
MODEL DRIVEN COMMUNICATION PROTOCOL
ENGINEERING AND SIMULATION BASED PERFORMANCE

ANALYSIS USING UML 2.0

a dissertation

submitted to the department of computer science,

faculty of science

at the university of cape town

in fulfillment of the requirements

for the degree of

master of science

By

Nico de Wet

December 2004

Supervised by

Prof. Pieter S. Kritzinger

c© Copyright 2005

by

Nico de Wet

ii

Abstract

The automated functional and performance analysis of communication systems specified

with some Formal Description Technique has long been the goal of telecommunication en-

gineers. In the past SDL and Petri nets have been the most popular FDTs for the purpose.

With the growth in popularity of UML the most obvious question to ask is whether one

can translate one or more UML diagrams describing a system to a performance model.

Until the advent of UML 2.0, that has been an impossible task since the semantics were

not clear. Even though the UML semantics are still not clear for the purpose, with UML

2.0 now released and using ITU recommendation Z.109, we describe in this dissertation a

methodology and tool called proSPEX (protocol Software Performance Engineering using

XMI), for the design and performance analysis of communication protocols specified with

UML.

Our first consideration in the development of our methodology was to identify the roles

of UML 2.0 diagrams in the performance modelling process. In addition, questions re-

garding the specification of non-functional duration contraints, or temporal aspects, were

considered. We developed a semantic time model with which a lack of means of specifying

communication delay and processing times in the language are addressed. Environmental

characteristics such as channel bandwidth and buffer space can be specified and realistic

assumptions are made regarding time and signal transfer.

With proSPEX we aimed to integrate a commercial UML 2.0 model editing tool and a

discrete-event simulation library. Such an approach has been advocated as being necessary

in order to develop a closer integration of performance engineering with formal design and

implementation methodologies. In order to realize the integration we firstly identified a

suitable simulation library and then extended the library with features required to represent

high-level SDL abstractions, such as extended finite state machines (EFSM) and signal

addressing. In implementing proSPEX we filtered the XML output of our editor and used

i

text templates for code generation. The filtering of the XML output and the need to extend

our simulation library with EFSM abstractions was found to be significant implementation

challenges.

Lastly, in order to to illustrate the utility of proSPEX we conducted a performance

analysis case-study in which the efficient short remote operations (ESRO) protocol is used

in a wireless e-commerce scenario.

ii

Acknowledgements

The research project resulting in this dissertation has been challenging and rewarding. I

learned a great deal about the field of protocol performance engineering and also enhanced

my time management skills and learned to focus on the important aspects of a vast body

of knowledge. I would like to thank the following people for their support that helped me

in completing this work.

• My supervisor, Professor Pieter Kritzinger, for his support and guidance throughout

the project.

• Fellow students of the DNA and CVC lab. In particular Ben Tobler, Simon Lukell,

Oksana Ryndina, Johannes Appenzeller, Mwelwa Chibesakunda, LourensWalters and

Barry Steyn for being great friends and your company. I will miss you!

• My mom and dad, Tibbie and Dirk de Wet, for your unconditional love and support.

• Marelize Retief, for your love, encouragement and always being there for me.

• Fellow M.Sc. students and staff at our department for your advise and assistance. In

particular I would like to thank Andrew Hutchinson, Justin Kelleher and Eve Gill.

• The open-source community, in particular to those working on the Apache Jakarta

projects, for freely distributing their tools.

• The South African National Research Foundation, for funding this research.

iii

Contents

1 Introduction 1

1.1 Problem Definition and Motivation . 1

1.2 The proSPEX methodology and approach to performance evaluation 4

1.3 Project Aims . 6

1.4 Project Assumptions and Limitations . 7

1.5 Own Contribution . 8

1.6 Dissertation Outline . 8

2 Protocol Performance Engineering with Formal Description Techniques 10

2.1 Introduction . 10

2.2 Estelle . 11

2.3 SDL . 11

2.4 PROMELA . 13

2.5 UML . 13

2.6 Performance Analysis using SDL . 14

2.6.1 Time in SDL-92 . 14

2.6.2 Approaches to General SDL Performance Modelling Issues 15

2.6.3 SPECS . 17

2.6.4 ObjectGEODE . 18

2.6.5 SPEET . 18

2.6.6 QUEST . 19

2.6.7 SDL/OPNET . 20

2.6.8 SDL* . 20

2.6.9 Timed SDL . 21

iv

2.6.10 PerfSDL . 21

2.7 Summary . 21

3 Performance Engineering with UML 22

3.1 Introduction . 22

3.2 UML 1.x Shortcomings . 23

3.3 Approaches to Mapping from UML models to Performance Models 25

3.4 Formalizing UML 2.0 for Automated Communication Software Analyis . . . 28

3.5 The UML Profile for Schedulability, Performance and Time Specification . . 29

3.5.1 Resource Modelling . 30

3.5.2 Performance Modelling . 30

3.5.3 The Role of XMI in UML-RT . 31

3.6 Summary . 32

4 Simulation to Predict Communication System Performance 34

4.1 Introduction . 34

4.2 Motivation . 35

4.3 Using Process-Based Discrete Event Simulation to Model Protocol Execution 36

4.4 Model Validation and Verification . 36

4.5 Network Simulation Package Review . 38

4.5.1 Requirements . 39

4.5.2 Commercial Packages . 41

4.5.3 Open-source Packages . 42

4.5.4 Network Simulation Package Selection 44

4.6 Summary . 46

5 A Methodology for Protocol Performance Engineering with UML 2.0 47

5.1 Introduction . 47

5.2 The proSPEX Methodology . 48

5.3 The proSPEX Semantic Time Model . 57

5.4 The proSPEX Tool Architecture . 58

5.4.1 An Overview of Simmcast . 59

5.4.2 Extensions Needed to Simmcast . 62

5.5 Summary . 65

v

6 The proSPEX Implementation 67

6.1 Introduction . 67

6.2 Mapping from Telelogic UML 2.0 to a Simulation Model with the proSPEX

Extension to Simmcast . 67

6.2.1 Removal of the Simulation Description File 69

6.2.2 Architecture Representation and Specification 69

6.2.3 SDL Pid Expression Representation and Implicit Addressing Repre-

sentation . 71

6.2.4 Finite State Machine Representation 72

6.2.5 Additional Trace Events . 80

6.3 Translating from Tau XML to proSPEX . 80

6.3.1 A Code Generation Example . 80

6.3.2 The proSPEX Tau Filter . 83

6.3.3 The proSPEX Code Generator . 84

6.3.4 Graphical User Interface . 84

6.4 Summary and Conclusion . 85

7 Performance Analysis Case-Study 87

7.1 Introduction . 87

7.2 Experiment Specification . 87

7.2.1 Experiment Scenario: Wireless E-Commerce 88

7.3 Model Parameters . 90

7.3.1 Processing Delay Parameters . 90

7.3.2 Network Parameters . 92

7.3.3 Workload Parameters . 93

7.4 Parameter Summary . 93

7.5 The Experiments . 95

7.6 Conclusion . 97

8 Conclusion 99

8.1 Summary . 99

8.2 Future Work . 101

vi

A An Introduction to UML 2.0 102

A.1 UML 2.0 Composite Structures . 102

A.1.1 Active and Passive Classes . 103

A.1.2 Provided and Required Interfaces . 104

A.1.3 Ports . 106

A.1.4 Internal Structure with Parts and Connectors 106

A.1.5 Behaviour Ports . 107

A.2 UML 2.0 Behaviour Descriptions . 107

A.2.1 Overview . 107

A.2.2 Actions . 110

A.3 Model-Driven Development . 110

A.4 XML Metadata Interchange Format 2.0 . 111

B Patterns for Protocol System Architecture 112

B.1 Communication Protocol Structure . 113

B.2 Protocol System Pattern . 113

B.3 Protocol Entity Pattern . 114

B.4 Protocol Behaviour Pattern . 116

C The Efficient Short Remote Operations Protocol 119

C.1 Introduction . 119

C.2 The ESRO Service Definition . 119

C.3 The ESRO Remote Operations Protocol . 121

D The proSPEX Templates 123

D.1 The Main Template . 123

D.2 The Node Template . 128

D.3 The Signal Parameter Class Template . 129

D.4 The State Machine Template . 130

Bibliography 146

vii

List of Figures

1 The protocol engineering process. 2

2 The proposed methodology supported by the simulation-based proSPEX per-

formance analysis tool . 49

3 Architecture specification with UML 2.0 . 51

4 Behaviour specification with UML 2.0 . 52

5 Simulation scenario and workload specification 54

6 The proSPEX architecture . 60

7 Conceptual simmcast packet flow model with service times. 61

8 proSPEX overview . 68

9 An example of a junction symbol . 78

10 An example of a graphical loop . 79

11 An example of signal parameters . 81

12 The Code Generation Process with Velocity 82

13 The proSPEX GUI . 85

14 Experiment Scenario . 89

15 Invocation Throughput at the Server modelled by proSPEX 95

16 Cumulative Invocations at the Server modelled by proSPEX 96

17 Throughput vs Error Rate for ESRO modelled by proSPEX 98

18 Active class notation. 104

19 UML 2.0 Architecture Diagram. 105

20 UML 2.0 behaviour port notation. 108

21 Protocol implementation elements . 114

viii

22 Protocol System Pattern . 115

23 Protocol Entity Pattern . 116

24 Protocol Behaviour Pattern . 117

25 The ESRO Operation Model. 120

26 Sequence Diagram for ESRO Services. 121

ix

List of Tables

1 Extrapolated 7754 byte Message Processing Times using ASN.1 92

2 Scaled 7754 byte Message Processing Times using ASN.1 92

3 Queue Based Performance Metrics for ESRO Server Daemon Nodes 97

x

Chapter 1

Introduction

1.1 Problem Definition and Motivation

The problem of designing efficient, correct and unambiguous computer network communi-

cation protocols has existed for over five decades. Problems encountered in contemporary

protocol design were encountered when designing the first master-slave protocols, used by

mainframes in the 1950s, and peer protocols, used in the first large-scale computer net-

works in the 1960s. One of the fundamental problems protocol engineers have been faced

with is how to design and implement large sets of rules for data exchange that are mini-

mal, logically consistent, complete and efficiently implemented[Hol91]. Over the last five

decades significant strides have been made towards the resolution of the fundamental prob-

lems encountered in protocol design and implementation, leading to the field of protocol

engineering [Sal96]. The protocol engineering process, with its goal of efficient and reliable

software, is an interdisciplinary engineering process which encompasses the application of

formal description techniques (FDTs) and sound software engineering methodologies.

The primary steps[MGS+00] in protocol engineering, as shown in Figure 1, are:

• Formal Specification. A formal service and protocol description (or validation

model) is made from an informal description. The informal description is in English

prose in a similar fashion to Request For Comments (RFC) protocol specifications.

• Validation and verification. Tools are used for exhaustive reachability analysis.

• Performance analysis. Analytical or empirical methods are used to analyse the

protocol allowing performance optimization. Non-functional properties regarding time

1

Figure 1: The protocol engineering process.

2

and resources must be added to support the automatics construction of a performance

model[MTMC99].

• Implementation generation. Executable code is generated using the validation

model.

• Conformance testing. Correctness and conformance testing is conducted to deter-

mine whether the implementation adheres to the specification.

Several FDTs and associated model checking tools exists to support the first two steps

in the protocol engineering process. The most prominent of these FDTs are the Process

Meta Language (PROMELA), the Specification and Description Language (SDL) and Es-

telle. While it is generally accepted that protocols should be specified using such formal

languages, thereby allowing validation and verification, less of an emphasis is placed on

design and performance analysis. Protocol design, in particular the architectural design, is

know to directly affect a number of software attributes including performance[MTMC99].

Performance is a fundamental attribute of any software which is often neglected in the soft-

ware engineering life-cycle. In the context of developing performance-critical applications

using SDL, Mitschele-Thiel[MTMC99] states:

System developers often require quantitative measures like throughput and re-

sponse time to decide on design alternatives, on target system architectures, and

later on for the optimization of parameters like timer settings, or window and

buffer sizes.

It is notable that UML was not mentioned as a prominent language in used in pro-

tocol engineering. Although UML has become the de facto modelling standard it is not

often employed in the protocol engineering process as a specification language. This is pri-

marily because it is a general-purpose modelling language without formal semantics. As a

work-around a common approach is to map a subset of UML diagrams to existing formal

methods[BDM02, MC01, LQV01a] in order to allow automated analysis. An alternative

approach is to merge UML with a formal language using a UML profile[Bjo02]. In addi-

tion to a lack of formal semantics, UML has not been used for modelling real-time systems

(and in particular not used in the protocol engineering process) due to shortcomings in its

architectural specification abilities[SR03a].

3

With the emerging UML 2.0 standard the Object Management Group (OMG) appears

to have addressed the shortcomings of UML in the real-time modelling and protocol engi-

neering domains. For example the architectural modelling capabilities of UML 2.0 has been

drawn[Sel03] from both the ROOM modelling language[SGW94][SR03a] and SDL. With

enhanced real-time architectural specification abilities and the semantic tightening[Sel04]

using profiles, UML 2.0 appears poised to become the dominant specification language used

in real-time modelling and protocol engineering.

A fair amount of research has been conducted on design and performance analysis of pro-

tocols using mature protocol engineering languages such as SDL[BMSK96][BMSK95][Ste98],

Estelle and PROMELA. However this is not the case with UML 2.01. Therefore in this

dissertation we develop a methodology for the design and performance analysis of commu-

nication protocols using UML 2.0.

1.2 The proSPEX methodology and approach to performance

evaluation

Our methodology involves the use of a subset of UML 2.0 diagrams to model architecture and

protocol interactions. We investigate and place an emphasis on the design and performance

analysis stages of the protocol engineering process. During the design stage, the engineer

uses patterns for protocol system architecture[LTB98][PT00]. In our methodology the model

is created in a commercial model editing tool, Telelogic Tau G2. Once the model has been

verified a collaboration diagram depicting a simulation scenario is created by the user as

a basis for defining system workloads and the properties of the target environment. The

collaboration diagram is created in order to allow for simulation-based performance analysis.

In order to conduct simulation-based performance analysis we have developed the pro-

totype proSPEX (protocol Software Performance Engineering using XMI) tool. proSPEX

translates the UML 2.0 model into a simulation model that is capable of delivering a set

of trace messages (as found in [BMSK96][BMSK95]) that allow for the calculation of a

broad spectrum of performance statistics. In addition the tool uses the XMI-based tool

integration approach that is advocated in the UML Profile for Schedulability, Performance

and Time[Gro02] and used in a number of research projects[Ste03]. proSPEX also uses the
1Note that a significant amount of research has been conducted using UML 1.x involving general software

performance engineering (see [BDM02, MC01, LQV01a]) however here we are interested in the more specific
field of protocol engineering and its supporting FDTs.

4

JavaSim-based [Lit04] Simmcast[MB02] simulation framework at the core of the simulation

models that are generated from UML 2.0 models specified using Telelogic Tau G2.

Our approach to protocol performance evaluation is influenced by the facilities provided

by the simulation framework we have integrated into proSPEX and our associated method-

ology. In translating a scenario (specified using a UML 2.0 collaboration diagram) to a

quantitatively assessable simulation model, the characteristics of the target environment is

described by associating network resources to the specification. Environmental characteris-

tics such as channel bandwidth and buffer space can be specified and realistic assumptions

made regarding time and signal transfer. In the collaboration-based scenario the number

of clients and servers that serve as the systems workload is indicated and network links

are clearly identified with an attached UML 2.0 comment symbol. The comment symbol

attached to network links contains network link characteristics such as loss probability,

bandwidth, delay distribution and delay distribution parameters. The network link char-

acteristics are used to schedule signal arrival at the receiver. For example, signals that

cross network links must have a length parameter in order to allow for time calculations by

proSPEX.

The simulation framework we have integrated into proSPEX allows for the modelling of

processing delay by associating a send and receive time with a node (note the processing

delay is not associated with individual actions). Therefore regardless of whether a signal

crosses a network link or not, the node sending the packet and the node receiving the packet

will be blocked for a simulated period of time equal to each node’s processing delay.

We have specified the Efficient Short Remote Operations (ESRO) transport layer pro-

tocol and calculated throughput performance measures to prove the utility of proSPEX.

Our proSPEX methodology and approach to performance evaluation has clearly been de-

veloped in the context of related work. With regard to the use of a tool integration approach

in which we interoperate with a commercial UML 2.0 tool, we note that in ”Performance En-

gineering of SDL/MSC Systems”[MTMC99] A. Mitschele–Thiel and B. Muller-Clostermann

made the following observation:

Future goals should include case studies and application of the approaches

to real world problems. This will help to develop a closer integration of per-

formance engineering with the SDL methodology and implementation design.

In order to systematically develop reliable and efficient systems, better and sta-

ble tools will be necessary that interoperate with commercial SDL/MSC

5

tools.

1.3 Project Aims

In this project our primary aim was to build a prototype tool that is able to translate from

a UML 2.0 protocol specification to an equivalent simulation model capable of delivering a

particular set[BMSK96] of trace messages by integrating existing tools[MHSZ96][MTMC99].

In addition, with UML 2.0 being a relatively new specification language, we consider

the protocol design stage of the protocol engineering process which precedes both validation

and performance analysis.

Our primary aim and supplementary aims are listed below. Note that our primary

aim is to develop a methodology and performance analysis approach using UML 2.0. Our

supplementary aims are centered on the theme of our use of tool integration in building

proSPEX.

Primary aims:

1. To create a prototype tool capable of delivering a set of trace messages (as found

in [BMSK96][BMSK95]) using a tool integration approach. The tool should translate

from a UML 2.0 specification to a quantitatively assessable simulation model in which

the characteristics of the target environment a represented using facilities provided by

the simulation library (or tool) used.

Supplementary aims:

1. To design a communication protocol using Telelogic Tau G2, our model editor, as a

case-study. It would be beneficial to identify communication protocol design patterns

to be used in the protocol design stage, which precedes the performance modelling

stage.

2. To build proSPEX following the XMI-based tool integration approach that is advo-

cated in the UML Profile for Schedulability, Performance and Time[Gro02] and used

in a number of research projects[Ste03]. Therefore proSPEX should be a model pro-

cessor and not a model editor and have filters to Telelogic Tau G2.

6

3. To evaluate simulation libraries (such as JavaSim, SimJava or opNET) and use the

most suitable library when translating from a UML 2.0 model to a simulation model.

4. To determine how a UML 2.0 model could be represented using the chosen library

and adapt the library to include features that are required for our primary objective.

5. To determine means of specifying protocol environmental constraints and workloads

in UML 2.0 and extend the protocol specification previously conducted to include

such information.

6. To use the tier generation model described in [Her03] in proSPEX and hence use a

text templating engine in the simulation code generation process.

7. To prove the utility of proSPEX delivering, as an example, a subset of the possible

performance statistics derived from the simulation of our case-study communication

protocol.

1.4 Project Assumptions and Limitations

A significant limitation is this project was that UML 2.0 was not fully defined for the

duration of the project. That is, UML 2.0 existed only in language specification documents

and a single editor (Telelogic Tau Generation 2.1) which is based on draft versions of the

UML 2.0 specification documents throughout the duration of the project. Telelogic Tau

Generation 2.1 combines SDL with UML 2.0 as examined in Section 3.4. We call the

specification language used in Tau G2.1 Telelogic UML 2.0 since it is a merger of SDL and

UML 2.0 and not a standard.

An additional limitation was that Telelogic Tau G2.1 stores the model in an XML format

and the DTD associated with this XML is a company internal and hence was not available

for our use. This is a limitation since we were unable to determine the legal set of elements

that may appear in the XML as well as in which context the elements may legally occcur.

Ideally Telelogic Tau G2.1 should have used the XMI 2.0 format for if this were case the

proSPEX user could use any UML 2.0 editor to create the model.

7

1.5 Own Contribution

The performance analysis of protocol systems using specification languages such as SDL has

been thoroughly researched [MTMC99][BMSK96] [Rou01][Ste98][MDMC96] [MHSZ96][Spi97]

[Mal99] in the last decade. With the emergence of UML 2.0 and its integration with SDL,

as has been done by Telelogic, various questions arise regarding protocol performance mod-

elling and analysis using the resultant language.

Questions that arise include the manner in which we can apply the techniques that were

used in the case of SDL to this integrated language? In addition, when using such an in-

tegrated language various profiles and approaches to performance analysis using the UML

language become applicable. An example of such a profile is the UML profile for schedu-

lability, performance and time [Gro02], while and example of an approach is that which is

detailed in Performance Solutions [SW02] by Smith and Williams. An additional question

would be what the roles of the various UML 2.0 diagrams would be in the performance

modelling process.

Our contribution is that we have created a model processing tool, proSPEX, and an

associated methodology, which draws from the various sources that are related to the inte-

grated modelling language we are using. For example, we have followed the recommendation

[MTMC99][Gro02] for performance analysis tools to interoperate with commercial tools. In

addition, our contribution is that in building proSPEX we have integrated Telelogic Tau

and an extendable simulation framework. This is similar to the SDL/OPNET2 approach

[MHSZ96] which entails a mapping from SDL descriptions (annotated with constructs for

describing delays, processing resources and workloads) to executable OPNET models. How-

ever, in the case of proSPEX the mapping is automated while with the SDL/OPNET ap-

proach the mapping is manual.

1.6 Dissertation Outline

Chapter 2, provides an introduction to the major languages used in network protocol

specification, Estelle, SDL, PROMELA and UML. We then investigate the interpretation of

time in the dynamic semantics of SDL, followed by an overview of approaches to general SDL

performance modelling issues. Lastly we review SDL performance analysis tools including
2OPNET is a network simulation environment that that is discussed in Chapter 4.5.

8

SPECS, ObjectGEODE, SPEET, QUEST and SDL*.

In Chapter 3 performance engineering with UML is discussed. We firstly investigate

the known shortcomings of UML that are relevant in conducting performance analysis. We

then review approaches to mapping to UML models, which are not necessarily protocol

models, to performance models. An approach to the formalization of the new UML 2.0

standard, in order to allow for automated analysis, is then reviewed. We then investigate

the UML-RT profile (the UML Profile for Schedulability, Performance and Time) and the

role of XMI in the this profile.

With the analysis technique used in this dissertation being simulation, Chapter 4

examines the topic of simulation to predict a communication system’s performance. We

also determine a set of requirements for the network simulation package used in this work

and evaluate a set of commercial and open-source packages. The result of this evaluation

is our choice of using the open-source Simmcast network simulation framework.

In Chapter 5 the proSPEX methodology, semantic time model and high-level archi-

tecture are discussed, while implementation aspects are discussed in Chapter 6. With the

proSPEX methodology a minimal subset of UML 2.0 diagrams are used to specify protocol

architecture, behaviour and environmental characteristics. The purpose of our methodology

is to serve as a guide of how to go about protocol design and in particular the specifica-

tion of non-functional delay constraints and subsequent performance analysis. With the

proSPEX tool we extend the Simmcast simulation framework with abstractions that are

required to map from protocols specified using Telelogic Tau to an executable simulation

model. Such abstractions include those used in SDL behavioural descriptions namely finite

state machines, implicit and explicit addressing expressions. We also discuss the challenges

we encountered in filtering the verbose Tau XML in the code generation process.

A performance analysis case study is discussed in Chapter 7. We demonstrate the

utility of proSPEX by determining a set of performance statistics relevant to the use of

the Efficient Short Remote Operations (ESRO) protocol in a wireless e-commerce scenario.

Finally Chapter 8 presents conclusions and suggestions for future work.

We also provide a set of Appendices with supplementary information. An introduction

to UML 2.0 is provided in Appendix A and we discuss design patterns for communication

system architecture in Appendix B. An overview of the ESRO protocol is given in Ap-

pendix C, while the proSPEX templates, which are used for simulation code generation,

are provided in Appendix D.

9

Chapter 2

Protocol Performance Engineering

with Formal Description

Techniques

2.1 Introduction

In this chapter we review the major languages used in network protocol specification, Es-

telle, SDL, PROMELA and UML. These languages are used in designing the structure and

dynamic behaviour of efficient and unambiguous communication protocols. Importantly

Estelle, SDL and PROMELA are formal description techniques for unambiguous system

specification, validation, verification, functional testing, rapid prototyping and performance

analysis [BD02]. Extended communicating finite state machines (ECFSM) form the basis

of protocol specification models in the languages we examine. The finite state machines are

extended by having local variables and data and concurrently communicating using signals

or structured messages sent via finite-length asynchronous channels[BD02].

The aim of this chapter is to provide a brief1 overview of each language in the context of

network protocol specification. In the case of SDL, the most widely used FDT for protocol

specification, we investigate the semantics of time which is particularly relevant when con-

ducting performance analysis. We then discuss the approaches to solving general problems

encountered when conducting performance modelling using SDL. Finally, we discuss related
1Note that a comprehensive overview of formal methods for the specification and analysis of communi-

cation protocols by F. Babich and L. Deotto is available[BD02].

10

tools that integrate performance analysis in the context of SDL.

2.2 Estelle

The formal description technique Estelle is used for the unambiguous specification of com-

munication protocols. Estelle is based on communicating extended finite state machines

and has semantics which is both formal, mathematical and implementation-independent.

Estelle is said[SBD89] to be particularly well suited to describing the services and protocols

of the layers of the ISO Open System Interconnection (OSI) model.

With Estelle the Pascal programming language is used for data manipulation and the

ECFSM model is used for behavioural description. Estelle can be seen as set of extensions

to ISO Pascal in which systems are specified as a hierarchical structure of FSMs which

run concurrently and communicate by message exchange and/or variable sharing[SBD89].

Notably the use of Pascal makes Estelle implementation oriented and hence eases implemen-

tation generation. Modular, interface-oriented design can be employed when using Estelle

in that the communication interfaces between system components can be described sepa-

rately from the internal behaviour of the components. For brevity we do not examine the

Estelle building blocks and syntax here and for such information the reader may consult

[CS90][SBD89] and [BD02].

Estelle has not enjoyed the commercial success of SDL or UML, however it is sup-

ported by the Estelle Development Toolset (EDT) and the language has been used in the

specification[ea00] of the U.S. Army wireless standard MIL-STD 188-220. EDT was devel-

oped at the Institut National des Telecommunications (INT) and consists of a compiler, C

code generator, simulator/debugger, MSC trace generator, test driver generator and graph-

ical editor [TFKRB98] amongst other components.

