
Distance Ranked Connectivity Compression of Triangle Meshes

Patrick Marais, James Gain∗

Dept of Computer Science
University of Cape Town

Rank

1

2

3

>3

Figure 1:Distance Ranked compression. (a) highly regular, torus (0 bpv), (b) regular, fandisk (0.69 bpv) (c) irregular, feline (2.12 bpv)) (d)
pathological, star (7.09 bpv). The colours indicate the distance rank code for each triangle.

Abstract

We present a new, single-rate method for compressing the connec-
tivity information of a 2-manifold triangle mesh with or without
boundary. Traditional compression schemes interleave geometry
and connectivity coding, and are thus unable to utilise information
from vertices (mesh regions) they have not yet processed. With the
advent of competitive point cloud compression schemes, it has be-
come feasible to develop separate connectivity encoding schemes
which can exploit complete, global vertex position information to
improve performance.

Our scheme demonstrates the utility of this separation of vertex
and connectivity coding. By traversing the mesh edges in a con-
sistent breadth-first fashion, and using global vertex information,
we can predict the position of the vertex which completes the un-
processed triangle attached to a given edge. We then rank the ver-
tices in the neighbourhood of this predicted position by their Eu-
clidean distance. The distance rank of the correct closing vertex is
stored. Typically, these rank values are small, and the sequence of
rank values thus possesses low entropy and compresses very well.
The paper details the algorithm as well as the predictors we have
tested. Results indicate improvement on the current best valence-
based schemes for many common mesh classes.

CR Categories: I.3.m [Computer Graphics]: Miscellaneous—
connectivity coding

Keywords: triangle mesh, connectivity compression, geometry
driven coding

∗e-mail:{patrick,jgain}@cs.uct.ac.za

1 Introduction

Triangle meshes are widely used to represent 3D surface models
since they are well suited to computer rendering hardware. The
development of powerful consumer display cards has been accom-
panied by a corresponding growth in the size and complexity of 3D
models. Naturally this complexity comes at the cost of greater stor-
age requirements, and this has fuelled research into techniques that
compress both the geometry (vertex positions) and the connectivity
information of triangle meshes.

The earliest approaches [Deering 1995] exploited the adjacency
structure of a triangle mesh to avoid storing unnecessary connectiv-
ity information and applied simple quantisation and delta encoding
to represent vertex positions. In general, the issue of connectiv-
ity compression is deemed more pressing, since, while it is possi-
ble to quantise vertex positions quite coarsely and still maintain
a good surface approximation, connectivity information must be
represented exactly which usually requires many bits per triangle.
Subsequent techniques [Taubin and Rossignac 1998; Rossignac
1999] thus focused on ways to reduce the cost of encoding the
mesh topology. Great strides have been made in this area. Edge-
breaker [Rossignac 1999] is a “face-based” scheme, which reduces
the cost of encoding connectivity to at most 2 bits per triangle, or
equivalently, 4 bits per vertex (bpv). Subsequent improvements
[Rossignac 2001] have refined this bound. The next great break-
through arrived with “valence-based” schemes [Touma and Gots-
man 1998], which use the number of edges attached to a vertex to
derive a compact coding algorithm which, in most cases, provides
far better results than face-based techniques. In these schemes,
however, one cannot derive a general bound for the cost of con-
nectivity encoding without some simplifying assumptions [Kho-
dakovsky et al. 2001]. Valence-based schemes generates roughly
half the number of codes compared to face-based schemes (per ver-
tex, rather than per triangle). Valence-based connectivity encoding
works well because the entropy of the valence codes typically tracks
the meshvalence entropy, which is often very low, particularly for
highly regular meshes, as demonstrated by the excellent results ob-
tained [Touma and Gotsman 1998; Khodakovsky et al. 2001; Lee
et al. 2002]. However, there are many meshes which are irregular,

and for which the valence entropy is commensurately higher.

To improve on these results we need to look for additional sources
of prior information to reduce the code size. The encoding of ge-
ometry and connectivity are usually interleaved: the mesh is re-
built step by step, with new vertices continually added according to
the decoded connectivity information. Consequently, a significant
source of prior geometric information, the set of mesh vertices, is
not available in these methods. We propose the use ofglobal vertex
information to produce our compact coding. The recent develop-
ment of algorithms to compress vertex information separately [Lee
and Ko 2000; Devillers and Gandoin 2000], at rates competitive
with interleaved encoding, makes this approach feasible.

