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Abstract
We present a method for animating herds that automatically tunes a microscopic herd model based on a short video clip of real
animals. Our method handles videos with dense herds, where individual animal motion cannot be separated out. Our contribution
is a novel framework for extracting macroscopic herd behaviour from such video clips, and then deriving the microscopic agent
parameters that best match this behaviour. To support this learning process, we extend standard agent models to provide a
separation between leaders and followers, better match the occlusion and field-of-view limitations of real animals, support
differentiable parameter optimization and improve authoring control. We validate the method by showing that once optimized,
the social force and perception parameters of the resulting herd model are accurate enough to predict subsequent frames in the
video, even for macroscopic properties not directly incorporated in the optimization process. Furthermore, the extracted herding
characteristics can be applied to any terrain with a palette and region-painting approach that generalizes to different herd sizes
and leader trajectories. This enables the authoring of herd animations in new environments while preserving learned behaviour.

Keywords: animation, behavioural animation

CCS Concepts: • Computing methodologies → Simulation by animation; Physical simulation;

1. Introduction

Simulating the collective motion of herds, packs, schools and
swarms of animals and insects has a long history in biol-
ogy [GLR96], where it is used to conduct in silico experiments on
animal perception and behaviour, physics [VZ12], where it is used
to explore theories of emergence both within and beyond the animal
domain, and computer graphics [Rey87], where it is applied to ani-
mate animal groupings in film, games and virtual environments. In
these domains, the most common strategy is to simulate individual
members using a ‘microscopic’ agent model, such as Boids [Rey87,
R*99] or the Social Force Model [LJ14], designed to mimic the core
behaviours of cohesion, alignment and collision avoidance exhib-
ited by real animals. Collective behaviour then arises as an emergent
‘macroscopic’ property of the interaction between individual agents
and their environment.

Unfortunately, replicating real animal behaviour using agent
models invariably requires careful tuning, based on a deep under-
standing of the model parameters and their second-order effects
on the simulation. One way to circumvent this often lengthy and
frustrating trial-and-error process would be to automatically derive
model parameters from real motion data [LWPCL15].

An obvious route to achieving this is to extract the position
and velocity of individual animals from video frames and then
use inverse differential optimization to find agent parameters that
induce matching herd behaviour, as in the work of Wolinski
et al. [WGO*14]. However, this is both computationally costly, and
made difficult by a lack of accurate data on animal behaviour. Given
that very few curated datasets exist compared to the large number
of species moving in herds, our idea is to work from accessible non-
curated video footage. However, this is again challenging and error
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prone because of the hundreds of individuals in a typical herd com-
bined with the hundreds of frames in even relatively short video
clips. In addition, animals in a herd often move shoulder to shoul-
der making them difficult to distinguish.

In this work, we present a solution for learning microscopic agent
models from video clips of herds, which is robust to dense herds
where individual animals cannot be distinguished. We achieve this
by extracting macroscopic gridded density and velocity data from
the videos, using colour matching and dense optical flow. We as-
sume video shot from an aerial perspective, typically using a drone,
and compensate for camera motion using inter-frame region track-
ing to establish a fixed coordinate system.

The extracted density and velocity fields are used as the basis for
Stochastic Gradient Descent optimization of the parameters of a mi-
croscopic herd model, loosely inspired by Boids [Rey87]. We found
that changes to the basic alignment, cohesion and avoidance rules
of Boids were necessary to improve differentiability and align the
agent’s perception more closely with real herding animals. In ad-
dition, we distinguish between leader and follower behaviour, en-
abling animals to change their role over time, depending on the ar-
rangement of their perceived neighbours. While a follower’s direc-
tion of motion is computed from interaction forces, we introduce a
new, stochastic model for their speed of motion, which is a function
of local density and can be independently learnt from a video clip.

Once extracted, the herd parameters can be transferred to a new
setting with different environmental obstacles, herd size and max-
imum speed, and with different routing for leaders (which can be
painted onto the terrain as a navigation field). When generating a
new animation, the herd model preserves the local dynamic dis-
tribution patterns learnt from the video. To further support author-
ing, behaviour brushes are provided, enabling users to paint specific
learnt behaviour on different parts of the terrain. In this way, the
herd can be directed to transition between high-level patterns, such
as milling, swarming and schooling, as required.

To summarize, our contributions are as follows:

1. A framework for robustly extracting microscopic herd be-
haviours from short video clips, by matching macroscopic ve-
locity and density fields.

2. A novel microscopic herd model, supporting differentiable opti-
mization, which distinguishes between leader and follower dy-
namics, untangles speed from direction of motion and better
aligns the forces driving the latter with actual animal percep-
tion.

3. Support for authoring new herd animations, directed using a
navigation field for leaders and the learnt herd dynamics for fol-
lowers.