2.3 SDL

SDL (Specification and Description Language), the ITU-T standard, has been used since

1976 and as such is mature and well tested. In this section we give a broad overview of

SDL. For more detailed coverage of SDL consult [Con00][BD02].

SDL is both an object-oriented and formal language. It is primarily intended to be used

to specify complex, real-time applications. Such complex applications would involve many

11

concurrent processes that communicate using discrete signals[Con00]. It is hierarchical in

nature allowing information hiding and abstraction. An SDL specification can be graphical

(SDL/GR) or in a textual phrase representation (SDL/PR). SDL/PR can be seen as being

a high level programming language.

The following list[Con00]2 summarizes specialized characteristics of SDL:

• standard - SDL was developed and standardised by the ITU-T and it is accepted by

the ISO. This means that SDL will be maintained and supported in the future.

• formal - Being a formal language ensures that SDL specifications have the essential

properties needed in mission-critical applications, namely precision, consistency and

clarity in design. The formal SDL grammar ensures that tools for both the simulation

and validation of formal characteristics can be created.

• object-oriented - Apart from introducing object-oriented (OO) concepts for objects

with behaviour, e.g. systems, state machines, SDL includes traditional OO features

such as encapsulation and polymorphism.

• highly testable - SDL has formalisms for parallelism, interfaces, communication and

time. The result is that SDL has a high degree of testability.

• portable, scalable, and open - An SDL specification is not dependent on op-

erating systems, processors, interprocess communication mechanisms or distribution

methods. Thus a SDL specification can be mapped to different target architectures

and configurations.

• highly reusable - SDL provides a high degree of reuse. This is as a result of visual

clarity, testability, OO concept usage, clear interfaces and abstraction mechanisms.

Compared to Estelle and PROMELA, SDL has enjoyed the greatest success in industry.

The Tau tool, developed by Telelogic, has been used in industry for a number of years. Due

to market demands Tau is no longer a pure SDL tool and is now based on a merger of UML

and SDL in Tau Generation 2. At a recent[Mei02] ITU workshop on the use of description

techniques it was noted that in the teaching field UML is not yet able to replace SDL,

MSC, ASN.1 and TTCN. However despite advantages offered by these languages teachers

may turn to UML due to readily available support in the form of books and tools.
2This list is largely an excerpt from [Con00]

12

2.4 PROMELA

PROMELA (PROcess MEta LAnguage) is the specification language of the Spin (Simple

Promela INterpreter) tool that can be used for the formal verification of distributed software

systems. Spin can be used to detect logical design errors in the specification of a variety

of systems and in particular data communication protocols. Spin is not restricted to being

used as model-checking tool and can be used as a simulator, an exhaustive verifier and proof

approximation system.

PROMELA was first released in 1991 by G. Holzmann[Hol91]. It allows for the dynamic

creation of a finite number of concurrent processes. Communication occurs via message

channels that can be either synchronous or asynchronous. The language largely resembles

C and is used in the specification of finite-state systems. A PROMELA model consists of

type declarations, channel declarations, global variable declarations and an initialization

process. The statements in a process are either executable or blocked depending on the

type of the statement.

The XSpin tool serves as an interface to Spin and has a PROMELA syntax checker.

Once a protocol has been specified using XSpin, system properties that can be checked

included deadlocks, assertions, unreachable code, LTL formulae (propositional logic and

temporal operators) and liveness properties. The default optimisation and reduction algo-

rithms used to make verification runs more efficient are the root of Spin’s power and hence

its popularity[Ruy02].

Spin is freely available online[spi04] and enjoys active use in the research community.

PROMELA is arguably the language of choice when conducting model checking in the

protocol engineering field, however such model checking is rarely conducted in industry and

mostly in academic research.

2.5 UML

UML, as the de facto modelling standard, has received significant attention in the field of

real-time development. Although it is beyond our scope to detail the language, we provide

a brief overview of the use of UML as a language in the protocol engineering domain.

With the creation of UML the intention was not to have a language with a program-

ming language level syntax and formal semantics. The lack of the above mentioned features

made UML unsuitable for code generation, model checking and performance analysis. As a

13

work-around UML tool vendors and academics have used UML profiles in order to provide

for the needs of protocol engineering. Such profiles include the Graphical Protocol Descrip-

tion Language (GPDL)[JPT00], the ITU-T Z.109 Profile[MP00], the Rational Real-Time

Profile[SR03b] (developed by B. Selic and J. Rumbaugh and used in the Rational RealTime

tool) and the Telelogic Tau Real-Time Profile (used in the Telelogic Tau tool, see Section

3.4). In addition in academic research a common approach is to map a subset of UML

diagrams to existing formal methods[BDM02, MC01, LQV01a] in order to allow automated

analysis.

The tool support and use of UML in real-time development is extensive. In addition

numerous books and papers are available to aid the developer. Real-time development tools

include Telelogic Tau, I-Logix Rhapsody Developer and IBM Rational Rose RealTime.

2.6 Performance Analysis using SDL

2.6.1 Time in SDL-92

Performance analysis using SDL is only possible if one is able to determine the time taken

for signal transfers and process execution. It well known [dVHVZ96] that the definition

of time in the dynamic semantics of SDL is loose in the sense that it acknowledges that

the system will execute in real time with delays on channels, but does not specify how the

system execution is affected by this constraint.

In [BMSK96] (SPECS) it is noted that SDL-92 has an unsatisfactory interpretation of

time. The following interpretation of time in SDL-92 is noted in [BMSK96]:

• time is incremented by a clock outside the system.

• no units of time are predefined i.e. time may be continuous.

• signal transfers over channels take time.

• an SDL system is not limited by processing resources. This implies that

processes may perform SDL actions in zero time (or negligible time com-

pared to the duration of a signal transfer).

The above interpretation of time unsatisfactory in the following ways:

1. ITU recommendations do not specify how the duration of delays introduced by chan-

nels is determined.

14

2. Channels are not perfect, as is assumed in SDL, and may lose signals.

3. One must drop the assumption that individual actions take negligible time or happen

instantaneously.

The unsatisfactory interpretation of time in SDL-92 is addressed in [BMSK96] by making

the following assumptions when attaching semantics of time to SDL:

• signal transfers over channels take a user-specified time, but transfers over

signalroutes are not delayed.

• processes are only allowed to execute a finite number of actions in a time

unit i.e. actions take time.

• different processes may execute a different number of actions per time unit

i.e. processes can have different execution speeds.

2.6.2 Approaches to General SDL Performance Modelling Issues

In this Section we discuss general issues that arise when conducting performance analysis

based on formal specifications and SDL in particular. We survey the performance analysis

approaches taken in related tools that integrate performance evaluation into the context of

SDL in Section 2.6.3 to 2.6.10 with regard to the general issues that are discussed here.

Modelling Non-Functional Duration Constraints

In the approaches that we survey, it is common for the semantic time model of SDL to be

enhanced by providing means of modelling non-functional time dependant aspects. Seman-

tic time models are realised by temporal features that are needed for functional design and

also by time related features that are needed for non-functional aspects and analysis.

Time related features required for functional design include clocks, timeouts and time

dependant enabling conditions. Time related features required for non-functional design

include timing restrictions due to knowledge of the execution environment and modelling

the execution times of tasks.

The means of modelling non-functional temporal aspects are missing from SDL [Gra02][Spi97],

as is stated by Graf [Gra02]:

15

Non-functional primitives express timing features orthogonal to the functional

behaviour, and they consist in constraints on the (relative) occurrence time of

events, and are completely lacking in the standard.

It is this lack in the standard which is the subject addressed by the various approaches

that we have mentioned. Each approach provides a means of modelling duration contraints

that allow for the expression of timing characteristics of the environment and underlying

execution system [Gra02]. Non-functional time related aspects include 3 [Gra02]:

• Communication delays: All communication in SDL occur via channels which may

have an associated delay. Channel attributes may include a loss rate and whether the

delay is load dependent or not. A communication channel with parallelism, such as

the Internet, may be regarded as load independent, while a sequential medium would

be load dependent.

• Processing times: The processing of a signal can be divided into queueing and

treatment [Gra02] phases. The treatment time consists of pure execution and blocking

time (due to scheduling). The overall processing time can be modelled as an expression

representing a time interval. With SDL an important question that arises is for which

sort of behaviours duration constraints can be specified. For example are durations

constraints associated with SDL behavioral primitives (i.e. tasks, output, input etc.),

SDL behaviour sequences (i.e. transitions or procedures), or SDL processes.

• Execution modes: With execution modes we consider time passage in parts of

the system with no time constraints expressed. With standard SDL semantics time

passage is interpreted as passing arbitrarily in such parts. A designer could specify

a different execution mode, for example all non time constrained actions could be

immediate.

• Time constraints on the external environment: The timing constraints of sig-

nals arriving from the environment must be expressible. Such characteristics include

response time, inter arrival times and jitter. The environment can be modelled by

processes in which the above mentioned signal characteristics can be expressed using

time guards.
3We borrow from work [Gra02] by Susanne Graf in the list of non-functional time related aspects that

are discussed.

16

• Scheduling: In order to represent scheduling algorithms in SDL, information regard-

ing the preemptability of atomic steps, or sequences of atomic steps, must be provided.

Questions of how or whether scheduling information should be represented in SDL is

answered to varying degrees by the different approaches.

• Local time: the ability to express local clock time and global system clock time (the

external reference time, or now) is important in model-checking in order to detect

unforseen errors such as livelock and deadlock. Moreover, the relationship between

local time and the reference time must be clearly defined.

SDL Syntax

The second issue that we consider is whether the SDL syntax of the SDL specification is

amended when using a particular approach. This is not independent of the first since the

various non-functional time related aspects need to be represented to allow for automated

analysis.

The importance of this consideration is that if one wants a tool based on an approach to

be useful to the largest possible audience one would want to take existing SDL specifications

and analyse them using the tool without having to change the given specification. In the

context of this issue we examine the ways of temporal directives (e.g. delay and scheduling

directives) to communication protocol specifications.

2.6.3 SPECS

With the SPECS [BMSK96][BMSK95] and SPECS II [dVHVZ96] tools, developed by Pieter

Kritzinger and his colleagues at the University of Cape Town, SDL/PR specifications are

imported and then executed. With both tools the approach to performance analysis remains

the same in that it does not affect the syntax of the formal description technique and does

not depend on the FDT used. SPECS performs a simulation of a system specified in SDL

in order to derive performance measures. The described SPECS approach is essentially

a way of mapping a system specification to its target environment (without changing the

syntax of the FDT). In this mapping realistic assumptions are made regarding time, process

execution and signal transfer. In their approach a protocol system, specified using standard

SDL, is imported and then attributed with environmental constraints.

Once a specification has been imported relative execution speed values are assigned to

17

each block while the processes within a block are given weights. The assignment of these

values, which is done using a GUI dialog box, is equivalent to annotating the model using

comment symbols.

The units of the execution speeds are actions per time unit meaning that the number of

actions each process can execute (the process action quota) once scheduled is determined by

its weight. In this way time, which is maintained by a global simulation clock, is advanced

either when process instances have exhausted their action quotas or process instances are

all waiting for input. At each advancement of the simulation clock, timers, which are

maintained separately by each process instance, are checked for expiration.

With regards to the semantics of time when considering signal transmission, SPECS

enhances the standard semantics of SDL by assuming that signal transfers over channels

experience a randomly distributed delay and may be lost with a certain probability.

2.6.4 ObjectGEODE

In ”SDL Performance Analysis with ObjectGEODE”[Rou01] J.-L. Roux describes the per-

formance analyzer of the ObjectGEODE simulator. In the ObjectGEODE performance

evaluation approach performance analysis directives can be directly attached to low-level

behaviour such as actions. SDL extensions for performance analysis are found in SDL com-

ment strings in order to avoid modifying the standard SDL syntax. Node, priority and

delay directives are placed in comment strings and used by the analyzer. Priorities can

be assigned to each SDL process in order to specify execution scheduling preference us-

ing priority directives associated with processes. Delay can be associated with individual

actions rather than transitions using the delay directive. The delay directive contains a

distribution parameter which is uniform by default but which may also be exponential and

normal. During simulation measurements are not stored (to file) but processed immediately

to save memory usage and preserve the efficiency of the simulator. It is important to note

that with ObjectGEODE to the extensions to the SDL language are used exclusively in

SDL comment symbols and hence the models annotated models still conform to the Z.100

standard.

2.6.5 SPEET

With SPEET [Ste98], by M. Steppler and M. Lott, Aachen University of Technology, the

processing delay is modelled by emulating the target environment and not by using delay

18

directives as is done in other approaches. In other words a system’s implementation can

be simulated on virtual hardware. Users can specify parameters such as processor num-

ber, processor frequency and RAM parameters (amount, type and cycle times). In the

case of communication delay, physical transmission models (channel encoders, decoders,

modulators and demodulators) are used.

MSCs with time constraints serve as the workload of a protocol specification. These

constraints are set using comment symbols in MSC diagrams and a particular syntax. In

addition, the user can insert probes into the SDL specification which do not interfere with

the semantics of the specification. These probes can be connected to any SDL symbol to

which an SDL comment symbol can be attached. Time probes have a name, id and time

expression as parameters. In effect these probes merely specify values that are traced and

hence of interest in the analysis which follows simulation runs.

2.6.6 QUEST

With the QUEST [MDMC96] approach, developed by Bruno Muller-Clostermann and his

colleagues at the University of Essen, the SDL language is extended, resulting in the QSDL

(Queueing SDL) language. QUEST implements an approach to SDL-based performance

evaluation aimed at obtaining estimates of QoS paramaters during the early design stages.

A quantitatively assessable model is constructed enclosing the complete SDL-specification

during which the characteristics of the target platforms and environment are described by

associating resources (or machines) to the SDL-specification. Environmental characteristics

such as processing power, available channel bandwidth and buffer space are specified by the

user, in addition to traffic and workload models. The SDL-specification with integrated en-

vironmental property specification yields a quantitatively assessable model using state space

exploration via discrete event simulation or exhaustive exploration. System performance is

determined in terms of throughput, response time and utilization.

QSDL has a QSDL/GR notation which has equivalent diagrams for each SDL/GR sym-

bol. An SDL process is a machine (queueing station) in QSDL and the parameters that

can be associated with a machine includes a name, server number, service discipline (e.g.

FCFS, RANDOM), a set of offered services and service-specific speed values. Each QSDL

request instruction is time consuming and requires a service amount attribute and an op-

tional priority. In this way time durations and the use of resources can be associated with

certain actions. For workload characterisation, a number of random distribution functions

19

are provided. These functions would be used in load generators which are implemented as

QSDL processes.

2.6.7 SDL/OPNET

In [MHSZ96] Martins et. al. introduce Extended SDL of which SDL-92 is a subset. Process-

ing delay is modelled using delay clauses associated with transitions. All actions before such

a clause are executed immediately, following which execution is suspended for the specified

delay period. Unreliable communication links can be modelled explicitly by using a channel

substructure.

With the Extended SDL processing model, the FIFO queue(s) associated with a process

can be specified as being bounded, thereby modelling buffer size. In addition, each queue has

an associated queueing discipline. The process is viewed as a server which is characterized

by its service durations which are specified using delay clauses in transitions. Workload is

specified using processes interacting with the system via environmental interaction channels.

Each formally specified Extended Finite State Machine (EFSM) is mapped to a com-

bination of a EFSM model and a queueing network. The queueing network describes the

congestion of multiple requests to restricted resources. Extended SDL models are manually

mapped to OPtimized Network Engineering Tool (OPNET) models and then executed.

2.6.8 SDL*

SDL* [Spi97] is an annotated version of SDL that allows for the specification of non-

functional aspects. Such constraints include resource requirements, timing constaints and

hardware mapping proposals. The SDL* annotations are embedded in SDL comment sym-

bols, thereby allowing for the use of commercial for specification and validation. SDL*

annotations are classified into five classes namely tool directives, mapping, resource re-

quirements and cost requirements classes. The main contribution of SDL* is to provide

a syntax for the specification of non-functional timing aspects using SDL using comment

symbols.

As an example of the specification of a resource requirements using SDL* annotations,

channel bandwidth could be specified using the following directive: bandwidth of channel

c1 is 200 Mbit/sec. With regard to timing requirements SDL* gives the user the ability

to specify both signal processing delay and jitter duration directives.

20

2.6.9 Timed SDL

With Timed SDL (TSDL), by F. Bause and P. Buchholz, timing aspects are added to

transitions. Every transition of a process has a time delay or probability specified and

modifications to the SDL syntax are needed for this purpose. Modifications to SDL’s syntax

include constructs for expressing transition execution probability, transition execution rates

and transition time durations. Additional TSDL constructs are provided for inspecting

the input queue and state of a process. The motivation for such constructs is to enable

the evaluation of performance metrics such as protocol throughput by determing the signal

flow out a state.

2.6.10 PerfSDL

PerfSDL, an extension to SDL, serves as an interface to the PlasmaSIM network simulator.

In [Mal99] the inadequate semantics of time found in SDL is addressed in the context of

simulation. Instead of time advancing when all queues of the system are empty, as occurs

in the SDL standard, time can advance at every action performed by an SDL process. In

order to reduce the system complexity, timed-transitions can be specified. Actions, and not

state transitions, are the atomic units of scheduling and are called sub-transitions.

An execution time period, probabalistic or deterministic, may be associated with each

sub-transition. Probes, which are special variables used for statistic gathering, are associated

with transitions. Probes can be used for logging variable values and can be time-stamped.

These probes are essentially discrete simulation trace events.

2.7 Summary

In this section we have briefly examined Estelle, SDL, PROMELA and UML. In terms of

language use UML appears to be the most prominent language in real-time development,

this prominence is spurred on by readily available teaching material and tools. We examined

the semantics of time as defined in SDL as well as the deficiencies in these semantics when

one is conducting performance evaluation. In our examination of related tools, we saw

that each approach enhances the semantic time model of SDL and that this process entails

providing means of modelling non-functional duration constraints.

21

Chapter 3

Performance Engineering with

UML

3.1 Introduction

In this chapter we examine the use of UML1 in the performance engineering field in general

terms. That is, we examine the use of UML when conducting the performance analysis

of any type of software, not necessarily communication software, where performance is of

particular importance. Our intention is not to examine the performance analysis techniques

used, rather the approach taken in the use of UML language diagrams and features in

specifying the abstractions required for performance analysis.

We investigate some of the shortcomings of UML 1.x, followed by a survey of the ab-

stractions used in mapping from UML models to performance models, e.g. queueing models,

simulation models and Petri-net models, regardless of the performance analysis technique

used. We then investigate an approach to formalizing UML 2.0 for automated communica-

tion software analyis.

The final topic that we examine in this chapter are efforts the OMG in standardising

the use of UML in the performance engineering field. The UML Profile2 for Schedulability,

Performance, and Time Specification (UML-RT), defines a standard paradigm for the use of

UML when modelling the time, schedulability and performance aspects of real-time systems.

We investigate the model processing approach advocated in UML-RT which involves use of
1UML means UML version 1.x (1.5 and below), not UML 2.0, throughout this chapter.
2The meaning of a UML profile is examined in the Appendices.

22

the XML Metadata Interchange (XMI) standard in Section 3.5.3.

3.2 UML 1.x Shortcomings

Here we mention various shortcomings, some of which are subjective, that have been noted

in UML 1.x and spurred on the creation of the UML 2.0 standard. Note that is is beyond

the scope of this dissertation to detail UML 1.x or UML 2.0, although a brief introduction

to UML 2.0 is provided in Appendix A.

Real-time Constraints and Properties

UML was conceived as a general-purpose modeling language and as such real-time modeling

constructs were not included. There has been extensive research in this area[LQV01b][MC03]

and the recent adoption of the UML profile for schedulability, performance and time (UML-

RT) [Gro02] highlights the importance of real-time modeling using UML. UML-RT was

however developed with UML 1.x in mind and has not been upgraded for UML 2.0.

Time

According to Graf and Ober[GO03] standard UML 1.x has the Time data type as its only

time related concept. In addition, [GO03] points out that while UML-RT does define a

vocabulary of time related concepts, these concepts are largely syntactical.

Several temporal concepts have been added to UML, as can be found in the UML 2.0

Superstructure Specification [Gro03]. With UML 2.0 being standardized relatively recently

(June 2003) no UML 2.0 tool incorporating these features currently exist.

Diagram Exchange Industrial Implementation

In an effort to allow model sharing between tools supplied by different vendors, the OMG

adopted the XML Model Interchange (XMI) language. Certain UML modelling tools, such

as Poseidon, save UML models using XMI as their native format while others, such a

Rational Rose, have the ability to save and load XMI models as a foreign format.

Unfortunately tool vendors did not adopt a common interoperable version of XMI[Mil02]

in their UML 1.x tool implementations. That is, incompatibilities between XMI written

by different vendors exist and this is said [Ste03] to be partly due to shortcomings in the

23

standard itself. It is expected that with the XMI 2.0 standard, the diagram interchange

format of UML 2.0, the OMG has addressed the short comings of the earlier XMI standard

allowing for compatible implementatations by tool vendors.

Language Size

UML 1.x is seen by some[Kob02] as being too large and complex. This excessive size makes

UML difficult to learn, apply and implement. Kobryn[Kob02] has pointed out that the best

place to start reducing UML (in the UML 2.0 standard) is to define a concise and precise

language kernel. Such a language kernel would be the 20% of the language that is used 80%

of the time.

The UML language has grown in version 2.0[Sel04], however as a remedy UML 2.0 has

been modularized into a set of sublanguages[Sel04]. In addition a language kernel (the

Kernel package) is described in the UML 2.0 Superstructure Specification [Gro03] which

must be implemented by tool vendors as a minimum requirement for UML 2.0 conformance.

”The Kernel package represents the core modeling concepts of the UML, including classes,

assiciations, and packages...[it] is the central part of the UML...”[Gro03].

Model Multiplicity

Dov Kori has stated[Dor02] that model multiplicity is one of the main problems of UML.

Model multiplicity occurs as a result of excess diagram types and symbols. Furthermore,

Kori states:

”UML agglomerates nine diagram types, also called views, or models, declared

to be a unified standard. But such a declaration cannot replace unification of

the concepts and symbol sets associated with the models, along with removal of

the many redundant entities and overlapping notions.”[Dor02]

The crux of Kori’s argument, being the model multiplicity problem, is that not one of the

nine UML models clearly shows the two most prominent system aspects, namely structure

and behaviour. He points out that separating a model’s behavior from its structure severely

hampers an architect’s productivity. Additionally model multiplicity has the added problem

of integrity maintenance among the system’s various models (modifying one diagram means

that several other may also have to be modified). Kori states:

24

”even with superb CASE tools, keeping the diagrams synchronized and pre-

venting the introduction of contradictions and mismatches in the overall system

model (which, in UML, exist only in the modeler’s mind) become daunting tasks

beyond anyone’s cognitive ability.”[Dor02]

Although the model multiplicity problem would may still exist in UML 2.0, it can be

said that architectural modelling capabilities of UML have been significantly enhanced in

the UML 2.0 standard.

Non-standard Implementations

According to Kobryn[Kob02] no modelling tool vendor had fully implemented the UML

1.1 specification or any subsequent UML 1.x specification four years after the UML 1.1

standard was released. Defining a language kernel is said [Kob02] to be a possible remedy

to this problem and such a kernel has been defined in the UML 2.0 standard.

3.3 Approaches to Mapping from UML models to Perfor-

mance Models

In order to allow for performance analysis using UML a common approach is to map a

subset of UML diagrams to performance models with formal semantics. In this section we

survey work in which UML models are mapped to performance models.

In [CCS03] a mapping from UML 1.x to software tools which support Jane Hillston’s

Performance Evaluation Process Algebra (PEPA) is described. UML models are enhanced

with performance information and then mapped to PEPA. In essence the mapping involves

a translation (or bridge) between the ArgoUML modelling tool and the PEPA Workbench.

The UML model is stored in XML Metadata Interchange (XMI) format and standard XML

tools are used to extract the required model data. An extractor tool and a reflector tool

act as the bridge between the two applications. The extractor takes the XMI file generated

when a UML model is saved using ArgoUML and converts it to the corresponding input file

for the PEPA Workbench. Detailed algorithms3 for extracting PEPA models from UML 1.x

state diagrams and collaboration diagrams that are used by the extractor are presented in

[CCS03]. The reflector takes the original XMI file and the results returned from the PEPA
3These algorithms are shown to be surprisingly complex.

25

Workbench and returns a modified XMI file which is then imported into ArgoUML, thereby

integrating performance analysis results with the original model.

Hoeben [Hoe00] has developed a tool that translates a UML model to a queueing net-

work representation. A set of UML diagrams are used in order to obtain resource usage

estimates. The diagrams used are use cases, to model the system workload, class diagrams,

interaction diagrams (sequence and collaboration diagrams), component diagrams and de-

ployment digrams. The focus of [Hoe00] is the presentation of a set of rules to deal with

some of the abstractions (and hence missing information) which can be expected when

modeling distributed systems with UML.

Cortellessa and Mirandola [CM00] have developed a means of deriving a queueing net-

work based performance model from UML diagrams. Performance validation consists of

two distinct steps, namely model generation and model evaluation. The model evaluation

step is supported by classical solution techniques and tools that can be used by software an-

alysts who are not experts in the solution technique. On the other hand, model generation,

the step that precedes model evaluation, is not supported by step-by-step methodologies

that allow software analysts to automatically derive a performance model. Cortellessa and

Mirandola describe a methodological approach for a systematic and automatic generation

of queueing network models from UML diagrams. In their methodology, Use Case diagrams

are used to derive software scenarios, Sequence diagrams are used to derive an Execution

Graph and a Deployment Diagram is used to derive an Extended Queueing Network Model.

Hopkins, Smith and King [RHK02] have mentioned two approaches to deriving per-

formance models from UML design specifications. The first approach (called the hard

approach) is to develop a mapping from UML to a standard formalism such as a pro-

cess algebra, Petri net or queueing network. Once the translation mechanism is in place

the software designer can generate performance engineering models. The second approach

(the soft approach) involves cooperation between the software designer and performance

analyst resulting in the generation of a set of UML design specifications using the UML

notation. The important aspect in this approach is the use of UML as the communication

medium between the two parties. In [RHK02] the soft approach is followed. This involves

the development of Stochastic UML, which will be based on a restricted subset of UML

with additional notation that will allow the performance analyst to develop models. They

identify statechart diagrams, collaboration diagrams, activity diagrams and sequence dia-

grams as candidates for conveying performance modeling information. They concentrate on

26

collaboration diagrams with embedded statecharts and propose UML extensions, namely

probabalistic choice and stochastic delay. They investigate how concepts described in the

UML profile for schedulability, performance and time may be best applied to represent the

extensions of stochastic delay and probabilistic choice.

