisation relationships. In its current state the Susan method
is built around the fundamental features of use case models only, as our goal was to test
the approach first before incorporating the additional use case modelling features. Before
explaining how Susan currently deals with use case relationships and actor generalisations,

we first present a simple example of a complete Susan model.

5.1.1 A Simple Susan Model

In the previous section some individual elements from the Susan model for the MuTI system
were shown. We now take just three MuTI use cases to create a rudimentary and yet
complete Susan model for illustrative purposes. The use case diagram for this model is

shown in Figure 11.

Any user

Create patient
profile

Figure 11: A Simple Use Case Diagram

The following textual descriptions together with the above use case diagram form the

Susan model for this example.

Variable type 1.
Name: User 1D
Values: Dr Bosman, Sister Mary, Sister Nhlanga

Variable type 2.
Name: MuTI address
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Values: Clinic A, Clinic B, Hospital

56



CHAPTER 5. SUSAN MODELS AND VERIFICATION 57

Variable type 3.
Name: Patient 1D
Values: Teboho Luan, Nicolas Brooks

Condition 1.
Name: User logged in
Parameters: User of type User ID, Location of type MuTI address

Condition 2.
Name: Patient profile exists
Parameters: Owner of type User 1D, Location of type MuTI address, Patient of type Patient ID

Actor 1.
Name: Any user
Attributes: ID of type User ID

Use case 1.

Name: Log in

Actor: Any user

Parameters: Location of type MuTI address

Pre-conditions: User logged in (#self 1D, #uc Location) s false
Post-conditions: User logged in (#self ID, #uc Location) is true

Use case 2.

Name: Log out

Actor: Any user

Parameters: Location of type MuTI address

Pre-conditions: User logged in (#self 1D, #uc Location) is true
Post-conditions: User logged in (#self 1D, #uc Location) is false

Use case 3.

Name: Create patient profile

Actor: Any user

Parameters: Patient of type Patient ID, Location of type MuTI address
Pre-conditions: User logged in (#self ID, #uc Location) is true,

Patient profile exists (#self 1D, #uc Location, #uc Patient) is false
Post-conditions: Patient profile exists (#self ID, #uc Location, #uc Patient) is true

Most of the elements in the model above have been discussed before during the Susan
metamodel explanation. There is one new variable type called Patient ID, which is used to
distinguish between the different patients in the system. The Patient profile exists condition
allows one to monitor the patient profiles existing within the system. Each patient profile
is identified within the system by its Qwner, Location and the Patient in question. The
Log out use case is the same as the Log in use case, except the pre- and post-conditions

are reversed. Lastly, the Create patient profile use case requires the identity of the Patient
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under consideration as well as the Location where the profile is to be created. The pre-
conditions of this use case indicate that the user must be logged in and a profile with the
same details must not already exist within the system. After a successful activation of this
use case, a new patient profile is created as indicated by the post-condition.

Note that in a complete Susan model the type property of all the actor attributes,
condition parameters and use case parameters must be set to a variable type declared in
the model. All the use case pre- and post-conditions must correspond to declared condition
elements. In this particular example there are no initial conditions.

In the model for the MuTI system we additionally need to differentiate between a user
being logged in and a user being online, where the latter is only possible if the network
is available at the user’s location. This distinction is necessary as some services such as
call placement can only be accessed if the user is online. We add the following condition

definitions to our simple Susan model discussed above.

Condition 3.
Name: User online
Parameters: User of type User ID, Location of type MuTI address

Condition 4.
Name: Network available
Parameters: Location of type MuTI address

Furthermore, we adjust the definition of the Log in use case in such a way that if the
network is available at the time this use case is activated, the user’s status is automatically
set to “online”. An alternative flow and hence a set of pre- and post-conditions is used to
reflect this in the model. The post-conditions of the Log out use case are also altered to

ensure that the user’s status changes to “offline” when he logs out.

Use case 1.

Name: Log in

Actor: Any user

Parameters: Location of type MuTI address

Flow 1, Pre-conditions: User logged in (#self 1D, #uc Location) is false,
Network available (#uc Location) is true

Flow1, Post-conditions: User logged in (#self 1D, #uc Location) is true,
User online (#self 1D, #uc Location) is true

Flow 2, Pre-conditions: User logged in (#self 1D, #uc Location) is false,
Network available (#uc Location) is false
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Flow 2, Post-conditions: User logged in (#self 1D, #uc Location) is true

Use case 2.

Name: Log out

Actor: Any user

Parameters: Location of type MuTI address

Pre-conditions: User logged in (#self ID, #uc Location) is true
Post-conditions: User logged in (#self ID, #uc Location) is false,
User online (#self ID, #uc Location) is false

For the verification, we would also want to model the changes in network availability at
different locations. In Susan we can do this by introducing a Dummy actor into the model
and associating a use case with it that changes the value of the Network available condition.

We add the following definitions to our model.

Actor 2.
Name: Dummy

Use case 4.

Name: Change network availability

Actor: Dummy

Parameters: Location of type MuTI address, User of type User ID
Flow 1, Pre-conditions: Network available (#uc Location) is true
Flow 1, Post-conditions: Network available (#uc Location) is false,
User online (#uc User) is false

Flow 2, Pre-conditions: Network available (#uc Location) is false,
User logged in (#uc User, #uc Location) is true

Flow 2, Post-conditions: Network available (#uc Location) is true,
User online (#uc User) is true

Flow 8, Pre-conditions: Network available (#uc Location) is false
Flow 3, Post-conditions: Network available (#uc Location) is true

In the use case definition above, there are three flows and hence three sets of pre- and
post-conditions. The first flow represents the scenario where the network is available at the
time of use case activation. The post-conditions for this flow state that the network becomes
unavailable and the status of the user logged in at that location changes to “offline”. Note
that if there is no user logged in at the location at the time of use case activation, the
second post-condition has not effect on the system state. The second use case flow deals
with the scenario where the network is not available and there is a user logged in at that
specific location. The last flow represents the situation where the network is unavailable,

but no user is logged in. Having the Dummy actor and such a Change network availability
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use case in the model, allows us to test the behaviour of the system under different network
availability conditions. Conditions that change their value as a result of some event external

to the model can be handled in this way in Susan.

5.1.2 Flattening Use Case Models for Susan

In order to model our full MuTI system in Susan, it is necessary to remove the use case
relationships and actor generalisations from the original use case diagram that we proposed
in Figure 3, Section 3.3. At the same time, we would like to retain as much semantics of
these relationships in the model as possible. We next describe how to eliminate each of

these four relationships from a use case model.

Use case generalisation: In such a relationship, the general use case is abstract while
the concrete behaviour of the system is captured by the use case specialising it. For instance,
consider the general use case Manage patient profiles and the three use cases specialising it
in Figure 3, Section 3.3. This relationship adds structure to the use case diagram, but the
model without it still represents the same behaviour. When creating a Susan model from a
standard use case diagram, only specialised use cases are included.

Use case include: Included use cases are eliminated in Susan models and hence one
cannot show shared behaviour between use cases. In the MuTI example, the Validate user
use case is removed from the use case model while the Log in use case remains.

Use case extend: When two use cases are joined with the extend relationship, they
are both included in the Susan model. The semantics of the relationship are preserved
through declaring pre- and post-conditions on these use cases that state that the extending
use case can only be activated after the extended one. For example, in the MuTl system
the End call use case extends the Place call use case. For the Susan model, we remove the
extends relationship and ensure that a post-condition of the main flow through the Place
call use case states that a call gets established and make this also the pre-condition for
the End call use case flows. There is no other way of establishing calls within the MuTI
model and therefore the End call use case can only be activated after a successful Place call
activation. It is also possible that the extension point for the extend relationship appears
somewhere in the middle of a use case rather then at the end. In this case, the extended
use case has to be split into two use cases in the Susan model and then once again pre- and

post-conditions can be used to capture the semantics of the relationship.
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Actor generalisation: When actor generalisation is used in a use case model, only the
general actor is carried through into the Susan model. A condition is then defined in the
model that has the identifying actor attributes as parameters and can be used to distinguish
which of the specialised actors a particular general actor instance represents. Each of the
use cases connected with the specialised actors get associated with the general actor, but
a pre-condition that checks the identity of the actor each time is added to each of these
use cases. For our MuTI example, we add a User is doctor condition to the model with
a parameter of User ID type. The Doctor actor is then removed from the model and the
Accept appointment use case gets associated with the Any user actor. We add the following
pre-condition to this use case: User is doctor(#self ID) is true. The Nurse actor is removed

from the model in the same way.

We call this process of eliminating the unsupported relationships from a use case model
“flattening”. The flattened use case diagram for the MuTI Susan model is shown in Fig-

ure 12 below.

Add contact
Delete contact
Create medical
Request record
appomtment
Edn medical
record
Accept
appomtment
Any user Delete medical
record
Reject
appointment

Send medical
record

Place call .
Delete patient
@ profile
X Edit patient
Create pauent profile
profile

Figure 12: Flattened MuTI Use Case Diagram.

We have now fully presented the Susan notation and its semantics. The next section

describes how a Susan model is mapped to a NuSMV program.
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5.2 Mapping Susan Models to NuSMV

A Susan model can be seen as a finite state machine, where values of condition instances
define the system state and state transitions are defined by activation of use case instances.
Initial conditions in a Susan model give the initial state of the system. In our mapping
to NuSMV, we represent each condition instance in a Susan model as a state variable.
These condition variables are initialised in accordance to the initial conditions in the Susan
model. For each use case instance, a NuSMV module is defined inside which “next” values
are assigned to the condition variables as indicated by the pre- and post-conditions of the
use case. The overall structure of a NuSMV program representing a Susan model is given
below.

MODULE main

VAR

-- (1) Declare condition variables.

-- (2) Instantiate a process for each use case instance module.
-- (3) Instantiate a process for the dummy module.

ASSIGN
-- (4) Initialise condition variables.
—-- (5) Specify CTL properties.

-- (6) Define a module for each use case instance.
-- (7) Include dummy module.

The main module of the program contains condition variable declarations (1) and ini-
tialisations (4). In addition to the main module, a module for each use case instance is
defined (6). Each use case instance module is instantiated as a process in the main mod-
ule (2). Using processes in NuSMV ensures that during verification, these modules are
instantiated nondeterministically. Each instantiation represents a use case instance activa-
tion. Nondeterministic choice between activations allows us to check all the possible ways
in which the system can be used.

Sometimes a Susan model can contain condition instances that remain constant through-
out all possible use case activations. In such a case, the condition variable in the NuSMV
program is re-assigned to new values nondeterministically by the NuSMV engine during
verification. We counteract this undesirable situation by defining a dummy module that sim-
ply re-assigns each of these constant condition variables to its initial value (7). The dummy

module is also instantiated as a process in the main module (3).
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Finally, the NuSMV program needs logic specification properties to perform verification.
These properties appear in the assignment section of the main module (5). The way in which
these are generated is explained in Sections 5.4 and 5.5.

Each use case instance module is structured as follows.

MODULE Use_case_instance(condition_variable_1,condition_variable_2,...)
VAR
return : boolean;

ASSIGN
init(return)
next (return)
—-- check pre-conditions using condition variables passed as parameters
-- if preconditions hold, assign next return value to 1

0;

—-- for each post-condition

- check pre-conditions using condition variables passed as parameters
- if preconditions hold, assign next condition variable value according
- to post-condition

FAIRNESS
running;

Inside a use case instance module, the pre-conditions of the use case instance are checked.
This is done by considering the values of the corresponding condition variables. Passing the
appropriate condition variables to each use case instance module as parameters provides
the modules access to the values of these variables. Additionally, condition variables for
the post-conditions of a use case instance also need to be passed to its module as they
get re-assigned there. In the module structure above, the passing of parameters into the
module is shown by (condition_variable_1,condition_variable_ 2,...) next to the
module name.

As can be seen in the above module structure, a boolean variable called return is
declared inside each use case instance module. This variable is used in the main module
to determine whether a use case activation represented by the use case instance module
is successful or not. This variable is first initialised to 0 and if the pre-conditions of the
use case are met then its value is re-assigned to 1. Hence after a process is created for
the Use_case_instance module during verification, we can find out whether this activation
succeeded or failed by checking the value of Use_case_instance.return.

The NuSMV FAIRNESS clause is included in each use case instance module and the

dummy module to ensure that during verification each of these modules is chosen equally
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often for instantiation.

Names for condition variables and use case instance modules are generated in the follow-
ing way. Firstly, the spaces are taken out of the condition or use case name. For example,
an instance of the User logged in condition first becomes Userloggedin. Secondly, values
for condition and use case parameters are substituted by the indices in their variable types
and appended to the generated name with dollar sign separators ($). The condition in-
stance User logged in (Sister Mary, Clinic A) will be represented by Userloggedin$1$0$
since Sister Mary is the second value in the User ID type and Clinic A is the first value
in the MuTI address type (indices begin with 0). For a use case instance, the values of the
associated actor’s attributes are also appended to the name. For the instance that repre-
sents Dr Bosman logging in at the Hospital, the use case module name is Login$0$2$. The
actor attributes indices appear before the indices for the use case parameters. This scheme
provides for generation of concise NuSMV names that are unique.

For the simple Susan model example presented in Section 5.1.1 on page 55 we get the
following NuSMYV program.

MODULE main

VAR
-- (1) Declare condition variables.

Userloggedin$0$0$ : boolean;
ﬁéérloggedin$2$2$ : boolean;
Patientprofileexists$0$0$0$ : boolean;
é;£ientprofileexists$2$2$1$ : boolean;

-- (2) Instantiate a process for each use case instance module.
activated_Login$0$0$ : process Login$0$0$(Userloggedin$0$0$) ;
éééivated_Login$2$2$ : process Login$2$2$(Userloggedin$2$2$) ;
activated_Logout$0$0$ : process Logout$0$0$(Userloggedin$0$03) ;
éééivated_Logout$2$2$ : process Logout$2$2$(Userloggedin$2$2$) ;

activated_Createpatientprofile$0$0$0$ : process
Createpatientprofile$0$0$0$ (Userloggedin$0$0$,Patientprofileexists$0$0$0%) ;

activated_Createpatientprofile$2$1$2$ : process
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Createpatientprofile$2$1$2$ (Userloggedin$2$2$,Patientprofileexists$2$2$1$) ;
-- (3) Instantiate a process for the dummy module.
activated_dummy : process dummy_module();

ASSIGN
-- (4) Initialise condition variables.

I
o

init (Userloggedin$0$0$)

]
o

init (Userloggedin$2$2$)

-- (B5) Specify CTL properties.

-- (B) Define a module for each use case instance.