2. Related Work

Animal herds generate visually compelling movement pat-
terns [PGM14, PFO*23], which explains the focus on crowd
simulation in computer graphics, beginning with Reynolds’ semi-
nal work on Boids [Rey87]. Reynolds’ key inspiration is that simple
local rules, governing inter-individual interactions, can explain and
cause the emergence of large-scale patterns. Other fields, such as

physics have taken up this idea for analogous physical systems, such
as charged particles in electromagnetic fields [HM98, VCBJ*95,
VZ12].

The ongoing crowd and herd research in computer graphics
strives to create visual simulations that satisfy two conflicting goals:
achieving a close visual resemblance to real crowds and herds, while
providing high-level control over authored animations. The field
has progressed towards these goals by proposing various macro-
scopic [TCP06], microscopic [MT01, PPD07, GCC*10] and hybrid
models [NGCL09]. Microscopic approaches are more widely used
in practice for animation because they generally produce higher-
quality individual motion. This general approach has been explored
in depth and recent developments are reported by Van Toll and Pet-
tré [vTP21]. Nevertheless, the question of how to configure such
simulations, in particular using data sources to generate animations
with matching behaviour, remains largely unanswered. Our work
falls into this category.

The problem of setting simulation parameters is part of the more
general challenge of effectively authoring crowd animations, for
which Lemonari et al. [LBC*22] provide a useful survey. In this re-
gard, our primary objective is to learn collective animal behaviour
from video examples, as well as to control the global trajectory of
the resulting simulated herds.

Along similar lines, methods exist to imitate pedestrian trajec-
tories [LCL07, FR12, CC14], or to replicate how humans interact
locally in crowds [LCHL07, JCP*10]. While these approaches fo-
cus specifically on human crowds, some work has also been car-
ried out on herds or swarms of animals and insects [LWPCL15,
RWJM16, XYWJ20]. However, our aims differ: We seek to pro-
cess low-quality video data and extract an individual model while
reproducing the macroscopic behaviour of animals of any species.
Of course, recent developments in deep learning have led to the
possibility of directly modelling human trajectories and reproduc-
ing their characteristics, linked to biomechanics and social interac-
tions [AGR*16, GJFF*18, AHP19, YMW22]. These deep models
focus particularly on predicting human trajectories, which can be re-
duced to a simulation problem. Importantly, their reliance on suffi-
cient high-quality training data is a limiting factor, with some resort-
ing to synthetic data [RLBP*23]. The ability of those approaches to
capture real social and interaction-driven behaviours is also ques-
tioned [SBK*22].

Finally, we note that our work is not a first attempt to model col-
lective animal motion from data. In the field of biology, data-driven
modelling is employed to study collective behaviour [CLN*14,
HR16]. While these models collect response functions based on
real data, the recording conditions are highly constrained, the
herd sizes limited and the issue of animation control is not
addressed.

Compared to the considerable body of crowd research, which we
have only touched on lightly, the specific focus of our approach is
extracting collective behaviour from single video clips of short du-
ration for any animal species exhibiting herding, in such a way that
the extracted and source motion align visually.

The work of Courty and Corpetti [CC07] is positioned closest
to ours. They explore the video-driven parameterization of a Social
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Figure 2: Learning and authoring pipeline. Starting with frames from video clips, grid-based density and velocity fields are extracted. This
data is used to optimize our herd model with perception-related force parameters. Finally, the learnt herd can be deployed either in an
environment that matches the source clip or a new user-defined environment.

Force model. However, they employ synthetic videos and do not
focus on preserving emergent behaviours, such as herding.

In conclusion, the framework presented here is the first to offer a
practical solution to the problem of analysing animal herds in short
video clips and then synthesizing analogous behaviour applicable to
new animation settings.

3. Overview

Our method takes as input an overhead video clip of a few sec-
onds duration depicting an animal herd in motion. Such videos are
commonly captured by drones or low-altitude aircraft. The animal
herd may include a large number of animals—a few hundred in
our examples—including situations where the animals are walking
shoulder to shoulder, which makes the detection and tracking of in-
dividual animals challenging. In the following, we assume that the
herd is moving over flat ground, and that there is sufficient contrast
in colour between the animals, the background and static obstacles,
so as to classify these elements into three distinct categories, using
standard vision-based techniques.

The objective of this work is twofold. First, we aim to capture
the collective behaviour of animals faithfully, as observed in the
reference video. Second, we want to enable the transfer of this be-
haviour to different contexts, such as a different number and ini-
tial arrangement of animals, different animal trajectories and dif-
ferent distributions of environmental obstacles. To this end, we
propose an extended Boids model, featuring two contributions: (i)
an implementation of perception for simulating the collective be-
haviour of large-scale herds (with an analysis of its impact), and
(ii) trajectory authoring via role-switching that preserves learnt
behaviours

Role-switching was previously introduced by Hartman and
Benes [HB06], but our approach differs in scope and implemen-
tation. Their focus is on reproducing the specific ‘leader game’ be-
haviour of birds and they do not consider the earthbound restrictions
of terrestrial animals. As such, leaders undergo procedural accelera-
tion and deceleration in 3D space with respect to their herds, but do
not lead the group along a pre-defined trajectory or towards a target
position. In our case, our terrestrial agents follow navigation fields
when dynamically classified as leaders, thus serving the desired nav-
igation without disturbing the process of behavioural learning from
video. Notably, unlike many previous herd models, followers au-

tomatically connect to leaders via alignment and cohesion forces,
eliminating the need to define an additional force specifically for
this interaction.