Bernardi, Donatelli and Merseguer [BDM02] propose the use of automatic translation

of Statecharts and Sequence Diagrams into Generalized Petri nets and the composition

of the resulting net models. Both Sequence Diagrams and Petri nets are used to be able

to asses the consistency between the two descriptions. The central contribution of their

work is to establish relationships between Sequence Diagrams and Statecharts according to

the UML metamodel. The performance evaluation approach in [BDM02] is composed of

three steps; firstly the UML diagrams are extended with performance annotations by using

tagged values, secondly the translation of the extended UML diagrams to labelled stochastic

Petri net (SPN) models and thirdly a final composition of the modules into a single model

representing the whole system behavior.

In [CLW02], by Lindemann and Thummler, extensions to state and activity diagrams

are proposed that allow the association of events with exponentially distributed and deter-

ministic delays. Their contribution is an algorithm for state space generation that allows

quantitative analysis by means of the generalized semi-Markov process. Their tool con-

tains filters to commercial UML design packages (Rose and Rhapsody), meaning that the

diagrams can be imported into their tool and additional timing specifications added.

Lavazza, Quaroni and Ventulli [LQV01a] have taken the common approach of translating

a UML specification into a formal notation. They translate UML specifications into TRIO

(a first order temporal logic) using only state diagrams and to some extent class diagrams.

The TRIO specification is then tested by a history checking tool which exploits the formality

of TRIO. Their automatic translation tool takes as input the XMI file generated by a UML

CASE tool, parses it and applies rules to generate TRIO axioms. The XMI input file must

be edited in order to make it compliant with the UML extensions they have defined. The

Generalised Railroad Crossing (GRC) problem was used to both test UML as a real-time

specification language and as a test-bed to verify the viability of their proposed approach.

27

3.4 Formalizing UML 2.0 for Automated Communication Soft-

ware Analyis

As we discussed in Section 2.5, UML 2.0 is not a formal language yet tool vendors catering

for the telecommunication industry, notably Telelogic, work around the problem by apply-

ing the International Telecommunication Union Recommendation Z.109 ”SDL Combined

with UML” to UML 2.0. Z.109 is a UML profile meaning that it specializes UML using

stereotypes, tagged values, constraints and notational elements. Z.109 defines a one-to-one

mapping between a specialized subset of UML and SDL. In addition, ”The intention with

Z.109 is however not to use the specialised UML instead of SDL, but to use SDL combined

with UML”[MP00], the implication being that not every concept in SDL has a mapping to

UML.

The reason why Z.109 was created in the first place is due to the core differences between

UML and SDL, and to be able to take advantage of the strengths of the respective languages.

SDL offers the advantage of firstly being more concise and secondly it is a complete language.

When we say SDL is more concise, we are referring to UML offering several views of the

same system while SDL focuses on the Object and State Machine views of a system. When

we say SDL is a complete language, we mean that it has complete semantics, including

execution semantics for state machines, graphical/textual grammars and a syntax for the

specification of actions. In contrast to SDL being a complete language, UML has weak

semantics with may variation points.

Telelogic has created a Real-Time Profile for UML 2.0 [Dol03] that is implemented in

their Tau Generation 2.1 tool. It is based on a combination of draft UML 2.0 standard

specifications and ITU-T Z.109 (which is being updated to be consistent with UML 2.0).

The Telelogic Tau Generation 2.1 Real-Time Profile

Here we mention aspects of the Telelogic Tau Generation 2.1 Real-Time Profile (Tau-RT)

in the broader context of real-time development using UML 2.0. It is firstly important to

note that it is not a standard profile but rather a proprietary profile, unlike the UML Profile

for Schedulability, Performance and Time Specification. In fact Tau Generation 2.1 has an

associated non-standard ”UML Textual Syntax” which ”is based on SDL, but modified to

be more easy to use for C++ and Java programmers”[Tel03]. This syntax is used in external

files, text diagrams and symbols in diagrams. Since Tau supports model verification and

28

complete code generation it is expected that they have developed a ”UML Textual Syntax”

based on SDL since UML does not have such a required syntax, as mentioned in Sect. 3.2.

It is also noteworthy that competing real-time UML tool vendors, such as I-Logix and

Rational have not taken the Telelogic approach of combining SDL and UML in a proprietary

profile. B.P. Douglass, author of numerous books on real-time development with UML, has

warned[Dou03] of the risks of using proprietary methods.

A proprietary method locks the engineer into a single vendor, with no possibility

of hiring staff experienced in that approach, no available reference books, train-

ing available only from that single vendor, and into a single tool which may, or

may not, meet your needs.

As a final point regarding Tau-RT it is worth noting that Telelogic makes no mention of

its level of UML 2.0 compliance as discussed in the UML 2.0 Superstructure Specification[Gro03].

Telelogic Tau does not support the XMI 2.0 diagram interchange standard and it is entirely

possible that with the incorporation of the proprietary Tau-RT Profile compliance is mini-

mal.

3.5 The UML Profile for Schedulability, Performance and

Time Specification

The UML profile for schedulability, performance and time specification (UML-RT) was

developed by a working consortium4 comprising the major real-time tool vendors (Rational,

Telelogic, I-Logix et. al.) in conjunction with the Object Management Group (OMG). Here

we briefly introduce UML-RT by mentioning its primary intentions and the motivation for

its creation. We discuss the core of UML-RT, resource modelling, in Section 3.5.1 and then

performance modelling in Section 3.5.2.

With UML-RT, the intention is for the definition of standard paradigms for the use of

UML when modelling the time, schedulability and performance related aspects of real-time

systems. The benefit of these standard paradigms are[Gro02] that they:

• enable the construction of models that could be used to make quantitative predictions

regarding these [schedulability, performance and time] characteristics,
4The consortium consulted with various real-time domain experts including Bruce Douglass (I-logix),

Prof. Dorina Petriu (Carleton University), James Rumbaugh (Rational) and Prof. Murray Woodside (Car-
leton University).

29

• facilitate communication of design intent between developers in a standard way,

• enable inter-operability between analysis and design tools.

With UML-RT the intention is also for the analysis of models of software systems that

are created prior to a line of code being written. Note that such a model is at a higher level

of abstraction than a protocol specified using protocol engineering languages such as SDL

and Estelle in which code is embedded in graphical notation.

Finally, with UML-RT a primary intention is to give modellers the ability to annotate

a UML model in such a way that various analysis techniques will be able to take advantage

of the provided features.

A major motivation for the creation of the UML-RT profile specification was the lack

of a quantifiable notion of time and resources acting as an impediment to the use of UML

in the real-time domain. The UML-RT working consortium found that UML had all the

requisite mechanisms for addressing these issues by using UML profiles.

3.5.1 Resource Modelling

UML-RT offers a single unifying framework that captures the essential mechanisms used to

derive temporal analysis models from application models, regardless of the specific analysis

method being used. This framework has a so-called general resource model (a common

model of resources and their QoS attributes) at its core.

The role of the general resource model is [Gro02] to:

• Specify patterns that are present in many real-time analysis methods.

• Remove ambiguity by defining a common terminology and conceptual framework for

defining resource QoS characteristics.

3.5.2 Performance Modelling

The performance modelling section of UML-RT describes the performance analysis domain

concepts and viewpoint taken, followed by a mapping of these concepts and viewpoint into

UML equivalents. That is, UML stereotypes are derived from domain concepts. In this

section we mention relevant aspects of the domain concepts followed by their representation

in UML.

30

With UML-RT performance modelling occurs within a performance context which spec-

ifies scenarios which involve use of a specific set of resources. A performance context may

be a period of time during which maximum processor load is expected. Each scenario

within the context is divided into sequences of steps. These steps are at the finest level

of granularity in the UML-RT domain viewpoint and represent an increment in the execu-

tion of a particular scenario. The level of granularity of a step depends on the abstraction

layer chosen by the modeller, but it is accepted that the level of abstraction is higher than

that taken when implementing the model using a programming language. Apart from a

performance context with scenarios that are divided into steps, the domain model includes

abstract resources, processing resources, passive resources, abstract workloads, open work-

loads and closed workloads. Each domain concept has a set of attributes which are mapped

to UML. For example, attributes that can be associated with a step include host execu-

tion demand, delay, response time, execution probability, interval between repetition and

number of repetitions.

In mapping the performance domain concepts to UML equivalents, the UML-RT spec-

ification notes that scenarios, which play a key role in the domain concepts, are directly

modelled using a collaboration-based approach and activity-based approach in UML. In the

collaboration-based approach scenarios map to interactions (which are specified using se-

quence diagrams). In the activity-based approach each scenario is captured using an activity

graph. In both approaches processing resources are modelled using deployment diagrams or

directly by associating stereotypes with parts of the diagrams depicting the scenarios.

UML-RT specifies UML extensions in the form of a set of stereotypes, each of which has

a list of associated tags. Each instance in the sequence diagrams, activity graphs or deploy-

ment diagrams would be stereotyped using the stereotypes detailed in the specification. A

tag value language, detailed in UML-RT, is used to specify the format and syntax used for

the tags.

3.5.3 The Role of XMI in UML-RT

The XML Metadata Interchange (XMI) is a standardized format for exchanging UML mod-

els. XMI 1.x had shortcomings the most significant of which was that information regarding

diagram layout could not be represented. With XMI 2.0, the diagram interchange standard

of UML 2.0, the significant shortcomings of XMI 1.x have been addressed.

In the UML-RT specification model processing (the process by which a UML model

31

is analyzed by some model analysis technique) takes place in the context of a general

model-processing framework. In this framework XMI is used as the bi-directional interface

between the UML model editor and model processor. The modeler constructs a model in a

UML editor and annotates it with performance information required by a particular model

processor. The model processor converts the UML model to a domain model, analyzes the

domain model and then returns the results of the analysis by annotating the original model.

The most important aspect of the UML-RT model processing framework is that the process

is automated and all the details of the model processing is hidden from the user. A detailed

example of the mentioned approach is given in [CCS03].

3.6 Summary

In this chapter our aim was to gain practical insight into how QoS attributes could be

specified using UML 2.0 and to gain technical insight into how one could map from a UML

2.0 model to a simulation model. In other words we were concerned with the UML model

annotation and the UML model to performance model translation processes. We have also

investigated the UML-RT profile and make observations regarding the use of this profile in

the context of the aims of this dissertation. Our key obervations are categorised below.

UML Model Diagrams and QoS Annotations

From our investigation in Section 3.3 no common set of UML diagrams or QoS annotations

used as the basis for performance analysis emerged. We see this as being a result of UML

serving as an interface to different performance analysis models and related tools in most

cases. The lack of uniformity in the QoS annotations and diagrams that we found in Section

3.3 is one of the aspects the UML-RT specification aims to address.

UML Model to Performance Model Conversion

In Section 3.3 we investigated approaches to mapping from UML models to performance

models. Several different methodologies for transforming UML models to performance mod-

els emerged and of these the most common approach was found to be the use XMI as the

interchange format. The work done in [CCS03] was found to closely resemble the model-

processing framework of the UML-RT specification in that both an extractor (a UML model

32

to PEPA model converter) and reflector (which integrates the analysis results with the orig-

inal UML model) are built in to the bridge between ArgoUML and the PEPA Workbench.

UML-RT Abstraction Layer

With UML-RT the intention was to analyse models of software systems that are created prior

to the implementation (or coding) stage of the development process. In this dissertation

we use UML 2.0 combined with SDL, and not UML 1.x which the UML-RT profile caters

for. UML-RT thus caters for modelling that is at a higher level of abstraction than protocol

engineering languages (Estelle, SDL and UML 2.0 extended with SDL). The UML-RT

profile is currently being upgraded to align it with UML 2.0 and as such using the UML-RT

profile once this alignment is complete would be appropriate. What the UML-RT profile

does provide however is insight into how we could annotate our models using UML 2.0

combined with SDL as well as a model processing framework which ensures that performance

modelling is integrated within the design process.

33

Chapter 4

Simulation to Predict

Communication System

Performance

4.1 Introduction

The performance evaluation of a communication system is a process involving specification,

analysis and optimization. In this chapter we focus on performance evaluation using simula-

tion models. More precisely, we examine the use of process-based discrete event simulation

when modelling communication system behaviour using state machines. We discuss the

application of simulation for our purpose and do not refer to aspects of parameterization or

workload characterization. We firstly motivate the use of simulation as a modelling tech-

nique in our context (communication protocol performance modelling and analysis), rather

than analytic modelling, in Section 4.2. We then discuss the use of process-based discrete

event simulation models when modelling the execution of protocols specified using protocol

specification languages in Section 4.3. We discuss the importance of model verification and

validation in the context of simulation in Section 4.4. Finally, we detail our simulation

package requirements in Section 4.5.1, consider candidate packages (CSIM, OPNET, OM-

NeT++, NS-2 and Simmcast) and select the Simmcast simulation framework for use in the

construction of our tool.

34

4.2 Motivation

In contrast to analytic models, such as queueing or markovian models, simulation models

are algorithmic abstractions that represent the behaviour of the system when executed.

Some [Hil01] cases1 in which simulation is preferable to analytic modelling are listed below

and discussed.

• When analytic abstractions and assumptions are not appropriate.

• When the transient behaviour of a system is important.

• When the size of the state space using an analytic model is too large to be

stored.

The first situation in which simulation is preferred is when the level of abstraction and

assumptions in analytic models is not appropriate, such as when using Markovian modelling,

in which inter-event times are exponentially distributed. With simulation a system can be

modelled at a greater level of detail, bearing in mind that there are performance penalties

associated with simulation runs when using elaborate models [BCNN01][Inc98].

Simulation is also preferable when the transient period, which occurs prior to the system

exhibiting regular or steady state behaviour, is of interest. Analytic solutions, which gen-

erally capture the behaviour after steady state has been reached2, are not appropriate for

systems where either a steady state is never reached or transient behaviour is of interest. In

the case of communication protocols, the transient behaviour is of interest since resources,

such a buffer space, may be exhausted prior to reaching a steady state.

Another situation in which simulation is prefered is when constructing and storing the

complete state space of the model, as is required in most cases when solving models analyt-

ically, is not possible. With simulation models, the state space is explored during execution

and thus the entire state space is not stored.
1A comprehensive discussion of when simulation is appropriate can be found in [BCNN01].
2In some cases transient solutions are possible analytically

35

4.3 Using Process-Based Discrete Event Simulation to Model

Protocol Execution

In our investigation of formal description techniques (such as Estelle, SDL and PROMELA)

in Chapter 2, we saw that process (or active class) behaviour is commonly specified using

extended asynchronous state machines communicating using messages. A system described

with communicating state machines can be readily modelled using process-based discrete

event simulation.

With discrete event simulation, the state variables change at instants in time and the

system is only considered at these [Ari]. In the case of communication protocols the discrete

events tend to be signal arrival and departure. A signal generally either contains protocol

data (e.g. protocol or service data units) or timer data (e.g. a time-out) as parameters.

When one considers process-based discrete event simulation, as opposed to discrete-

event simulation, the future event list (FEL) of the simulation scheduler contains processes.

The order in the FEL is determined by the time of the next event in the event sequences of

the individual processes. Each process has an independent thread of control and generates

event notices (the event type and time). The simulation clock procedure, which controls

the simulation by traversing the event list, finds the event notice with the smallest time,

updates the simulation time and gives the process which generated the event the right to

execute, resulting in pseudo-parallel execution.

Simulation programs are generally written using any one of a number of simulation

packages. When using a simulation package, the implementation of the process-interaction

is generally hidden from the modeller’s view. That is, processes scheduled on the FEL and

being placed on the FEL whenever they face delays, causing one process to temporarily

suspend its execution while another process proceeds, is not visible to the user [BCNN01].

The modeller using a simulation package must [BCNN01] have both a basic understanding of

the concepts and a detailed understanding of the hidden rules of operation of the simulation

package.

4.4 Model Validation and Verification

Regardless of the analysis technique, the performance metrics extracted from a performance

model will only be useful if the model is a good representation of the real system. While

36

the notion goodness is subjective, from the performance modelling perspective we define it

to be the degree to which performance measures extracted from the model match those of

the real system.

Modelling by definition involves some form of abstraction in order to make analysis

both tractable and efficient. This abstraction process is inevitably coupled with a set of

assumptions. Model validation [Hil01] is the step used for judging how good a model is

with respect to the real system.

1. Verification: determine whether the model works correctly regardless of whether it

represents the real system.

2. Validation: determine how well the model represents the real system.

In this work discrete event simulation is used as the analysis technique. Established

techniques, some of which are specific to simulation modelling, can be used for model

verification. These techniques3 are:

• Antibugging: this is a technique in which additional checks and outputs are included

in the model to check that the model behaves as expected.

• Structured walk-throughs: the modeller explains the model to other people and

in the process may focus on aspects of the model that can lead to the discovery of

implementation problems.

• Simplified models: the model is reduced to its minimal possible behaviour and only

made more complex once the simplified model is correct.

• Deterministic models (simulation only): replacing random variables with deter-

ministic values can help modellers to see whether the model is operating correctly.

• Tracing (simulation only): trace outputs are useful in isolating incorrect model

behaviour and is most useful in finding errors that have already been established by

other4 means.

• Animation (simulation only): animation is a graphical form of tracing and hence

is also most useful in finding the location of errors that have already been established

by other means.
3Our list is sourced from and discussed comprehensively in [Hil01] by Jane Hillston
4For example program crashes or erroneous output.

37

• Seed independence (simulation only): modelling errors can be uncovered when

different random number generator seed values are shown to produce vastly different

results.

• Continuity testing: this technique involves testing whether slightly different input

parameters produce slightly different output values. Sudden changes in output values

are often an indication of modelling error.

• Degeneracy testing: this technique involves checking for model errors for boundary

system and workload parameters.

• Consistency testing: this technique involves checking that the model output is

similar when the workload is kept the same but arranged differently. An example of

a different arrangement would be to use two clients transmitting at half the rate of a

single client.

Aspects that should be considered when validating a model include the assumptions,

input parameter values (and distributions), output values and conclusions. Approaches to

model validation include expert intuition, measurements using real systems and theoretical

analysis (e.g. using analytic models, such as Markovian models).

4.5 Network Simulation Package Review

The use of simulation software forms a central part of this work, as we have stated in our

aims (listed in Section 1.3). One our primary aims was to

Create a prototype tool capable of delivering a set of trace messages (as found

in [BMSK96][BMSK95]) using a tool integration approach. The tool should

translate from a UML 2.0 specification to a quantitatively assessable simulation

model in which the characteristics of the target environment are represented

using facilities provided by the simulation library (or tool) used.

We also followed the XMI-based tool integration approach that is advocated in the UML

Profile for Schedulability, Performance and Time[Gro02], involving two considerations. The

first is to determine the most suitable library when translating from a UML 2.0 model to a

simulation model. The second is to determine how a UML 2.0 model could be represented

38

using the chosen library and adapt the library to include features that are required for

our primary objective. With these considerations in mind we review network simulation

packages and select a suitable package for use in our performance analysis tool.

4.5.1 Requirements

Any simulation software falls into one of three categories [BCNN01]. These are general-

purpose programming languages (e.g. C++, Java libraries), simulation programming lan-

guages (e.g. SIMULA, GPSS) and simulation environments. Simulation environments can

be distinguished by cost, application area and animation capabilities.

In [BCNN01], Banks et. al. mention that very few people develop simulation software

using general purpose programming languages alone. The benefit of developing models

using programming languages are in gaining an understanding of how the basic simulation

concepts and algorithms are implemented.

Here we discuss our requirements5 in terms of features that candidate software may

or may not have. For each simulation package that we examine, we discuss the support

for each essential and desirable criteria listed below. Note that we only consider packages

offering process-based discrete event simulation and some application area support.

It is also important to note that certain criteria are in conflict. For example, while it is

desirable to use a simulation package that is as efficient as possible, we must also consider

the fact that we will have to generate the simulation code and have limited resources.

Generating code for a platform with a garbage collector (e.g. C#, Java) would require less

development resources [Her03] than code in which the developer manages memory (e.g. C,

C++). Hence the requirement of using efficient simulation software and using a language

with a garbage collector are in conflict.

• Process-oriented Discrete Event Simulation: It is clear that in our applica-

tion domain we are concerned with concurrent, communicating entities (processes)

and as such we require process-oriented discrete event simulation software. When

process-oriented, the event scheduler contains a central list of scheduled events with

an associated pointer to a process [Hil01].

• Programming Language: Generating simulation code in which memory is managed

by a garbage collector is beneficial with regard to development resources.
5Our primary sources are Jane Hillston [Hil01] (Chapter 11) and Banks et. al. [BCNN01]

39

• Simulation software type: since we will have to automatically transform a XML-

based UML 2.0 model into a simulation model, a general purpose programming lan-

guage or simulation programming language is required. In the case of open-source

simulation software written in general purpose programming languages, an additional

benefit would be to gain insight into the rudiments of discrete event simulation.

• Cost and Technical Support: free simulation software is available to academia and

using such software is preferred since we have a limited budget. Free software may

have a hidden cost however which comes in the form of a lack of technical support

and bug-fixing.

• Animation capabilities: our model editor has superb animation capabilities and as

such this is not essential. However, animation capabilities in the performance model

would be beneficial for model verification and validation.

• Extendability: the ability to generate simulation code which accurately represents

protocol software modelled using UML 2.0 is a primary requirement. By extendable

we mean the ability to extend the features of the simulation software so that we are

able to generate such code.

• Application Area Support: communicating systems specified using extended finite

state machines (EFSM), as is done in SDL and Estelle, have functional signalling and

timing abstractions. In addition, means of representing architectural aspects is pro-

vided in both languages. The ability to represent such architectural and behavioural

abstractions with simulation package features would be greatly beneficial in construct-

ing valid performance models.

• Trace Routines: trace routines are useful for both model verification and validation

and the ability to add custom routines is essential.

• Statistical Support: good random number generators and a variety of random

variable distributions are required. The distributions are particularly important in

representing non-functional delay constraints, as is required for performance mod-

elling.

• Protocol and Application Model Libraries: in modelling a communication pro-

tocol, models of expected service data unit traffic (application models) and lower level

40

protocols would be extremely useful in terms of model validation.

• Wide User Base: simulation software with a wide user base is highly desirable as it

is more likely to be correct.

• Output Analysis and Report Generation: output analysis routines and graphical

plots of performance metrics are highly desirable. In addition, automatic statistics

gathering and reporting would be beneficial.

• Efficiency: with the inherent complexity of simulation programs and the length of

simulation runs required for statistically significant runs, the efficient implementation

of the simulation code is of paramount importance.

• Complexity: simulation languages may be difficult to learn how to use and hence

the chosen language should not be overly complex.

4.5.2 Commercial Packages

CSIM

The CSIM simulation toolkit [Sof04][Sch01], by Mesquite Software, is a process-oriented,

discrete event simulation package giving the modeller the ability to use standard C/C++

in model construction. CSIM is ”an object module library together with C or C++ header

files and example files” [Sof04]. The software is relatively inexpensive, a student license is

available at $55 per seat.

CSIM is used as a teaching and research tool for studying network protocols. CSIM also

has a library (OptQuest), that is specifically designed for performance and cost optimization.

Since models are built in C/C++, CSIM should be readily extendeable and execution should

be efficient. Mesquite Software advertise CSIM’s fast execution and efficient models as one

of its major features.

OPNET

OPNET Modeler, by OPNET Technologies, is said to be the leading network simulation

modelling environment used in industrial R&D. Corporations using OPNET [Tec04] in-

clude Alcatel, Nokia, Ericsson, Samsung, Siemens, Sony, NASA and the US Department of

Defence.

41

OPNET is a simulation modelling environment providing a variety of integrated com-

ponents which include graphical editors, analysis tools and animation tools. The graphical

editors are used to specify network, and network component, structure. The software is free

to the academic research and teaching community.

With regard to extendability, individual network objects can be modelled at the process,

node or network level. In addition any required behaviour can be simulated with C or C++

logic in finite state machine transitions. OPNET also supports total openness meaning

that APIs for program-driven construction or inspection of all models and result files are

provided.

OPNET provides extensive support for network protocol and other telecommunication

development. Finite state machine modelling, hierarchical network models, various network

link types (with associated delay and error characteristics), network device libraries and mo-

bility modelling features are provided. OPNET also provides a comprehensive library of

detailed protocol (e.g. TCP, IP, FDDI, Ethernet and 802.11) models that are provided as

finite state machines with open source code. In addition, OPNET provides comprehen-

sive support for protocol programming with hundreds of library functions for simplifying

writing protocol models. Lastly, OPNET advertises itself as the most scalable and efficient

simulation engine capable of simulating the behaviour of thousands of nodes.

4.5.3 Open-source Packages

Unisinos Simmcast

Simmcast [MB02], developed at Unisinos University, Brazil, is a simulation framework that

is based on the JavaSim6 simulation library. JavaSim was developed at the Department of

Computing Science, University of Newcastle upon Tyne, and is a set of Java packages used

for developing discrete event process-based simulation experiments.

Simmcast is open-source software and as such provides an opportunity to study the

implementation of rudimentary discrete event simulation software concepts. Simmcast pro-

vides network software building blocks and primitives that are specifically designed to be

easily extendable. ”...the user needs to add or extend classes or interfaces of the framework

according to the specific protocol and configuration being evaluated”[MB02].

Simmcast provides support for multicast protocol and unicast protocol simulation. An
6Since the features of JavaSim are provided by Simmcast we do not review JavaSim separately.

42

API providing a set of network primitives (typical timer and communication operations)

is provided. With Simmcast the user specifies experiments using building blocks which are

node, thread, path, group, network, packet and stream. Nodes are connected by paths which

have associated properties such as bandwidth, packet loss probability and propagation delay.

In addition, each node can have a sending and receiving processing delay which is used to

model packet processing delay. State machine abstractions are however not provided.

Being written in Java, and with trace results being written to file, Simmcast is not

intended for large simulation experiments. With regard to complexity, Simmcast is designed

to be simple to use and extend.