For a given edge of a processed mesh triangle, we need to find the
vertex which completes the attached triangle. If the underlying tri-
angulation is highly regular, we can simply reflect the third vertex of
the current triangle through this edge and assume the closet neigh-
bouring vertex is the one we seek. If this is not the case, then the
second closest vertex is probably the one we need. We can con-
tinue in this fashion, checking nearest neighbours until a match is
found. Thus we are reduced to predicting a point from the informa-
tion we have, and storing a “distance rank”. In the ideal case, such
as a smooth surface composed of regular triangles, all these ranking
codes will be one (the 1st closest point will close each triangle) and
the entropy of the sequence will approachzero. When we do not
have such a regular mesh, we need to use the vertices we have not
yet processed to further constrain our prediction.

The remainder of the paper is structured as follows: Section 2 dis-
cusses related work. In Section 3, we present the compression algo-
rithm, along with a motivation for the predictors we employ and a
brief discussion of issues pertaining to entropy coding. This is fol-
lowed by an analysis of the results in Section 4. Finally, we present
our conclusions and suggest areas for future work in Section 5.

2 Related Work

There is a large and growing literature on triangle mesh compres-
sion, and the interested reader is referred to [Alliez and Gotsman
2003] for a summary. We confine our discussion to single-rate
compression connectivity schemes, since our compression tech-
nique falls into this category. Such schemes generally come in two
flavours: face-based and valence-based. Face schemes are usually
derivatives ofEdgebreaker[Rossignac 1999; Attene et al. 2003],
while valence schemes are modifications or extensions of Touma
and Gotsman’s valence-based encoder [Touma and Gotsman 1998;
Khodakovsky et al. 2001]. Both these approaches interleave the
encoding of geometry and connectivity.

Our approach assumesseparateencoding for vertex and connec-
tivity information, and that the entire quantised vertex set is avail-
able for both the encoding and decoding steps. Although there has
been little work in this area, the notion ofgeometry-drivencon-
nectivity encoding has seen some support. The work of Coors and
Rossignac [Coors and Rossignac 2004] provides such a scheme in
whichEdgebreakeris modified to predict the next symbol based on
the geometry and connectivity of the processed mesh. However, an
incorrect guess incurs a substantial bit code penalty, with the result
that meshes which do not conform to the prediction scheme yield
comparatively poor results1.

Another approach which uses geometry to drive the connectiv-
ity encoding isAngle Analyzer[Lee et al. 2002]. This technique

1Worst case error bounded above by 3 bpv

adopts an Edgebreaker-like traversal strategy and exploits the in-
trinsic properties of quad and triangle meshes to reduce the number
of codes required for such meshes. Their technique improves on the
best valence scheme in many instances, but for very regular meshes
other valence-based techniques perform better.

Inspired by their earlier success with vertex encoding [Devillers and
Gandoin 2000], Gandoin and Devillers [2002] introduce a progres-
sive encoding scheme for geometry and connectivity encoding. The
progressivity arises from the space subdivision scheme they use to
encode their vertex data — this structure is augmented with ad-
ditional topological codes to progressively recover connectivity as
new vertices are extracted. While the results they achieve are good
in relation to other progressive schemes, they lag behind single-rate
compression schemes.

It should be noted that all these approaches interleave geometry
and connectivity encoding, and cannot therefore use global mesh
information.

3 The Algorithm

The basic algorithm involves only one fundamental operation: es-
timating the point that completes the triangle on the current edge.
We choose an initial triangle on the surface and then process all
the edges of the triangulation using a breadth-first traversal based
on these 3 starting edges. For each edge we wish to identify the
vertex (from the set of all vertices) which completes the attached
triangle. This is accomplished by using a prediction scheme based
on the parts of mesh already visitedand (potentially) the complete
set of vertices. Given a predicted estimate for the closing vertex po-
sition, we rank the neighbouring vertices based on their Euclidean
distance from the predicted point and record the rank which corre-
sponds to the correct closing vertex. The two new closing edges are
then placed on the BFS queue and the process continues.