MODULE Login$0$0$ (Userloggedin$0$0$)
VAR
return : boolean;
ASSIGN
init(return) := 0;
next (return)
case
(1Userloggedin$0$0$) : 1;
1: 0;
esac;
next (Userloggedin$0$0$) :=
case
1Userloggedin$0$0$ : 1;
1 : Userloggedin$0$0$;
esac;
FAIRNESS
running;

MODULE Logout$2$0$(Userloggedin$2$0$)
VAR
return : boolean;
ASSIGN
init(return) := 0;
next (return)
case
(Userloggedin$2$0$) : 1;
1: 0;
esac;

65
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next (Userloggedin$2$0$) :=
case
Userloggedin$2$0$ : 0;
1 : Userloggedin$2$0$;
esac;
FAIRNESS
running;

MODULE Createpatientprofile$0$1$2$(Userloggedin$0$2$,Patientprofileexists$0$2$1$)
VAR

return : boolean;
ASSIGN

init(return) := 0;
next(return) :=
case
(Userloggedin$0$2$ & !'Patientprofileexists$0$2$1$) : 1;
1 : 0;
esac;
next (Patientprofileexists$0$2$1$) :=
case

Userloggedin$0$2$ & !Patientprofileexists$0$2$1$ : 1;
1 : Patientprofileexists$0$2$1$;
esac;
FAIRNESS
running;

-- (7) Include dummy module.

MODULE dummy_module ()
ASSIGN
FAIRNESS

running;

In order to perform verification on the program above, Computational Tree Logic (CTL)
properties need to be inserted in the specified location. Suppose that we need to check
whether Sister Mary can log out of the MuTI application at the Hospital. The indices
of Sister Mary and Hospital in the corresponding variable types are 1 and 2 respec-
tively, thus for this property the use case instance of interest is Logout$1$2$. In fact
rather than the moudule itself, we need to consider the process instantiating it which
is called activated Logout$1$2$. The CTL formula that we insert into the NuSMV
program as the specification is EF activated Logout$1$2$.return. This will determine

whether there exists a path in the computation tree for the program such that the value
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of activated Logout$1$2$.return is equal to 1 in one of the states on that path. Put
simply, it checks the possibility of activated_Logout$1$2$.return being assigned to the
value of 1. After performing the check on the model, NuSMV reports that this property is
true.

There is an alternative way in which we can determine whether the property considered
above holds. If the negation of the CTL formula that we just used does not hold in the
model then Sister Mary can in fact log out at the Hospital. The negation of this property
is AG !activated_Logout$1$2$.return and NuSMV produces the following trace to show

that this specificaiton is violated in the model.

—-- specification AG (lactivated_Logout$1$2$.return) is false

—-- as demonstrated by the following execution sequence

-> State 1.1 <-
[executing process activated_Login$0$2$]
Userloggedin$0$0$ = 0
Userloggedin$0$1$ =
Userloggedin$0$2$ =
Userloggedin$1$0$ =
Userloggedin$i1$1$ =
Userloggedin$1$2$ =
Userloggedin$2$0$ =
Userloggedin$2$1$ =
Userloggedin$2$2$ = 0
Patientprofileexists$0$0$0$ =
Patientprofileexists$0$0$1$ =
Patientprofileexists$0$1$0$ =
Patientprofileexists$0$1$1$ =
Patientprofileexists$0$2$0$ =
Patientprofileexists$0$2$1$ =
Patientprofileexists$1$0$0$ =
Patientprofileexists$1$0$1$ =
Patientprofileexists$1$1$0$ =
Patientprofileexists$1$1$1$ =
Patientprofileexists$1$2$0$ =
Patientprofileexists$1$2$1$ =
Patientprofileexists$2$0$0$ =
Patientprofileexists$2$0$1$ =
Patientprofileexists$2$1$0$ =
Patientprofileexists$2$1$1$ =
Patientprofileexists$2$2$0$ =
Patientprofileexists$2$2$1$ =
activated_Login$0$0$.return =
activated_Login$1$0$.return =
activated_Login$2$0$.return =
activated_Login$0$1$.return =

O O O O O O o

O O O O O OO OO ODODIODODODODODOO OO OoOOo
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activated_Login$1$1$.return =
activated_Login$2$1$.return =
activated_Login$0$2$.return =
activated_Login$1$2$.return =
activated_Login$2$2$.return =
activated_Logout$0$0$.return =
activated_Logout$1$0$.return =
activated_Logout$2$0$.return =
activated_Logout$0$1$.return =
activated_Logout$1$1$.return =
activated_Logout$2$1$.return =
activated_Logout$0$2$.return =
activated_Logout$1$2$.return =
activated_Logout$2$2$.return = 0
activated_Createpatientprofile$0$0$0$.return =
activated_Createpatientprofile$1$0$0$.return =
activated_Createpatientprofile$2$0$0$.return =
activated_Createpatientprofile$0$0$1$.return =
activated_Createpatientprofile$1$0$1$.return =
activated_Createpatientprofile$2$0$1$.return =
activated_Createpatientprofile$0$0$2$.return =
activated_Createpatientprofile$1$0$2$.return =
activated_Createpatientprofile$2$0$2$.return =
activated_Createpatientprofile$0$1$0$.return =
activated_Createpatientprofile$1$1$0$.return =
activated_Createpatientprofile$2$1$0$.return =
activated_Createpatientprofile$0$1$1$.return =
activated_Createpatientprofile$1$1$1$.return =
activated_Createpatientprofile$2$1$1$.return =
activated_Createpatientprofile$0$1$2$.return =
activated_Createpatientprofile$1$1$2$.return =
activated_Createpatientprofile$2$1$2$.return =

-> State 1.2 <-
[executing process activated_Login$1$2$]
Userloggedin$0$2$ =
activated_Login$0$2$.return = 1

-> State 1.3 <-
[executing process activated_Logout$1$2$]
Userloggedin$1$2$ =
activated_Login$1$2$.return = 1

-> State 1.4 <-
[executing process activated_Login$0$2$]
Userloggedin$1$2$ =
activated_Logout$1$2$.return = 1

O O O O O

O OO OO O O o

el eoleoleolNeolNeolNolNolNolNolNolNolNolNolNolNolNolNo]

The trace above corresponds to a number of use case instance activations. The transition

from State 1.1 to State 1.2 is initiated by the activation of Dr Bosman.Login(Hospital)
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as shown by [executing process activated Login$0$2$]. The fact that this use case
instance is activated does not necessarily mean that the activation was successful. It is only
successful in the case where the return variable for the corresponding module is assigned to
1 in the next state. As you can see, in State 1.2 the return variable for the Login$0$2$
is indeed assigned to 1, which is shown by line activated Login$0$2$.return = 1. Hence
the activation of Dr Bosman.Login(Hospital) was successful.

In this way we interpret the above counter-example trace as follows.

1. Dr Bosman.Log in(Hospital) — successful
2. Sister Mary.Log in(Hospital) — successful
3. Sister Mary.Log out (Hospital) successful

4. Dr Bosman.Log in (Hospital) — unknown

The last use case instance activation in the trace can be ignored, as the specification
property is actually violated by the second-last step already. In this case, as soon as Sister
Mary successfully logs out of the Hospital, our property is shown to be false. Furthermore, it
can be seen that generated traces often contain some redundant information. For example,
it is not necessary for us to know that Dr Bosman logged in at the Hospital as shown by
the first step in the counter-example. As a consequence, counter-example traces sometimes
require close inspection to determine which steps are indeed of essence.

The remaining sections of this chapter present the different analysis options incorporated

into the Susan method.

5.3 Overview of Susan Verification

We developed two modes of verification for the Susan technique: generic and model-specific.
An overview of how verification is performed with NuSMV and the SusanX tool is given in
Figure 13.

The mappings from Susan to NuSMV described in this chapter are used to translate
Susan models to NuSMV programs, as shown in Figure 13. Generic verification can be
applied to any Susan model and the CTL properties for this verification mode are embed-
ded into SusanX. They are simply parameterised for the current model and passed to the

NuSMV model checker as shown in the diagram. SusanX provides a number of specification
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SusanX NusSMv

Use case diagram

+ Susan model NuSMV program

Formal descriptions

Generic properties in - CTL

Model-specific properties Model-specific
based on specification patterns properties in  CTL
Verification results
interpreted for user Verification results

Figure 13: Overview of Verification in Susan

patterns that assist the user in constructing model-specific properties for verification. As
can be seen, these are translated to CTL by SusanX. Finally, verification results are inter-
preted for the user in terms of the original Susan model. The details of the two verification
modes are described in the following sections on a conceptual level, while the SusanX tool

is presented in the following chapter.

5.4 Generic Verification of Susan Models

Generic verification can be applied to any Susan model irrespective of the type of system
being modelled. A whole Susan model is checked by NuSMV against a number of predefined
generic CTL properties and the results of this verification provide useful information about
every use case and condition in the model. More specifically, these generic properties are

used to analyse use cases for liveness and conditions for reversibility as described below.

5.4.1 Liveness of Use Cases

An informal definition of the liveness property is that “something good will always eventu-
ally happen” [Kin94]. We defined three liveness categories for a use case in Susan: Dead,
Transient and Live. For each one of these three categories a CTL property testing whether
a use case instance falls into it is defined. The liveness category for each use case instance is

determined by checking it against the three properties. Hence, results of generic verification
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place each use case instance in one of the liveness categories.

Each of the use case liveness categories is explained next and for each one the corre-
sponding CTL formula is given. In the explanation below we consider determining the
category for the Login$0$1$_activated process that represents an instance of the Log in use

case.

Dead: Successful activation of the use case instance is not possible. Usually, one should
be alarmed if all instances of a use case fall into the Dead category, because a use case that
can never be successfully activated serves no purpose in a model. This scenario occurs when
one of the use case pre-conditions can not become true during the entire model execution.
The Log in instance falls into the Dead category if the CTL formula below is determined
to hold by the model checker.

IEF (Login$0$1$ activated.return)

The above formula states that it is never possible for the Login$0$1$ _activated.return

variable to be assigned to 1.

Transient: It is possible to successfully activate the use case instance a finite number
of times. A typical example of this would be something that only happens once and is irre-
versible, for example Delete patient profile can only be done once unless the patient profile
is recoverable. Transient use cases can place a limitation on the system functionality and
one should be sure that the use case irreversibility is actually intended. The following CTL

formula tests the Log in use case instance against this category.
EF (Login$0$1$ activated.return) & !AG EF (Login$0$1$ activated.return)

The left hand side of the conjunction above states that it must be possible for the Log
in use case instance to be activated. While the right hand side states that at some state
in each path of the computation tree it becomes impossible for the use case instance to be

activated again.

Live: It is possible to activate the use case instance an infinitely many times. Most use
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case instances in a model usually fall into this category. For example, all instances of Log
in and Log out use cases are Live since all users can log in and out of MuTI infinitely often.

The CTL formula for the Live category is as follows.

AG EF (Login$0$1$_activated.return)

The formula above states that at any state in the model computation tree, it is possible

for Login$0$1$_activated.return to become 1 on one of the future computation paths.

5.4.2 Reversibility of Conditions

During generic verification we also test how condition instances change their truth-values
throughout system execution. Each condition instance is placed into one of the following
reversibility categories. The CTL formulae are given assuming that we are determining the
reversibility category for the Patient profile exists condition instance represented by the
Patientprofileexists$1$1$0$ condition variable in the NuSMV program. It is impor-

tant to note that initially the truth-value of this condition instance is false.

Constant: The truth-value of the condition instance never changes, it remains the
same as assigned initially. This may be both desirable and undesirable. For instance, our
full MuTI model contains a condition User is doctor with one parameter of type User ID.
Also to indicate that Dr Bosman is in fact a doctor, we have this initial condition: User is
doctor(Dr Bosman). This condition instance must retain its initial truth-value throughout
the model execution, hence it rightfully belongs to the Constant category. On the other
hand, if all the instances of the Call established condition were to be reported Constant it
would mean that it is impossible to establish a call in the model.

The following CTL formula tests whether the Patient profile exists instance is Constant.

IEF (Patientprofileexists$1$1$0$)

Irreversible: In this case the truth-value of the condition instance is changed once and
then remains constant. In the simple MuTI example from Section 5.1.1 all the instances
of the Patient profile exists condition would be reported as Irreversible. This is because a

profile can be created in the model with the Create patient profile use case, but there are no
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means to delete it afterwards. The CTL formula for this reversibility category is as follows.

EF (Patientprofileexists$1$1$0$) & AG (Patientprofileexists$1$1$0$ —
AG (Patientprofileexists$1$1$0%$))

Essentially the formula above states that once the Patientprofileexists$1$1$0$ con-

dition variable becomes true it remains constant for the rest of the model execution.

Finitely-reversible: The condition instance changes its truth-value more than once,
but still a finite number of times. In the full MuTI example, we have the following condition

declaration to keep track of appointment requests within the system.

Condition

Name: Appointment pending

Parameters: Nurse of type User ID, Doctor of type User ID, Patient of type Patient ID,
Request time of type Time

When an appointment is requested by a nurse, an instance of the above condition
becomes true. Once the doctor accepts or rejects the appointment request, that condition
instance becomes false. Our model also captures the fact that the Request time is different
for each appointment made by the same nurse. Once an instance of this condition becomes
false, it can never become true again and hence it falls into the Finitely-reversible category.

The CTL formula for this category is as follows.
EF (Patientprofileexists$1$1$0$) & !AG EF (Patientprofileexists$1$1$0$)
Reversible: The condition changes its truth-value infinitely many times. Most condi-
tions fall into this category. For example, all instances of the User logged in condition are

Reversible. The CTL formula below tests reversibility of the Patient profile exists condition

instance.

EF (Patientprofileexists$1$1$0$) & AG (Patientprofileexists$1$1$0$ —
EF (!'Patientprofileexists$1$1$0$))

Verification for liveness of use cases and reversibility of conditions can be used to compile
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a report that classifies each use case instance and condition instance according to the above-
described categories. This report can provide the user with insight into the behaviour of

the system described by the model, as well as warn him of potential errors in the model.

5.5 Model-Specific Verification of Susan Models

Verification against generic properties yields useful results, but because the generic prop-
erties cannot be used to test model-specific behaviour, this type of verification is limited.
The fact that our user only works with the Susan modelling constructs and does not know
anything about the NuSMYV representation, excludes the possibility of letting the user to
insert his own CTL properties into NuSMV programs. We could however allow the user
to construct CTL properties using the Susan modelling elements and then interpret these
appropriately for NuSMV. However, the CTL notation and semantics can get very cryptic
especially when expressing lengthy formulae. For this reason, we adopt another approach
that makes model-specific verification of Susan models more accessible for the user. We
present the user with property specification patterns for the creation of custom properties.
These patterns let one express simple properties for behavioural analysis without knowing

the details concerning the underlying formalism, which is CTL in our case.