OMNeT++

OMNet++ [Var04] is an open-source simulation environment with its primary application

being the simulation of communication networks and protocols. It is actively used in both

the scientific and industrial communities. OMNET++ is open-source software that can be

modified and is freely available for noncommercial users. It is actively used in research envi-

ronments and is supported by an online community [Var04]. With OMNET++ components

are programmed in C++ and then assembled into larger components using a high-level lan-

guage7, called NED. The simulation kernel can be embedded into third-party applications

and extensive GUI support (NED editor, graphical output vector plotting tool, simulation

execution GUI) is provided.

With regard to extendability, either a threading programming model or finite state

machine (FSM) programming model can be used with OMNeT++. Any level of model detail

can be expressed by the user with either programming model. Network topology is either

defined graphically or using an equivalent textual format. In such a hierarchically nested

network topology, nodes are connected using links, or connectors, and sets of nodes form

modules. As with Simmcast, optional parameters associated with links include propagation

delay, bit error rate and data rate. OMNeT++ provides support for the specification of

FSMs by providing a class, a set of macros and an API to build FSMs. Importantly, these

FSM’s are said to operate ”very much like OPNET’s or SDL’s”[Tec04].

OMNeT++ offers a few protocol models, however these cannot [Var04] compete with

the large selection offered by commercial tools such as OPNET. Currently twenty-seven

OMNeT++ communication network models are provided by the community and include
7Simmcast takes an almost identical approach.

43

a mobility framework, an IPv6 protocol Suite, Ethernet models, Peer-to-Peer swarming

protocol models, and the Real-time Transport Protocol (RTP).

Berkeley NS

The Network Simulator (NS) [oSC04b], is aimed at network research with an emphasis on

transport layer, routing and multicast protocols. A significant amount of research [oSC04a]

has been conducted on NS itself and in addition NS is often used in academia when ex-

perimenting with enhancements to TCP. NS is implemented in C++ and runs on several

Unix variants (FreeBSD, Linux etc.) as well as on Windows. It relies on various packages

which include Tcl/Tk, OTcl (Objec-oriented Tcl) and Nam-1 (a Tcl/Tk network simulation

animator).

With NS protocol simulation experiments are set up using OTcl and C++. Experiment

parameters and configurations are changed using OTcl interface and protocols are written

in C++. Settings that are specified using OTcl include the type of event scheduler, packet

formats, node creation and network topology. Although NS is complex (and hence may

have a steep learning curve) the fact that it is open-source and has been heavily used in

research (with supporting documentation) may offer compensation.

With NS, agents are used as endpoints for the construction and consumption of network

packets (in particular IP packets) at various layers. NS provides a comprehensive Agent API

with network primitives which mimic socket APIs. It seems plausible that the APIs provided

by NS can be extended to represent UML 2.0 protocol models. With NS architecture is

specified using Nodes and Links. Nodes, and the components of nodes, are specified using

OTcl. Each node has an address, a list of neighbours, a list of agents, a type identifier and

a routing module. NS does not have explicit finite state machine support as is the case with

OMNeT++ and OPNET.

NS supports a variety of protocol and propagation models: ”Almost all variants of

TCP, several forms of multicast, wired networking, several ad hoc routing protocols and

propagation models (but not cellular phones), data diffusion, satellite” [oSC04b]. Most of

the protocol models supplied with NS have been validated.

4.5.4 Network Simulation Package Selection

In this section we have examined both commercial and open-source discrete event simulation

software. Each simulation package was evaluated by investigating the extent to which a set

44

of requirements were met, with a focus on the software type, extendability and application

area support. Admittedly, our approach to the evaluation of the simulation packages is

somewhat subjective and would ideally have been based on experience using the individual

packages in our context.

An important consideration in our evaluation of each package was that one of our aims

(see Section 1.3) in this work was to translate from a UML 2.0 protocol specification to a

simulation model. In other words, we have to automatically generate the code representing

the protocol specification using the output (XMI) of a UML 2.0 editor. Lastly, a consid-

eration was that using an open-source solution has the benefit of offering the opportunity

to learn about the implementation of rudimentary process-based discrete event simulation

software.

With the above mentioned requirements and considerations in mind we examined CSIM19,

OPNET, Simmcast, OMNeT++ and NS. When comparing CSIM19 and OPNET (both of

which are commercial solutions), it is clear that OPNET meets our requirements to a greater

extent in particular due to its support for finite state machine (FSM) models, a comprehen-

sive library of protocol models and its wide user base. The support for the specification of

protocol logic using a finite state programming model is significant, since with the version

of UML 2.0 we are using, behaviour is specified using SDL state machines.

In our investigation of open-source simulation packages both OMNeT++ and NS were

shown to be suitable for our purposes, although NS has the benefit of having a larger

academic user base and thus a far greater amount of protocol model libraries. OMNeT++

had the benefit of providing specific support for the specification of FSM models and an

associated FSM API.

In conclusion, we decided to use Simmcast as the most suitable simulation library since

it met what we considered to be our most important requirements to the greatest degree.

Simmcast had the benefits of relative simplicity, a moderate8 degree of application domain

support, being open-source and importantly it was build using Java. In addition, with

Simmcast the process-interaction is not hidden from the modeller’s view. Even though

execution efficiency is important in any simulation software, in this project we had develop-

ment efficiency requirements and considered the code generation complexity involved when

using Java to be significantly less than when using C or C++ in which memory allocation

problems (memory leaks, crashes, heap corruption) are of concern. In a similar project
8FSM modelling support is not supported in Simmcast.

45

with greater development resources OMNeT++, NS and OPNET may be more attractive

alternatives.

4.6 Summary

In this Chapter we have investigated a number of aspects regarding the use of simulation

to predict communication system performance. We firstly motivated the use of simulation

modelling (rather than analytic modelling) in our context and briefly investigated the use of

process-based discrete event simulation to model protocol execution. The use of simulation

was found to be preferable primarily when

• analytic abstractions and assumptions are not appropriate

• the transient behaviour of a system is important

• the size of the state space generated using analytic modelling is too large to be stored.

In our brief investigation into the use of process-based discrete event simulation, we saw

that simulation packages must be used with care since the process-interaction is hidden

from the modeller’s view. Therefore modellers using simulation packages must have both

a basic understanding of the concepts (of process-based discrete event simulation) and a

detailed understanding of the hidden rules of operation of the simulation package.

We then investigated model verification and validation. Although validation is imperi-

tive when in performance modelling, in this work we take the tool builder perspective rather

than the tool user perspective. In other words, our primary concern is with model verifi-

cation and in the application of the techniques listed in Section 4.4. Finally, we reviewed

commercial and open-source network simulation packages and selected Simmcast as our

simulation package.

46

Chapter 5

A Methodology for Protocol

Performance Engineering with

UML 2.0

5.1 Introduction

In this chapter we develop and discuss the proSPEX methodology, semantic time model and

high-level architecture. With proSPEX our overall goal was for the automated performance

analysis of communication systems using a tool integration approach. As we have seen in

Chapter 2, the automated functional and performance analysis of communication systems

specified with some Formal Description Technique has long been the goal of telecommu-

nication engineers. In the past SDL, Estelle and PROMELA have been the most popular

FDTs for the purpose. With the growth in popularity of UML the most obvious question

to ask is whether one can translate one or more UML diagrams to a performance model. In

Chapter 2 and 3 we saw that in the past UML has been unsuitable due to restrictions such

as semantic variation points and a lack of a syntax. However, with UML 2.0 released and

using ITU Recommendation Z.109, the abstractions, tightened semantics and syntax that

are found in SDL become available.

Our first consideration in this chapter is the development of a methodology which en-

tails both identifying the roles of UML 2.0 diagrams1 in the performance modelling process
1Detailed coverage of UML 2.0 is beyond our scope, although we do provide a brief introduction to the

language in Appendix A.

47

and refining our requirements as stipulated in Section 1.3. In addition, questions regarding

the means of specifying non-functional duration constraints2, which are essential in per-

formance modelling, must be considered. In Section 5.2 we formulate a methodology for

the design and performance analysis of communication protocols specified using UML 2.0.

This methodology has two primary sources of influence. The first source of influence is

related work, which we investigated in Section 2.6.2, in which approaches to universal SDL

performance modelling issues are addressed. The second source of influence is the UML

Profile for Schedulability, Performance and Time [Gro02] which advocates an XMI-based

tool integration approach. In our methodology we therefore discuss the construction of a

model processing tool that uses the features of an extendable simulation library, namely

Simmcast.

We detail the semantic time model associated with proSPEX in Section 5.3 and then

discuss the high-level architecture of proSPEX in Section 5.4. In our discussion of the

proSPEX tool architecture we provide an overview of Simmcast as well as the extensions

that are needed to Simmcast in order to make it suitable for our purpose.

5.2 The proSPEX Methodology

The proSPEX methodology is for the modelling, verification and performance evaluation of

communication software and is presented in Fig. 2. In developing a methodology our goal

was to specify protocol architecture, behaviour and environmental characteristics using

a minimal subset of diagrams. Hence a particular subset of diagrams are translated to

the executable performance model while other diagrams are used purely for understanding

and communication between developers. The purpose of our methodology is to serve as a

guide of how to go about protocol design, specification and importantly the specification

of non-functional delay constraints and subsequent performance analysis. In addition, our

methodology serves as a refinement of our proSPEX requirements as defined in Section 1.3.

In the design stage we advocate the use of accepted protocol engineering best practises

[LTB98][PT00] and in the performance engineering stage (the specification of environmental

constraints) we consider both the features of our chosen simulation framework and previous

work where SDL is used as the specification language.
2Non-functional duration constraints are used for specifying temporal aspects which are relevant in per-

formance modelling.

48

Figure 2: The proposed methodology supported by the simulation-based proSPEX perfor-
mance analysis tool

Requirements Definition

The first step is to establish the requirements of the communication component. In the

case of a transport layer protocol a requirement may be to use the available bandwidth

as efficiently as possible. Following requirements definition we identify3 or design suitable

network and application layer inter-component protocols. UML 2.0 use case and sequence

diagrams could be used to aid understanding but these are not used when generating the

simulation model, as can be seen in Figure 2.

Architecture Specification

The next step is to use a combination of UML 2.0 class and architecture diagrams to design

the protocol architecture. The use of design patterns for protocol system architecture4

[PT00] is recommended at this stage. The focus of this stage is to identify the active classes

and their interfaces.
3Requests for Comments (RFC) documents could be used here.
4We investigate patterns for protocol system, entity and behaviour specification in Appendix B.

49

Interface-based design has the benefit of both reduced design complexity and giving

distributed teams the ability to work concurrently while using the interface as a contract.

In UML 2.0 an interface is a classifier representing a declaration of a set of public features

and obligations[Gro03]. Interfaces are not instantiable, instead they are either provided or

required by a classifier such as a class. When a class provides an interface it carries out its

obligations to clients of instances of the class. When a class requires an interface it means

that it needs the services specified in the interface in order to perform its function and fulfill

its obligations to its clients. The notation introduced for a provided interface is a full-circle

lollipop whilst the notation introduced for a required interface is a semi-circle lollipop.

Figure 3 shows the architecture diagram of an active class with two parts, namely any

number of Sessions and a single RoutingPeerProxy. The parts are linked with connectors

that are attached to ports. Note that notationally ports are the squares to which the

required interfaces, provided interfaces and connectors are attached. Each port serves the

duel purpose of being used to group an active class’s related interfaces and also acting as

interaction (or connecting) points through which the services of a class can be accessed. In

the architectural view of an active class we want to be able to distinguish between behaviour

that is delegated to the class itself and behaviour that is delegated to its parts. Connectors

terminating in a behaviour port mean that the signals sent to the port are handled by the

containing class. Notationally a behaviour port is represented by a state symbol attached

to a square port symbol, as can be seen in Fig. 3.

Behaviour Specification

Following the architectural specification we specify the detailed behavior of active classes by

implementing state machines using statechart diagrams. We use specialized communication

abstractions derived from SDL in this model-driven development process. Fig. 4 shows a

part of a UML 2.0 statechart diagram. Note that the syntax used is the Telelogic Tau UML

Syntax derived from SDL. Once this stage is complete the software is verified using facilities

provided by the model editing tool, in our case Telelogic Tau G2.

Behavioural verification using Tau is done by firstly generating a C code executable

program from the UML model. The generated program is linked with a run-time simulation

library which provides automatic and manual (tracing execution by inspection) simulation

modes. The execution is controlled either via a user interface or by using a set of console

commands. The result of model execution can be logged as either a textual trace or sequence

50

Figure 3: Architecture specification with UML 2.0

51

Figure 4: Behaviour specification with UML 2.0

52

diagram. Users are able to monitor variable values and execution steps using simulation

sessions.

Telelogic has named their execution tracer (or animation facility) a Model Verifier. This

is not entirely correct since they are, in essence, providing sequence diagram simulation

tracing. In other words exhaustive verification by state space exploration is not provided

and neither are model-checking facilities as one would find when using PROMELA and

SPIN.

Simulation Scenario Specification

Once the software has been debugged using the Tau model execution facilities the perfor-

mance modelling phase commences. With proSPEX non-functional timing annotations are

embedded in UML 2.0 comment symbols, as is done in the case of SDL performance analysis

tools such as objectGEODE [Rou01]. This allows for the use of commercial modelling tools

and, as we discussed in Section 2.6.2, using such an approach is important when one wants

a tool to be useful to the largest possible audience.

The performance modelling phase starts with the modelling of the environment of the

communication component. That is, we create client and server, or peer, active classes and

their associated state machines. A collaboration diagram (see Figure 5) is then drawn up

illustrating a simulation scenario which, in combination with the statechart diagrams of the

client(s) and server(s) serve, as the workload.

This collaboration diagram would indicate the number of clients and servers and also

network link characteristics (loss probability, bandwidth and delay distribution). Processing

delay timing constraints, or delays, are associated with active classes and may be deter-

ministic or randomly distributed. The network link and processing delay parameters are

specified using comment symbols.

Once the scenario has been completed the proSPEX tool user imports the model from

which a semantically equivalent simulation model is generated.

Results

The events and corresponding trace messages that the simulator is able to generate dictate

the set of performance statistics that can be calculated. In determining a suitable set

of traceable events we use those that are found in the SPECS tool [BMSK96][BMSK95]

53

Figure 5: Simulation scenario and workload specification

54

[dVHVZ96]. Hence the simulation model generated by proSPEX should be able to generate

the following types of trace messages5 for some general time ti:

1. Message M sent via Connector C from process P1 to process P2 at time ti

2. Message M from process P1 read by process P2 at time ti

3. Message M from process P1 arrives in queue of process P2 at time ti

4. Process P created at time ti

5. Process P destroyed at time ti

6. Overflow: message M from P1 to P2 discarded at time ti

7. Process P has transition from state S1 to state S2 at time ti

8. Message M from process P1 discarded by process P at time ti

9. Timer T set to duration d in process P at time ti

10. Timer T reset in process P at time ti

11. Timeout: Timer T in process P at time ti

The performance measures that can be calculated from the analysis of simulation traces

containing the above mentioned messages include the following:

1. Mean queue waiting time: this is the average time that a signal spends in the

queue of a process. A high mean queue waiting time means that process response

time may be too slow or that there are too many retransmission messages in the

queue of a process as a result of the timeout of the sending process being too short.

Trace messages 2, 3 and 8 are used in the calculation of this statistic.

2. Connector throughput: this is the traffic on a connector and trace message 1 is

used in its calculation.

3. Mean and maximum queue length: The buffers of a communication system are

often modelled using process queues. A high maximum queue length indicates that

the system requires large buffers. Trace messages 2, 3 and 8 are used to calculate this

statistic.
5For brevity we use the term process instead of active class

55

4. Detection of queue overflows: queue overflow is indicated by trace message 6 and

shows that the process’ buffers are too small.

5. Throughput of a state: this statistic shows how many times a state is reached and

hence which program parts are frequently processed. States with a high throughput

may indicate process bottlenecks. Trace message 7 is used in the calculation of this

statistic.

6. Discarded signals: Such signals may either be caused by insufficient process buffer

size or as a result of being sent to processes that no longer exist. Trace messages 6

and 8 show discarded signals.

7. List Unreachable states: Process’ states that are never reached indicates dead

code however since simulation is not exhaustive it is not guaranteed that the code is

actually unreachable. Trace message 7 is used in determining unreachable states.

8. Average time spent blocked in a state for a signal: This time period shows

the idle time of a process and records how long a process spends waiting for a signal.

Trace message 7 is used in its calculation.

9. The lifetime of a process: This statistic is used in other statistical calculations

and uses trace messages 4 and 5.

10. Timeout reset and expiration ratios: The first ratio is that of the number of

timeouts set to the number of timers expired. It shows what proportion of timeouts

were exceeded. The second ratio is that of the number of timeouts in a queue to the

number of timers set. It shows how many timeout messages in the queue had to be

reset. Both ratios show whether timeouts in the system are set at sub-optimal values

and are very useful in improving the performance of protocol systems. Trace messages

9, 10 and 11 are used in the calculation of the mentioned ratios.

Naturally any analysis results would refer to either the steady-state or transient be-

haviour of the system and would be computed with confidence intervals. These measures

would then prompt the user to either change the simulation parameters or the model itself.

56

5.3 The proSPEX Semantic Time Model

When building performance models using UML 2.0 enhanced with the Z.109 profile, previous

approaches to performance analysis that incorporate temporal aspects into SDL specifica-

tions (examined in Section 2.6.2), can be applied. Each approach has an associated semantic

time model and means of specifying non-functional duration constraints. Here we explic-

itly mention how these non-functional time related aspects are represented in proSPEX.

The proSPEX semantic time model is naturally influenced by the use of a tool integration

approach6 in which the facilities of a simulation framework are used where deemed appro-

priate. This approach is similar to the SDL/OPNET7 approach [MHSZ96] which entails a

mapping from SDL descriptions (annotated with constructs for describing delays, processing

resources and workloads) to executable OPNET models.

• Communication delay: with proSPEX communication delay is associated with

packets that traverse network links. Such links have an associated propagation delay

(modelled with a random distribution), bandwidth and loss probability. When a

packet (or signal) is sent across a network link, delay is applied in two stages before

it reaches the receiving queue of the target process. In the first stage the packet is

delayed by a sending time, which is calculated using the bandwidth and a packet byte

size attribute. In the second stage a propagation delay is applied and loss probability

is applied, with the propagation delay being drawn from a random distribution.

Erlang, exponential, hyperexponential, normal and uniform delay distributions can be

used to model propagation delay. These delay distributions are provided by Newcastle

SimJava, which Simmcast is based upon. In Section 2.6.2 we saw that the definition of

time in the dynamic semantics of SDL is loose in the sense that it acknowledges that

the system will execute in real time with delays on channels, but does not specify how

the system execution is affected by this constraint [BMSK95]. By explicitly modelling

propagation delay using delay distributions we tighten the dynamic semantics of SDL.

• Processing times: with proSPEX we use the facilities of the underlying simulation

framework to associate a sending and receiving processing delay with active classes.
6The reader is strongly encouraged to re-visit the aims of this project, stated in Section 1.3, at this

stage. Our goal was not to include all possible features in our tool and associated semantic time model or
to develop a novel semantic time model. We have used the features of the underlying simulation framework
in the proSPEX prototype.

7OPNET is a network simulation environment that is discussed in Chapter 4.5.

57

Active classes that have such delays specified have their execution blocked by the

specified delay values whenever a signal is sent and received. In other words the

sending and receiving delay associated with an active class is effectively mapped to

each input and output operation. Such delay is deterministic by default, although the

use of random delay distributions is possible. The choice of distributions is the same

as those that are used for the specification of propagation delay.

In our examination of previous approaches to performance analysis using SDL, we saw

that the problem of performance analysis using SDL had already been extensively re-

searched, as is mentioned by Mitschele-Thiel and Muller-ClosterMann in [MTMC99].

We saw that processing delay can be associated with actions, transitions or entire

processes. In our case, one of our objectives was to determine to what extent the

current version of UML can be used for performance analysis and also to use a tool

integration approach. Thus, in modelling processing delay, we have used the features

of the underlying simulation framework in our initial prototype.

• Execution modes: with execution modes we consider time passage in parts of the

system with no time delays expressed. With proSPEX only input and output actions

are time constrained, and all non-time constrained actions are immediate.

• Time delays on the external environment: with proSPEX the environment is

modelled by processes in which signal characteristics can be expressed using time

guards.

• Scheduling: scheduling information is not represented with proSPEX and is con-

trolled by the underlying simulation scheduler. Process scheduling is determined by

the order of the individual process event sequences. The representation of scheduling

information could be considered in future work.

5.4 The proSPEX Tool Architecture

A general overview of the proSPEX tool architecture is shown in Figure 6. With proSPEX

our intention was to create a model-processing tool and not a model editor since develop-

ing an editor would deviate from the primary objective of the project. Telelogic Tau G2

offered an XML-based model file format which was sufficient for our purposes, although the

standard XML Metadata Interchange (XMI) 2.0 file format would have been preferable,

58

since this would in principle allow any future UML 2.0 editor to be used. As we can see in

Figure 6 the code generation process involves filtering the Telelogic Tau XML and placing

the filtered aspects into data structures that can be used for simulation code generation.

We investigate the features of Simmcast in Section 5.4.1 and then identify necessary

extensions and changes to Simmcast in Section 5.4.2. These changes are needed in order

to realize the automated mapping from a UML 2.0 protocol model, specified in accordance

with the proSPEX methodology, to an executable representation.

5.4.1 An Overview of Simmcast

We aimed to generate discrete-event simulation programs by using the features of an existing

simulation library. A review of the available simulation packages, conducted in Chapter 4.5,

showed that Simmcast[MB02], an object-oriented framework for network simulation, would

be ideal. Simmcast is specifically intended to be used in research environments with limited

resources, as the excerpt from [MB02] shows:

...the complete development of a dedicated simulation tool from scratch is not

practical, since the amount of resources dispensed in such a project would detract

the researcher’s focus from the project.

Simmcast offers extensible building blocks that are combined to describe the simulated

network environment. The fundamental building blocks are node, thread, path, group, net-

work, packet and stream. Nodes, each of which are uniquely identified by an integer and

containing at least one thread of execution, are the fundamental interacting entities and are

connected via paths. The user extends the Node class, via inheritance and places protocol

logic and a set of primitives in the extended class. These primitives are a set of typical com-

munication and timer operations and are defined as an API. They include send (used to

send packets), receive (a blocking packet receive operation), tryReceive (a non-blocking

receive operation), setTimer and other operations.

As mentioned above nodes are connected by paths which may represent a packet queue,

a physical link or a logical path between two nodes. Hence the meaning of paths and nodes

is defined by the modeler. A path between two nodes is represented by a path queue which

holds messages in transit. Each path is parameterized with a bandwidth value, a packet

loss probability value and a propagation delay distribution. In the case of paths connecting

59

Figure 6: The proSPEX architecture

60

Figure 7: Conceptual simmcast packet flow model with service times.

nodes in adjacent protocol layers, in the same machine, the bandwidth is set to infinite, the

delay zero and loss probability zero.

Figure 7 shows a conceptual model of packet flow in Simmcast. When the send()

primitive is used to send a packet from node i to j, the first step is for a tsend delay to be

applied. This delay parameter, which is deterministic in Simmcast, is associated with node

i and models processing delay prior to a packet being sent. Following the tsend delay, the

packet enters the sending queue of node i, sq ij . The sending queue can be set to the default

unlimited capacity or a specific size. Once the packet in question is at the head of the sq ij

queue the packet size, p and bandwidth, bij , are used to calculate the sending time delay,

or time taken to be admitted to the propagation queue. Note that the loss probability is

applied directly prior to the packet being admitted to the propagation queue.

The propagation queue, pij is virtual in that it is not directly instantiated in an actual

implementation. A propagation delay, d ij , which is a value taken from a random distribution

(e.g. exponential) is applied to the packet once the simulation scheduler has scheduled it to

be propagated. Following the d ij delay the packet is inserted in the node j ’s receiving queue,

rq ij . Lastly, a receiving processing delay trecv is applied prior to the packet being processed

when the protocol logic in node j ’s thread executes a receive() call. The simulator itself

does all of the above transparently, the modeler simply calls send() and receive() in the

respective nodes.

In order to allow for the calculation of performance metrics the Simmcast architecture

generalizes different forms of accounting into groups of event categories, which are traceable

events. Such events are considered to be when a packet is enqueued and dequeued from

the queues depicted in Figure 7 (sq, pq, rq and tq). Tq is a simulator queue used for the

scheduling of future asynchronous events which are typically timer expiration (or cancel-

lation) and associated event handling. Other types of trace events can be easily added to

Simmcast since it provides a unified output interface (via the TraceGenerator class) where

all the simulation events are reported.

61

With Simmcast the first stage in the creation of an experiment is to construct the

simulated protocol by extending the node and nodethread classes. After having constructed

the simulated protocol, the second stage is to specify a series of model parameters and the

network topology using a separate simulation description file. The simulation description

file could be seen as the equivalent of the main file of an executable, except there is no Java

code in the file, a custom simplified syntax is used in the description file. An example of a

Simmcast simulation description file is given in [MB02].

5.4.2 Extensions Needed to Simmcast

From our overview of Simmcast in the previous section it is clear that extensions to Simmcast

are needed in order to be able to generate the simulation Java code that represents a UML

2.0 protocol model. Such a model would have been specified in Tau G2.1 in accordance with

the proSPEX methodology. Such extensions to Simmcast would be designed to represent

the UML 2.0 model using the facilities of the resultant framework. Once Simmcast has been

extended in a proSPEX library, we can use a text-templating engine to generate simulation

code, having filtered the Telelogic Tau XML. The extensions to Simmcast, that we have

identified as being required, are listed and discussed below. The actual implementation of

these changes is discussed in Chapter 6, ”The proSPEX Implementation”.

Finite State Machine Representation

As mentioned in Section 5.2, in the proSPEX methodology finite state machines (FSMs)

are used to represent protocol behaviour. Since Simmcast does not have built-in state

machine abstractions we must extend Simmcast for the purpose. The subject of finite state

machine representation in Java (and other object-oriented languages) has been thoroughly

investigated [vBB99][HBR00].