Build kd Tree//using quantised vertices
Read in start Triangle (V0,V1,V2)
Q.enqueue: Edge(V0,V1), Edge(V1,V2), Edge(V2,V0)
Initialise edge counts
while Q 6= empty

E← Q.dequeue
(Vi ,Vj)← OrientedEdgeVertices(E)
if E is boundary

ENCODESYMBOL 0
else ifE is OPEN //triangle required

P← PredictPoint(V, ProcessedMesh)
I ← ClosestPointRank(P, PTarget, V)
ENCODESYMBOL I
Update edge counts //used for vertex culling
Q.enqueue: Edge(Vi ,PTarget)
Q.enqueue: Edge(PTarget,Vj)

Table 1: The Encoding Algorithm

If the prediction is accurate the (first) closest vertex will be correct,
otherwise we will need to examine vertices with successively larger
ranking numbers. In any event, a single integer value will be gener-
ated for each such edge, and for the most part these values will be
quite small. If the edge happens to be a boundary edge, the escape
code 0 is generated. Any positive value is assumed to correspond to
a distance rank value. By keeping track of the number of triangles
attached to each edge, we can appropriately prune the BFS traversal

t

p
x

v0

v1

v2 e0
e1

e2
eL

eR

Figure 2:Distance ranked prediction. Give the current processed
triangle,(v0,v1,v2), we estimate the closing vertex,p. Vertex t is
the point we are trying to find — this is thesecondclosest vertex to
p, the closest beingx. We thus generate the code2, and enqueue the
new edgeseL andeR to allow further traversal of the mesh surface.

and ensure that each triangle is processed only once. The scheme
thus generatesT − 1 integer values for a closed surface, whereT
is the number of triangles. If the surface hasB boundary edges,
then each boundary edge will generate an additional 0 value, and
we will need to encodeT +B−1 integers. Figure 2 shows the steps
involved in encoding an edge from a given base triangle and Table 1
presents the encoding algorithm.

To recover the connectivity information, we simply reverse the pro-
cess: we start off with the same initial triangle (which is specified)
and then build the BFS queue in the same way. For each edge, we
compute the predicted point and search for theKth nearest neigh-
bour (K is the value of the ranking code) to this predicted point in
the complete vertex set. We then add the new edges (if any) and
continue processing the BFS queue until it is empty.

We use edge information to decide whether a vertex returned from
a closest point query is admissible. We cull a vertex if all the edges
attached to that vertex are closed (have triangles on either side)
or if the only open edges are boundary edges (which are explic-
itly coded). By eliminating these points we reduce the maximum
size of the ranking codes, and thus reduce the overall entropy of
the code sequence. The scheme automatically deals with arbitrary
topologies and boundaries, but cannot deal with non-manifold tri-
angulations.

A possible complication arises from neighbouring points which
share the same Euclidean distance from the predicted point. To deal
with this problem, we use the vertexindices: if several points have
the same Euclidean distance, we rank them according to their vertex
index. To avoid issues with floating point precision we perform all
calculations using doubles, and then cast the results to floats before
making comparisons.

We assume that the vertex compression scheme will preserve the
point ordering, so that both the encoding and decoding steps will
be consistent. If this is not the case for the scheme used, one can
re-index the input mesh as follows prior to encoding:

1. Construct a bounding box around the point data,
2. Sub-divide the bounding box into cells of fixed size, with the
choice of the cell size being such that each cell contains at most
one vertex,
3. Re-index the mesh based on the order in which populated cells
are encountered as you sequentially scan through all the cells.

If one stores the cell size, the decoder can quickly perform this
re-indexing prior to initialising the decompression scheme and a
consistent ordering of vertices is guaranteed.

p

c
b

v0

v1

Figure 3:Correcting for surface curvature. Given the prediction
edge(v0,v1), we predict the closing vertex asp. We search in a
neighbourhood aboutp to find a small number of mesh vertices,
and compute the centroid,c, of this set. In many cases the centroid
will lie close to the underlying surface of the mesh. Finally, we
rotatep about(v0,v1) onto the plane spanned by(v0,v1,c) to yield
our final prediction,b.

x

s

E

Figure 4:Triangle size changes. We predict our closing vertexp.
Then, we search for thefirst vertex which lies in the region ahead
of E, bounded by 2 planes parallel to the prediction direction. In
this case, we find the vertexx. We then scale the prediction in this
direction to form the final prediction,s. α can be used to widen the
search region, and may be determined empirically across a wide
range of models.