5.5.1 Property Specification Patterns

In software engineering, a pattern is a proven solution to a commonly encountered problem.
In recent years, patterns have been widely used in software system design and program-
ming [GHJV]. Property specification patterns are generalised descriptions of commonly-
sought behaviours for verification of finite state systems. Each pattern has a name, de-
scription of intent, mappings to several specification formalisms such as CTL for example,
common uses of the pattern and relationships to other patterns. Hence a user can easily in-
stantiate a specification pattern, thus creating a verification property and effortlessly arrive
at a corresponding formula in CTL.

Property specification patterns were first proposed by Dwyer et al in [DAC98] and
further supported by empirical studies [DAC99]. The SAnToS Laboratory maintain an on-
going project for evolving these patterns, which is documented online [DAC04]. Dwyer et
al developed a system of specification patterns, which comprises a set of property specifi-

cation patterns that are organised into a hierarchy showing relationships between different
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patterns. This hierarchy is shown below in Figure 14.

Property specification patterns

Occurrence Order
Absence Precedence Chain
Bounded Response
Existence .
Universali Existen Response Chain
iversality xistence Precedence

Figure 14: Dwyer’s Property Specification Pattern Hierarchy

As can be seen in Figure 14, there are two main types of patterns: occurrence and order.
Occurrence patterns can be used to verify existence or absence of system states where a
certain property holds. While order patterns verify a certain ordering of system states or
events.

Dwyer additionally defines scopes that are used in combination with patterns to specify
on which part of the system execution the property must hold. Three examples of these
scopes are Global, Before and Between. When the Global scope is used, the property
must hold for the entire execution of the system model. Before means that the property
applies to the execution up to a provided state or event. Finally, Between means that
the property must hold on the execution between two states or events. Even though the
concept of scopes allows one to construct more properties, it also unnecessarily complicates
the patterns framework. This was shown by the survey results in [DAC99] where the
overwhelming majority of sample properties were constructed using the Global scope.

For model-specific verification of Susan models, we do not support the use of scopes.
All the patterns provided are implicitly instantiated with the Global scope and hence all
the constructed properties apply to the entire model execution. Furthermore, we tailor the
original pattern hierarchy slightly to suit our specific needs for Susan model verification.

The augmented Susan pattern hierarchy is presented next.
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5.5.2 Property Specification Patterns in Susan

In their surveys, Dwyer et al also discovered that the following patterns were used very
rarely: Bounded FExistence, Response Chain and Precedence Chain. For this reason, we
did not include these patterns in our pattern hierarchy for Susan models. Additionally, we
refined the Ezistence pattern into four more specific patterns as shown in Figure 15. In
Susan, we used mappings to CTL as defined by Dwyer et al for all the patterns except the

new FEzxistence sub-patterns, for which we define our own mappings.

Property specification patterns

Occurrence Order
Absemversaty Precedence Response
Existence
Everywhere )
yw Liveness
eventually

Possible existence  Always eventually
Figure 15: Susan Property Specification Pattern Hierarchy

Instantiation of patterns to construct behavioural properties is performed as follows.
Each specification pattern contains one or more pattern variables that the user must substi-
tute with valid values from the model being verified. Pattern variables are predicates or in
other words functions that yield a boolean value. A pattern variable is parameterised and
may be true for some arguments and false for others. In Susan, pattern variables can be
constructed from: condition instances and the logical operators NOT (1), AND (&), OR ()
and implication ( —). Once the user chooses a pattern and fills in the pattern variables,
the corresponding CTL formula can be generated.

Each of the patterns in our hierarchy is described next. We use condition instances from



CHAPTER 5. SUSAN MODELS AND VERIFICATION 7

the MuTI system for illustrative purposes. To make our discussion more understandable

and concise, we use the following shorthands.

Con_A : Patient profile exists(Sister Nhlanga, Clinic A, Nicolas Brooks)

Con_B : Medical record exists (Sister Nhlanga, Clinic A, Nicolas Brooks, Doctor Bosman)
Con_C : User online (Dr Bosman, Hospital)

Var_A : Patientprofileexists$2$0$1$

Var B : Medicalrecordexists$2$0$1$0$

Var_C : Userloggedin$0$2$

Absence (Never): Safety properties can be constructed using this pattern. An in-
formal definition of a safety property is that “something bad will never happen” [Kin94].
Using this pattern we can check that a certain MuTI user can not create a medical record
for a patient without having a profile for that patient first. To determine whether our model
satisfies this, we can construct the following property: Absence of (ICon_A & Con_B). The
following CTL formula is generated for this property.

AG !'(!Var_A & Var_B)

Universality (Globally): This pattern can be used to express invariants for a model.
An invariant is a property that must hold throughout the execution of the system. This
pattern is closely related to the Absence pattern but while the Absence pattern is applied
to negative properties, the Universality pattern applies to positive ones. We can use this
pattern to express the same property that we used as an example for the Absence pattern
above: Universality of (!(ICon_A & Con_B)) or Universality of (Con_.B — Con_A). The

corresponding CTL formulae are given below.

AG ('(!'Var_A & Var_B)) ) or AG (Var_.B — Var_A)

Existence (Eventually): If we are interested in reachability of certain system states,
then this pattern can be used to construct properties for model verification. When using
FEzistence patterns it is important to remember that our NuSMV programs ensure fairness,

which means that all use case instances are activated equally often. The four sub-categories
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that we created for this pattern are explained below.

e Everywhere eventually: Something will always eventually happen, no matter what
execution path is taken. Suppose that we want to make sure that irrespective of
how the MuTI system is used by the users, Dr Bosman will eventually be online.
The required property is Everywhere eventually (Con_C) and the CTL formula is as

follows.

AF (Var_C)

e Possible existence: It is possible for something to happen. In other words, the
property may hold on some paths but not all the paths of execution. This pattern
is closely related to the Absence pattern. Another alternative to check whether a
MuTlI user can create a medical record for a patient without having a profile for that
patient first is by testing for Possible existence (!Con_A & Cond_B). The generated

CTL formula is given below.
EF (!Var_A & Var_B)

It is clear that certain properties can be expressed using a number of different patterns.
This may seem redundant, however in certain situations it is more natural to use one

pattern and another pattern in a different situation.

o Always eventually: No matter where in the system execution we are, something
will always eventually happen. This pattern is a stronger variation of the Everywhere
eventually pattern. In our example for the Fverywhere eventually pattern, the prop-
erty tests that Dr Bosman can go online once for every possible scenario of system
use. On the other hand, if we want to ensure that at any point in time Dr Bosman
can go online, irrespective of what happens we need to use this pattern instead. This
stronger property would be Always eventually (Con_C) and the corresponding CTL

formula is as follows.

AG (AF (Var_C))

e Liveness: Sometimes we want to ensure that at any time during the execution of the
system, something will eventually become possible. This pattern is a stronger variation
of the Possible existence pattern. For instance, the property Liveness (Con_C) states

that at any time Dr Bosman will be able to go online at the Hospital in one of the
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system usage scenarios. That usage scenario may be such that the network is available
at the Hospital and Dr Bosman can log into the system. The generated CTL property

is as follows.

AG (EF (Var_C))

Precedence: This pattern describes a dependency between two system states or events.
It can be used to verify that one state or event always occurs before the other one. We
can check that a patient profile is always created by a user before a medical record for that

patient with Con_A Precedes Con_B. Here is the CTL formula.

IE [!Var_.A U (Var B & !'Var_A)]

Response: Cause-effect relationships between system states or events can be expressed
using this pattern. It is similar to the Precedence pattern but is used to verify that every
cause must be followed by an effect rather than for every effect there must be a cause. In
the Precedence pattern causes may occur without subsequent effects, while in the Response
pattern effects may occur without causes. If we check the property Con_B Responds to
Con_A, the verification of the property fails. This is because if a patient profile is created,
it does not necessarily mean that a medical record will be created for the patient. The CTL

formula is as follows.

AG (Var_ A — AF (Var_B))

This concludes our discussion of the Susan method. In this chapter we described how
Susan models can be constructed, translated to NuSMV and analysed using generic and
model-specific verification. In the next chapter we present the SusanX tool, which imple-

ments the Susan method.



Chapter 6

The SusanX Tool

In this chapter we present the SusanX tool, which we developed to support the proposed
Susan method for modelling and analysis of software requirements. An overview of all the
features provided by the tool is first given, followed by a portrayal of how these features
can be accessed by the user through the SusanX interface. Important architectural design

and implementation concerns are also discussed.

6.1 Overview of Features Supported by SusanX

Computer-Aided Software Engineering (CASE) refers to the collection of tools built to assist
developers during software engineering activities such as requirements specification, design
and implementation [Som01]. These tools have become an integral part of any software
development project, as they make the development process more efficient and reliable.
Today, any practical software engineering method needs to be suitably supported with a
CASE tool. Some of the common features provided by CASE tools include editors for the
notation prescribed by the underlying method, analysis modules that can check models
against rules defined by the method and report generators that help to produce system
documentation [Som01]. SusanX is the CASE tool that we developed to accompany the
proposed Susan method, and in this section we describe the features incorporated into this
tool.

The main goal of SusanX is to allow the user to construct Susan requirements models
and have them analysed as defined by the Susan method. SusanX offers five main features
to the user, which we discuss next.

Model construction and navigation. The user is presented with a graphical editor

80
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that allows easy construction and navigation of Susan models. The SusanX editor allows
the user to view and work with one Susan model at a time. Use case diagrams for the
models can be constructed by dragging-and-dropping modelling elements from the toolbar
onto the main diagram canvas. A navigation tree containing all the elements in the opened
model allows the user to traverse the model and view properties of each of the elements.

Static model check. Every constructed Susan model needs to pass a static check
before it can be analysed dynamically. This check ensures that a model is structurally
correct, as this is a prerequisite for a valid translation to NuSMV and obtaining accurate
verification results. If errors are discovered in a model, an error report is generated for
the user in a format that makes it easy to identify the source of the errors. The user is
only allowed to proceed to dynamic verification of a model if the static check is completed
successfully with no errors reported.

Batch generic verification. This is the most automated analysis option available
in SusanX. The user initiates the verification process without providing any additional
input into the SusanX tool and thereafter waits for results to be generated. Batch generic
verification determines a liveness category for each use case instance, and a reversibility
category for each condition instance in a model. At the end of the analysis, a report
showing these categories is generated for the user. The only way in which the user can
configure the verification is by restricting it to checking either only use case instances or
only condition instances. For a sizeable model, this type of verification can take a long time
as many properties need to be checked with NuSMYV in order to compute a category for
each use case and condition instance. In the case where the user is only interested in the
results for selected use cases or conditions, the less expensive guided generic verification
option is recommended.

Guided generic verification. Instead of verifying all the instances of use cases and
conditions, this analysis option allows the user to check instances of an individual use case
or condition against a specific category. Interpretation of generic verification results requires
the user to have insight into the Susan model and know what the correct category should
be for each of the use cases and conditions. In this analysis option the user is required to
specify in which category he thinks the use case or condition instances belong, and hence
the option is called “guided”. A check against the given category is performed first, and
only those instances that do not qualify are then checked against other categories. At the

end of the analysis process, a category for each use case or condition instance is shown to
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the user. In the case where the user can speculate well about the categories for use cases
and conditions, the number of properties to be checked by NuSMV and hence the time to
produce verification results is reduced.

Model-specific verification. In addition to generic verification, the SusanX user is
also allowed to construct model-specific properties for analysis using specification patterns.
When a property is found to be false, the counter-example generated by NuSMV is inter-

preted for the user as a sequence of use case activations by actors from the model.

6.2 Graphical User Interface of SusanX

In this section we present the graphical user interface of SusanX by going through a series of
screenshots thus demonstrating how one would make use of the tool. The graphical editor

window of SusanX with its parts labelled is shown in Figure 16.
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Figure 16: Graphical Editor Window of SusanX

SusanX allows the user to work with one Susan model at a time, and currently only one

use case diagram can be associated with a model. In Figure 16 a model from the MuTI
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example is opened. As can be seen from the screenshot, the graphical editor of SusanX is
divided into three main panels where each panel gives a different view of the model. The
diagram panel displays the use case diagram for the opened Susan model, which shows all
the actors and use cases and their associations in that model. The non-graphical modelling
elements can be found in the navigation panel, which contains a navigation tree with all the
elements making up the opened model. When the user selects an element in the navigation
tree or the use case diagram, the properties for that particular element appear in the
properties panel. In Figure 16, the User online condition is selected in the navigation
panel and the details for this condition are displayed in the properties panel where they can
also be edited. Manipulation of modelling elements with the editor is discussed further in
Section 6.2.1.

The pull-down menus and toolbar appearing at the top of the editor window shown in
Figure 16 are shown in detail in Figure 17.

Menu (a) allows the user to create, open, save models and also exit the application.
The regular Save option stores the data about the current Susan model in a binary “.sus”
file, which can later be opened in SusanX. Additionally, the user can select the Save as text
option to write the model out to a text file. Such a text file contains all the information
about the model, including all its elements and their properties. It can assist the user in
creation of reports and similar tasks, but cannot be used to re-open a Susan model with
SusanX. Buttons (i)-(iii) on the toolbar in (f) provide quick access to the most commonly
used functionality in menu (a).

New elements can be added to a model in SusanX either through menu (b) or toolbar

buttons (vii)-(xi). These buttons on the toolbar appear in the same order as the menu



CHAPTER 6. THE SUSANX TOOL 84

items, in other words button (vii) corresponds to a new variable type, button (viii) to a
new condition and so on. When a new element is added to the model, the navigation
tree is updated and the properties panel is filled appropriately for this element to allow
the user to populate its properties. If a new actor or use case is added then the diagram
panel is updated as well. Once actors and use cases are added to the diagram view canvas,
associations between them can be created in a drag-and-drop manner. Toolbar button (xii)
allows the user to change the association mode in SusanX. By default the association mode
is “off” as shown in Figure 17, which means that the user first has to change it before he can
create associations by dragging-and-dropping on the diagram canvas. Toolbar buttons (iv)-
(vi) let the user zoom in and out of the use case diagram.

All the verification options are available through menu (¢). Each one of the menu items
brings up a separate verification window. Some preference and help options can be accessed

through menus (d) and (e) respectively.

6.2.1 Building a Model in SusanX

The SusanX interface is built to ease the process of creating Susan models for the user.
We recommend that the user adds elements and defines their properties in a specific order
described next to facilitate efficient model construction.