In [vBB99], we see that the states, events, transitions and actions are the core parts

of an FSM that must be represented in an implementation. Approaches to implementing

FSMs in OO languages include the application of the State Pattern [vBB99], the applica-

tion of the van Gurp approach [vBB99] or the by using case statements. The use of the

State Pattern is said to be preferable since procedural FSM implementations in which case

statements are used suffer from maintenance problems. Maintenance, or change, to an FSM

implementation, such as when adding a state or transition, can be problematic when it is

difficult to incorporate the change. The difficulty in making changes is influenced not only

62

by the number of classes that have to be modified but also by the degree to which FSM

concepts are explicitly represented in the implementation.

From [vBB99] it is clear that the implementation of state machines is non-trivial and

requires some thought. The main issues [vBB99] to be considered are:

1. FSM evolution: changing the structure of state machines over time, which is often

necessary, is difficult using most implementation approaches.

2. FSM instantiation: since FSMs may be used several times in a system, techniques

that prevent object duplication can be applied in order to conserve resources.

3. FSM data management : actions in transitions change data which has to accessible

to all transitions in the FSM. This means that all variables have to be global which

leads to maintenance issues.

In our case an additional issue, which is not listed above, is FSM code generation. That

is, we are interested in an FSM implementation approach which would ease the complexity

of the code generation process. It is not clear whether using an FSM implementation

approach which would ease FSM evolution (making changes to an FSM) would in turn lead

to less complexity in the proSPEX code generator. Despite this lack of clarity, we consider

the approaches to resolving the FSM evolution, instantiation and data management issues

investigated in [vBB99].

Removal of the Simulation Description File

As was mentioned earlier in Section 5.4.1, in Simmcast a simulation description file is

used for network protocol simulation parameterisation and architectural specification. The

simulation description file is ”simply a text file with a series of constructor and method calls

to be performed by Simmcast” [MB02].

The syntax used in the simulation description file was created by the Simmcast author

and is relatively simple. The parameters that are specified include the type of simulation

trace generator used, the number of client and server nodes, the inter-node link characteris-

tics (e.g. delay distribution, bandwidth) and the specification of groups (useful in the case

of multicast protocols).

The reasons for the use of a simulation description file, as opposed to a Java main file,

is that it is seen [MB02] as being both a means of maintaining the simplicity of the system

63

and also of maintaining a ”separation of concerns”. Such a separation of concerns, in which

topology and startup parameters are in the description file, and protocol logic is maintained

separately in Java source files, is also used in NS-2 [oSC04b] and OMNeT++ [Var04], as

we have seen in Chapter 4.

In our case however, UML 2.0 (and SDL) diagrams are used for the specification of

topology and startup parameters. The specification of architecture and behaviour, using

FDTs with graphical representations specifically designed with communication abstractions,

is clearly superior to a textual description. We would clearly not gain any additional benefit

from the ”separation of concerns” derived from a simulation description file.

In addition, a major drawback of the Simmcast simulation description file is that no

support for dynamic node creation is supported. That is, the entire topology must be

specified in the simulation description file. We would thus have to build means of supporting

dynamic node creation (and hence topology changes) into Simmcast.

We would therefore use an approach in which the simulation description file is not

generated from the simulation description file. Instead, we will change Simmcast so that

all parameters and topology information could be specified in the simulation main file.

SDL Pid Expression Representation and Implicit Addressing Representation

With SDL, each process (active class) has access to four Pid (process identifier) expressions

which are means of accessing implicit process attributes. These expressions are self, sender,

parent and offspring. Their meaning is intuitive, for example the sender expression returns

a Pid value which refers to the process this instance received its most recent signal from.

We must allow for the use of these common expressions and build means of keeping track

of these variables in the state machines that are generated by the proSPEX generator. In

addition, the Pid expressions would be translated to the equivalent network addresses used

in Simmcast.

Another aspect that we must address in proSPEX is implicit signal addressing. With

SDL, signal addressing is mostly implicit meaning that it is not necessary to specify the

destination address of a signal when using the send action. Explicit signal addressing is not

necessary since the destination of the signal is deterministic from the system architecture.

In an implementation, and with Simmcast, each signal that is sent must have a network

address associated with it. Thus, we must determine means of translating from the higher

level SDL signalling abstractions to a lower level Simmcast abstractions.

64

Architecture Representation and Specification

With Simmcast paths between nodes have to be explicitly set up in the simulation de-

scription file. As we explained earlier, we have identified the need to place topology and

startup parameters in the main Java source file and not in a description file. Apart from

extending Simmcast for this purpose, we must encode the protocol system architecture in

our proSPEX extension to Simmcast. The reason for this is because we allow for dynamic

node creation and termination. For example, a Manager process, which spawns Session

child processes may do the following upon receiving a signal from a service access point:

new Session;

output invokeReq(invSDU,invokeRefNumb) to offspring;

In the example given above, a Manager process creates a Session child process and

then sends an invokeReq signal to the child using the offspring Pid expression. In our

proSPEX extension to Simmcast, some work would have to be done when the new Session

statement is encountered. This would involve consulting the system architecture (which

had been encoded in some data structure) and determining the nodes to and from which

paths would have to be created. One aspect that we have to consider is that with Simmcast

paths are unidirectional. So if two nodes send messages to each other two paths are created,

one for each direction of communication. Thus, when encoding the architecture, we need to

record which nodes may send messages to the created node and which nodes may receive

messages from the created node.

Additional Trace Events

As mentioned in Section 5.2, we aimed to extend Simmcast to allow for the generation of a

particular set of trace events. Due to the modular nature of Simmcast this extension should

be fairly straightforward.

5.5 Summary

In this chapter we have reported on the various parts and facets of the proSPEX tool. Our

first step was the development of a methodology in which we identified the roles of UML

2.0 diagrams in the specification and performance modelling process. In our methodology

65

we incorporated aspects and recommendations from both previous work in which SDL is

used as the specification language, which we discussed in Section 2.6.2, and the UML Profile

for Schedulability, Performance and Time (UML-RT), which we discussed in Section 3.5.

In our methodology we used class, architecture and state machine diagrams for the spec-

ification of protocols while using collaboration diagrams for the specification of annotated

non-functional duration constraints.

With the proSPEX semantic time model we have used the facilities of our simulation

framework to represent non-functional time related aspects. In this model communication

delay is associated with packets that traverse network links. Randomly distributed delay,

transmission delay and a loss probability are applied to each networked packet. In addition,

each node in the architecture has an associated sending and receiving processing delay.

Performance annotations are all specified using an annotated approach and simple syntax.

In Section 5.4 we developed the architecture of the proSPEX tool which was to realize

our methodology and semantic time model. We identified a set of extensions to Simmcast

that are needed in order to be able to generate the simulation Java code that represents a

UML 2.0 protocol model. These extensions included those for finite state machine repre-

sentation, the removal of the simulation description file, SDL Pid expression representation

and implicit addressing representation, architecture representation and specification, and

lastly, adding necessary trace events.

66

Chapter 6

The proSPEX Implementation

6.1 Introduction

In this chapter we show how we addressed the proSPEX implementation issues and chal-

lenges, that arise in mapping from Telelogic UML 2.0 to a simulation model. Such chal-

lenges include ways of representing signal addressing, the encoding of the protocol system

architecture and state machines. In addition, the proSPEX Tau filter and code generator

implementations are discussed.

With the proSPEX implementation we attempt to realize the proSPEX methodology

and semantic time model mentioned in our aims and investigated further earlier in Chapter

5. The proSPEX implementation has three distinct parts which are illustrated in Figure 8.

The first part is the proSPEX extension to Simmcast in which means of representing finite

state machines, architecture, additional trace events, SDL addressing and other aspects are

implemented. The second part is the proSPEX Tau filter, code generator and associated

templates. While the third part is a rudimentary proSPEX GUI.

6.2 Mapping from Telelogic UML 2.0 to a Simulation Model

with the proSPEX Extension to Simmcast

In this section we discuss the implementation of those Simmcast extensions that we have

identified as being necessary in order to map from a Telelogic UML 2.0 model to a simulation

model. Our approach was to extend Simmcast and then to hand-code the ESRO Invoke

Service protocol (which we had specified using Tau G2.1) using our extensions to Simmcast.

67

Figure 8: proSPEX overview

68

All of our extensions to Simmcast are contained in a proSPEX Java package.

Note that in extending Simmcast, we have effectively developed an SDL runtime support

system as described by Mitschele-Thiel and Muller-Closterman in [MTMC99]:

”The part [of the SDL runtime support system] typically provided by the im-

plementer comprises the implementation or mapping of the primitives for in-

terprocess communication, process management and timers on the respective

primitives of the operating system [or virtual machine]”.

6.2.1 Removal of the Simulation Description File

As motivated earlier in this chapter, we identified the need to replace the Simmcast simu-

lation description file with pure Java method calls placed in a main file. We thus created

a ProNetwork class which extends the Simmcast Network class by adding features used in

setting simulation topology and startup parameters.

The primary attributes of class ProNetwork are a ProArchitecture object, network link

settings (capacity, bandwidth, loss rate), a SignalTargetHashTable and other attributes.

The system architecture is stored in the ProArchitecture object and is used in setting up

paths between dynamically created nodes and daemon nodes. The SignalTargetHashTable

is used in giving explicit addresses to signals, which had been sent using implicit addressing

in the higher level state chart.

Most of the methods in the ProNetwork class exist to set up and manipulate the system

architecture. The most important of these methods is addSoftwareNode which is used in

overcoming one of the major Simmcast shortcomings; the inability to dynamically create

active classes (or processes). The method addSoftwareNode is used in ProNodeThread

instances (the protocol logic, contained in state charts in SDL, is placed in ProNodeThread

instances with proSPEX) when a process spawns a child process.

6.2.2 Architecture Representation and Specification

As has been mentioned, we need a means of encoding the system architecture when dy-

namically creating nodes, which represent active classes. With Simmcast the topology was

specified in the simulation description file however in the proSPEX extension the architec-

ture would be specified in the simulation main file. The proSPEX code generator would

69

generate Java code which represents the system architecture using data structures created

for the purpose.

With the proSPEX extension to Simmcast, the architecture is specified in two steps.

The first is to add NodeType objects to a vector contained in a ProNetwork instance. The

call to add a NodeType to the ProNetwork vector takes as parameters the node type (or

class) and whether instances of the type in question are daemon or not. The second step

in the specification of the architecture is to specify whether links between nodes exist. The

existance of a uni-directional link in the architecture merely specifies that the possibility

exists that node A may send packets to node B. The described information is stored in a

ProArchitecture instance which contains a path table which is stored as a path matrix (or

two-dimensional array).

An example of the specification of NodeType instances and network architecture links is

given below. Note that Session nodes are all specified as being non-daemon (since the second

parameter is false in the addNetworkArchLink call) and hence are dynamically created.

ProNetwork network = new ProNetwork("EsroInvoke");

...

network.addNetworkArchNode("InvokerUser",true);

network.addNetworkArchNode("Manager",true);

network.addNetworkArchNode("RoutingPeerProxy",true);

network.addNetworkArchNode("Session",false);

network.addNetworkArchLink("InvokerUser","Manager");

network.addNetworkArchLink("Manager","InvokerUser");

The architecture is used when one node dynamically creates another in protocol logic.

In the ESRO protocol, a Manager process1 would create a Session process upon receiving

a service request. Once the Session process had been created the ProArchitecture path

matrix is traversed and paths to and from the newly created Session process are created.
1Note that process, active class and node all have the same meaning; an instance with its own thread of

control.

70

6.2.3 SDL Pid Expression Representation and Implicit Addressing Rep-

resentation

SDL Pid expressions (self, sender, parent and offspring) which are mainly used for signal

addressing as well as implicit signal addressing, are high level facilities that must be mapped

to low level representations. In the case of mapping to an implementation these values may

be mapped to IP addresses and port numbers. In our case, we must map the values returned

by such expressions to integers values (each node in Simmcast has an integer address).

Maintaining values for the mentioned Pid expressions is done by including and main-

taining a set of implicit SDL state machine variables in the state machine protocol logic

that is generated by the proSPEX code generator. For example, a sender integer variable is

included in each generated state machine. This variable is set each time a packet is received

by the state machine. Likewise, if a node spawns child nodes, an offspring variable may

have to be included as a variable and set once the child had been created. The offspring

variable is only included if the parent node communicates with its child nodes.

In the case of implicit addressing, which is regularly used in SDL state machines, a

getSignalNetIdTarget method is called prior to the signal being sent. We have imple-

mented this method in the ProNode class, which extends the Simmcast Node class. An

example of the use of the getSignalNetIdTarget method in protocol logic is given be-

low. We can see that prior to sending a SAPsaturated packet, the network ID (a variable

named destination is used in the example) of the target node is determined using the

getSignalNetIdTarget method.

int destination = this.myself.getSignalNetIdTarget("SAPsaturated");

Packet sendMe = new Packet(source, destination,...);

send(sendMe);

The getSignalNetIdTarget method relies on an additional data structure that is pop-

ulated as a part of the topology and setup parameter specification. A hash table is used to

map from a signal name (the signal name is the key) to a vector of target node types. The

reason why a vector is returned is because it is possible for a signal to be sent to multiple

types of nodes. Each node has a set of neighbouring nodes, that is, nodes to which it has

paths, and this set is stored as a node member variable. What the getSignalNetIdTarget

method does is to find the single match between the vector of target node types returned

71

by from the hash table and the neigbouring nodes. Once the match has been found the

network ID of the node in question is returned. If multiple matches were found the SDL

specification is incorrect since with implicit addressing the assumption is that each signal

has a unique target.

A proSPEX class SignalTargetHashTable, is used in the getSignalNetIdTarget method.

The hash table is populated by looking at the required interfaces specified in the UML 2.0

specification for each active class. The signals specified in these interfaces are all the signals

that the active class in question can receive. So, for each such signal its name and the node

type of the target is added to the SignalTargetHashTable. A code sample illustrating the

population of the SignalTargetHashTable in the case of a Manager active class is given

below.

/**

* Target: Manager

*/

// Interface: I_UserToMan

network.sigTargetHashT.addSignalTarget("invokeRequest","esro_invoke.Manager");

// Interface: I_RPProxyToMan

network.sigTargetHashT.addSignalTarget("invokePDU","esro_invoke.Manager");

network.sigTargetHashT.addSignalTarget("segInvokePDU","esro_invoke.Manager");

// Interface: I_SessToMan

network.sigTargetHashT.addSignalTarget("rel_Inv_RefNu","esro_invoke.Manager");

network.sigTargetHashT.addSignalTarget("rel_Inv_ID","esro_invoke.Manager");

6.2.4 Finite State Machine Representation

In representing FSMs we had the choice of either using case statements, the State Pattern

[vBB99] or the van Gurp approach [vBB99]. We used simple case statements to implement

state machines. This is because in our case FSMs will be generated by a code generator

and not by a developer. Hence the problems of FSM evolution, instantiation and data

management, which are addressed by other approaches, do not apply.

We give an example of the core parts of a proSPEX state machine. We translated from

a Telelogic Tau FSM model of the ESRO2 Invoke Service to an equivalent state machine
2An overview of the ESRO protocol is given in Appendix C and the protocol is also used in our perfor-

mance analysis case-study in Chapter 7.

72

model. By doing so we determined the design of the templates of the proSPEX code

generator.

The first part of the state machine is a set of variables which are not all explicitly

contained in the associated Tau state machines. The sets of variables contained in a state

machine are shown in the code sample of class SessionThread directly below.

class SessionThread extends NodeThread {

/***

*

* STATE MACHINE CONTROL VARIABLES [1]

*

***/

private int state = 0;

private int previous_state = 0;

private int event = 0;

private static final int STATE_Start_STA01 = 0;

private static final int STATE_InvPDUSend_STA2 = 1;

...

private static final int EVENT0_invokeReq = 0;

private static final int EVENT1_retransTime = 1;

private static final int EVENT2_segRetransTime = 2;

...

boolean done = false;

/***

*

* EXPLICIT STATE MACHINE VARIABLES (FROM UML 2.0 SPEC) [2]

*

**/

73

InvokeSDU invSDU;

int invokeRefNumb;

InvokeProvConfSDU invPConf = new InvokeProvConfSDU();

int CLRO_SMALL_SDU_MAX_SIZE = 1500;

...

/***

*

* IMPLICIT STATE MACHINE VARIABLES (FROM SDL) [3]

*

***/

int source = 0; // our own address used when creating packets

int sender = 0; // the address of the node/process that sent the last signal

/**

*

* IMPLICIT STATE MACHINE VARIABLES (FROM DIAGRAM) [4]

*

***/

/* RECEIVING:

**/

PacketType invokeReq = new PacketType("invokeReq");

PacketType invokReqPeer_Invoke_PDU = new PacketType("invokReqPeer_Invoke_PDU");

...

/* SENDING:

**/

PacketType invokeProvConfirm = new PacketType("invokeProvConfirm");

PacketType sendSegInvPDU = new PacketType("sendSegInvPDU");

74

...

/**

* VARIABLE END

**/

There are five sets of variables in proSPEX FSMs. The first set of variables are those

that are used in the state machine execution control. These variables store the current state,

previous state and current event being processed. In addition, each state and event that

can be processed is mapped to a sequential integer value. The second set of variables are

those that are defined by the user in the UML 2.0 specification, while the third are implicit

SDL state machine variables. The implicit state machine vairables are used to represent

the current SDL Pid expression values. Note that in the example only the sender value is

stored since the other expressions were not used in the FSM in question. The final set of

state machine variables are the implicit state machine variables that are derived from the

active class’s provided and required interfaces. Due to the design of Simmcast each signal

that can be sent and received by the FSM has to have an associated PacketType object

which takes the signal name as a parameter.

What the example of the four different sets of variables illustrates, is that only a small

subset of the FSM variables are specified by the user, the majority are implicit variables

that are to be generated by the proSPEX code generator.

Each FSM has a control section and in the following example we see how it is imple-

mented. Each FSM has its control specified in an execute() method, which is the method

that is called by the simulation scheduler when a NodeThread, or process, executes for the

first time.

public void execute() {

// our own address used when creating packets

source = myself.getNetworkId();

while (done == false) {

try {

75

switch (state) {

case STATE_Start_STA01: {

// determine what the next input signal/packet is....

Event event = getInputSignal();

switch(event.getType()) {

case EVENT0_invokeReq:

previous_state = state;

state = processEvent0_invokeReq(event);

break;

case EVENT4_invokReqPeer_Invoke_PDU:

previous_state = state;

state = processEvent4_invok(event);

break;

default:

tracer.signal_discard(event.getPacket(),this.state);

}

}

break;

case STATE_InvPDUSend_STA2: {

...

}

break;

default: {

throw new StateMachineException("There is no default state.");

76

}

} // switch

/* Here we have a successful transition from one state to another.

* We record this in the trace.

**/

tracer.state_transition(this.myself,previous_state,state);

} // while(true) }

The example shows that we have implemented the state machine procedurally using an

outer while loop and nested switch statements. Once in the while loop the first switch

statement uses the state control variable to switch to the correct case statement. The

proSPEX filter and code generator store the initial state of the UML 2.0 specification in

order to set the initial value of the state variable to the correct state.

After having reached the correct case statement, and hence state, different ”transitions”

could be traversed depending on the input signal received. We call these input signals

events in the state machine example and each ”transition” is mapped to an event variable

and associated event processing function. In each state the first thing that happens is that

the event variable is set by a call to the getInputSignal() method as follows: Event

event = getInputSignal(). This is a blocking call, meaning that the execution of the

FSM is suspended by the simulation scheduler untill some signal arrives at the FSM. Once

a signal arrives the execution of the FSM continues and another switch statement is executed

resulting in a case statement being executed as can be seen in the example below.

case EVENT0_invokeReq:

previous_state = state;

state = processEvent0_invokeReq(event);

break;

The first thing that happens in all event processing case statements is the setting of the

previous state variable which exists for tracing purposes. The next step is the execution of

the associated event processing function processEvent0 invokeReq(event) which, apart

from executing all actions in the associated FSM transition, returns and sets the state

77

Figure 9: An example of a junction symbol

variable. Finally, a break statement is executed and control passes to the outer state

based switch statement. Directly before this happens a call to the simulation tracer is

made; tracer.state transition(this.myself,previous state,state). This results in

a state transition from state previous state to state being recorded on the simulation

trace.

The next part of the state machine implementation that we discuss are the individual

event processing functions which generally represent entire transitions and sometimes parts

of transitions. Cases in which event processing functions represent parts of transitions are

when junction symbols are encountered. Junction symbols are ellipses which are used to

segment transitions. An example of a junction, labelled sendSingleSDU, is shown in Figure

9.

Another situation where we have found the need to generate event processing functions

in the proSPEX code generator is in the case of loops that are specified graphically, an

78

Figure 10: An example of a graphical loop

example of which is given in Figure 10. Such loops may be easy to detect by inspection but

less so algorithmically when parsing the Tau XML. One way in which a parser could detect

a graphical loop is when a flow line connects with another flowline which had already been

visited, this would be a clear indication of a loop regardless of whether a decision symbol is

present in the transition. A problem we have is in the choice of what type of loop we would

we generate in the case of a graphical loop, would it be a for, while or do-while loop?

In addition, how would our parser know which decision symbol is the one controlling the

number of loop iterations? One solution to this problem is simply to create a function that

is called each time one flow line meets another which we have already visited in travelling

down the XML tree that represents the state chart model. In effect we treat the meeting

point of two flow lines as if the user had placed a junction symbol at that point. The

79

proSPEX filter and code generator components must thus be able to detect the meeting of

flowlines.

We have covered a subset of the implementation aspects of proSPEX FSMs. From this

subset we hoped to show that developing the FSM representation was non-trivial, in fact a

substantial part of our development time was devoted to the task. We will re-visit some of

these aspects, and investigate others, when the proSPEX text templates are described in

Section 6.3.

6.2.5 Additional Trace Events

A set of trace messages, listed in Section 5.2, are required to generate the performance

metrics we are interested. Adding the trace routines to Simmcast was easy due to Simmcast

being specifically designed to be extended.

6.3 Translating from Tau XML to proSPEX

Having extended Simmcast with the features that we require in order to generate an equiv-

alent simulation model, our next task was to automate the process of translating from the

Tau model to a simulation model. We have used a tier-generation process, in which an

entire program (or tier) is generated using a text-templating engine, as described by Jack

Herrington in [Her03]. We use the Jakarta Velocity text templating engine (TTE), as is

done in the code generator of the Poseidon UML modelling tool by Gentleware AG.

6.3.1 A Code Generation Example

We use a simple example to illustrate the use of a TTE and also the steps that are used in

developing the code generator in our context. Our goal in this example is to generate the

Java classes that represent all classes that are used as the signal parameters in required and

provided interfaces. Figure 11 shows the architecture diagram of the RoutingPeerProxy

class. We presume that proSPEX had filtered the Tau XML and detected that the classes

used as parameters in the signals contained in the I PeerToPeer interface would have to be

generated. If we look at interface I PeerToPeer, we see that Invoke PDU, Seg Invoke PDU

and other classes are used as parameters to the PeerDatagram signal. proSPEX would have

to find each such class in the Tau XML and then determine what types of relationships each

class is involved in. We can see that the classes are involved in an inheritance hierarchy

80

with class PDU being at the top of the hierarchy. Thus, proSPEX must navigate the Tau

XML and find the parent classes of each child class.

Figure 11: An example of signal parameters

Having established what proSPEX must do, we inspect the Tau XML and determine

where the required information is located, as is shown in Figure 12. We use an XML viewing

tool, XPath Explorer, to located one of the child classes and also the elements that indicate

that the class in question is involved in an inheritance hierarchy. With approximately 11

000 verbose lines of Tau XML that represent our model, this inspection process is time

consuming. The intuitive nature of XML however helps us in finding the required elements.

We then use a combination of XPath queries derived from XPath Explorer (queries which

81

can be used to search in XML) and JDOM (a Java XML processing library) tree navigation

to find each PDU class shown in Figure 11. As each class in encountered we firstly use

regular expressions to extract the desired text from the class and then add a Java object

representing the discovered class to a data structure, such as a linked list.

Figure 12: The Code Generation Process with Velocity

The final step in the code generation process is to use the Velocity TTE to generate

the Java class files. Each Velocity template file is written using the Velocity Template

Language (VTL) [Pro04] which provides a simple way of incorporting dynamic content in

pre-written text. VTL uses variable references that can refer to something defined in Java

code, such as a data structure. As an example in the sample Java code shown below, we

see a HashSet data structure being populated with SignalPayload objects via a call to

getAllSignalClasses. We iterate through the list of signal parameter classes and place

them in a Velocity context. All that this means is that we give the object a variable name,

in this case signalPayload, that will result in all of this object’s methods being available

in the template.

HashSet signalParamClasses = sigParamGen.getAllSignalClasses();

// Iterate through all HashSet entries...

SignalPayload sigPayload = (SignalPayload)iter.next();

// make the sigPayload object accessible in the template...

context.put("signalPayload",sigPayload);

In the sample VTL code shown below, we see how each signalPayload object is accessed

in the template. For example, the code $signalPayload.ClassName will result in the class

82

name being substituted in the pre-written text.

class ${signalPayload.ClassName} #if ($signalPayload.Parent != ""

) extends $signalPayload.Parent #end {

#foreach ($attrib in $signalPayload.Attribs)

public $attrib.AttribType $attrib.Name;

#end

#if ($signalPayload.Networked)

public int length;

#end

public ${signalPayload.ClassName}() {

#foreach ($attrib in $signalPayload.Attribs)

#if ($attrib.DefaultValue != "")

$attrib.Name = $attrib.DefaultValue;

#end

#end

}

6.3.2 The proSPEX Tau Filter

The proSPEX Tau Filter is a set of classes that are responsible for placing required Tau

XML data into objects and data structures that can be readily accessed using Velocity

templates and VTL. In doing so the Tau Filter makes certain assumptions regarding the

model that it is processing. For example, the Filter expects one and only one collaboration

diagram depicting the simulation scenario. In addition, the Filter assumes that all of the

classes in the scenario are daemon classes that exists at system start-up time.

The proSPEX Filter is divided into classes MainXMLFilter, SignalXMLFilter and

StateMachineXMLFilter. The MainXMLFilter is responsible for gathering the data that

is contained in the simulation main file. This includes the network link characteristics that

83

are specified in a comment symbol in the simulation main file, the child active classes (or

parts) of the daemon classes and the signals contained in the required and provided inter-

faces. The SignalXMLFilter is responsible for placing all the signal payload class data into

SignalPayload classes. Lastly, the StateMachineXMLFilter is responsible for filtering and

then placing all state machine data.