3.1 Distance rank codes

The success of the closest-point coding scheme depends on our
ability to construct good predictions for a range of different mesh
classes. We can identifythreecore attributes of triangle mesh ge-
ometry that affect our ability to make accurate predictions:surface
curvature, triangle regularityandtriangle size.

If the surface curves unexpectedly, a prediction based on the re-
covered mesh will perform poorly. Fortunately, in our scheme one
can use the distribution of the points ahead of the prediction front
to constrain the prediction. By using the centroid of the points
clustered ahead of the prediction edge to define a plane which ap-
proximates the curvature, and then bending the prediction onto this
plane, we can largely overcome this problem — see figure 3. We
also implemented higher order surface fitting, but the additional
gains were small and did not justify the computational expense.

If the triangulation is very regular (triangles are similar), then a sim-
ple parallelogram rule can be used to predict the closing vertex, us-
ing the 3 vertices of the base triangle. If the mesh consists of many
different triangle shapes, a parallelogram rule will generally yield a

poor prediction. If the mesh has little or no regularity, then all one
can reasonably say is that the prediction ismost likelyto lie some
distance in front of the prediction edge. We have developed what
we call themidpoint predictor, which predicts the closing vertex as
being somewhere along a ray perpendicular to the midpoint of the
base edge. For a highly regular mesh, a prediction based on on a
parallelogram suffices, otherwise we use the midpoint predictor.

The final ingredient for a good prediction scheme is the ability to
deal with rapidly changing triangles sizes. It is self evident that a
parallelogram prediction based on a small triangle will provide a
very poor estimate if the closing triangle is very large. We over-
come this problem by scaling along the prediction direction by an
amount that places the predicted point close to the first vertex it en-
counters in a “frustum” centred on the base prediction edge. See
figure 4. While this is not always optimal, it tends to deal well with
abrupt transitions in triangle size.

We implemented the parallelogram and midpoint predictors. Both
use the mesh vertex set to deal with curvature and triangle scal-
ing. The midpoint predictor generally places the prediction point
along the ray perpendicular to the midpoint of the prediction edge.
However, for meshes with highly symmetric vertex sets, such as
triangulated quad meshes, the midpoint placement leads to a “tie”
for closest point, which inflates the distance codes. To deal with
this issue, the midpoint position is biased slightly in a direction that
follows the triangle skew of the adjacent processed triangles. This
generally ensures that if the closest point is not the target vertex,
then the second closest point will be.

In order to choose the appropriate predictor, we apply the same
triangle traversal to the mesh andapproximatethe predictor solu-
tions,Pi , using only the attached triangle. This local information is
enough to estimate the scaling and curvature behaviour referred to
above, without any expensive closest point queries. We maintain a
counter,Ci , for each predictor. We incrementCi if Pi is closer to the
target vertex,T, than any vertices attached toT. If none of thePi
satisfy this condition (note thatbothcan), we increment the counter
for the predictorclosestto T. The predictor with the highest counter
is chosen to encode the surface.

The ranking values we generate typically span the first few posi-
tive integers, with a probability distribution heavily skewed towards
small values. We use a standardadaptive arithmetic coder[Moffat
et al. 1998] to compress the connectivity sequence. In general, the
probability of the symbols 1 or 2 occurring is far higher than any
other symbol, and this is quickly picked up by the adaptive arith-
metic coder. However, the conditional probability of a 1 following a
2 (and the 3 other permutations of 1 and 2) is also generally useful
and not simply random. We have found that by storing the con-
ditional probabilitiesP(1|2), P(2|1), P(2|2) andP(1|1) and using
these to modify the probability estimates we can improve compres-
sion performance by 1%-5%.

4 Results and Discussion

Table 2 presents our results for connectivity encoding. We have en-
deavoured to compare these accurately with other schemes, but in
many cases the lack of freely available code implementations and
inconsistent model sizes hampers comparison. Tests were run on
a P4 3GHz machine with 512MB of memory. All the meshes are
processed in memory. A kd-tree [Mount and Arya 1997] is used to
accelerate closest points queries. This kd-tree implementation does
not support incremental queries and the run times are thus some-
what higher than a properly optimised implementation would allow.
As expected, the compression time scales linearly with the number