As a first step of model construction, the user should draw the use case diagram for the
model in the diagram panel. Next, variable types should be added and valid values defined
for each. Then the user should insert conditions into the model and specify their parameters.
The properties panel for the Call in progress condition is shown in Figure 18 (a). As can
be seen from the panel screenshot, this condition has four parameters. The user can add,
edit and remove parameters using the three buttons situated to the right of the parameters
list in the properties panel. In the screenshot the first condition parameter is selected in
the list. If the user presses the edit button then the window shown in Figure 18 (b) and (c)
is displayed. One can see that the drop-down list in this window allows the user to set the
type for the parameter only to one of the variable types that have already been added to
the model. This prevents the user from making erroneous type assignments, but requires
variable types to be inserted into the model in the very beginning.

Once conditions are defined, the user should proceed to define attributes for each of
the actors in the use case diagram. This should be followed by the user filling in the use

case properties. The properties panel for the Log in use case is shown in Figure 18 (d). In
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Figure 18: Properties of Condition and Use Case Elements in SusanX
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addition to making associations between use cases and actors with dragging-and-dropping
on the diagram view canvas, the user can also set the associated actor for each use case in
the properties panel by using the drop-down list labeled “Actor:”. Use case parameters are
created in the same way as condition parameters, which was explained earlier. Screenshots
(e) and (f) in Figure 18 show how a pre- or post-condition for a use case can be created and
edited. Firstly, the user selects a condition type from the drop-down list labeled “Condi-
tion:”. After this selection, the window updates to display the parameters corresponding to
the chosen condition. Next, the user needs to assign each of these parameters to one of the
valid options again available via drop-down lists. For each parameter, SusanX finds the pos-
sible assignment options through type-matching. In other words, it gets literal values from
the variable type definition and also finds those actor attributes and use case parameters
that are of the same type as the parameter. All these and the forall option are combined
and used to populate the parameter drop-down list as shown in Figure 18 (f). Once each
of the parameters is assigned, the user also needs to specify the truth-value for the pre- or
post-condition created.

Alternative sets of pre- and post-conditions can be added and deleted with the buttons
at the bottom of the properties panel in Figure 18 (d).

The final step in the construction of a model in SusanX is insertion of initial conditions.
Properties of initial conditions are defined in a similar way to all other modelling elements.

The recommended procedure for building models in SusanX described above assumes
that the user knows in advance all the elements for the model and their properties. Of
course, this is not usually the case and the model construction process will require some
iterations. Consequently, our recommendations define the general outline for the actual
process. Once the model is constructed, the user needs to run a static check on it before he

can make use of the verification options offered in SusanX.

6.2.2 Static Checking on a Susan Model

The screenshot in Figure 19 illustrates how structural errors are reported to the user after
a static check is performed in SusanX.

The generated error report informs the user of the number of errors that were found in
the model and describes each of the errors discovered. The first line of each error message
conveys the type of the error and is followed by the details that allow the user to locate the

source of the error easily. For example, error 3 in Figure 19 says that the Patient parameter
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M static model check

Errars found:
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Farameter. Patient
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4. Parameters do not match to the condition declaration.

Use case: Create patient profile

Set of pre-fpost-conditions: 1

Pre-condition: Patient profile exists(#uc Patient, #self ID, #uc Location) is false

Figure 19: Static Model Check Window in SusanX

of the Create patient profile use case is assigned to an invalid variable type called Patient ID.
Such an error typically arises when after the definition of use case properties, one of the
used variable types is removed from the model - in this case, the Patient ID variable type
was removed. In order to fix this error, the user must either re-assign the Patient parameter
to another type that is valid or he must create a variable type called Patient ID once again.

There are ten different error types that can be determined by the SusanX static checker:

1. Empty variable type: A variable type with no values is defined within the model,
which is not permitted.

2. Invalid variable type: A condition parameter, use case parameter or an actor attribute

is assigned to a variable type that does not exist within the model.

3. Inwvalid condition: A pre- or post-condition of a use case is assigned to a condition
type that is not defined within the model.

4. Condition parameter mismatch: Parameters of a use case pre- or post-condition do

not match those of the corresponding condition type declaration.

5. Invalid actor attribute: A use case pre- or post-condition parameter is assigned to a
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non-existent actor attribute.

6. Invalid use case parameter: A use case pre- or post-condition parameter is assigned

to a non-existent use case parameter.

7. Invalid value: A use case pre- or post-condition parameter is assigned to a non-existent

literal.

8. No use cases or conditions: The model does not contain any conditions or use cases,

which does not make it suitable for verification.

9. Inwvalid actor for use case: An association between a use case and a non-existent actor

is found within the model.

10. No pre-conditions in the set: A use case with multiple pre- and post-conditions sets

is found, but one of the sets does not contain any pre-conditions.

The user has to adjust the Susan model until no errors are reported by the static checker.
Only in this case the translation to NuSMV can be correctly executed and verification can

be performed.

6.2.3 Running Batch Generic Verification

Batch generic verification checks each use case and condition instance in a Susan model
against liveness and reversibility categories respectively. When the user chooses this verifi-
cation option, no additional input is required from the user in order to begin the verification.
Generated results are displayed as shown in Figure 20.

As can be seen from the screenshot in Figure 20, computed categories are shown next
to use case and condition names and not their individual instances. This compressed view
presents the user with an overview of the results that is easily comprehensible. Full results
for a use case or condition can be viewed by choosing it in the drop-down list at the
bottom of the window and pressing the “expand” button. This displays all the instances
of the selected condition or use case with a category assigned to each one. Commonly, all
instances of a condition or use case fall into the same category and the expansion is not
necessary. When this is not the case and instances span more than one category, all these
categories are displayed in a list next to the condition or use case name in the overview

report. In Figure 20 some of the Delete contact use case instances are Live while others are
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Figure 20: Batch Generic Verification Window in SusanX

Dead. The results for this use case can be expanded to see precisely which instances fall

into which liveness category.

6.2.4 Using Guided Generic Verification

As batch generic verification can take time to complete for a model of a significant size, the
guided verification option can be very useful in obtaining the same results more quickly.
The window that allows the user to initiate this type of verification and where the results
are displayed is shown in Figure 21.

One verification run determines categories for all the instances of one particular condition
or use case. In addition to selecting that condition or use case, the user is also required
to speculate as to which category the instances of the condition or use case are likely to
belong. If the speculation is correct for the majority of instances then the time taken by
verification is reduced. Details about the implementation of this type of verification are

given in Section 6.3.2.
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Figure 21: Guided Generic Verification Window in SusanX

The generated results displayed to the user show a category for each instance of the
chosen condition or use case. In Figure 21 instances of the Place call use case are shown.
For each instance, literal values for actor attributes and use case parameters are shown in
brackets next to the actor and use case names respectively. Where an instance does not fall

into the category selected by the user, the correct category would be computed by SusanX
and shown in the results.

6.2.5 Verifying Model-specific Properties

Model-specific verification in SusanX allows the user to construct his own properties to be
checked against the model. This verification option provides the most power to the user,
but at the same time requires the most user input in addition to the model constructed.
Figure 22 shows two examples of model-specific properties constructed and verified in Su-
sanX.

Firstly the user needs to select one of the patterns from the pattern list labeled in
Figure 22 (a). The name of each pattern in the drop-down list is followed by a short

explanation where “A” and “B” represent pattern variables. These explanations make



CHAPTER 6. THE SUSANX TOOL

(b)

M Model-specific verification -

Pattern: |Absence: A Qs nevertrue

=l
A |Userlogged in(a, by & User onlineda, b} | User online(a, b}
; i . MNOT (1)
Werification trace: s
-- Btarting werification; Wed Sep 22 17:10:59 CAT 2004 - OR ()

Werifying whether the fallowing property halds:
{U=zerlogged infa, by & IWser onlineda, bl ) is never true

implication (-=)
User onlineda, kb
Uszer logged inga, b)

This property is false, 25 shown by the following execution sequence;  |Metwork availabled)

Contact existsa, b, a, b}

[« 1

1. User(Sister Mand activates Delete contact{Hospital, Sister Mary, Hozpital) -- failed

2. UserDrBosman) activates Log in(Clinic B) - succeeded

3. User(Sister Mand activates Delete contact{Hospital, Sister Mary, Hozpital) -- failed

--Werification completed: Wed Sep 22 17:11:26 CAT 2004 -

Start verification ‘ Save trace

M Model-specific verification -

Pattern: |Precedence: Aprecedes B

[~]

A | Uszer logged in#Sister Mary, #Hospital)

| |Userlogged ina, by

=] @

B | Uszer online®Sister Mary, #Hospital)

| |User0n|ine(a, b

(] (&

Werification trace:

This property is true.

-- Starting verification: Wed Sep 22 17:20:23 CAT 2004 --

Werifring whether the following property haolds:
{U=zerlogged in@Sister Mary, #Hospital) ) precedes { User online@Sister Mary, #Hospital) )

--Werification completed: Wed Sep 22 17:20:33 CAT 2004 -

‘ Start verification H Save frace ‘

Figure 22: Model-specific Verification Window in SusanX
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it easier for the user to construct properties using the available patterns correctly. In
Figure 22 (a) “A is never true” is the explanation for the Absence pattern, and in (b) “A
precedes B” explains the pattern of Precedence.

After choosing a pattern, the user needs to construct the pattern variable or variables.
The user can type these in or insert valid pattern variable elements using the drop-down
list and the “insert” button located to the right of the pattern variable text area. In the
drop-down list, parameters of different conditions that belong to the same variable type are
labeled with the same letter. In the example shown in screenshot (a) SusanX used “a” to
label all condition parameters of type User ID and “b” for those of type MuTI address.
These letters must be changed manually by the user in the pattern variable text area if no
matching between parameters is required. Our example in (a) illustrates a property that
checks that a particular MuTI user can never be logged in and offline at the same time. In
this scenario, matching of parameters is required as we want the User logged in and User
online conditions to refer to the same user and location. The example in (b) checks that
before Sister Mary can go online at the Hospital, she needs to log into the MuTI system.
As can be seen from the screenshot, literals are used in pattern variables to express this
property. Each literal value used in a pattern variable must be prefixed by a hash sign (#).

In example (a), verification determined the property to be false and the counter-example
trace is displayed to the user. Each step in the trace is a use case activation showing also its
success or failure. Literals for actor attributes and use case parameters appear in brackets
next to actor and use case names respectively. The counter-example in this case consists
of one successful use case activation, where Dr Bosman logs into MuTl at Clinic B. The
property verified in example (b) was determined to be true, so no counter-example trace is
necessary.

The next section contains important details about the design and implementation of the

SusanX tool.

6.3 Implementation Details

The entire implementation of SusanX was done in Java (j2sdk1.5.0), with Swing being
used for the Graphical User Interface (GUI) programming. An open source Java Graph

visualisation library called JGraph! (http://www.jgraph.com) assisted us in the creation of

L An open source version of JGraph that was used in this project is available under the LGPL. No
alterations were made to the JGraph libraries in this project.
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the diagram panel in the SusanX editor.

Version 2.1.2 of the NuSMV? model checker was used as the verification engine in Su-
sanX. We chose WindowsXP for the testing of the SusanX tool, as it is the operating system
most likely to be used in a generic software development environment. The Windows version
of NuSMV 2.1.2 that we incorporated into SusanX works with Cygwin, a Linux emulator
for Windows that provides substantial Linux API functionality (http://www.cygwin.com/).
SusanX initiates a Cygwin process from inside the Java code, which subsequently passes
commands to the NuSMV model checker. As a result, the current SusanX tool can only
be used on a Windows operating system. Nevertheless, the implementation can easily be
extended to work with other versions of NuSMV, making SusanX platform-independent.

An improved NuSMV version 2.2.0 was released on 10 June 2004, at which time this
project was nearing its completion. A number of tests were done to determine whether this
later release of the model checker could improve verification performance of SusanX. No
substantial enhancement was noted with our particular use of NuSMV.

In the remainder of this section we describe the architecture and structure of the SusanX
implementation. Special emphasis is placed on the implementation of the different analysis
options in SusanX, where the interaction between SusanX and NuSMYV is explained in

detail.

6.3.1 Architectural Overview of SusanX

The SusanX implementation consists of several distinct parts or components, each of which
provides a well-defined function of the tool. A Unified Modelling Language (UML) definition
of a component is “a physical and replaceable part of a system that conforms to and provides
the realisation of a set of interfaces” [BR.J99]. Systems that are developed according to
a component-based design are generally more robust and flexible. Such systems can be
evolved without difficulty, especially in cases where incorporation of new technologies into
the implementation is required while the user interface needs to remain the same. All
the components used to assemble SusanX and their relationships are shown with a UML
component, diagram in Figure 23.

Figure 23 shows three different types of components: executables, libraries and files.

Executable and library components are self-explanatory. File components represent files

2All versions of NuSMV are provided under the LGPL v2.1, which is an open source license that allows
free academic and commercial usage of NuSMV.
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Figure 23: Component View of SusanX

either generated or used by the SusanX tool. Even though these files are not literally a part
of the SusanX system, they are indispensable to the functionality that it provides.

The SusanXGUI component contains the implementation of the graphical editor inter-
face provided by SusanX. All the Susan model related data displayed to the user in the
editor is stored internally using data structures from the SusanModel library. The classes
contained in this library and their relationships conform to the Susan metamodel described
in Chapter 5. The JGraph library is used for displaying use case diagrams in the diagram
panel of the editor and allowing the user to manipulate these diagrams. Once a Susan model
is created, it can be saved with the layout of its use case diagram and opened again at a later
stage. When a model is saved, the associated data structures and object representation of
the diagram layout are serialised to a “model.sus” file. Moreover, a Susan model can be
saved as a “model.txt” file readable by a human user, but not suitable for re-opening a
model.

The interface provided by SusanXGUI allows the user to access and parameterise the
analysis options, but the analysis functionality itself is not implemented in this compo-
nent. SusanStaticChecker runs static checks on a Susan model and reports on the identified
errors, which are then interpreted for the user by SusanXGUI Dynamic analysis is im-

plemented in the SusanNuSMVAnalyser component, which uses the NuSMYV executable
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as the verification engine. Provided with a Susan model by SusanXGUI, SusanNuSMV-
Analyser generates a NuSMV representation of the model and saves it in a data file called
“model.smv”. For each of the analysis options, SusanNuSM VAnalyser also inserts appro-
priate verification properties into this file and passes it to NuSMV to be checked. Once
verification is completed, NuSMV writes out the results to a “results.out” file, which is
subsequently parsed by SusanNuSM VAnalyser. These results are also interpreted in terms
of Susan model elements by SusanNuSMVAnalayser, after which they are finally shown to
the user by SusanXGUIL

As can be seen from Figure 23, the SusanNuSM VAnalyser realises an interface called
SusanAnalyser. It means that this component can be replaced by another, provided that the
new component also realises the defined interface. For instance, further experimentation
with the Susan method using SPIN [Hol97] as a verification engine could be easily done
using SusanX with a new dynamic analysis component.