These classes are naturally supported by a host of helper classes such as ProSPEXTypes.

Class ProSPEXTypes is used to convert from Tau UML basic types to Java types using

an XML file containing the mappings. For example both Pid and offspring are mapped

to int. Other helper classes are used to contain model information that is eventually

used in the templates. Such classes include Attrib, Signal, SignalPayload, State,

StateMachineData, Transition and SystemData.

6.3.3 The proSPEX Code Generator

As we have seen in the earlier example, the Velocity templates and the various XML filter

classes in combination form the proSPEX Code Generator. We have created four templates,

given in Appendix D, that are used in the code generation process:

• main.vm: this is the simulation main file template in which the network path char-

acteristics, ProNetwork, Nodes, paths between nodes and architecture is specified.

• node.vm: each UML 2.0 active class is mapped to a Node and this template is

responsible for generating the Node classes.

• signalparam.vm: this template is responsible for generating all classes that are used

as signal parameters.

• statemachine.vm: the various parts of FSMs, implemented as discussed in Section

6.2, are generated using this template.

Creating the above mentioned templates was significantly less time consuming than

developing the XML filters and classes used to package the data that is required in the

templates. In fact the manual part of the code generation process shown in Figure 12

resulted in the development of the XML filters being the most time consuming aspect in

this dissertation. This was largely because we had to determine the meaning of thousands

of lines of XML by inspection due to a lack of supporting documentation (such as a DTD

or other Telelogic documentation).

84

6.3.4 Graphical User Interface

We created a rudimentary GUI that can be used import UML 2.0 protocol specifications,

generate the simulation code and run simulations. The GUI consists of two windows, one

which displays the simulation trace and one which displays simulation results, as is shown

in Figure 13. We mainly used the GUI to control our case study experiments which are

detailed in the next chapter. We used Excel, which expects data in a comma seperated

values (CSV) format, to plot results.

Figure 13: The proSPEX GUI

85

6.4 Summary and Conclusion

We have seen that proSPEX is comprised of the proSPEX extension to Simmcast, which is in

essence a SDL runtime support system, the proSPEX Tau filter and lastly the proSPEX code

generator with its associated templates. Although we have shown that we can successfully

generate simulation programs we have found the most challenging aspect the filtering of

the Tau XML in which we had to determine the meaning of many thousand lines of XML

by inspection due to a lack of supporting documentation. This development process is

both slow and error prone and should only be attempted when processing small subsets of

models, such as class diagrams. In our case, we have attempted to process class, architecture,

state chart and collaboration diagrams which in retrospect was overly ambitious given the

technical limitations that we have explained.

86

Chapter 7

Performance Analysis Case-Study

7.1 Introduction

In this chapter we use the ESRO protocol in a performance evaluation case-study. We

demonstrate the utility of proSPEX by determining a set of performance statistics (with

appropriate confidence intervals) that are useful in the context of the case-study. Our

intention is to apply the proSPEX methodology and approach to performance evaluation

to a typical scenario. The intention of this case-study is only to illustrate the utility of

proSPEX and is not a performance study in the first case.

7.2 Experiment Specification

Our goal is to investigate the performance of ESRO in a typical system scenario. Not only

do we need a good representation of the system, and hence realistic parameter values, but

also a good representation of the workload of the system.

Workload characterisation is outside the scope of this dissertation. However, the parame-

ter values we have chosen we believe plausible since they are based on analytic models[GB04]

and practical experimental results[CP03][RCP02] where possible.

Before detailing a particular experimental scenario (with its associated parameters and

workload) we briefly mention the primary features of the Efficient Short Remote Operations

(ESRO) protocol (see Appendix C for a detailed discussion). The service ESRO offers is a

reliable connectionless transport for wireless links when efficiency is of concern. The service

supports applications based on a remote operations model that is largely the same as the

87

Remote Procedure Call (RPC) model [Mic88]. The identification of the encoding mechanism

in use (e.g. Abstract Syntax Notation One (ASN.1) and its Basic Encoding Rules (BER))

is supported. An ESRO user that invokes an operation is called an invoker whilst the

ESRO user that performs the operation is called the performer. By default, operations are

asynchronous and the invoker may invoke concurrent operations without waiting for a reply.

Applications using ESRO typically include efficient short message delivery and submission,

credit card authorization and white pages lookup.

7.2.1 Experiment Scenario: Wireless E-Commerce

We have specified the ESRO Invoke service using Telelogic Tau G2.1 and shown how to

map from a Telelogic UML 2.0 model to a proSPEX simulation model using the proSPEX

methodology and approach to performance evaluation.

In our scenario ESRO is used in a credit card authorization application in which a

number of clients invoke operations on a single server acting as the ESRO provider. The

clients are mobile devices such as cell phones and PDAs while the server is a high-end

desktop machine. The wireless link between the clients and server is a GPRS link. Each

client invokes a number of operations on the server with each service data unit (SDU)

having a fixed size. Such a fixed message size is plausible in e-commerce applications which

use the ISO 8583 standard [fS03] for communication between financial systems. Figure 14

shows our scenario in which an e-commerce user application (deployed on a cell phone) is

connected to an e-commerce server via ESRO. The e-commerce server is linked with an

EFT transaction switching gateway.

The primary aim of the performance analysis study is to determine whether the service

data unit (SDU) throughput at the server is able to meet a required level. In our scenario,

the required minimum SDU throughput at the server is taken to be equal to the maximum

number of transactions per second that the EFT switching gateway is able to process.

Hence if the EFT transaction switching gateway can process 20 transactions per second,

the ESRO provider in the e-commerce gateway should be able to deliver a throughput rate

of 20 invoke indications per second, with each invocation indication carrying a transaction

in an SDU.

If we view the ESRO provider as an abstract system with job arrivals and completions,

we would say that the requirement is for the throughput (or completion rate) to be equal

to 20 jobs per second. In our experiments we want to ensure that the ESRO server is able

88

Figure 14: Experiment Scenario

89

to deliver a given invoke indication rate (or throughput).

If the required throughput cannot be reached performance statistics such as mean queue

length, discarded signals and expired time-outs can be used to determine system bottlenecks.

The result of analyzing the performance model would thus be a set of discrepancies between

offered and required resource attributes [Gro02].

The parameters in our ESRO Invoke Service model are time-out settings, message size,

network link characteristics, connector buffer sizes and nodal processing delay. In the next

section we estimate suitable nodal processing delay parameters, network parameters and

workload parameters. Once we have established suitable values for the parameters in the

mentioned categories we can determine whether an ESRO provider will be able to meet the

required service levels.

7.3 Model Parameters

In this section we estimate the processing, network and workload delay parameters used in

our performance model. A summary of the parameters estimated in this section is provided

in Section 7.4.

7.3.1 Processing Delay Parameters

It might seem that in the case of low bandwidth wireless links, processing delay would be

insignificant when compared to network delay. This may be the case at each client; however,

under heavy load processing delay could become significant at the server.

With Simmcast, a deterministic1 or randomly distributed processing delay is set for

each node. In order to do so we investigate the protocol processing that takes place and

the protocol hardware environment.

In the case of a transport layer protocol (such as ESRO or TCP), the time taken to

process a packet at an end-station or network node depends on protocol complexity, appli-

cation code, processor power, I/O delay, network delays and context-switch delays. With a

protocol such as ESRO the main source of delay are marshalling2 delays, I/O delay, network
1A deterministic processing delay is probably a simplification of reality.
2When a method on a remote object is invoked, an RPC system marshals (writes and transmits) the

method parameters, waits for the result of the method invocation and then unmarshals (reads) the return
value[Mic04].

90

delays and context-switch delays. Since network delays are modelled we must estimate val-

ues that represent marshalling delays, I/O costs and context-switch delays. These delays

are mainly dependent on the nodal architecture.

With nodal processing delay being dependent on a number of dynamic delays, which

result from complex processes, it may seem that establishing nodal delay values is not

feasible. However note that processing would take place on clients and servers where the

computational power of the server would be at least an order of magnitude greater than

that of the clients. The processing power is primarily a combination the CPU, RAM and

storage at the node.

We consider the specifications of a high-end cell phone, the Sony Ericsson P900 which

contains a 32-bit RISC ARM9 156 mHz processor and 48 MB RAM. Contemporary Internet

server hardware may typically be dual Intel Pentium 4 Xeon 3.6 GHz CPUs, 2GB RAM,

10,000 RPM hard-disks with RAID 1 mirroring. From these details we could conclude that

the average Internet server has computational power that is one order of magnitude greater

than that of the average mobile terminal. We should therefore ensure that the processing

delay we assign to nodes of the clients in our experimental scenario is an order of magnitude

larger than that of nodes of the server.

A recent study [DMS03] compared the performance of ASN.1 BER and XML when

transmitting data in an application used by health service professionals. ASN.1 message

size ranges used in the study ranged from 235 bytes (0.2kB) with simple attributes and

1351 bytes (1.3kB) with complex attributes. The corresponding sender encoding times

were 6.8ms and 10.5ms respectively while the recipient decoding times were 1.6ms and

3.5ms respectively. The measurements were taken using an IBM Java Virtual Machine, 650

MHz P3, 256 Mb RAM and Redhat Linux.

In order to use these results in our case-study, we firstly extrapolate to get processing

times for a larger message size. In this process we simply multiply the message size, encoding

time and decoding time by the fraction increase in each category when processing 235 byte

and 1351 byte messages. The results of this extrapolation is shown in Table 1. After

extrapolating we multiply each processing time by the proportional increase or decrease in

processor MHz when using a 156 MHz and 3600 MHz processor to obtain the processing

times listed in Table 2.

While we have estimated the ASN.1 coding and decoding times we still have to determine

which nodes, in the simulation model, to assign the processing times to in the clients and

91

Size (byte) Increase Encoding (ms) Increase Decoding (ms) Increase
235
1351

5.7
6.8
10.5

1.5
1.6
3.5

2.2

1351
7754

5.7
10.5
16.2

1.5
3.5
7.6

2.2

Table 1: Extrapolated 7754 byte Message Processing Times using ASN.1

Device Encoding (ms) Decoding (ms)
Smart phone 67.5 31.4
Internet server 2.9 1.4

Table 2: Scaled 7754 byte Message Processing Times using ASN.1

server. ESRO has Manager, Session, Routing Peer Proxy, Invoker User and Performer User

nodes. The encoding takes place when the Manager receives an SDU from the Invoker User,

we therefore set an encoding (or send time) of 67.5 ms for each Manager node in each client.

In the server the decoding will take place directly before the SDU is passed to the Performer

User, we thus set a receive time of 2.9 ms in the Performer User.

7.3.2 Network Parameters

Here we use empirical results obtained from Vodafone UKs GPRS network ([CP03][RCP02])

to parameterise the GPRS network link in our experimental scenario. The network pa-

rameter values we need are the loss probability, bandwidth, delay distribution and delay

distribution parameters.

Assuming that CS-2 encoding3 is used and a 3+1 mobile terminal (3 downlink, 1 uplink

channel), the theoretical maximum downlink and uplink bandwidth is 40.2 kbit/s and 13.4

kbit/s respectively. The observed maximum bandwidth was 33.2 kbit/s and 11.2 kbit/s

respectively. Delay distribution functions are not provided in [CP03][RCP02]; instead,

histograms are provided showing uplink and downlink delay distributions in the case of

sending one thousand 64 byte UDP4 packets. A round trip (RTT) delay of approximately
3With GPRS the transfer speed depends the number of downlink and uplink channels as well as the

channel encoding used. The best encoding is CS-4 while the worst is CS-1. For example the maximum
bandwidth per time slot, when using CS-4 and CS-1 is 21.4 kbit/s and 9.05 kbit/s respectively.

4Note that the results given in [CP03][RCP02] are from transport layer measurements.

92

a second was found to be common. Since we are modelling the ESRO Invoke Service, we

are interested in the uplink (mobile station to server) characteristics. The uplink latency

range was between 400 and 1300 ms. Packet loss probability is described as rare and hard

to quantify in [CP03], although analytic models have shown [GB04] a range of 0 to 0.150.

Using the results in [CP03][RCP02][GB04] we therefore conclude that we have a maxi-

mum uplink bandwidth of 11.2 kbit/s (1400 byte/s), a delay of between 400 and 1300 ms

and a loss probability of between 0 and 0.150.

7.3.3 Workload Parameters

From the experimental scenario we have established that the ESRO server should be able to

deliver a given throughput rate (or invoke indications per second received at the server). In

our first experiment we use a rate of approximately 1 invoke indication per second. In order

to achieve 1 invoke indications per second we use 5 clients, each sending an invoke request

to the ESRO system with an inter-request time of 800 ms. If we are to run the simulation

for approximately 90 simulated seconds5 each client sends 113 method invocation requests

in that period.

In order to avoid having each client send an invoke request at exactly the same time,

each client starts sending invoke requests after a random delay between 0 and 1 second. We

are interested in the invoke indication throughput at the ESRO server and whether resource

saturation occurs.

7.4 Parameter Summary

The following is a summary of the ESRO system requirements and model parameters that

we established in Sections 7.2.1 and 7.3.

Parameters that are needed for performance evaluation include the QoS parameters,

and a description of the workload intensity:

• The number of active users in the system is 5.

• Each active user sends invoke indications with an interval of 800 ms for a period of

90 s.
5With an observation window of 90 s we have a terminating simulation that is said to have a cold-start

meaning that the initial period in which the system is empty is included in the observation period.

93

• Each active user sends the first invocation request after a random zero to one second

delay.

• (requirement) The ESRO server invoke indication throughput should reach 1 per

second without resource saturation.

We have the following parameter values (they are labelled measured, estimated, or

assumed):

• (assumed) A fixed message size of 5kB is used.

• (assumed) The maximum ESRO protocol data unit size is 1500 bytes.

• (estimated) For a cell phone the ASN.1 encoding and decoding time of a 5kB byte

message is 67.5 ms and 31.4 ms respectively.

• (estimated) For an internet server the ASN.1 encoding and decoding time of a 5kB

byte message is 2.9 ms and 1.4 ms respectively.

• (assumed) With the ESRO Invoke Service PDU packets are sent from the invoker to

the performer, we set the send time6 for the cell phone clients at 67.6 ms and the

receive time to be 2.9 ms at the ESRO server.

• (assumed) In the case of the clients the send time of 67.6 ms is set for each Manager

while for the server the receive time of 2.9 ms is set for the Performer User. All other

nodes in the network have the default send and receive time of 0ms.

• (assumed) The smart phones use CS-2 encoding and are ’3+1’ mobile terminals.

• (estimated) For the GPRS link (which is modelled at the ISO network layer) we have

a maximum uplink bandwidth of 11.2 kbit/s (1400 byte/s), a delay of between 400 to

1300 ms and a loss probability of 0.01.

• (assumed) The queue size assigned to connectors in our model is infinite7

6In our examination of Simmcast, Chapter 8, we saw that each Node can have a send time and/or receive
time assigned in order to model processing delay.

7In this case we have to look out for monotonic queue size increase in the ESRO server.

94

Figure 15: Invocation Throughput at the Server modelled by proSPEX

7.5 The Experiments

Using the parameters and workload summarized in Section 7.4 we conducted a number of

simulation runs8 and plot the results. Figure 15 illustrates the throughput (invocations

per second) received at the server while Figure 16 illustrates the cumulative invocations

received at the server.

Figure 15 shows that the server was able to meet the required throughput rate. This is

clear from Figure 16 since the gradient shows no sign of decreasing. If the gradient were to

decrease saturation at the ESRO server would be a likely cause.

Having established that the ESRO server can meet the required throughput we investi-

gated queue length and waiting time metrics. We determined further performance metric

values since system tuning (determining the optimal value of parameters) may still be possi-

ble despite the requirements being met. We focus on the mean and maximum queue lengths

and mean queue waiting time at daemon nodes of the server.
8Experiments were repeated over thirty times for a high level of confidence in results. In addition 95%

confidence intervals are used unless otherwise stated.

95

Figure 16: Cumulative Invocations at the Server modelled by proSPEX

We modified our model in order to increase the load on the server. We first made the

assumption that the processing power of the server is only double of that of the clients

and each node in the model has a processing delay set which honours this assumption. We

also doubled the number of clients in order to increase the load on the server. With these

changes we repeated the experiment and observed mean and maximum queue lengths in

the server and mean queue waiting times in the server. The resulting queue lengths in the

daemon nodes of the server (the Manager and Routing Peer Proxy nodes) are shown in

Table 3.

In Chapter 5 we saw that the mean queue waiting time (or the average time that a signal

spends in the queue of a process) shows whether a process handles messages fast enough.

In addition, a high mean queue waiting time indicates many retransmission messages in a

process queue due to the timeout of the sending process being too short. Table 3 shows

relatively low mean queue waiting times at the Manager and Routing Peer Proxy nodes.

The queue lengths, which model the buffers of a communication system, show the expected

buffer size required by the system. With a maximum queue length of 7 packets at the

96

Manager Node Proxy Node
Mean Queue Length 1.00 1.33

95% Confidence Interval (1.00 - 1.00) (0.79 - 1.88)
Max Queue Length 1.00 7.00

95% Confidence Interval (1.00 - 1.00) (6.34 - 7.66)
Mean Queue Waiting Time 1.24−5 6.95−2

95% Confidence Interval (0.0 - 4.45−5) (5.21−2 - 8.69−2)

Table 3: Queue Based Performance Metrics for ESRO Server Daemon Nodes

Routing Peer Proxy, the largest buffer required in the ESRO server is 10.3 kB. The queuing

metrics we have discussed show that the ESRO server is able to process its load without

requiring significant system resources. This is partly due to the simplicity of the protocol,

but it could also be indicative of the simplifying assumptions and simplicity of our model.

As a final experiment we evaluate the throughput of the system under varying connector

reliabilities and varying timeout rates. We measure the average invoke indication rate (or

throughput) at the server with 5 different network link loss probability values (0, 0.05,

0.1, 0.15, 0.2) and three different service data unit (SDU) retransmission timeout settings.

The results of the experiment, as shown in Figure 17, shows the expected reduction in

throughput for lower connector reliabilities. The vertical axis is connector throughput and

the horizontal axis is the packet loss probability. The graph shows that the fast timeout

is the worst performer, this is due to the sender making a retransmission before all of the

previous PDUs of the SDU arriving at the receiver. We also see that at the slow timeout

setting is superior to the medium setting at low (0 to 5 percent) error rates, while the latter

is superior at higher (6 to 18 percent) error rates.

7.6 Conclusion

We have demonstrated the utility9 of proSPEX by determining a set of performance statis-

tics of our experimental scenario. This scenario was the use of ESRO as the transport

layer protocol in an a mobile e-commerce application. We parameterized the model with

time-out settings, a service data unit message size, network link characteristics, connector

buffer sizes and nodal processing delay settings. The goal of the experiments was both to
9The purpose of this case-study was purely for demonstration purposes and not an end in itself.

97

Figure 17: Throughput vs Error Rate for ESRO modelled by proSPEX

determine whether the ESRO server could deliver a required throughput and to examine

the use of queuing performance metrics for system tuning. The server was shown to be able

to deliver the required throughput.

In order to increase the load on the server we adapted the model and in the process

drastically reduced the computational power of the server. The resultant queueing statistics,

mean and maximum queue length and mean queue waiting time, revealed that relatively

insignificant system resources, such as buffer space, is consumed by the ESRO server.

In our final experiment we compared throughput when the protocol is deployed in a

network environment with five different loss probability settings. In this experiment we

observed variations in the optimal service data unit retransmission setting as the error rate

increased.

98

Chapter 8

Conclusion

8.1 Summary

With enhanced real-time architectural specification abilities and semantic tightening using

profiles, UML 2.0 appears poised to become the dominant specification language used in

real-time modelling and protocol engineering. In the field of protocol performance analysis,

a fair amount of research has been conducted using mature protocol engineering languages,

such as SDL, however this has not been the case with UML 2.0. Consequently, in this

dissertation we have investigated protocol engineering and performance analysis using UML

2.0.

Our primary aim was to develop a prototype performance analysis tool which could

translate from a UML 2.0 protocol specification to an equivalent simulation model by inte-

grating existing tools. With our tool, proSPEX (protocol Software Performance Engineering

using XMI), we have used approaches to performance analysis using both SDL and UML

as a foundation. Performance analysis using both languages was applicable since we have

used UML 2.0 enhanced with the ITU Z.109 profile ”SDL Combined with UML”.

With UML 2.0 introducing many more diagram types that are found in more established

protocol engineering languages such as Estelle, SDL and PROMELA, we found the need

to develop a proSPEX methodology. In this methodology we detailed procedures and lan-

guage features used in protocol design, specification and the specification of non-functional,

or temporal, delay constraints. Our methodology entailed using a combination of class,

architecture and state chart diagrams for protocol specification. Environmental character-

istics, such as network link bandwidth, delay distribution and loss probability, are specified

99

using a collaboration diagram in which a performance scenario is specified. The final step in

our methodology was to integrate Telelogic Tau, our model editor, and Simmcast, a discrete

event simualtion framework. Thus, the proSPEX tool generates quantitatively assessible

simulation models from protocol models specified using Telelogic Tau and the proSPEX

methodology by using the Tau XML model storage format for model interchange.

In the implementation of proSPEX, we found the need to extend the Simmcast sim-

ulation framework in order to be able to generate simulation Java code that represents a

UML 2.0 protocol model as specified using the proSPEX methodology. In the proSPEX

extension to Simmcast, which is effectively a SDL runtime support system, we developed

means of representing finite state machines, SDL Pid expressions, SDL implicit addressing,

the system architecture and additional trace events. The automated translation from a

Tau model to an executable simulation model took part in two phases. In the first phase,

data structures are populated by filtering the Tau XML. In the second phase, these data

structures and a set of text templates are merged in a code generation process, using the

Apache Velocity text templating engine.

We found that the development of the proSPEX filter was severely hampered by a lack of

supporting documentation detailing the syntax and semantics of the Tau XML. This resulted

in a manual process in which we uncovered the meaning of the Tau XML elements using

intuition and trial and error. In order for the realization of the vision [MTMC99] of better

and stable performance analysis tools, that interoperate with commercial SDL/UML 2.0

tools, well-documented interchange standards such as XMI 2.0 will have to be implemented

by vendors.

In order to demonstrate the utility of proSPEX, we applied the proSPEX methodology

and approach to performance evaluation to a wireless e-commerce scenario in which the

Efficient Short Remote Operations (ESRO) protocol is used as a reliable transport protocol.

The ESRO model was parameterized with time-out settings, a service data unit size, network

link characteristics, connector buffer sizes and nodal processing delay parameters. These

experiments showed that the ESRO server was able to deliver the required throughput.

In addition, the experiments showed that with an estimated maximum queue length of 7

packets at the server and a maximum PDU length of 1500 bytes, the largest buffer size

required in the ESRO server would be about 10kB.

In general, we believe proSPEX achieved the objectives initially set for it.

100

8.2 Future Work

A number future developments to the proSPEX tool, semantics time model and methodol-

ogy that would be beneficial in future are listed and discussed below.

1. The proSPEX methodology : in the proSPEX methodology we have used UML class,

architecture and collaboration diagrams. As we know, the primary purpose of these

diagrams is to aid in understanding and unambiguous communication. In the context

of the goals of this dissertation, UML 2.0 architecture diagrams have not offered

significant advantages over SDL architecture diagrams. In future we would recommend

the use of pure SDL (SDL/GR and SDL/PR), as described in the ITU Z.100 standard

and not by a single tool vendor, to describe the architecture and dynamic aspects of

the system and UML to describe static objects and their relationships. This approach

is taken by Pragmadev [Pra04] in their recently released RTDS G3 tool.

2. The proSPEX implementation: in implementing proSPEX we found the need to ex-

tend Simmcast to allow for the representation of various high-level SDL finite state

machine abstractions. In a future version of the tool the mapping to an efficiently

implemented (C, C++) industrial simulation tool, with built-in finite state machine

abstractions, should be considered.

3. Performance analysis tool requirements analysis and industrial case-studies: there is

clearly a need for performance analysis tools that interoperate with industrial mod-

elling tools [MTMC99]. In addition, industrial case studies are required in order to

test important aspects such as whether usability and functionality requirements are

met. Such aspects are not mentioned or considered in most related work in which

SDL is used as the specification language.

101

Appendix A

An Introduction to UML 2.0

In this chapter we consider the diagrams and features of UML 2.0 that are of particu-

lar importance in the field of protocol engineering. We use the Telelogic Tau/Developer

Generation 2.1 tool to visualize the described diagrams where possible.

In Section A.1 and Section A.2, we examine the UML 2.0 diagrams that are particularly

well suited to protocol engineering. We then look at model-driven development in Section

A.3 and lastly XMI 2.0 in Section A.4.

A.1 UML 2.0 Composite Structures

In this section we investigate the enhancements to the UML architectural modelling capabili-

ties. The UML 2.0 composite structures subpackages represent major enhancements to UML

in terms of its architectural specification abilities, which are particularly important[SR03b]

in the real-time domain. The features are primarily derived[Sel03] from both ROOM[SGW94]

(Real-Time Object-Oriented Modelling) and SDL. The composite structures subpackages

of UML 2.0 along with the role of collaborations are listed below.

• InternalStructure subpackage: ”...provides mechanisms for specifying structures

of interconnected elements that are created within an instance of a containing classifier

[class].”[Gro03]

• Ports subpackage: ”...provides mechanisms for isolating a classifier [class] from its

environment.”[Gro03]

102

• Collaborations: A collaboration diagram offers a view of cooperating instances

achieving a joint task, with each instance playing a particular role in the interac-

tion. Connectors between participating instances specify the communication paths

that must exist to enable collaboration.

• Structured Classes subpackage: ”...supports the representation of classes that

may have ports as well as internal structure.”[Gro03]

• Actions subpackage: ”...adds actions that are specific to the features introduced

by composite structures, e.g., the sending of messages via ports.”[Gro03]

We investigate the most important aspects1 of the composite structure packages in this

section, with a focus on active classes throughout.