Models |V| Nopt TG EB AA DR Gain T
VDr % s

Regular
armadillo 172974 1.65 1.83 0.86 48 18.9
bunny 34834 1.07 1.29 0.61 43 3.4
fandisk 6475 0.93 1.08 0.69 26 0.5
horse 48485 1.33 1.51 1.76 0.66 50 5.2
horse-lres 19851 2.25 2.34 1.35 0.47 65 1.8
rabbit 67039 1.47 1.66 0.81 45 6.3
mannequin 11704 0.37 0.46 1.2 0.38 -2 1.0
Irregular
dinosaur 14070 2.25 2.39 1.69 1.10 35 1.4
feline 49864 2.20 2.38 1.50 2.12 -40 5.1
venus 50002 2.05 2.20 1.98 3 5.2
venus-lres 8268 2.71 2.82 1.95 2.52 -29 0.8
molecule 10028 1.80 1.51 16 1.0
blob 8036 1.70 1.45 15 0.8
nefertiti 299 2.37 2.83 2.42 1.64 20 0.0

Table 2: Connectivity compression results. Results for a num-
ber of popular connectivity coders are presented where possible —
AA [Lee et al. 2002], EB [Rossignac 1999], Nopt [Khodakovsky
et al. 2001], TG [Touma and Gotsman 1998] and VDr [Alliez and
Desbrun 2001]. For Nopt/VDr we choose the best listed result; if
one result is missing, we list the avilable data in bold print. The DR
columns present our results. Results in bold font indicate where our
scheme improves performance over the best reported results. The
compression gain and average encode times are presented in the last
two column.

of triangles. The header information required by the algorithm (the
four prior probabilities, starting vertices for the initial triangle and a
few flags) typically amounts to about 30 bytes for a single compo-
nent mesh, and is not included in the compression cost. For every
separate triangulated component, another 3 integers are required to
specify the starting triangle.

A quick perusal of the results shows that the scheme performs very
well on meshes which display regularity (figure 1a), 1b)), decreas-
ing the code size by up to 65%. This is quite remarkable, given that
we are generatingtwice the number of codes compared to valence
schemes. It should be noted that the valences in these meshes may
be arbitrary — it is the regularity of the triangulation that matters.
In all cases the results are much lower than the valence entropy.
The mannequinmesh has a relatively low valence entropy and is
thus ideally suited to a valence-based coding.

For irregular meshes (those with a wide mix of different trian-
gles types) the gains are somewhat smaller, and some of the other
schemes perform better — figure 1c). This is particularly true when
there are a large number of slivers in the mesh, since the algorithm
is most likely to predict vertices in the region ahead of the current
edge. This is the case for thevenusand feline meshes which ap-
pear to have been randomly triangulated. The current predictors do
not perform optimally for such meshes although they remain com-
petitive with a number of other valence-based schemes. It should
be noted, however, that one could develop a predictor tailored to
meshes with a high proportion of slivers. In fact, one strength of
our method is that one can continue to add predictors to deal with
a host of different mesh types. The predictor specification then re-
quires an additional integer in the header.

There are some “pathological” meshes (figure 1d) for example) on
which the two predictors fare poorly. These meshes are distin-
guished by having a large number of thin triangles (slivers), which
are closed by vertices lying some distance to either side of the base

edge. While the results are poor in such a case, it is worth not-
ing that the usual interleaved geometry predictors will yield cor-
respondingly poor vertex compression results. Consequently, the
joint compression results for interleaved compression will also be
poor. In contrast, a global vertex compression scheme such as [Dev-
illers and Gandoin 2000] will be less dramatically affected. We
would thus expect the joint compression results for the separate
coder to be on a par with the interleaved approach in this case.

There is no useful theoretical bound on the compression perfor-
mance of the scheme, unless one makes very restrictive assump-
tions about the underlying mesh structure. In fact, given the nature
of the prediction scheme, it is possible, although highly unlikely,
to generate a ranking code equal to the size of the vertex set. Of
course, as vertices are culled, this maximum value will shrink. The
lack of a theoretical bound does not, however, detract from the util-
ity of this approach, as illustrated by the results.