Our entire implementation of the SusanX tool consists of four packages, shown in Fig-
ure 24 with a UML package diagram. Each of these packages corresponds to a component

described earlier.

«import» «import»
{ _____________ SusanxGul| T~ TTTTTT H
| )
| I )
| I |
| )
1w ! [ 1w
«import»

SusanStaticChecker

«import» N/ «import»

____________ > SusanModel <

Figure 24: Package View of SusanX

An incremental development process was followed for SusanX, where each increment
integrated a new component into the tool. The development was structured “bottom-
up”, with the low-level components built before the graphical interface. SusanModel and

SusanNuSMVAnalyser were implemented in the first and second increments respectively.
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This particular approach was taken as it was important to establish in the beginning whether
the NuSMV model checker was suitable for our verification purposes. The GUI of the
SusanX tool was developed in the third increment, after implementation of the NuSMV
analysis functionality was completed and sufficiently tested for correctness. As the last
addition to the tool, the SusanStaticChecker component was added in increment four.
Further details on the contents of the SusanModel, SusanXGUI and SusanStaticChecker
packages are not essential for the purpose of this dissertation. On the other hand, the
design and implementation aspects of the SusanAnalyser package are worthy of note and

are discussed next.

6.3.2 SusanAnalyser Package

The SusanAnalyser package consists of 15 classes, of which the most important 6 are shown
in the class diagram in Figure 25. UseCase and Condition classes belong to the SusanModel
package, as indicated by their class names in the diagram.

The “user” of the SusanAnalyser package can invoke all the analysis functionality by
calling the methods of the VerificationControl class. In SusanX, the SusanXGUIControl
class from the SusanXGUI package creates an instance of the VerificationControl class and
makes calls to the provided methods. In turn, VerificationControl uses the CodeGenerator
class to create the “model.smv” file for the analysed Susan model and the VerificationRe-
sultsParser class to parse the “results.out” file produced by NuSMV.

UseCase WithCategory and Condition WithCategory are specialisations of the UseCase
and Condition classes respectively. These classes contain an indication of the use case
liveness or condition reversibility category to which the underlying element belongs. Af-
ter any type of generic verification a LinkedList of these objects is returned to the Su-
sanXGUIControl, consider for example the method verifyUCLivenessBatch() : LinkedList
in the VerificationControl class.

UseCaseActivated also inherits from the UseCuase class, and is used to represent a use
case activation rather than just a use case element in a model. In addition to the use
case details, it contains an indication of whether the use case activation was successful or
not. A LinkedList of UseCaseActivated objects is created to represent a counter-example
during model-specific verification and returned as in the method processModelSpecificRe-
sults() : LinkedList in the VerificationResultsParser class.

Instead of explaining the individual attributes and methods that appear in Figure 25, we
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VerificationControl
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Figure 25: Classes in SusanAnalyser Package
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illustrate the typical usage scenario of the classes in the SusanAnalyser package. Figure 26
uses a UML sequence diagram to show the sequence of actions that take place during batch

generic verification of use case liveness.

VerificationResultsParser
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A 1

(1) UC Liveness Batch 1
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Figure 26: Sequence of Actions During Batch Use Case Liveness Verification

In Figure 26 the user initiates the verification option in (1), after which NuSMV code
is generated for the current Susan model in (2) and (3). Next the wverifyUCLiveness-
Batch method in the VerificationControl class is called in (4). Inside this method, firstly
in (5) CodeGenerator is used to insert Computational Tree Logic (CTL) properties into the
“model.smv” file that check each use case instance against the Dead category. Then verifi-

cation is run with the NuSMV model checker in (6), which produces the “results.out” file.
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In (7) VerificationResultsParser is used to parse the verification results and assign the Dead
category to the use case instances for which the CTL properties were reported to hold in
the model. Using the results in (8), VerificationControl finds those use case instances that
still need to be assigned to a liveness category and runs verification to check whether they
are Transient in (9), (10) and (11). The remaining unassigned use case instances in (12) get
assigned to the Live category, after which a list of UseCase WithCategory objects is passed
back to SusanXGUI in (13). This list is used to generate a verification results report shown
to the SusanX user in (14), the final step in this scenario. Batch generic verification of
condition reversibility is performed in an analogous manner in SusanX.

During guided generic verification, NuSMYV is used to verify only one property at a
time. For a use case, SusanXGUI first instructs VerificationControl to prepare the guided
verification for the chosen use case and liveness property with initGuidedUC Verification
and then calls verifyNextUCInstance repeatedly until all the instances of the use cases have
been checked. A similar process is followed during guided generic verification of a condition.

For model-specific verification, the pattern information is passed to the Verification-
Control class by SusanXGUI That information is used to generate the necessary CTL
properties in the insertModelSpecificProperty method of VerificationResultsParser. 1f the
property is determined to be false during verification, a counter-example represented by a
list of UseCaseActivated objects is passed back to SusanXGUL

In this chapter we presented the SusanX tool and explained its design and implementa-
tion details. In the next chapter we describe the case study that we performed in order to

assess the applicability of Susan and the SusanX tool in practice.



Chapter 7

Case Study: A Cash Management
System

In this chapter we describe the case study we carried out in order to assess the suitability of
the Susan method for addressing real problems in a software development project. Firstly,
an overview of the case study system is provided and the goals of the case study are iden-
tified. Subsequently, our approach to the case study and the process followed during the
investigation are presented. Each stage of this process is explained in detail, including the
results obtained. The chapter is concluded by a synopsis and an evaluation of all the major

results of the case study.

7.1 Case Study Overview

In order to evaluate the suitability of our proposed method for modelling and analysing
requirements of real-world software development projects, we conducted a case study of a
Cash Management System (CMS). This case study was made possible through cooperation
with SoftCo!, a South African IT company. SoftCo were contracted to develop the CMS for
an international business group and at the time of the case study a part of this project was
still in progress. More specifically, the project was divided into two phases. Phase 1 was
completed in July 2003 and the developed system was successfully deployed. Development
for Phase 2 of the project was put on hold until June 2004 when requirements gathering for
this next part of the system began.

SoftCo is a well-established developer and distributor of software business solutions

!The real name of the company is Software Futures. However, it is not essential to our discussion in this
chapter and hence we use the fictional name, SoftCo.
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in South Africa. It has a proven track record of successful projects for medium-sized busi-
nesses, large corporations and government organisations. The software engineering approach
adopted by SoftCo is based on the best practices, including those advocated by the Rational
Unified Process (RUP) [Kru01] and Model Driven Architecture (MDA) [mda02]. Specifi-
cation of requirements is recognised as an integral part of any development project by this
company and is done using traditional use case modelling. This choice of SoftCo allowed
us to observe how effective traditional use case modelling is in practice and explore how
Susan can be used to bring about additional benefit. Furthermore by analysing a “business

" such as the CMS, we were testing our approach in the sphere of use case modelling

system’
rather than formal methods. This coincides with the objective of our work, which is to
improve the current state of use case modelling and not to extend the use of this approach
to specifying requirements for systems unsuited to this representation, such as for example
safety-critical systems.

The main goal of the CMS is to support management of receipts, as well as coordinate
the flow of information between various other computer systems employed by the client
company. An overview of the system architecture is presented in Figure 27.

Employees of the client company should be able to make use of the CMS services through
a web-based interface. This is represented by the two workstations connected to the CMS
server in Figure 27. Examples of the services that the system should provide are receipt
search, receipt printing and report generation. The CMS database should store all the
important receipt information, as well as other data such as user details. The CMS should
act as the front-end to the company’s accounting system that keeps record of all the monies
received from various debtors. The receipt transactions posted to the accounting system
should also be reflected in the operations system databases. As shown in the diagram, the
scope of the CMS architecture includes the databases of the accounting and operational
systems since the CMS provides these with receipt data. However, how the receipts data is
handled by the accounting and operational systems is out of the CMS scope.

The development of the system was divided up as follows:
Phase 1: General Receipts and Bulk Receipts

Increment 1: Administrative System
Increment 2: Manual Receipts

Increment 3: Bulk Receipts
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Figure 27: CMS Architectural Overview

Phase 2: Requisition System
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For the case study we worked with Increments 1 and 2 from Phase 1, which we deemed

sufficient, for our purpose. We acquired the requirements models and documents for the CMS

project drawn up by the SoftCo team, and based our investigation on these. These models

and documents composed the final requirements specification for Phase 1 of the CMS.

However, they were captured informally and were not analysed by any rigorous means, hence

we aimed to show that Susan can be used to improve the state of the CMS requirements

specification. More specifically, our objective was to assess the following,.

1. Suitability of Susan notation. Firstly, we wanted to determine how appropriate the

Susan notation is for expressing requirements for a software system such as the CMS.

2. Benefits of formalising use case models. Additionally, we were to establish whether

formalising software requirements with Susan is advantageous for this type of system.
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For example, whether it assists in discovering errors or makes requirements more

intelligible.

3. Effectiveness of SusanX analysis options. Furthermore, it was important to evalu-

ate how effective the analysis options provided by the SusanX tool are in making

requirements more correct, complete and consistent.

4. Usability and performance of SusanX. Lastly, we wanted to assess the usability and

performance of SusanX when modelling and analysing realistic requirements models.

7.2 Modelling and Analysing CMS Requirements with Susan

The process that we followed during the case study consisted of four stages, where at the end

of the last stage, we produced an improved requirements model of the CMS requirements

for Increments 1 and 2. The details of this process are depicted as a flowchart in Figure 28.

EN

D

STAGE 1 | STAGE 2 | STAGE 3 | STAGE 4
BEGIN
Understand
requirements
documents
Inspect
requirements Model cluster
documents in Susan
manually ¢ _—l
Analyse Integrate
cluster model [ —| cluster models
Yes with SusanX for increment —l
Analyse
3 Yes |Correct cluster increment Integrate all
model model with increments
No Yes SusanX l
4@ Correct Analyse entire
increment model with [«
No model SusanX
<_More increments a Yes Correct
system model
No

Figure 28: The Four Stages of the Case Study Process
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As can be seen from the diagram in Figure 28, during Stage 1 we studied the CMS
requirements documentation with the goal of understanding the system and also assessing
the state of the requirements specification created by the SoftCo team. Additionally, we
revealed several inconsistencies and shortcomings in the requirements models and documents
at this point by inspecting them informally. In the requirements models provided, closely
related use cases were grouped into functional “clusters” for each increment. In Stage 2 we
began our modelling and analysis of requirements by transforming use case models for each
cluster into Susan models, and subsequently analysing them separately from each other with
SusanX. As shown in Figure 28 analysis and modelling activities often required a number of
iterations. When errors were discovered during analysis, models were corrected and passed
through the same analyses until no errors were reported. At the end of Stage 2 we were
satisfied with the models for each cluster. In Stage 3, we combined cluster Susan models for
each of the two increments and analysed these. During Stage 4, the two increment models
were brought together to produce the entire model for the part of the system chosen for the
case study. After this Susan model was analysed, we were confident that we had a more
correct, complete and consistent requirements definition for the selected part of the CMS.

The remainder of this chapter describes our findings during each of the four stages of
the case study. Certain parts of the CMS requirements model are included in the discussion
for illustrative purposes. The complete Susan model obtained at the end of the modelling
and analysis process can be found in Appendix A. The main results of the case study are

summarised and evaluated at the end of this chapter.

7.3 Stage 1: Examining the Provided Documentation

The requirements definition documentation for the CMS consisted of a Software Require-
ments Specification (SRS) that provided an overview of the requirements for the entire sys-
tem, and a Software Design Specification (SDS) for each increment containing requirements
on a more detailed level. These two types of documents were structured in an analogous

manner and contained the following sections.

1. System overview: This section contained a brief overview of the problem, which

was the same for the SRS and all the SDS documents.

2. Purpose of the document. The purpose of the document type was described here.
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3. Document scope: The scope of each document was described in terms of the re-

quired system features that it presented.

4. Definitions and acronyms: Terms that were often used in the documents, as well

as certain use case modelling concepts were defined here.

5. Assumptions and dependencies: This section contained the assumptions made

with regards to the requirements described in that particular document.

6. Screen flow diagrams: These diagrams gave an overview of the web pages that

made up the web-interface and how they were linked to each other.

7. Package diagram: Fach SDS included a package diagram showing the packages that

were used to organise use cases for each of the increments.

8. Use case diagrams: A separate use case diagram for each of the packages was

included in the documents.

9. Use case descriptions: A description for each use case appearing in the use case

diagrams was provided. For each one, the following were included:

e Context of use or a short description of the use case.

e Screen layout of the web-interface for the use case, where appropriate.
e Actors associated with the use case.

e Trigger events that initiated the use case.

e Pre- and post-conditions for the use case.

e Main and alternative flows described textually as a sequence of steps and some-

times supplemented by activity diagrams.

e Notes and issues providing additional information about the use case.

10. Supplementary specification: Only the SRS contained this section that described

the non-functional requirements for the system.

Manual inspection of the captured requirements revealed a fair number of inconsistencies
in the SRS and SDS documents. This showed that even in a mature software development

company such as SoftCo, analysis at the early stages of development is not given a great
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deal of consideration. Our most significant criticisms of the state of the CSM requirements
definition documents were as follows.

There were no sound dependencies between the requirements documents.
There were a number of inconsistencies between the requirements captured in the studied
documents. As used in this particular project, the SRS was supposed to provide an overview
of the requirements for the entire system or at least for Phase 1 of development. In reality
however, the connection of this document to the SDSs was very questionable. For example,
requirements for Increment 1 were not reflected at all in the SRS. Additionally, contradictory
references between SDSs were identified. For instance, the SDS for Increment 2 made untrue
assumptions about the system functionality described in the SDS for Increment 1. As a
result, some use cases for Increment 2 were dependant on nonexistent or at least unexpressed
requirements.

The documents were difficult to navigate. The requirements documents were not
easy to follow for a number of reasons. Firstly, numerous diagrams in the documents were
not labelled and appeared without any description. Secondly, cross-referencing between
use case diagrams and use case descriptions was difficult. In fact, several cases were found
where a use case appeared in a diagram but had no description or vice versa. Lastly, a few
inconsistencies such as different ordering of sections and varied use case modelling notations
were found between the documents. This can be attributed to the fact that each of the
three documents that we examined (SRS, SDS for Increment 1 and SDS for Increment 2)
were created by a different developer.

Incorrect use case modelling notation was used. Several use case diagrams con-
tained invalid associations between modelling elements. For example, actors were connected
with an extend relationship that should only be used to join use cases. Moreover, the in-
consistency in notation used in the different documents showed that there was no general
consensus on a particular extended or augmented use case modelling notation.