A.1.1 Active and Passive Classes

The class is the fundamental classifier in the object-oriented paradigm and is specified in

the Kernel package in the UML 2.0 Specification. The set of objects that are of a partic-

ular class can either be passive or active. In essence an object of an active class has its

own thread of control and an object of a passive class is an information store (i.e. used

for describing data structures[LTB98]). The comprehensive OMG definitions[Gro03] are as

follows:

class: A classifier that describes a set of objects that share the same specifications of

features, constraints, and semantics.

active object: An object that may execute its own behavior without requiring method

invocation. This is sometimes referred to as ”the object having its own thread of control.”

The points at which an active object responds to communications from other objects are

determined solely by the behavior of the active object and not by the invoking object. This

implies that an active object is both autonomous and interactive to some degree.

Notationally, an active class is distinguished from a passive class by vertical bars being

present on the side of an active class as shown in Fig. 18.
1See Chapter 9, Composite Structures, of the UML 2.0 Superstructure Specification[Gro03] for compre-

hensive details.

103

Figure 18: Active class notation.

A.1.2 Provided and Required Interfaces

Interfaced-based design has the benefit of both reduced design complexity and giving dis-

tributed teams the ability to work concurrently while using the interface as a contract. In

UML 2.0 an interface is a classifier representing a declaration of a set of public features

and obligations[Gro03]. Interfaces are not instantiable, instead they are either provided or

required by a classifier such as a class. When a class provides an interface it carries out its

obligations to clients of instances of the class. When a class requires an interface it means

that it needs the services specified in the interface in order to perform its function and fulfill

its own obligations to its clients.

Protocol engineers experienced in the use of SDL would be accustomed to signal ex-

change between SDL processes via channels (when the processes are different blocks) or

signalroutes (when processes are in the same block). In addition the direction of signals are

clearly indicated in the SDL architecture diagrams. In UML 2.0 a required interface of an

active class represents the signals it can expect from its environment whilst the provided

interface represents signals it can send to its environment. The environment is either a

container class or peer class, e.g. two peers communicating via a network link. The UML

2.0 architecture diagrams, which hierarchically decompose active classes, show the direc-

tion of signal exchange between the parts of the active class. Hierarchical decomposition is

discussed in Sect. A.1.4.

As can be seen in Fig. 19, an architecture diagram, the notation introduced for a pro-

vided interface is a full-circle lollipop whilst the notation introduced for a required interface

is a semi-circle lollipop. The squares to which the required and provided interfaces are

connected are ports, which we examine next in Sect. A.1.3.

104

Figure 19: UML 2.0 Architecture Diagram.

105

A.1.3 Ports

Ports serve the purpose of being used to group an active class’s related interfaces and also act

as interaction (or connecting) points through which the services of a class can be accessed. In

architectural diagrams different active classes are connected via ports serving as interaction

points. A class with ports has its ports as its sole interaction points, meaning that any

interaction with the class is message based and not via public operations or attributes.

It is important to note that ports have the role of decoupling an active class from

its environment and therefore allow the active class to be defined independently of its

environment. This independence makes the active class reusable in any environment that

obeys the interaction constraints enforced by its ports[Gro03].

In Fig. 19 we see a bi-directional port (service) attached to the Service active class which

has one required interface (I UserToService) and one provided interface (I ServiceToUser).

A port may also be uni-directional and if it has a single provided interface this means that

calls can be sent to the class and return values received. Calls can be sent from a class with

a required interface to another providing the interface and return values received[LTB98].

A.1.4 Internal Structure with Parts and Connectors

In UML 2.0 particular attention has been given to hierarchical decomposition of classes, that

is, the ability to specify the internal structure of classes in a modular fashion. Active classes

can not only have ports and interfaces but also internal structure. An architecture diagram

(called composite structure diagram in UML 2.0) representing the internal structure of an

active class can be defined as an abstract metaclass whose behaviour can be fully or partly

described by a collaboration of owned or referenced instances[Gro03].

The graphic nodes included in architecture diagrams are parts, ports, collaborations

and collaboration instances. An example of an architecture diagram of an active class is

given in Fig.19. Note that the ports of the containing instance’s parts (the collaborating

instances) are linked with connectors. A connector specifies a communication link between

two or more instances. It is important to note that the link could represent an instance of

an association (as specified in class diagrams) or the mere possibility of the instances being

able to communicate. This possibility may be borne out of the linked instances knowing

each other’s identities due to being passed in as parameters, held in variables, created

dynamically, or since the communicating instances are the same instance. In the concrete

106

software which the model represents the link could be realized as a reference or a network

connection. The difference between a connector and association is that a connector specifies

links that exist solely between instances playing the connected parts whereas associations

specify links that exist between any instances of the associated classes[Gro03].

In Fig.19 also note the multiplicities of the parts. Multiplicities specify the number of

instances, both objects and links, that may be created within an instance of the containing

classifier. The instances are either created when the containing class is created or at a later

time.

A.1.5 Behaviour Ports

In UML 2.0 we have a black box view and a white box view of a class. With the black box

view we only see the provided and required interfaces. With the white box view the class’s

implementation is revealed, that is, we see the decomposition of the containing class into

its parts and the connectors joining them, as we saw in Sect. A.1.4. In the black-box view

we want to be able to distinguish between behaviour that is delegated to the class itself

and behaviour that is delegated to its parts. Connectors terminating in a behaviour port

mean that the signals sent to the port are handled by the containing class. Notationally a

behaviour port is represented by a state symbol attached to a square port symbol. Behaviour

ports are particularly common when a state machine represents the behaviour[BK03]. Port

Manager Internal in Figure 20 is a behaviour port.

A.2 UML 2.0 Behaviour Descriptions

A.2.1 Overview

In this section we provide a brief overview of the behavioral diagrams most commonly used

in communication protocol engineering, namely sequence and state machine diagrams. We

also mention the protocol specification abilities that have been introduced in UML 2.0. It

should be noted that most of the features mentioned in this section were not implemented

by any UML tool vendor during the duration of this dissertation2.
2The UML 2.0 tool available during the duration of this thesis was Tau Generation 2.1 which implements

a proprietary UML profile (Tau-RT), as discussed in Section 3.4

107

Figure 20: UML 2.0 behaviour port notation.

108

Interactions

Sequence Diagrams fall under a set of UML 2.0 diagrams called interactions. The Sequence

Diagram, Communication Diagram, Interaction Overview Diagram, Timing Diagram and

Interaction Table are all interactions. In the detailed design phase interactions may be used

to specify inter-process communication, but this is often for understanding purposes. In the

testing phase traces (event occurrence sequences) of system execution can be visualized as

interactions.

Interactions focus on the (asynchronous or synchronous) communications between in-

stances in a collaboration communicating using messages. All interactions occur in the

structural context of the collaborating parts[Sel03]. The reader is encourage to consult the

UML 2.0 Superstructure Specification[Gro03] for further details of interaction diagrams.

State Machine Diagrams

The most significant enhancements to finite state machines (FSM) in terms of new modeling

constructs that have been introduced are listed below.

• Modularized submachines

• State Machine Specialization/redefinition

• State Machine Termination

• Protocol State Machines

The most significant enhancements to notational elements are listed below.

• Action blocks

• State Lists

During this disseration, none of the mentioned UML 2.0 FSM constructs have were

implemented by tool vendors. Telelogic Tau, the model editor used in this dissertation, has

integrated SDL state machines into UML 2.0.

109

A.2.2 Actions

Model-driven development with executable models is at the heart of the Model Driven Ar-

chitecture (MDA) initiative of the OMG. In order to make models executable, actions must

be specified at a level of granularity comparable to most programming languages[LTB98].

As mentioned in Section 3.4 UML is not complete, meaning that it cannot be used directly

as a programming language. In order to use it as a programming language profiles are

needed to tighten the semantic variation points (from which the language derives its flexi-

bility) along with a data model with basic data types. The profile should include an action

syntax in order for users to be able to use the actions included in the profile[LTB98]. The

Tau-RT profile, discussed in Section 3.4 has all of the features mentioned above that turn

UML into a programming language.

The advantages of executable models are:

• Model verification: The correctness of the system can be at the early stages of

development before code is produced.

• Verification and validation technique application: With executable models

techniques such as state space exploration can be used to verify certain functional

properties of the system such as being free from deadlock or livelock.

• Automatic code generation: With the executable model being at a higher level3

than most programming languages it is possible to generate code for a variety of

platforms from the model.

• Performance Analysis: Execution traces can be used to derive performance statis-

tics used to detect performance problems at an early stage of development.

A.3 Model-Driven Development

Although it is desirable for models to be executable one should note that model-driven

development does not imply that the models are executable. Definitions of model-driven

development make it clear that the essential ingredient is having a model as the focus

of the development effort, as the following two quotes show. ”The term model-driven

development implies that a model is at the centre of development, and is used as the basis
3A model is implicitly an abstraction of the real system and therefore at a variably higher level.

110

for application development.”[LTB98]. ”...the primary driving force behind UML 2.0 is

model-driven development, an approach to developing software that shifts the focus of the

development from code to models while automatically maintaining the relationship between

the two”[Sel04].

A.4 XML Metadata Interchange Format 2.0

The XML Metadata Interchange (XMI) Format was originally developed as a standard

vendor-independent way for UML tools to interchange UML models. Certain UML mod-

elling tools, such as Poseidon, save UML models using XMI as their native format while

others, such a Rational Rose, have the ability to save and load XMI models as a foreign

format. Unfortunately incompatibilities between XMI written by different vendors exist

and is partly due to shortcomings[Ste03] in the standard itself. With XMI 2.0, the diagram

interchange format of UML 2.0, the OMG has addressed the short comings of the earlier

XMI standard.

111

Appendix B

Patterns for Protocol System

Architecture

The common parts found in communication protocol system design and resultant implemen-

tation can be described using patterns. Patterns are associated with object-oriented design

and hence can be readily applied and described using SDL or UML. Generally patterns are

described using UML as is done in this section.

Patterns provide common principles for not only designing and implementing new

protocols but also for the general understanding of protocols and their parts. Patterns,

mechanisms and frameworks operate hand-in-hand, as explained by Booch, Jacobson and

Rumbaugh[BRJ98]:

A pattern provides a common solution to a common problem in a given context.

A mechanism is a design pattern that applies to a society of classes. A frame-

work is typically an architectural pattern that provides an extensible template

within a domain.

We use patterns to specify the frameworks that shape communication protocol archi-

tecture. These architectural patterns, or frameworks, are manifested at varying levels of

abstraction and so a stereotyped package representing the framework may include classes,

interfaces, use cases, components, nodes, collaborations and other frameworks[BRJ98]. In

this section we provide a brief overview of three closely related patterns for protocol system

architecture created by J. Parssinen and M. Turunen and detailed in [PT00]1.
1We borrow from [PT00] and the interested reader is urged to consult this more comprehensive paper.

112

The patterns we describe are the Protocol System pattern, the Protocol Entity pattern

and the Protocol Behaviour pattern. The Protocol System pattern models the protocol

system at a general, high level, while the Protocol Entity pattern models the active system

components. Lastly the Protocol Behaviour pattern models communication between the

protocol system components.

The benefits[PT00] of an understanding and application of the three patterns mentioned

in this section are:

• An architecture which is clear and hence readily understandable, consistent and effi-

cient to both implement and maintain.

• The effort-less integration of protocol components produced using different implemen-

tation frameworks.

• Aid in developing protocol implementation tools.

B.1 Communication Protocol Structure

A reference diagram[PT00] which encapsulates the common elements found in protocol

implementations is shown in Figure 21. The diagram has similarities to the ISO Seven

Layer Reference Model in which each layer in the protocol stack solves a different problem

or set of problems. Since the best frameworks are derived from existing architectures which

are proven to work, the similarity to the Reference Model is not surprising. The reference

diagram established the vocabulary used in the patterns described in this section.

B.2 Protocol System Pattern

The Protocol System and Entity patterns model the static parts of a protocol system, that

is the components and their interconnections. The Protocol Systems pattern gives the

highest level view of the components of a protocol system as well as the interfaces to its

environment.

As one can seen in Figure 22, a Protocol System is composed of one or more Protocol

Entities each of which represents a protocol layer or sublayer. The Entity Interfaces define

the allowed incoming and outgoing messages exchanged between Protocol Entities within the

same system. A Protocol System has one or more Environment Interfaces and these act as a

113

Figure 21: Protocol implementation elements

message source for incoming external messages and as a message sink for outgoing messages.

An Environment Interface has Communication Interface and Auxiliary Interface subclasses.

A Communication Interface specifies the messages related to normal communication with

the environment while an Auxiliary Interface specifies test and management messages.

B.3 Protocol Entity Pattern

A Protocol Entity can send and receive messages and has an inner state while doing so.

Each entity has a virtual message path to its peer entity and real message paths to its

adjacent entity or environment as shown in Figure 21.

The Protocol Entity pattern, shown in Figure 23, contains the Protocol Entity, Storage

and Protocol Behaviour. Each Protocol Entity requires (uses) and provides Entity Interfaces

and Peer Interfaces.

The Protocol Entity is a single protocol layer and the Protocol Behaviour, detailed in

the Protocol Behaviour Pattern in Section B.4, is the source of protocol functionality. The

Storage contains all the persistent and non-persistent data of a protocol entity. This data

114

Figure 22: Protocol System Pattern

115

Figure 23: Protocol Entity Pattern

could be divided into communication session specific parts. Two Entities in the same

protocol system communicate via an Entity Interface. The Entity implementing the Entity

Interface interprets Entity messages received from another Protocol Entity and produces

Entity messages sent to another Entity in the same system. Similarly a Peer Interface

specifies the messages that are interpreted when received and sent by Entities in the same

system.

B.4 Protocol Behaviour Pattern

The Protocol Behaviour Pattern can be used to implement entity functionality in a com-

munication protocol system. The communication is either connectionless or connection-

oriented.

116

Figure 24: Protocol Behaviour Pattern

Figure 24 shows the Protocol Behaviour components, that is zero or more Routers, zero

or one Communication Manager and zero or more Communication Sessions.

A Router is used when multiple Communication Sessions can receive messages coming

from a single entity interface. The Router routes messages to the correct Communication

Session or to the Communication Manager. A Communication Manager would mostly, but

not exclusively, be used in connection-oriented protocols in which it would create, control

and terminate Sessions as is required. Communication between peer entities is handled by

Communication Sessions.

There is a distinction between the use of the Protocol Behaviour pattern in the case of

connectionless and connection-oriented protocols. With connectionless protocols the Pro-

tocol Behaviour (see Figure 24) generally contains one Communication Session handling

all communication. The exception to this rule is where the Protocol Entity should be

able to serve multiple simultaneous requests in which each request could take moderately

long. In this case the Protocol Behaviour has a Communication Manager which creates a

Communication Sessions to serve each individual request.

With connection-oriented protocols the Protocol Behaviour generally contains two Routers,

one Communication Manager and zero or more Communication Sessions. One Router is

117

used to route Service Data Units (SDUs) to the correct Protocol Entity user while the other

routes Protocol Data Units (PDUs) to the correct Communication Session.

118

Appendix C

The Efficient Short Remote

Operations Protocol

C.1 Introduction

The Efficient Short Remote Operations Protocol (ESRO) service, specified in RFC 2188

[Ned97], is similar to that provided by Remote Procedure Call (RPC) services. With the

ESRO service and protocol the target network environment is wireless and hence the em-

phasis is on efficiency. ESRO provides a reliable connectionless remote operation service

which sits on top of any datagram (non-reliable and connectionless) transport service, such

as UDP. The ESRO service can be used with either a 2-way or 3-way handshake protocol,

thereby offering varying degrees of efficiency and reliability.

C.2 The ESRO Service Definition

A user of ESRO either assumes to role of operation invoker or operation performer (see

Figure 25) which in turn determines the behaviour and services offered by the two peer

ESRO sublayers. Having received notice of an operation that is to be performed, the

performer user is expected to report the result of the operation or an error. The operation

at the invoker user would either have been successful or have resulted in an error and as a

consequence a result or error reply would be delivered to the performer user. Operations are

generally performed asynchronously although synchronous operations are also supported.

The ESRO service primitives are accessed through an ESRO Service Access Point

119

Figure 25: The ESRO Operation Model.

(ESRO-SAP). These service primitives are the ESROS-INVOKE.request, ESROS-INVOKE-

P.confirm, ESROS-RESULT.request, ESROS-ERROR.request and ESROS-FAILURE.indication

primitives. The sequence diagram in Figure 261 gives an overview of the use of the ESRO

services.

In the event of no errors occurring at the ESRO provider or performer user, the usage

of ESRO would be as follows. Firstly the ESRO Invoker user would, via its ESRO Invoker

SAP, use the ESRO-INVOKE.request service to request a method invocation. The ESRO

Provider would acknowledge receipt of the ESRO-INVOKE.request operation by deliver-

ing a Provider initiated ESRO-INVOKE-P.confirm message2. Once the ESRO protocol

has successfully delivered the data using one or more UDP Packets, the ESRO Provider

would deliver a method invoke indication message using the ESROS-INVOKE.indication

primitive. Once the operation has been successfully executed, the ESRO Performer user

would, via its ESRO Performer SAP, use the ESROS-RESULT.request primitive to request

delivery of the result to the Invoker user. Having received the ESROS-RESULT.request,

the ESRO Performer Provider would deliver the result to the ESRO Invoker Provider. The
1The sequence diagram in Figure 26 was generated by the popular Poseidon Tool by Gentleware AG.

We have used the Poseidon Community Edition, which has the benefits of being freely distributed, storing
diagrams exclusively using XMI 2.0 and saving diagrams in Encapsulated Postscript format.

2The P in ESRO-INVOKE-P.confirm stands for Provider initiated.

120

Figure 26: Sequence Diagram for ESRO Services.

ESRO Invoker Provider would then send an ESROS-RESULT-indication message to the In-

voker User. Finally, the ESRO Performer Provider would send an ESROS-RESULT.confirm

message to the Performer User.

In the event of error (which would occur either at the ESRO Performer User, the

ESRO Provider, or due to network related eventualities) the ESROS-ERROR and ESROS-

FAILURE primitives would be used.

C.3 The ESRO Remote Operations Protocol

The ESRO Services, which we mentioned in the previous section, are realized by the ESROS

protocol. In order to use ESRO Services, the user binds to an ESROS SAP and specifies

either a 2-Way or 3-Way handshake Functional Unit.

The protocol used for transmitting Service Data Units (SDUs) is extremely simple due

121

to its retransmission strategy. When an SDU is segmented into multiple PDUs, the re-

transmission strategy is not applied to individual segments. Instead, the loss of a single

segment results in the retransmission of the entire SDU. The number of SDU retransmis-

sions and the optimal retransmission interval is network dependant and should be based on

network statistics. Further details of the ESRO protocol PDUs and finite state machines

are provided in the ESRO RFC [Ned97].

122

Appendix D

The proSPEX Templates

D.1 The Main Template

The template main.vm is used to generate the simulation main file.

package $packageName;

import arjuna.JavaSim.Distributions.*;

import prospex.*;

import java.util.Vector;

import simmcast.trace.SimmcastTraceGenerator;

import simmcast.stream.FixedStream;

import simmcast.node.NodeVector;

public class $mainClassName {

public static final int UNLIMITED = -1;

/**

* NETWORK and SOFTWARE PATH characterisitics.

**/

static int soft_pathCapacity = UNLIMITED;

123

static double soft_bandwidth = UNLIMITED;

static double soft_lossRate = 0.0;

static FixedStream soft_stream = new FixedStream(0.0);

static int net_pathCapacity = UNLIMITED;

static int net_bandwidth = $bandwidth;

#if($distribLowB && $distribUppB)

static double net_delay_lower_bound = $distribLowB ;

static double net_delay_upper_bound = $distribUppB;

static UniformStream net_stream = new UniformStream(net_delay_lower_bound,

net_delay_upper_bound);

#else

static ${delayDistrib}Stream net_stream = new ${delayDistrib}

Stream($distribMean);

static double net_lossRate = $lossProbab;

#end

public $mainClassName() {

}

public static void main(String args[]) {

try {

/**

* PRE-LIM STEP 1: Create the ProNode classes that are able to call

* the method network.addSoftwareNode

***/

/**

* STEP 1: Create the ProNetwork.

124

***/

ProNetwork network = new ProNetwork("$packageName");

/**

* STEP 1.5 : Create simulation collaboration scenario (replicate what

* simulation description file did).

**/

SimmcastTraceGenerator tracer = new SimmcastTraceGenerator();

network.setTracer(tracer);

tracer.setFile("$traceResultFile");

network.nodes = new NodeVector();

/**

* NOTES: The constructor of extended Node say Manager creates the

* NodeThread.initializeNode() schedules the EventScheduler associated

* with this node NOW.

**/

// Since 2 detected in Collaboration diag, we have 2 copies

// of each.....

#foreach ($nodeTuple in $nodeTuples)

$nodeTuple.NodeClassName $nodeTuple.NodeName = new ${nodeTuple.

NodeClassName}();

network.initializeNode($nodeTuple.NodeName,"${nodeTuple.NodeName}");

${nodeTuple.NodeName}.setNetworkId(network.obtainUnicastAddress());

${nodeTuple.NodeName}.setProNetwork(network);

network.nodes.addNode(${nodeTuple.NodeName});

network.tracer.node(${nodeTuple.NodeName});

125

#end

/**

* Add SOFTWARE paths.......

**/

#foreach ($pathTuple in $softPathTuples)

${pathTuple.SourceNodeName}.addBidirectionalPath(${pathTuple.TargetNodeName},

soft_pathCapacity,soft_bandwidth,soft_stream,soft_lossRate);

#end

/******/

/**

* Add NETWORK paths........

**/

#foreach ($pathTuple in $netPathTuples)

${pathTuple.SourceNodeName}.addBidirectionalPath(${pathTuple.TargetNodeName},

net_pathCapacity,net_bandwidth,net_stream,net_lossRate);

#end

/**

* STEP 2: Add node daemon info to the created ProNetwork.

**/

#foreach ($netArchNode in $netArchNodes)

network.addNetworkArchNode("${netArchNode.ClassName}",${

netArchNode.DaemonBoolean});

#end

126

/**

* STEP 3: Add paths to the created ProNetwork.

***/

#foreach ($netArchLink in $netArchLinks)

network.addNetworkArchLink("${packageName}.${netArchLink.FromClassName}",

"${packageName}.${netArchLink.ToClassName}");

#end

/**

* STEP 3: Add the signals and their associated target classes to

* the network’s SignalTargetHashTable. This information is drawn

* directly from the UML 2.0 required interfaces. Note that if a class

* can receive 2+ signals with the same name, we append the type of the

* signal payload to the signal name (underscore too!).

***/

#foreach ($sigTargTuple in $netSigTargTuples)

network.sigTargetHashT.addSignalTarget("${sigTargTuple.SignalName}","

${packageName}.${sigTargTuple.TargetClassName}");

#end

/**

* STEP 5: Run the simulation!

***/

network.runSimulation("network");

System.out.println("Done!");

} catch (Exception e) {

System.err.println("Caught Exception: " + e.getMessage() +

e.toString());

127

e.printStackTrace();

}

}

}

D.2 The Node Template

The template node.vm is used to generate the Node classes. Each UML 2.0 active class is

mapped to a Node and associated NodeThread class. The NodeThread class contains the

protocol logic and is generated by the state machine template.

/*

* @(#)${className}.java

*

*/

package $packageName;

import prospex.ProNode;

public class $className extends ProNode{

/**

* Thread that runs the server logic.

*/

${className}Thread thr;

public ${className}() {

thr = new ${className}Thread(this);

}

public void begin() {

thr.launch();

128

}

}

D.3 The Signal Parameter Class Template

The template signalparam.vm is used to generate classes that form the payload of signals.

/*

* @(#)${signalPayload.ClassName}.java

*

*/

package $packageName;

class ${signalPayload.ClassName} #if ($signalPayload.Parent != ""

) extends $signalPayload.Parent #end {

#foreach ($attrib in $signalPayload.Attribs)

public $attrib.AttribType $attrib.Name;

#end

#if ($signalPayload.Networked)

public int length;

#end

public ${signalPayload.ClassName}() {

#foreach ($attrib in $signalPayload.Attribs)

#if ($attrib.DefaultValue != "")

$attrib.Name = $attrib.DefaultValue;

#end

#end

}

129

/*****************************

*

* GETTERS / SETTERS

*

******************************/

#foreach ($attrib in $signalPayload.Attribs)

public $attrib.AttribType get${attrib.Name}() {

return $attrib.Name;

}

public void set${attrib.Name}($attrib.AttribType ${attrib.Name}_) {

$attrib.Name = ${attrib.Name}_;

}

#end

#if ($signalPayload.Networked)

public int getlength() {

return length;

}

public void setlength(int length_) {

length = length_;

}

#end

}

D.4 The State Machine Template

The template statemachine.vm is used to generate state machines.

/*

130

* @(#)${className}Thread.java

*

*/

package esro_invoke;

import simmcast.node.*; import simmcast.network.*; import

java.util.*; import java.text.*; import prospex.*;

// NB: Purely due to use of addSoftwareNode

import java.lang.reflect.*;

/**

* Included to solve division prob.

**/

import java.lang.Math;

class ${className}Thread extends NodeThread {

${className} myself;

/***

*

* STATE MACHINE CONTROL VARIABLES

*

***/

private int state = $initialStateNumb;

private int previous_state = 0;

private int event = 0;

#if ($currentSMDat.InitialTask)

private static final int STATE_0 = 0;

131

#end

#foreach ($state in $states)

private static final int STATE_${state.Name} = ${state.StrNumber};

#end

#foreach ($signal in $currentSMDat.Events)

private static final int EVENT${signal.EventNumber}_${signal.Name}

= ${signal.EventNumber};

#end

$currentSMDat.Daemon

#if ($currentSMDat.Daemon == "false")

/* The variable done is used in non-daemon active classes.

* It tells the state machine

* when to stop waiting for input.

**/

boolean done = false;

#end

/* Need a generic time-out to be used in onTimer.

**/

PacketType genericTimeOutPacketType = new PacketType("genericTimeOut");

/***

*

* EXPLICIT STATE MACHINE VARIABLES (FROM UML 2.0 SPEC)

*

**/

/* IMPORTANT: Code generator correlates variable names (below) and variable

* types in order

* to generate the.....

132

* 1. event variable names

* 2. PacketTypes objects

* 3. parameters for this.myself.getSignalNetIdTarget("PeerDatagram_Invoke_PDU")

*

* proSPEX rule: variables that are classes are instantiated here, when declared.