5 Conclusion and Future Work

We have presented a simple geometry-driven approach for encoding
the connectivity information of a triangle mesh. The technique is
based on a prediction operation which establishes a distance rank-
ing to connect each new triangle into the mesh during a breadth-
first surface traversal. Our approach departs from the traditional
interleaving of vertex and connectivity compression: we have ac-
cess to the entire vertex data set prior to encoding and decoding
of mesh connectivity. The availability of this global information
allows us to construct good predictors which yield small ranking
values and produce a connectivity code with very low entropy. Al-
though face-based, the low entropies arising from the prediction
scheme ensure that the technique remains competitive with valence-
based schemes. For meshes with a regular structure, we consis-
tently achieve results of less than 1 bpv and generally outperform
the best results reported in the literature. Meshes with a highly ir-
regular structure produce results that are on par with valence-based
schemes, unless they are pathological cases.

There are a number of ways in which the scheme can be extended.
Our predictors make limited use of global vertex data and a single
predictor is chosen based on a global estimate. Some experimenta-
tion shows that a more compact code results if one can choose the
predictor on a per face basis. One possibility is to use a learning
technique to switch predictors as more of the mesh is processed.
While we use a breadth-first surface traversal, this is simply a mat-
ter of convenience. A better strategy is to traverse the mesh ac-
cording to some fitness metric which explores regular regions first,
deferring the processing of irregular regions until later.

The algorithm can readily be generalised to handle tetrahedral
meshes. Furthermore, the notion of distance rank coding can also
be applied to general polygonal meshes, although in this case one
requires a degree code for each face, in addition to the ranking
codes required to insert each vertex.

References

ALLIEZ , P., AND DESBRUN, M. 2001. Valence-driven con-
nectivity encoding for 3D meshes. InEG 2001 Proceedings,
A. Chalmers and T.-M. Rhyne, Eds., vol. 20(3). Blackwell Pub-
lishing, 480–489.

ALLIEZ , P., AND GOTSMAN, C. 2003. Recent advances in com-
pression of 3d meshes. InProceedings of the Symposium on
Multiresolution in Geometric Modeling.

ATTENE, M., FALCIDIENO , B., SPAGNUOLO, M., AND
ROSSIGNAC, J., 2003. Swingwrapper: Retiling triangle meshes
for better edgebreaker compression.

COORS, V., AND ROSSIGNAC, J. 2004. Delphi: geometry-based
connectivity prediction in triangle mesh compression.The Visual
Computer, 20, 1–14.

DEERING, M. 1995. Geometry compression. InProceedings of the
22nd annual conference on Computer graphics and interactive
techniques, ACM Press, 13–20.

DEVILLERS, O., AND GANDOIN , P.-M. 2000. Geometric com-
pression for interactive transmission. InProceedings of the
conference on Visualization ’00, IEEE Computer Society Press,
319–326.

GANDOIN , P.-M., AND DEVILLERS, O. 2002. Progressive loss-
less compression of arbitrary simplicial complexes. InProceed-
ings of the 29th annual conference on Computer graphics and
interactive techniques, ACM Press, 372–379.

KHODAKOVSKY, A., ALLIEZ , P., DESBRUN, M., AND
SCHROEDER, P., 2001. Near-optimal connectivity encoding of
2-manifold polygon meshes.

LEE, E.-S.,AND KO, H.-S. 2000. Vertex data compression for tri-
angular meshes. InProceedings of the 8th Pacific Conference on
Computer Graphics and Applications, IEEE Computer Society,
225.

LEE, H., ALLIEZ , P.,AND DESBRUN, M., 2002. Angle-analyzer:
A triangle-quad mesh codec.

MOFFAT, A., NEAL , R. M., AND WITTEN, I. H. 1998. Arithmetic
coding revisited.ACM Trans. Inf. Syst. 16, 3, 256–294.

MOUNT, D., AND ARYA , S., 1997. Ann: A library for approximate
nearest neighbor searching.

ROSSIGNAC, J. 1999. Edgebreaker: Connectivity compression
for triangle meshes.IEEE Transactions on Visualization and
Computer Graphics 5, 1 (/), 47–61.

ROSSIGNAC, J. 2001. 3d compression made simple: Edgebreaker
with zip&wrap on a corner-table. InProceedings of the Inter-
national Conference on Shape Modeling & Applications, IEEE
Computer Society, 278.

TAUBIN , G., AND ROSSIGNAC, J. 1998. Geometric compression
through topological surgery.ACM Transactions on Graphics 17,
2, 84–115.

TOUMA , C., AND GOTSMAN, C. 1998. Triangle mesh compres-
sion. InProceedings of Graphics Interface.