There were no actor descriptions. Use case diagrams were not supplemented with
actor descriptions, which made it difficult to understand the precise roles that the actors
represented. Selected actors were explained in the “Definitions and acronyms” section,
but among the general definitions these explanations appeared out of place. Additional
actor descriptions are not prescribed by the UML use case modelling notation, but it would

enhance the comprehensibility of the requirements documents.
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Use case pre- and post-conditions were incomplete. The definitions of pre-
and post-conditions for use cases appeared to be incomplete and not well thought-through.
Certain use cases had more than one main flow, but only one set of pre- and post-conditions

were defined.

7.4 Stage 2: Modelling and Verifying Use Case Clusters

As mentioned before, use cases in the requirements documents provided were already
grouped into functional clusters. For each one of these clusters we created a Susan model
within the SusanX tool and analysed it for generic and model-specific properties. A brief

overview of each of the clusters is given below.

Increment 1: Administrative System

e Company admin. The client business group includes several companies, and capturing
of receipts for all of these needs to be done through the CMS. Each company can be
associated with a number of business types, and each business type can have several
pay codes. The administrator maintains a record of all the companies, business types

and pay codes within the system.

e Role admin. A list of user roles is kept in the system, where each role is associated with
a set of functions or access rights. The administrator is responsible for maintaining

the roles within the system.

e User admin. A system user may have access to more than one company’s receipt
information. For each company that the user can access, a different role can be
assigned to him. The maintenance of valid system users, and their assignment to

companies and roles is once again the responsibility of the administrator.
Increment 2: Manual Receipts

e Login. A user is required to log into the system by providing his login name and
password, as well as indicating with which company he wishes to work. Users are

required to change their passwords regularly for security reasons.

o Manual receipts. Once a user is logged in, he gains access to manual receipt services

provided by the system. He can capture details of a new receipt and either print it
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straight away or save it for later use. Once a receipt is printed, it is posted to the
accounting system and also sent to the operational systems. Printed and saved receipts
are all stored within the CMS and can be searched by the user. An existing receipt
can be opened and edited by the user. Receipts that have not been posted to the
accounting system can also be deleted. In order to record a reversed transaction, the
user can void an already posted receipt. Access to some of these services is restricted

to certain user roles only.

The re-modelling of a cluster in the Susan notation required careful examination of
the use case diagram for the cluster and the associated use case descriptions. Entities
manipulated during the use case flows had to be pinpointed, as well as the attributes that
uniquely identify these entities. These entity identifiers determine the variables that are
used in a Susan model, and hence understanding these before creating a model is essential.
For example, in the Manual receipts cluster receipts were manipulated and each receipt was
uniquely identified by its receipt number and the ID of the issuing company.

For each cluster we first revised the associated use case diagram, correcting the notation
and enhancing the structure where necessary. Figure 29 shows the original and revised use
case diagrams for the Manual Receipts cluster. After the revision of a use case diagram, we
flattened the diagram to make it suitable for input into SusanX. The flattened version of
the revised Manual Receipts use case diagram is given in Figure 30.

As can be seen from Figures 29 (b) and 30, we replaced the three actors in the revised
diagram by the User actor in the flattened diagram. Currently the Susan notation does
not provide for actor inheritance and hence we included only one generic actor called User.
The three roles to which the original actors corresponded (Receipts enquiry clerk, Receipts
capture clerk and Receipts supervisor) and their influence on the services accessed by various
users is expressed inside the textual elements of the Susan model. Nevertheless, the visual
representation of these was lost due to the flattening of the use case diagram.

The flattened use case diagrams were constructed in SusanX, as the first step to creating
complete Susan models in the tool. Next, the necessary variable types were inferred from
the entity analysis performed earlier. For example, Receipt number and Company 1D were
two of the variable types in the Manual receipts cluster model. For each variable type a
number of test values were assigned. Once variable types were in place, we added actor

attributes and use case parameters to the model.
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Figure 29: (a) Original and (b) Revised Use Case Diagrams for Manual Receipts Cluster
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Figure 30: Use Case Diagram for Manual Receipts Cluster Flattened for Susan Model

The use case pre- and post-condition definitions in the original documents required
considerable revisions before they could be used as input into SusanX. After revising these,
we could complete the Susan models with condition declarations, use case pre- and post-
conditions, as well as initial conditions for the system.

Analysing the CMS cluster models in SusanX presented a problem due to many depen-
dencies between the clusters. In this context, we were concerned with dependencies where
satisfaction of a pre-condition for a use case in one cluster depended on activation of a use
case in another cluster. In cluster models where such dependencies existed, analysis pro-
duced results that were not valid for the entire system. For example, in the Login cluster
model one of the pre-conditions for the Log in use case was User exists. This use case was
reported as Dead by the SusanX generic verification, because the User exists pre-condition
only became true after the Add user use case in the User admin cluster model was activated.

The cluster dependency problem was overcome in the following way. We first obtained
the generic verification results for the Role admin and Company admin clusters, which were
not dependent on any other clusters in the system. The User admin cluster model depended
on both of these clusters through the Role exists and Company exists conditions. Inside the

Use admin cluster model we used a Dummy actor and two use cases to mimic the changes
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made to the Role exists and Company exists conditions. The reversibility categories of these
two conditions were preserved by the mimicking, and hence the analysis results for the User
admin cluster model could be generalised for the entire system. The dependencies related
to the Login and Manual receipts clusters were handled in the same way.

Generic verification provided us with better insight into the cluster requirements models
and also revealed a number of flaws in them. The insight was gained when we studied the
results generated by verification, which required us to compare the computed category for
each use case and condition with our expectations. A good understanding of the definitions
for the use case liveness and condition reversibility categories was necessary to interpret the
results produced by the generic verification and determine whether they were in order. For
instance, contrast the following three cases where a condition was placed in the Irreversible

category.

1. Role flagged as deleted: For auditing purposes, when a role is deleted it is not phys-
ically removed from the CMS database, but rather flagged as deleted. If a role is
flagged deleted, it remains that way and there is no way to undo it. Hence, the

Irreversible category was appropriate for this condition.

2. Receipt opened: 1If a previously saved receipt is opened by a user, it should be closed
subsequently at some point in time. Therefore, this condition should actually have

been in the Reversible category and the model needed to be corrected.

3. Receipt saved in operational system: This result implied that once a receipt was sent
to the operational system, it remained there indefinitely. It might be the case that
such a situation would not be desirable, however the removal of receipt records from

operational systems is out of the CMS scope.

In cases where we established that the computed category for use case or condition was
incorrect, the source of the error still had to be found. One of the flaws in the Login cluster
model that we uncovered with generic verification was that the system did not provide
a way for a user to log out. We identified this error because the Log in use case was
categorised Transient and the User logged in condition Irreversible. This error was easily
fixed by adding a Log out use case to the model. Another instance of an invalid verification
result was found in the Manual receipts cluster, where the Void receipt use case was placed

into the Live category. This meant that a particular receipt could be voided more than
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once. Since every time a receipt is voided the corresponding transaction is reversed in
the accounting and operational systems, this situation would ultimately result in incorrect
transaction records. Taking into consideration that these transactions could involve very
large amounts of money, such a flaw in the requirements model could have had devastating
consequences. The model was corrected by adding a pre-condition to the Void receipt use
case that ensured that the receipt in question has not been voided before.

Once we were satisfied with the results of the generic verification, we proceeded to
analysis for model-specific properties. We found that the majority of the cluster models
contained few tightly related use cases, which made it difficult to construct interesting and
useful model-specific properties for the analysis. The Manual receipts cluster was the only
model that we verified in this manner. For example, we confirmed that once a receipt
is posted it cannot be deleted from the CMS. Additionally, we determined that a receipt
could be edited after it has been posted, which should not have been the case. However, the
validity of these properties could have been quite easily inferred by looking at the pre- and
post-conditions defined for the Delete receipt and Edit receipt use cases instead of running
model-specific verification. Nevertheless, even if in this particular case the effort of verifying
properties of this nature by formal means was not justified, it very well may be for another
type of system.

At the end of Stage 2 of our modelling and analysis process, the requirements model
for the CMS was already considerably improved. The process of constructing Susan models
for the system alone was very effective in making the requirements definition more precise
and complete. Additionally, verification assisted us in correcting several logical flaws in the
models. We concluded that for this particular system, generic verification was more helpful
in analysing use case clusters than model-specific verification. Overall, the major drawback
of the applied approach was presented by the flattening of the given use case diagrams for
Susan models. Visual representation and some of the semantics of use case relationships
and actor generalisations were lost due to the flattening process.

We felt that the interface of the SusanX tool provided very good support for building
syntactically correct models quickly. This can be mainly attributed to the support SusanX
provides to the user when prompting for input, such as for example restricting parameter
assignment to valid values for the associated variable type with a drop-down list. A useful
addition to the tool would be automatic detection of pre-conditions referring to a condition,

the value of which does not change within the model. Dependencies among clusters could
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have been identified more easily if such a feature was available. Furthermore, SusanX could
automate the process of mimicking the reversibility of such conditions in the model by
simply asking the user to provide the desired reversibility categories and taking care of the

rest.

7.5 Stages 3 and 4: Integrating Cluster Models for Each
Increment and Integrating Increment Models

This stage of the modelling and analysis process firstly involved bringing together the in-
dividual clusters for the two increments. Using the insight we obtained in the previous
stage, we decided that the Login cluster model fitted in better in Increment 1 rather than
Increment 2. Therefore, the Company admin, Role admin, User admin and Login cluster
models were combined to form one model for Increment 1. On the other hand, the model
for Increment 2 consisted of the unchanged Manual receipts cluster model.

Generic verification of the combined model for Increment 1 did not produce any new
results, since the dependencies between our clusters were appropriately modelled in the
previous stage. On the contrary, several valuable model-specific properties could now be
constructed for the model analysis. For example, we discovered that non-existent users
could have access to receipt services for a valid company. The generated counter-examples
showed that there were two ways in which such a situation could arise. Firstly, when a user
was deleted by the administrator, the company assignments involving that user were not re-
moved from the system. Secondly, when details of a user were edited, this was not reflected
in the relevant company assignments. Correcting the latter of these scenarios presented a
problem, because there are no means of modelling the propagation of changed user details
to the company assignments in Susan. In order to correct the former undesired situation,
we appended the Delete user use case with post-conditions to remove all company asso-
ciations for that user. However, the Edit user use case additionally required the creation
of new associations for only those companies that were linked to the old user login. The
Susan notation currently does not allow one to express this in a post-condition. Instead,
we alleviated the problem by making the definition of the post-condition for the Fdit user

use case more abstract as demonstrated next.
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Correcting the Use Case Edit user

BEFORE: AFTER:

Actor: Actor:

Administrator Administrator

Parameters: Parameters:

Old user of type User login, User of type User login

New user of type User login Pre-conditions:
Pre-conditions: Admin logged in () is true,
Admin logged in () is true, Users listed () is true,

Users listed () is true, User exists (#uc User) is true

User exists (#uc Old user) is true,  Post-conditions:

User exists (#uc New user) is false  User details changed (#uc User) is true,
Post-conditions: Company assignments changed (#uc User) is true
User exists (#uc Old user) is false,

User exists (#uc New user) is true

As can be seen above, instead of explicitly modelling the change of user logins, we now
indicate the change more abstractly with User details changed and Company assignments
changed post-conditions.

Another example of an error in the Increment 1 model discovered through model-specific
verification, was that the administrator was able to delete a user while that user was logged
into the system. We fixed this flaw by adding pre-conditions to the Delete user use case
that checked that the user was not logged in under any company at the time the use case
was activated.

Once we were satisfied with the state of the Susan model for Increment 1, we proceeded
to Stage 4 and integrated all the created models to produce one Susan model for both
Increments 1 and 2. This model was once again put through a number of analysis and
correction cycles, where model-specific verification of SusanX was used for analysis. Our
entire modelling and analysis process was complete when we had an acceptable Susan model
for the selected part of the CMS.

As SusanX is currently a prototype tool, it provides limited support for model manage-
ment such as grouping models into packages. In order to create the model for the whole of
Increment 1, we had to manually construct a new model containing all the elements from
the cluster models. SusanX could be enhanced with a feature that allowed the user to view

multiple models at the same time, and analyse the models either individually or in groups.
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7.6 Performance Measures for Analysis with SusanX

Our experiments with the case study were performed on a lightly loaded Intel Pentium M,
1.7 GHz processor with 512 MB RAM running Microsoft WindowsXP. During the course of
the case study we captured performance data for all the analyses carried out with SusanX;

these results are summarised in Table 3.

| Model name | TYP | CON | UcC | Batch generic | Guided generic | Model-specific |

Company admin 3 10 12 37s - -
Role admin 1 5 6 s - -
User admin (1) 3 8 6 16s - -
User admin (2) 3 8 8 31s - -
Increment 1 (1) 5 19 24 975s - 31s (0.06)
Increment 1 (2) 5 20 27 711s - 10s (0.03)
Login (1) 2 3 2 4s - -
Login (2) 2 3 4 5s - -
Manual receipts 4 11 10 381s - 51s (0.37)
Entire system 6 2 | 35 %0 1122s (17.27) 185 (0)

Table 3: Times for CMS Model Verification with SusanX

In Table 3 above, the first three columns after the model name provide an approximate
measure of the model sizes. TYP stands for the number of variable types declared in the
model, CON - the number of conditions and UC - the number of use cases. These measures
are followed by the captured times for the different types of analyses offered in SusanX,
where seconds are used as the units of measure. In the cases where guided generic or
model-specific verification was used, more than one time measurement was obtained. For
these verification options, the Mean value is given in the table together with the calculated
Standard Error of the Mean (SEM)?, which is given in brackets next to the Mean. The
SEM measure reflects the amount of variation between the individual time results in the
verification data set and the accuracy of the Mean representation for the entire set. For
Increment 1 (1), we can be 95% confident that the “true” Mean value for model-specific
verification lies between 30.88s (31 — 0.06 * 2) and 31.12s (31 + 0.06 * 2). Therefore there
was little variation between the time measurements obtained in that particular set. On the
other hand, guided generic verification times for the Entire system varied greatly as shown
by the high SEM value (17.27).

2SEM = S/\/n where n is sample size and S is Standard Deviation.
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Batch generic verification for the Entire system did not complete as the NuSMV anal-
ysis exhausted the available memory, and this is shown by the infinity (c0) entry in the
corresponding table cell. Generic verification categories were obtained through the guided
option for this model instead.

On the whole, the performance of SusanX verification during the case study was good
with all of the analyses completing under 20 minutes (or 1200s), except for the batch generic
verification of the Entire system model. In that one case, we counteracted the problem with
using guided generic verification instead on individual conditions and use cases in the model.