**/

#* NB: NO timers.... *#

#foreach ($attrib in $currentSMDat.Variables)

#if ($attrib.IsTimer == false)

#if ($attrib.IsArray)

$attrib.getAttribType() [] $arrib.getName() = new $attrib.getAttribType()

[${attrib.DefaultValue}];

#elseif ($attrib.DeclaredNew)

#if ($attrib.DefaultValue) ## true if not null

$attrib.getAttribType() $attrib.getName() = new $attrib.getAttribType()

(${attrib.DefaultValue});

#else

$attrib.getAttribType() $attrib.getName() = new $attrib.getAttribType() ();

#end

#else

#if ($attrib.DefaultValue) ## true if not null

$attrib.getAttribType() $attrib.getName() = ${attrib.DefaultValue};

#else

$attrib.getAttribType() $attrib.getName();

#end

#end

#end

#end

/***

*

* IMPLICIT STATE MACHINE VARIABLES (FROM SDL)

133

*

***/

int source = 0; // our own address used when creating packets.

int sender = 0; // the address of the node/process that sent the last signal.

int offspring = 0; // the address of the latest child node that this class

// created.

/**

*

* IMPLICIT STATE MACHINE VARIABLES (FROM DIAGRAM)

*

***/

/* NOTE: The names below are derived from the interfaces.

* If there are two signals with the same name we simply

* append the type of the signal payload to the name to

* make it unique.

**/

/* RECEIVING:

**/

#foreach ($signal in $currentSMDat.getEvents())

PacketType $signal.getName() = new PacketType("${signal.getName()}");

#end

/* SENDING:

**/

#foreach ($signal in $currentSMDat.getSendSignalsHashT())

PacketType $signal.getName() = new PacketType("${signal.getName()}");

134

#end

/**

*

* proSPEX variables

*

**/

/* NOTE: "length" is a field that is cumpolsory for classes that form

* the payload of packets traversing network links, it is used when creating

* the Simmcast Packets before they are sent.

* By implication proSPEX must keep track of whether

* a signal travels across network links or not!!! If a Packet does

* not cross network links its length is set to SOFTWARE_PACKET_LEN

**/

private static final int SOFTWARE_PACKET_LEN = 0;

/**

* VARIABLE END

**/

public ${className}Thread(Node node_) {

super(node_);

myself = (${className}) node_;

daemon = ${daemon};

}

/***/

public void execute() throws TerminationException {

135

setName("${className}Thread " + node.getName());

DecimalFormat f2d = new DecimalFormat("0000");

System.out.println("Executing ${className} thread " +

node.getName() + ", node " + node.getNetworkId());

source = myself.getNetworkId(); // our own address used when creating packets

/**

*

* START STATE MACHINE CONTROL

*

**/

while (done == false) {

switch (state) {

#if ($currentSMDat.InitialTask)

case STATE_0: {

/* A call to initialStateActions can only appear in the transition

* to the initial state. Such a call only occurs if actions are

* taken BEFORE we enter the initial state. It is then possible

* to wait for signals/Events in the initial state.

**/

previous_state = state;

state = initialStateActions();

}

break;

#end

#foreach ($state in $currentSMDat.getStates())

136

case STATE_${state.getName()}: {

// determine what the next input signal/packet is....

Event event = getInputSignal();

switch(event.getType()) {

#foreach ($signal in $state.getAssociatedEventSignals())

case EVENT${signal.getEventNumber()}_${signal.getName()}:

previous_state = state;

state = processEvent${signal.

getStrEventProcessingNumber()}_${signal.getName()}(event);

break;

#end

default:

this.myself.network.tracer.signal_discard(

event.getPacket(),this.state);

}

}

break;

#end

default: {

throw new StateMachineException("There is

no default state.");

}

} // switch

/* Here we have a successful transition from one state to another.

137

* We record this in the trace.

**/

this.myself.network.tracer.state_transition(this.myself,

previous_state,state);

} // while(true)

System.out.println("Session is DONE!");

/***

*

* END STATE MACHINE CONTROL

*

***/

}

/**

* Blocks waiting for a signal, once it receives something it checks what

* type of signal it is, the type of the signal determines what EVENT is

* returned. It is possible for a state machine to receive a signal in a

* state that it cannot process in that state, such signals are discarded

* (ala SDL semantics). These semantics are implemented in the state machine

* control in function "execute" by doing nothing by default (when unexpected

* signal arrives) in each state.

**/

Event getInputSignal() throws TerminationException, StateMachineException {

Packet packet = receive();

// Set the SDL variable....

138

sender = packet.getSource();

System.out.println(packet.getType().toString());

/* The packet that we receive here could be a time-out packet. In which case

* we would have a generic time-out packet. The object contents of the packet

* would tell us exactly what type of time-out occurred.

**/

/**

* NOTE: The Packet_Type(s) used when sending packets in all active class

* threads must be correlated with the text in this getInputSignal

* function.

**/

#set($counter = 0)

#foreach ($signal in $currentSMDat.Events)

#if ($signal.getIsTimer())

#if ($counter == 0)

if (packet.getType().equals((Object)genericTimeOutPacketType)) {

/*

* We know that some time-out occurred. But we need to create an event

* letting the state machine control know exactly the type of the time-out

* occurred. This information is contained as object payload (of type String)

* of the received packet. This String must match with one of the PacketType

* variable of this class.

**/

String theRealType = (String)packet.getData();

Event returnMe = null;

139

/*

* TODO: Fill in the time-out options below!

**/

if (theRealType.compareTo("${signal.getName()}") == 0) {

/* Passing the packet argument as null, since it has served its purpose.

**/

returnMe = new Event(null, EVENT${signal.getEventNumber()}_${

signal.getName()});

}

#else

else if (theRealType.compareTo("${signal.getName()}") == 0) {

returnMe = new Event(null,EVENT${signal.getEventNumber()}_${

signal.getName()});

}

#end

#set($counter = $counter + 1)

#end

#end

#if($counter > 0)

else {

}

return returnMe;

}

#end

#foreach ($signall in $currentSMDat.Events)

#if ($signall.getIsTimer() == false)

140

#if ($counter == 0)

if (packet.getType().equals((Object)${signall.getName()})) {

Event returnMe = new Event(packet,EVENT${signall.

getEventNumber()}_${signall.getName()});

return returnMe;

}

#set($counter = $counter + 1)

#else

else if (packet.getType().equals((Object)${

signall.getName()})) {

Event returnMe = new Event(packet,EVENT${signall.

getEventNumber()}_${signall.getName()});

return returnMe;

}

#end

#end

#end

#if($counter != 0)

else {

this.myself.network.tracer.signal_discard(packet,this.state);

/**

* We received a bogus signal and reported it. Now we must

* return a valid Event, so we call the method we are in again

**/

141

return getInputSignal();

}

#end

}

public void onTimer(Object message_) {

this.myself.network.tracer.time_out(myself,this.state,

message_.toString());

/*

* When onTimer is called, this thread must be blocking waiting

* to receive a packet. We want to stop it from blocking by magically

* inserting a TIMEOUT packet with a particular name into this node’s

* RQ......see EventScheduler.manageEvent

*/

/* 1. ADD Packet to Node’s receiverQueue.

**/

// send a time-out Packet to myself...

int destination = source;

/* The message_ contains a String telling exactly which type of time-out

* occurred.

**/

Packet timeOut = new Packet(source, destination,

genericTimeOutPacketType,0, message_);

// the idea for using the code below comes from EventScheduler.manageEvent

// where its dealing with an ArrivalEventItem

142

myself.receiverQueue.enqueue(timeOut);

/* 2. UNBLOCK waiting NodeThreads.

**/

Iterator iter = myself.scheduler.waitingList.iterator();

while (iter.hasNext())

((NodeThread)iter.next()).unblock();

/* 3. Clear the waiting list.

**/

myself.scheduler.waitingList.clear();

}

/***

*

* END STATE MACHINE CONTROL Functions

*

***/

/***

*

* EVENT Processing Functions

*

**/

#foreach ($state in $currentSMDat.getStates())

#foreach ($transition in $state.getTransitions())

143

#set($startState = ${transition.getStartState()})

#set($eventSig = ${transition.getEventSig()})

/* Processed in State: STATE_${startState.getName()}

* Next state: ?

**/

public int processEvent${eventSig.getStrEventProcessingNumber()}_${

eventSig.getName()}(Event event_) throws NodeNotFoundException,

proSPEXUsageException,

TerminationException,

ProNetworkSetupException {

/* Must set the state at end of function...

**/

int nextState = -1;

#* Need to put parameters in place...first get the type of the signal,

* ie is it a timer?

*#

#foreach ($param in ${eventSig.getEventParameters()})

We have param: $param

#set($attrib = ${transition.getAttrib($param)})

${attrib.getType()}

#end

/*

* TRANSITION CODE GOES HERE.

*/

/* Must do....

**/

nextState = ?;

return nextState;

}

144

#end

#end

/* Processed in State: STATE_Start_STA01

* Next state: ?

**/

public int processEvent5_invokReqPeer_Seg_Invoke_PDU(Event event_) throws

NodeNotFoundException,

proSPEXUsageException,

TerminationException,

ProNetworkSetupException {

/* Must set the state at end of function...

**/

int nextState = -1;

Packet receivedPacket = event_.getPacket();

Seg_Invoke_PDU segInvPDU = (Seg_Invoke_PDU)receivedPacket.getData();

/***/

/*

* TRANSITION CODE GOES HERE.

*/

/***/

/* Must do....

**/

nextState = STATE_Start_STA01;

return nextState;

}

145

}

146

Bibliography

[Ari] L. B. Arief. A Framework for Supporting Automatic Simulation Generation

from Design. PhD thesis, University of Newcastle Upon Tyne.

[BCNN01] J. Banks, J.S. Carson, B.L. Nelson, and D. M. Nicol. Discrete-Event System

Simulation. Prentice Hall, 2001.

[BD02] F. Babich and L. Deotto. Formal methods for specification and analysis of com-

munication protocols. IEEE Communications Surveys and Tutorials, 4(1):2–

19, September 2002.

[BDM02] S Bernardi, S Donatelli, and J Merseguer. From uml sequence diagrams and

statecharts to analysable petri net models. In Proceedings of the Third In-

ternational Workshop on Software and Performance, pages 35–45, New York,

USA, 2002. ACM Press.

[Bjo02] M Bjorkander. Graphical programming using uml and sdl. IEEE Computer,

33(12):17–22, December 2002.

[BK03] Morgan Bjorkander and Cris Kobryn. Architecting systems with uml 2.0. IEEE

Software, pages 57–60, August 2003.

[BMSK95] M. Butow, M. Mestern, C. Schapiro, and P.S. Kritzinger. Sdl performance

evaluation of concurrent systems. Technical report, Department of Computer

Science, University of Cape Town, 1995.

[BMSK96] M. Butow, M. Mestern, C. Schapiro, and P.S. Kritzinger. Performance mod-

elling with the formal specification language sdl. In IFIP TC6/6.1 Interna-

tional Conference on Formal Description Techniques IX / Protocol Specifica-

tion, Testing and Verification XVI, volume 69, pages 213–228. Kluwer, 1996.

147

[BRJ98] Grady Booch, Jim Rumbaugh, and Ivar Jacobson. The Unified Modeling Lan-

guage User Guide. Addison-Wesley, 1998.

[CCS03] J. Hillston M. Prowse C. Canevet, S. Gilmore and P. Stevens. Performance

modelling with uml and stochastic process algebras. In IEE Proceedings: Com-

puters and Digital Techniques, pages 107–120. IEE, 2003.

[CLW02] A. Klemm M. Lohmann C. Lindemann, A. Thummler and O. P. Waldhorst.

Performance analysis of time-enhanced uml diagrams based on stochastic pro-

cesses. In Proceedings of the third international workshop on Software and

performance, pages 25–34. ACM Press, 2002.

[CM00] V. Cortellessa and R. Mirandola. Deriving a queueing network based perfor-

mance model from uml diagrams. In Proceedings of the second international

workshop on Software and performance, pages 58–70. ACM Press, 2000.

[Con00] International Engineering Consortium. Specification and description language

(sdl). http://www.iec.org/online/tutorials/sdl/index.html, 2000.

[CP03] R. Chakravorty and I. Pratt. Practical experience with http and tcp over gprs.

ACM Mobile Computing and Communications Review), 1(2), 2003.

[CS90] A. Chung and D. Sidhu. Experience with an estelle development system. In

Conference proceedings on Formal methods in software development, pages 8–

17. ACM Press, 1990.

[DMS03] D.W. Chadwick D.P. Mundy and A. Smith. Comparing the performance of

abstract syntax notation one (asn.1) vs extensible markup language (xml). In

Proceedings of the Terena Networking Conference, 2003.

[Dol03] Laurent Doldi. UML 2 Illustrated. TMSO, 2003.

[Dor02] D. Dori. Why significant uml change is unlikely. Communications of the ACM,

45(1):82–85, January 2002.

[Dou03] B.P. Douglass. Rhapsody for system architecture - better architecture with

the uml. I-Logix Online White Paper, July 2003.

148

[dVHVZ96] N. de. Villiers, C. Henning, C. Vermeulen, and J. Zurcher. Sdl performance

evaluation of concurrent systems 2.0. Technical report, Department of Com-

puter Science, University of Cape Town, 1996.

[ea00] M.A. Fecko et al. A success story of formal description techniques: Estelle

specification and test generation for mil-std 188-220. The Int’l Journal for the

Comp. and Telecomm. Industry, 23(12):1196–1213, 2000.

[fS03] International Organization for Standardization. Iso 8583-1:2003 financial

transaction card originated messages. ISO Online Document, June 2003.

[GB04] M. Ghanderi and R. Boutaba. Mobility impact on data service performance

in gprs systems. http://itpapers.zdnet.com, 2004.

[GO03] S. Graf and I. Ober. A real-time profile for uml and how to adapt it to sdl.

In SDL 2003: System Design, 11th International SDL Forum, pages 55–57.

Springer, 2003.

[Gra02] S. Graf. Expression of time and duration constraints in sdl. In Proceedings of

the Second IEEE Sensor Array and Multichannel Signal Processing Workshop,

pages 1–16. IEEE, 2002.

[Gro02] Object Management Group. Uml profile for schedulability, performance, and

time specification. Object Management Group Online Publication, 2002.

[Gro03] Object Management Group. Uml 2.0 superstructure specification. Object

Management Group Online Publication, August 2003.

[HBR00] William Harrison, Charles Barton, and Mukund Raghavachari. Mapping uml

designs to java. In Proceedings of the OOPSLA 2000 Conference, pages 178–

188, 2000.

[Her03] J Herrington. Code Generation in Action. Manning, 2003.

[Hil01] J. Hillston. Cs4 (and msc) modelling and simulation course notes.

http://www.dcs.ed.ac.uk, 2001.

[Hoe00] F Hoeben. Using uml models for performance calculation. In Proceedings of

the Second International Workshop on Software and performance, pages 77–82.

ACM Press, 2000.

149

[Hol91] G Holzmann. Design and Validation of Computer Protocols. Prentice Hall,

1991.

[Inc98] Hyperformix Inc. Why simulate. Capacity Management Review, 36(2), Febru-

ary 1998.

[JPT00] J. Heinonen T. Oy J. Prssinen, N. von Knorring and M. Turunen. Uml for

protocol engineering - extensions and experiences. In Proceedings of the Tech-

nology of Object-Oriented Languages and Systems (TOOLS 33), page 82. IEEE

Computer Society, 2000.

[Kob02] Chris Kobryn. Will uml 2.0 be agile or awkward? Communications of the

ACM, 45(1):107–110, January 2002.

[Lit04] M.C. Little. Javasim user guide, public release 0.3. http://javasim.ncl.ac.uk/,

June 2004.

[LQV01a] L Lavazza, G Quaroni, and G Venturelli. Combining uml and formal notations

for modelling real-time systems. In Proceedings of the 8th European Software

Engineering Conference, pages 196–206, New York, USA, 2001. ACM Press.

[LQV01b] Luigi Lavazza, Gabriele Quaroni, and Matteo Venturelli. Combining uml and

formal notations for modelling real-time systems. In Proceedings of the 8th

European software engineering conference held jointly with 9th ACM SIGSOFT

international symposium on Foundations of software engineering, pages 196–

206. ACM Press, 2001.

[LTB98] Sari Leppanen, Marrku Turunen, and Morgan Bjorkander. Model based design

of communicating systems. Technical report, Nokia, 1998.

[Mal99] M. Malek. Perfsdl: Interface to protocol performance analysis by means of

simulation. In Proceedings of SDL Forum 99, 1999.

[MB02] H Muhammad and M Barcellos. Simulating group communication protocols

through an object-oriented framework. In Proceedings of the 35th Annual

Simulation Symposium, pages 14–18, San Diego (New York), 2002. IEEE.

150

[MC01] W E McUmber and B H C Cheng. A general framework for formalizing uml

with formal languages. In Proceedings of the 23rd international conference on

Software engineering, pages 433–442. IEEE Computer Society, 2001.

[MC03] J. Merseguer and J. Campos. Exploring roles for the uml diagrams in software

performance engineering. In Proceedings of the 2003 International Confer-

ence on Software Engineering Research and Practice (SERP’03), pages 43–47.

CSREA Press, 2003.

[MDMC96] J. Hintelmann M. Diefenbruch and B. Muller-Clostermann. Quest: Perfor-

mance evaluation of sdl systems. In IFIP TC6/6.1 International Conference

on Formal Description Techniques IX / Protocol Specification, Testing and

Verification XVI, volume 69, pages 229–244. Kluwer, 1996.

[Mei02] A. Meisingset. Summary of the workshop on use of description techniques.

http://www.itu.int/ITU-T/worksem/techniques/summary.html, 2002.

[MGS+00] V. Medina, I. Gmez, G. Snchez, A. Barbancho, and S. Martn. Using pro-

tocol engineering techniques to improve telecontrol protocol performance. In

IASTED International Conference on POWER AND ENERGY SYSTEMS,

2000.

[MHSZ96] J. Martins, J.P. Hubaux, T. Saydam, and S. Znaty. Integrating performance

evaluation and formal specification. In Proceedings of IEEE ICC ’96, pages

1803–1807. IEEE Press, 1996.

[Mic88] Sun Microsystems. Rfc 1050 - rpc: Remote procedure call protocol specifica-

tion. http://www.faqs.org, April 1988.

[Mic04] Sun Microsystems. Java remote method invocation specification.

http://java.sun.com, 2004.

[Mil02] J. Miller. What uml should be. Communications of the ACM, 45(1):67–69,

January 2002.

[MP00] B. Moller-Pedersen. Sdl combined with uml. In Telektronikk 4.2000, Languages

for Telecommunication Applications, 2000.

151

[MTMC99] S Mitschele-Thiel and B Mller-Clostermann. Performance engineering of

sdl/msc systems. Computer Networks, 31(17):1801–1815, June 1999.

[Ned97] AT&T & Neda. At&t & neda’s efficient short remote operations (esro) protocol

specification version 1.2. http://www.faqs.org, 1997.

[oSC04a] Information Sciences Institute The University of Southern California.

http://www.isi.edu/nsnam/ns/ns-research.html. Research About and Using

NS, 2004.

[oSC04b] Information Sciences Institute The University of Southern California. The

network simulator - ns-2. http://www.isi.edu/nsnam/ns/, 2004.

[Pra04] Pragmadev. Pragmadev - real time development tools.

http://www.pragmadev.com, 2004.

[Pro04] The Apache Jakarta Project. The apache jakarta project: Velocity.

http://jakarta.apache.org/velocity/, 2004.

[PT00] J Parssinen and J Turunen. Patterns for protocol system architecture. In

Pattern Languages of Programs (PLoP) Conference, 2000.

[RCP02] A. Clark R. Chakravorty and I. Pratt. Practical experience with tcp over gprs.

In Proceedings of the IEEE Global Communications Conference, 2002.

[RHK02] M.J. Smith R.P. Hopkins and P.J.B. King. Two approaches to integrating uml

and performance models. In Proceedings of the third international workshop

on Software and performance, pages 91–92. ACM Press, 2002.

[Rou01] Jean-Luc Roux. Sdl performance analysis with objectgeode.

http://www.telelogic.com, 2001.

[Ruy02] T.C. Ruys. Spin beginners’ tutorial. http://spinroot.com/spin/Man/, 2002.

[Sal96] K. Saleh. Synthesis of communications protocols: An annotated bibliogra-

phy. ACM SIGCOMM Computer Communication Review, 26(5):40–59, Octo-

ber 1996.

152

[SBD89] P. Dembinski S. Budkowski and M. Diaz. Iso standardized description

technique estelle. www-lor.int-evry.fr/idemcop/uk/ est-lang/download/short-

estelle-tutorial.pdf, 1989.

[Sch01] H. Schwetman. Csim19: A powerful tool for building system models. In

Proceedings of the 2001 Winter Simulation Conference, pages 250–255. IEEE

Computer Society, 2001.

[Sel03] Bran Selic. Brass bubbles: An overview of uml 2.0 (and mda).

Object Technology Slovakia (OTS) 2003 Presentation (http://lisa.uni-

mb.si/cot/ots2003/predkonferenca), June 2003.

[Sel04] Bran Selic. Uml 2.0: Exploiting abstraction and automation. SDTimes Website

(sdtimes.com), February 2004.

[SGW94] Bran Selic, G. Gullekson, and P.T. Ward. Real-Time Object-Oriented Model-

ing. John Wiley & Sons, 1994.

[Sof04] Mesquite Software. Csim19. http://www.mesquite.com, 2004.

[Spi97] SDL* - An Annotated Specification Language for Engineering multimedia Com-

munication Systems, 1997.

[spi04] spinroot.com. On-the-fly, ltl model checking with spin. http://spinroot.com,

2004.

[SR03a] B. Selic and J. Rumbaugh. Using uml for modeling complex real-time systems.

IBM Rational Whitepaper (http://www.rational.com), July 2003.

[SR03b] Bran Selic and Jim Rumbaugh. Using uml for modeling complex real-time

systems. IBM Rational Whitepaper (http://www.rational.com), July 2003.

[Ste98] M. Steppler. Performance analysis of communication systems formally specified

in sdl. In Proceedings of the First International Workshop on Software and

Performance (WOSP98), pages 49–62. ACM Press, 1998.

[Ste03] P Stevens. Small-scale xmi programming: a revolution in uml tool use? In

Proceedings of the workshop on XML Software Engineering 2001, 2003.

153

[SW02] C U Smith and L G Williams. Performance Solutions: A Practical Guide to

Creating Responsive, Scalable Software. Addison-Wesley, 2002.

[Tec04] OPNET Technologies. Opnet modeler. http://www.opnet.com, 2004.

[Tel03] Telelogic. Introduction to telelogic tau 2.1. Help Files, 2003.

[TFKRB98] Justin Templemore-Finlayson, Pieter S. Kritzinger, Jean-Luc Raffy, and

Stanislaw Budkowski. A graphical representation and prototype editor for

the formal description technique estelle. In Proceedings of the FORTE 1998

conference, pages 37–55, 1998.

[Var04] A. Varga. Omnet++ community site and omnet++ version 2.3 user manual.

http://www.omnetpp.org, 2004.

[vBB99] Jilles van Burp and Jan Bosch. On the implementation of finite state machines.

In Proceedings of the IASTED International Conference, pages 1–7, 1999.

154

	Introduction
	Problem Definition and Motivation
	The proSPEX methodology and approach to performance evaluation
	Project Aims
	Project Assumptions and Limitations
	Own Contribution
	Dissertation Outline

	Protocol Performance Engineering with Formal Description Techniques
	Introduction
	Estelle
	SDL
	PROMELA
	UML
	Performance Analysis using SDL
	Time in SDL-92
	Approaches to General SDL Performance Modelling Issues
	SPECS
	ObjectGEODE
	SPEET
	QUEST
	SDL/OPNET
	SDL*
	Timed SDL
	PerfSDL

	Summary

	Performance Engineering with UML
	Introduction
	UML 1.x Shortcomings
	Approaches to Mapping from UML models to Performance Models
	Formalizing UML 2.0 for Automated Communication Software Analyis
	The UML Profile for Schedulability, Performance and Time Specification
	Resource Modelling
	Performance Modelling
	The Role of XMI in UML-RT

	Summary

	Simulation to Predict Communication System Performance
	Introduction
	Motivation
	Using Process-Based Discrete Event Simulation to Model Protocol Execution
	Model Validation and Verification
	Network Simulation Package Review
	Requirements
	Commercial Packages
	Open-source Packages
	Network Simulation Package Selection

	Summary

	A Methodology for Protocol Performance Engineering with UML 2.0
	Introduction
	The proSPEX Methodology
	The proSPEX Semantic Time Model
	The proSPEX Tool Architecture
	An Overview of Simmcast
	Extensions Needed to Simmcast

	Summary

	The proSPEX Implementation
	Introduction
	Mapping from Telelogic UML 2.0 to a Simulation Model with the proSPEX Extension to Simmcast
	Removal of the Simulation Description File
	Architecture Representation and Specification
	SDL Pid Expression Representation and Implicit Addressing Representation
	Finite State Machine Representation
	Additional Trace Events

	Translating from Tau XML to proSPEX
	A Code Generation Example
	The proSPEX Tau Filter
	The proSPEX Code Generator
	Graphical User Interface

	Summary and Conclusion

	Performance Analysis Case-Study
	Introduction
	Experiment Specification
	Experiment Scenario: Wireless E-Commerce

	Model Parameters
	Processing Delay Parameters
	Network Parameters
	Workload Parameters

	Parameter Summary
	The Experiments
	Conclusion

	Conclusion
	Summary
	Future Work

	An Introduction to UML 2.0
	UML 2.0 Composite Structures
	Active and Passive Classes
	Provided and Required Interfaces
	Ports
	Internal Structure with Parts and Connectors
	Behaviour Ports

	UML 2.0 Behaviour Descriptions
	Overview
	Actions

	Model-Driven Development
	XML Metadata Interchange Format 2.0

	Patterns for Protocol System Architecture
	Communication Protocol Structure
	Protocol System Pattern
	Protocol Entity Pattern
	Protocol Behaviour Pattern

	The Efficient Short Remote Operations Protocol
	Introduction
	The ESRO Service Definition
	The ESRO Remote Operations Protocol

	The proSPEX Templates
	The Main Template
	The Node Template
	The Signal Parameter Class Template
	The State Machine Template

	Bibliography