Performance or time taken by verification is the main concern in the application of
model checkers in practice. A great deal of effort is currently going into solving the per-
formance issues of model checking and considerable improvements have been made already,
as discussed before. This leads us to believe that with a more efficient model checker than

NuSMYV, analysis of Susan models can be speeded up even more.

7.7 Summary and Evaluation of Results

On the whole our experience with the case study was extremely encouraging as it demon-
strated that our proposed method for modelling and analysing software requirements is
applicable in an industrial project. This is not to say that we were not confronted with
any problems during the investigation, since there were in fact several difficulties that we
encountered. Nomnetheless, we managed to resolve all of these in one way or another and
the solutions that we used could serve as valuable examples to potential users of the Susan
method. Furthermore, during the case study we came across new ideas for improving Susan
and the SusanX tool.

The concept of a use case cluster was introduced in this chapter to denote a group of use
cases with tightly related functionality. Since the requirements models already appeared
in such clusters in the CMS requirements documents, it seemed natural for us to adopt
an incremental approach. We carried out iterations of modelling and analysis activities,
gradually combining cluster Susan models until we had the final model for Increments 1
and 2. By modelling cluster dependencies appropriately, we obtained most of our results
for generic verification by running analyses on the small cluster models in Stage 2. Most
of these results were valid for the entire model, and hence we were relieved from repeating

the expensive generic verification procedure for the larger models in Stages 3 and 4.
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We conclude this chapter by summarising the results obtained from our experience of
modelling and analysing the CMS, in terms of the objectives that we posed for the case

study in Section 7.1.

1. Suitability of Susan notation. The Susan notation was appropriate for representing
textual aspects of the CMS requirements usually included in use case models. Ad-
ditionally, certain non-functional requirements that expressed constraints on system
behaviour could be incorporated into the Susan models at the time of analysis as
verification properties. As expected, the visual perception of use case diagrams dete-

riorated by the flattening process required by the SusanX tool.

2. Benefits of formalising use case models. Formalising the given requirements models
with Susan improved the requirements specification for the CMS considerably. Firstly,
merely the process of creating Susan models was very constructive in assisting us
with achieving a full grasp on the requirements for the system. During this process
several inconsistencies and missing details were identified and remedied. Secondly, the
Susan models created expressed the CMS requirements in a much more precise and

comprehensible manner than the original models.

3. Effectiveness of SusanX analysis options. Both generic and model-specific analysis
options in SusanX proved to be beneficial. It was discovered that for small mod-
els consisting of tightly related use cases, model-specific verification was not always

effective. However, generic verification was still valuable even for small models.

4. Usability and performance of SusanX. The current features offered in SusanX were
found to be very accessible. Judging by our own experience, we suspect that any user
familiar with the Susan method should find the SusanX tool easy to use. A number
of additional features such as multiple model view mentioned in Section 7.5, could
make SusanX even more effective. We could obtain all the required results from the
analysis options offered by SusanX in a reasonable amount of time, from which we
conclude that it is feasible to use the tool for real-world software systems that are

comparable to the CMS in size.

On the completion of the case study we presented our results and shared our experience
with SoftCo, who showed much interest in the Susan technique and especially the accom-

panying tool. The team that was involved in the CMS project validated all our criticisms
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with respect to the condition of the requirements specification documents. We also learnt
from the team that most of the inconsistencies and errors that we identified during our case
study were discovered later in the development process, but not reflected in the original
requirements definition. The client company was satisfied with the delivered system and
little support has been required since its deployment. Nevertheless, if the CMS require-
ments were modelled and analysed as described in this chapter, this propagation of errors

into other development phases could have been avoided.



Chapter 8

Conclusions and Future Work

In this dissertation we addressed the problem posed by the lack of an adequate method
for requirements modelling and analysis. In order to solve this problem we proposed a
technique called Susan, which extends and alleviates the weaknesses of use case modelling.
Susan constitutes a novel way of formalising use case models, as well as using rigorous means
for performing analysis of these models.

Through the Cash Management System (CMS) case study, we showed that using a
notation that is precise and yet relatively simple to use is very advantageous for modelling
requirements. Modelling the CMS requirements in Susan produced specifications that were
more detailed, structured, correct, consistent and complete.

The conceptual framework for rigorous analysis in Susan is based on model checking,
specification patterns and a our own scheme of generic verification properties for Susan
models. Our case study demonstrated that analysis methods incorporated into Susan can
assist in discovering errors in requirements models, ensure that a model satisfies certain
constraints and also provide the user with better insight into system’s requirements. Thus
our proposed method allows developers to eliminate requirements discrepancies early in the
development cycle.

In conclusion, we note that the Susan method meets all the desirable criteria identified in
Chapter 1, page 7. Its modelling notation is suitable for representing software requirements,
it is unambiguous and at the same time understandable. The method incorporates a rigorous

analysis technique and is supported by the SusanX tool.
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8.1 Future Work

A number of further developments of Susan and SusanX that would be interesting and

beneficial are discussed below.

1. Extending the Susan metamodel. Currently Susan does not support several constructs
from standard use case modelling, including actor generalisation and relationships
among use cases. Extending the Susan metamodel to incorporate these constructs
would make the Susan method more expressive and possibly allow for more valuable
analysis of requirements models. This would also eliminate the need for the flattening
of use case diagrams, thus preserving their visual characteristics. Additionally, during
our case study we informally introduced the notion of modelling requirements in use
case clusters. This concept would be useful in handling large models and should be

formalised and explicitly included into Susan.

2. Undertaking further case studies. Additional case studies on applying Susan and Su-
sanX in practice, thus providing more thorough evaluations, would be very beneficial.
Requirements for different types of systems could be modelled and analysed to deter-
mine the circumstances under which our method is most effective. We worked with
existing use case models in the CMS case study, but going through the modelling

process from the beginning using Susan would also be worth investigating.

3. Adding new features to SusanX. In its current state, SusanX is a prototype tool sup-
porting the Susan method. It could be significantly extended with various features as
already mentioned in Chapter 7. Examples of these are multiple model view and use

case cluster support.

4. Integrating Susan with other development phases. At the moment there is no pre-
scribed way for using the information captured in Susan models further in the devel-
opment process. In general, few requirements modelling methods allow for transfer of
models or model elements to later phases. One way of doing this with Susan would

be the generation of test cases from the information captured in Susan models.



Appendix A

Susan Model for CMS

The complete Susan model for the Cash Management System (CMS) discussed in Chap-
ter 7 is given in this appendix. Note that this is the final version of the model, in other
words all the errors discovered by SusanX analyses have already been corrected. The use
case diagram for this model can be seen from the screenshot of SusanX in Figure 31. The

textual definitions of all the model elements are given below.

Variable type 1.
Name: Company ID
Values: OMLAC, OMEB

Variable type 2.
Name: Business type description
Values: Life, Unit Trust, EB, Life Legacy

Variable type 3.
Name: Pay code
Values: SA, MA

Variable type 4.
Name: Role description
Values: Receipts capture clerk, Receipts enquiry clerk, Receipts supervisor

Variable type 5.
Name: User login
Values: jbloggs, mjane, agatonye, enjegi

Variable type 6.

Name: Receipt number
Values: REC324273452, REC324425452
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Condition 1.
Name: Admin logged in

Condition 2.
Name: Companies listed

Condition 3.
Name: Company exists
Parameters: Company of type Company ID

Condition 4.
Name: Company flagged deleted
Parameters: Company of type Company ID

Condition 5.
Name: Business types listed
Parameters: Company of type Company 1D

Condition 6.
Name: Business type exists
Parameters: Company of type Company ID, Business type

Condition 7.
Name: Business type flagged deleted
Parameters: Company of type Company ID, Business type

Condition 8.
Name: Pay codes listed
Parameters: Company of type Company 1D, Business type

Condition 9.

Name: Pay code exists

Parameters: Company of type Company 1D, Business type
Pay code of type Pay code

Condition 10.

Name: Pay code flagged deleted

Parameters: Company of type Company ID, Business type
Pay code of type Pay code

Condition 11.
Name: Roles listed

Condition 12. Name: Role exists
Parameters: Role of type Role description

Condition 13.
Name: Role flagged deleted

of type Business type description

of type Business type description

of type Business type description

of type Business type description,

of type Business type description,

123



APPENDIX A. SUSAN MODEL FOR CMS

Parameters: Role of type Role description

Condition 14.
Name: Role has functions
Parameters: Role of type Role description

Condition 15.
Name: Users listed

Condition 16.
Name: User exists
Parameters: User of type User login

Condition 17.
Name: User flagged deleted
Parameters: User of type User login

Condition 18.
Name: User assigned role

124

Parameters: User of type User login, Role of type Role description, Company of type Company ID

Condition 19.
Name: User assigned company

Parameters: User of type User login, Company of type Company 1D

Condition 20.
Name: User logged in

Parameters: User of type User login, Company of type Company 1D

Condition 21.
Name: Receipt captured
Parameters: Company of type Company 1D, Receipt

Condition 22.
Name: Receipt saved
Parameters: Company of type Company ID, Receipt

Condition 23.
Name: Receipt posted
Parameters: Company of type Company ID, Receipt

Condition 24.
Name: Receipt saved in back-end system
Parameters: Company of type Company 1D, Receipt

Condition 25.
Name: Receipt opened
Parameters: Company of type Company ID, Receipt

of type Receipt number

of type Receipt number

of type Receipt number

of type Receipt number

of type Receipt number
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Condition 26.
Name: Receipts listed
Parameters: Company of type Company ID

Condition 27.
Name: Receipt voided

Parameters: Company of type Company ID, Receipt of type Receipt number

Condition 28.
Name: Receipt reversed

Parameters: Company of type Company ID, Receipt of type Receipt number

Condition 29.
Name: Receipt reversed in back-end system

Parameters: Company of type Company 1D, Receipt of type Receipt number

Actor 1.
Name: Administrator

Actor 2.
Name: User
Attributes: Login of type User login

Use case 1.

Name: List companies

Actor: Administrator

Pre-conditions: Admin logged in () is true
Post-conditions: Companies listed () is true

Use case 2.

Name: Add company

Actor: Administrator

Parameters: Company of type Company ID

Pre-conditions: Admin logged in () is true, Companies listed () is true,
Company exists (#uc Company) is false

Post-conditions: Company exists (#uc Company) is true

Use case 3. Name: Edit company

Actor: Administrator

Parameters: Company of type Company ID

Pre-conditions: Admin logged in () is true, Companies listed () is true,
Company exists (#uc Company) is true

Post-conditions: none

Use case /.
Name: Delete company
Actor: Administrator
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Parameters: Company of type Company 1D

Pre-conditions: Admin logged in () is true, Companies listed () is true,

Company exists (#uc Company) is true

Post-conditions: Company exists (#uc Company) is false,

Company flagged deleted (#uc Company) is true,

User assigned role (#forall User login, #forall Role description, #uc Company) is false,
User assigned company (#forall User login, #uc Company) is false,

Business type exists (#uc Company, #forall Business type description) is false,

Pay code exists (#uc Company, #forall Business type description, #forall Pay code) is false

Use case 5.

Name: List business types

Actor: Administrator

Parameters: Company of type Company ID

Pre-conditions: Admin logged in () is true, Companies listed () is true,
Company exists (#uc Company) is true

Post-conditions: Business types listed (#uc Company) is true

Use case 6.

Name: Add business type

Actor: Administrator

Parameters: Company of type Company ID, Business type of type Business type description
Pre-conditions: Admin logged in () is true, Business types listed (#uc Company) is true,
Business type exists (#uc Company, #uc Business type) is false,

Company exists (#uc Company) is true

Post-conditions: Business type exists (#uc Company, #uc Business type) is true

Use case 7.

Name: Edit business type

Actor: Administrator

Parameters: Business type of type Business type description, Company of type Company 1D
Pre-conditions: Admin logged in () is true, Business types listed (#uc Company) is true,
Business type exists (#uc Company, #uc Business type) is true

Post-conditions: none

Use case 8.

Name: Delete business type

Actor: Administrator

Parameters: Company of type Company ID, Business type of type Business type description
Pre-conditions: Admin logged in () is true, Business types listed (#uc Company) is true,
Business type exists (#uc Company, #uc Business type) is true

Post-conditions: Business type exists (#uc Company, #uc Business type) is false,

Business type flagged deleted (#uc Company, #uc Business type) is true,

Pay code exists (#uc Company, #uc Business type, #forall Pay code) is false

Use case 9.
Name: List pay codes
Actor: Administrator
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Parameters: Company of type Company 1D, Business type of type Business type description
Pre-conditions: Admin logged in () is true, Business types listed (#uc Company) is true,
Business type exists (#uc Company, #uc Business type) is true

Post-conditions: Pay codes listed (#uc Company, #uc Business type) is true

Use case 10.

Name: Add pay code

Actor: Administrator

Parameters: Company of type Company ID, Business type of type Business type description,
Pay code of type Pay code

Pre-conditions: Admin logged in () is true,

Pay codes listed (#uc Company, #uc Business type) is true,

Pay code exists (#uc Company, #uc Business type, #uc Pay code) is false,

Business type exists (#uc Company, #uc Business type) is true

Post-conditions: Pay code exists (#uc Company, #uc Business type, #uc Pay code) is true

Use case 11.

Name: Edit pay code

Actor: Administrator

Parameters: Company of type Company ID, Business type of type Business type description,
Pay code of type Pay code

Pre-conditions: Admin logged in () is true,

Pay codes listed (#uc Company, #uc Business type) is true,

Pay code exists (#uc Company, #uc Business type, #uc Pay code) is true

Post-conditions: none

Use case 12.

Name: Delete pay code

Actor: Administrator

Parameters: Company of type Company ID, Business type of type Business type description,
Pay code of type Pay code

Pre-conditions: Admin logged in () is true,

Pay codes listed (#uc Company, #uc Business type) is true,

Pay code exists (#uc Company, #uc Business type, #uc Pay code) is true

Post-conditions: Pay code exists (#uc Company, #uc Business type, #uc Pay code) is false,
Pay code flagged deleted (#uc Company, #uc Business type, #uc Pay code) is true

Use case 13.

Name: List roles

Actor: Administrator

Pre-conditions: Admin logged in () is true
Post-conditions: Roles listed () is true

Use case 14.

Name: Add role

Actor: Administrator

Parameters: Role of type Role description
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Pre-conditions: Admin logged in () is true, Roles listed () is true, Role exists (#uc Role) is false
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Post-conditions: Role exists (#uc Role) is true

Use case 15.

Name: Edit role

Actor: Administrator

Parameters: Role of type Role description

Pre-conditions: Admin logged in () is true, Roles listed () is true, Role exists (#uc Role) is true

Use case 16.

Name: Delete role

Actor: Administrator

Parameters: Role of type Role description

Pre-conditions: Admin logged in () is true, Roles listed () is true, Role exists (#uc Role) is true
Post-conditions: Role exists (#uc Role) is false, Role flagged deleted (#uc Role) is true,

User assigned role (#forall User login, #uc Role, #forall Company ID) is false

Use case 17.

Name: Add function to role

Actor: Administrator

Parameters: Role of type Role description

Pre-conditions: Admin logged in () is true, Roles listed () is true, Role exists (#uc Role) is true
Post-conditions: Role has functions (#uc Role) is true

Use case 18.

Name: Delete function from role

Actor: Administrator

Parameters: Role of type Role description

Flow 1, Pre-conditions: Admin logged in () is true, Roles listed () is true,
Role exists (#uc Role) is true, Role has functions (#uc Role) is true
Flow 1, Post-conditions: none

Flow 2, Pre-conditions: Admin logged in () is true, Roles listed () is true,
Role exists (#uc Role) is true, Role has functions (#uc Role) is true
Flow 2, Post-conditions: Role has functions (#uc Role) is false

Use case 19.

Name: List users

Actor: Administrator

Pre-conditions: Admin logged in () is true
Post-conditions: Users listed () is true

Use case 20.

Name: Add user

Actor: Administrator

Parameters: User of type User login

Pre-conditions: Admin logged in () is true, Users listed () is true, User exists (#uc User) is false
Post-conditions: User exists (#uc User) is true
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Use case 21.

Name: Edit user

Actor: Administrator

Parameters: User of type User login

Pre-conditions: Admin logged in () is true, Users listed () is true, User exists (#uc User) is true

Use case 22.

Name: Delete user

Actor: Administrator

Parameters: User of type User login

Pre-conditions: Admin logged in () is true, Users listed () is true, User exists (#uc User) is true,
User logged in (#uc User, #forall Company ID) is false

Post-conditions: User exists (#uc User) is false, User flagged deleted (#uc User) is true,

User assigned role (#uc User, #forall Role description, #forall Company ID) is false,

User assigned company (#uc User, #forall Company ID) is false

Use case 23.

Name: Add role to user

Actor: Administrator

Parameters: User of type User login, Role of type Role description, Company of type Company ID
Pre-conditions: Admin logged in () is true, Users listed () is true, User exists (#uc User) is true,
Role exists (#uc Role) is true, Company exists (#uc Company) is true

Post-conditions: User assigned role (#uc User, #uc Role, #uc Company) is true,

User assigned company (#uc User, #uc Company) is true

Use case 2.

Name: Delete role from user

Actor: Administrator

Parameters: User of type User login, Role of type Role description, Company of type Company 1D
Flow 1, Pre-conditions: Admin logged in () is true,

User assigned role (#uc User, #uc Role, #uc Company) is true, Users listed () is true,
User logged in (#uc User, #uc Company) is false

Flow 1, Post-conditions: User assigned role (#uc User, #uc Role, #uc Company) is false
Flow 2, Pre-conditions: Admin logged in () 4s true, Users listed () is true,

User assigned role (#uc User, #uc Role, #uc Company) is true

Flow 2, Post-conditions: User assigned role (#uc User, #uc Role, #uc Company) is false,
User assigned company (#uc User, #uc Company) is false

Use case 25.

Name: Log in

Actor: User

Parameters: Company of type Company ID

Pre-conditions: User logged in (#self Login, #forall Company ID) is false,

User exists (#self Login) is true, User assigned company (#self Login, #uc Company) is true
Post-conditions: User logged in (#self Login, #uc Company) is true

Use case 26.
Name: Change password
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Actor: User
Parameters: Company of type Company 1D
Pre-conditions: User logged in (#self Login, #uc Company) is true

Use case 27.

Name: Log out

Actor: User

Parameters: Company of type Company ID

Pre-conditions: User logged in (#self Login, #uc Company) is true
Post-conditions: User logged in (#self Login, #uc Company) is false

Use case 28.

Name: Capture receipt

Actor: User

Parameters: Company of type Company ID, Receipt of type Receipt number

Flow 1, Pre-conditions: User logged in (#self Login, #uc Company) is true,

User assigned role (#self Login, Receipts capture clerk of type Role description, #uc Company) is
true

Flow 1, Post-conditions: Receipt captured (#uc Company, #uc Receipt) is true,

Receipts listed (#uc Company) is false

Flow 2, Pre-conditions: User logged in (#self Login, #uc Company) is true,

User assigned role (#self Login, Receipts supervisor of type Role description, #uc Company) is
true

Flow 2, Post-conditions: Receipt captured (#uc Company, #uc Receipt) is true,

Receipts listed (#uc Company) is false

Use case 29.

Name: Save receipt

Actor: User

Parameters: Company of type Company ID, Receipt of type Receipt number

Flow 1, Pre-conditions: User logged in (#self Login, #uc Company) is true,

User assigned role (#self Login, Receipts capture clerk of type Role description, #uc Company) is
true,

Receipt captured (#uc Company, #uc Receipt) is true

Flow 1, Post-conditions: Receipt saved (#uc Company, #uc Receipt) is true

Flow 2, Pre-conditions: User logged in (#self Login, #uc Company) is true,

User assigned role (#self Login, Receipts supervisor of type Role description, #uc Company) is
true,

Receipt captured (#uc Company, #uc Receipt) is true

Flow 2, Post-conditions: Receipt saved (#uc Company, #uc Receipt) is true

Use case 30.

Name: Print receipt

Actor: User

Parameters: Company of type Company ID, Receipt of type Receipt number

Flow 1, Pre-conditions: User logged in (#self Login, #uc Company) is true,

User assigned role (#self Login, Receipts capture clerk of type Role description, #uc Company) is
true,
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Receipt captured (#uc Company, #uc Receipt) is true,

Receipt posted (#uc Company, #uc Receipt) is false

Flow 1, Post-conditions: Receipt posted (#uc Company, #uc Receipt) is true,

Receipt saved (#uc Company, #uc Receipt) is true,

Receipt saved in back-end system (#uc Company, #uc Receipt) is true

Flow 2, Pre-conditions: User logged in (#self Login, #uc Company) is true,

User assigned role (#self Login, Receipts capture clerk of type Role description, #uc Company) is
true,

Receipt captured (#uc Company, #uc Receipt) is true,

Receipt posted (#uc Company, #uc Receipt) is true

Flow 2, Post-conditions: none

Flow 3, Pre-conditions: User logged in (#self Login, #uc Company) is true,

User assigned role (#self Login, Receipts capture clerk of type Role description, #uc Company) is
true,

Receipt opened (#uc Company, #uc Receipt) is true,

Receipt posted (#uc Company, #uc Receipt) is false

Flow 3, Post-conditions: Receipt posted (#uc Company, #uc Receipt) is true,

Receipt saved (#uc Company, #uc Receipt) is true,

Receipt saved in back-end system (#uc Company, #uc Receipt) is true

Flow /4, Pre-conditions: User logged in (#self Login, #uc Company) is true,

User assigned role (#self Login, Receipts capture clerk of type Role description, #uc Company) is
true,

Receipt opened (#uc Company, #uc Receipt) is true,

Receipt posted (#uc Company, #uc Receipt) is true

Flow 4, Post-conditions: none

Flow 5, Pre-conditions: User logged in (#self Login, #uc Company) is true,

User assigned role (#self Login, Receipts supervisor of type Role description, #uc Company) is
true,

Receipt captured (#uc Company, #uc Receipt) is true,

Receipt posted (#uc Company, #uc Receipt) is false

Flow 5, Post-conditions: Receipt posted (#uc Company, #uc Receipt) is true,

Receipt saved (#uc Company, #uc Receipt) is true,

Receipt saved in back-end system (#uc Company, #uc Receipt) is true

Flow 6, Pre-conditions: User logged in (#self Login, #uc Company) is true,

User assigned role (#self Login, Receipts supervisor of type Role description, #uc Company) is
true,

Receipt captured (#uc Company, #uc Receipt) is true,

Receipt posted (#uc Company, #uc Receipt) is true

Flow 6, Post-conditions: none

Flow 7, Pre-conditions: User logged in (#self Login, #uc Company) is true,

User assigned role (#self Login, Receipts supervisor of type Role description, #uc Company) is
true,

Receipt opened (#uc Company, #uc Receipt) is true,

Receipt posted (#uc Company, #uc Receipt) is false

Flow 7, Post-conditions: Receipt posted (#uc Company, #uc Receipt) is true,

Receipt saved (#uc Company, #uc Receipt) is true,

Receipt saved in back-end system (#uc Company, #uc Receipt) is true

Flow 8, Pre-conditions: User logged in (#self Login, #uc Company) is true,
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User assigned role (#self Login, Receipts supervisor of type Role description, #uc Company) is
true,

Receipt opened (#uc Company, #uc Receipt) is true,

Receipt posted (#uc Company, #uc Receipt) is true

Flow 8, Post-conditions: none

Use case 31.

Name: Search receipts

Actor: User

Parameters: Company of type Company ID

Flow 1, Pre-conditions: User logged in (#self Login, #uc Company) is true,

User assigned role (#self Login, Receipts enquiry clerk of type Role description, #uc Company) is
true

Flow 1, Post-conditions: Receipts listed (#uc Company) is true,

Receipt captured (#uc Company, #forall Receipt number) is false,

Receipt opened (#uc Company, #forall Receipt number) is false

Flow 2, Pre-conditions: User logged in (#self Login, #uc Company) is true,

User assigned role (#self Login, Receipts capture clerk of type Role description, #uc Company) is
true

Flow 2, Post-conditions: Receipts listed (#uc Company) is true,

Receipt captured (#uc Company, #forall Receipt number) is false,

Receipt opened (#uc Company, #forall Receipt number) is false

Flow 3, Pre-conditions: User logged in (#self Login, #uc Company) is true,

User assigned role (#self Login, Receipts supervisor of type Role description, #uc Company) is
true

Flow 8, Post-conditions: Receipts listed (#uc Company) is true,

Receipt captured (#uc Company, #forall Receipt number) is false,

Receipt opened (#uc Company, #forall Receipt number) is false

Use case 32.

Name: Open receipt

Actor: User

Parameters: Company of type Company 1D, Receipt of type Receipt number

Flow 1, Pre-conditions: User logged in (#self Login, #uc Company) is true,

User assigned role (#self Login, Receipts enquiry clerk of type Role description, #uc Company) is
true,

Receipts listed (#uc Company) is true,

Receipt saved (#uc Company, #uc Receipt) is true

Flow 1, Post-conditions: Receipt opened (#uc Company, #uc Receipt) is true,

Receipts listed (#uc Company) is false

Flow 2, Pre-conditions: User logged in (#self Login, #uc Company) is true,

User assigned role (#self Login, Receipts capture clerk of type Role description, #uc Company) is
true,

Receipts listed (#uc Company) is true,

Receipt saved (#uc Company, #uc Receipt) is true

Flow 2, Post-conditions: Receipt opened (#uc Company, #uc Receipt) is true,

Receipts listed (#uc Company) is false

Flow 3, Pre-conditions: User logged in (#self Login, #uc Company) is true,
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User assigned role (#self Login, Receipts supervisor of type Role description, #uc Company) is
true,

Receipts listed (#uc Company) is true,

Receipt saved (#uc Company, #uc Receipt) is true

Flow 3, Post-conditions: Receipt opened (#uc Company, #uc Receipt) is true,

Receipts listed (#uc Company) is false

Use case 33.

Name: Edit receipt

Actor: User

Parameters: Company of type Company ID Receipt of type Receipt number

Flow 1, Pre-conditions: User logged in (#self Login, #uc Company) is true,

User assigned role (#self Login, Receipts capture clerk of type Role description, #uc Company) is
true,

Receipts listed (#uc Company) is true,

Receipt posted (#uc Company, #uc Receipt) is false

Flow 1, Post-conditions: none

Flow 2, Pre-conditions: User logged in (#self Login, #uc Company) is true,

User assigned role (#self Login, Receipts supervisor of type Role description, #uc Company) is
true,

Receipt opened (#uc Company, #uc Receipt) is true,

Receipt posted (#uc Company, #uc Receipt) is false

Flow 2, Post-conditions: none

Use case 3.

Name: Void receipt

Actor: User

Parameters: Company of type Company 1D, Receipt of type Receipt number
Pre-conditions: User logged in (#self Login, #uc Company) is true,

User assigned role (#self Login, Receipts supervisor of type Role description, #uc Company) is
true,

Receipt opened (#uc Company, #uc Receipt) is true,

Receipt posted (#uc Company, #uc Receipt) is true,

Receipt voided (#uc Company, #uc Receipt) is false

Post-conditions: Receipt voided (#uc Company, #uc Receipt) is true,
Receipt reversed (#uc Company, #uc Receipt) is true,

Receipt reversed in back-end system (#uc Company, #uc Receipt) is true

Use case 35.

Name: Delete receipt

Actor: User

Parameters: Company of type Company ID, Receipt of type Receipt number

Flow 1, Pre-conditions: User logged in (#self Login, #uc Company) is true,

User assigned role (#self Login, Receipts capture clerk of type Role description, #uc Company) is
true,

Receipt opened (#uc Company, #uc Receipt) is true,

Receipt posted (#uc Company, #uc Receipt) is false

Flow 1, Post-conditions: Receipt saved (#uc Company, #uc Receipt) is false,
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Receipt opened (#uc Company, #uc Receipt) is false

Flow 2, Pre-conditions: User logged in (#self Login, #uc Company) is true,

User assigned role (#self Login, Receipts supervisor of type Role description, #uc Company) is
true,

Receipt opened (#uc Company, #uc Receipt) is true,

Receipt posted (#uc Company, #uc Receipt) is false

Flow 2, Post-conditions: Receipt saved (#uc Company, #uc Receipt) is false,

Receipt opened (#uc Company, #uc Receipt) is false

Flow 3, Pre-conditions: User logged in (#self Login, #uc Company) is true,

User assigned role (#self Login, Receipts capture clerk of type Role description, #uc Company) is
true,

Receipt captured (#uc Company, #uc Receipt) is true,

Receipt posted (#uc Company, #uc Receipt) is false

Flow 8, Post-conditions: Receipt saved (#uc Company, #uc Receipt) is false,

Receipt captured (#uc Company, #uc Receipt) is false

Flow 4, Pre-conditions: User logged in (#self Login, #uc Company) is true,

User assigned role (#self Login, Receipts supervisor of type Role description, #uc Company) is
true,

Receipt captured (#uc Company, #uc Receipt) is true,

Receipt posted (#uc Company, #uc Receipt) is false

Flow 4, Post-conditions: Receipt saved (#uc Company, #uc Receipt) is false,

Receipt captured (#uc Company, #uc Receipt) is false

Initial condition 1.
Name: Administrator logged in
Condition: Admin logged in ()
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