Figure 2 summarizes our processing pipeline. First, the input
video is processed in order to extract density and velocity field data.
These fields provide a macroscopic description of the herd motion
in the video and we fit a microscopic vision-aware force-based agent
model to match them greedily, making the herd model reusable in a
different context.

Subsequently, the user can create a new scene with obstacles and
a trajectory field for leader agents, and instantiate a new herd, while
re-using the herd parameters learnt from one or more videos, thereby
retrieving their collective behaviour.

The remainder of the paper is organized as follows: Our method
for extracting macroscopic fields for any input herd video clip is
presented in Section 4. Then, Section 5 details the parameters of
our new microscopic herd model. The optimization algorithm is de-
scribed in Section 6. We finally present our validation and authoring
results in Section 7. In particular, we show that our optimized mi-
croscopic herd model is able to capture the high-level macroscopic
behaviours of the real herd in the input clip, expressed through sev-
eral common metrics including polarity, angular momentum and as-
pect ratio relative to the primary movement direction, while being
transferable to new initial conditions, herd sizes, target trajectories
and environmental obstacles (see Figure 1).

4. Macroscopic Fields From Video Clips

In this section, we present the processing applied to the input video
in order to extract the macroscopic fields used to optimize our agent-
based model. Although we describe the steps used to compute these
fields for the sake of completeness, we emphasize that the specific
video processing and annotation techniques used here can be mod-
ified independently, without affecting the learning process or the
overall effectiveness of our method.

Footage stabilization. Real-video footage of animal herds typi-
cally contains camera motion, rotation or zoom over time, since
it is usually captured by drones or small aircraft. Our initial pre-
processing step addresses this by stabilizing the footage, creating a
global coordinate system that allows for consistent position com-
parisons across different frames.
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Figure 1: Our method can simulate individual agents to replicate herd behaviour learnt from a video containing many animals. [Left and
middle] The original video (lower-right) and our simulation (upper-left), optimized to fit the macroscopic density and velocity fields over a
coarse grid. [Right] An authored simulation in which a herd transitions between the two illustrated behaviours, featuring narrow and broad
formations.

To this end, the user manually specifies two rectangular regions
(in two different, arbitrary video frames) to be identified as being
in correspondence. We then compute an automatic region tracking
over all frames of the video, using the Channel and Spatial Relia-
bility Tracking (CSRT) algorithm [LVCZ*18], and apply time win-
dow smoothing over nine frames to remove jitter. Since our goal
is to extract averaged macroscopic values for the herd distribution
and motion, we employ a low resolution spatial grid Gxy contain-
ing Ngrid × Ngrid cells for storing these values. The change of co-
ordinates from the video frame to the global coordinate system is
expressed as follows: For each frame, the CSRT algorithm provides
the current region centre c, two unit and orthogonal vectors u1 and
u2 representing, respectively, the two principal axes of the tracked
rectangular region and a scaling factor s > 0, taking into account the
change in length related to the zoom. The global coordinates p ∈ R

2

can then be computed from the local frame p f rame as

p = s
(
(p f rame − c) · u1 , (p f rame − c) · u2

)
/Ngrid . (1)

Computing macroscopic fields. Three fields are then computed
on each grid cell, namely, the density of the animals ρxy, the spatial
velocity Vxy and the velocity variance Sxy. Note that all fields are
computed for the video frame at the highest resolution before be-
ing transferred to the global coordinate frame, using Equation (1).
The animal density is obtained by applying colour-based segmenta-
tion of the input video, and counting all body-pixels falling within a
given grid cellGxy. The velocity estimation is obtained from a dense
optical flow using the Gunnar–Farnebäck algorithm [Far03]. For a
given grid cell Gxy, the mean velocity is denoted by Vxy, and asso-
ciated variance by Sxy. Finally, users are able to manually paint an
additional annotation into the global grid to identify regions with
impassable obstacles.

5. A Differentiable Herd-Agent Model

In choosing a suitable agent model, we were motivated by three con-
siderations: conceptual and computational simplicity, amenability
to parameter optimization and realistic emergent behaviour.

In this regard, the Boids model [Rey87] strikes the best balance
among these criteria. An individual Boids agent employs an aggre-
gation of simple forces for cohesion, aggregation and separation.
Each component force considers nearby agents within a pre-defined
separate radial distance. This computational simplicity is appeal-

ing because it enables faster optimization and simulation of larger
herds, as compared to more complex candidates, such as reciprocal
collision avoidance [vdBPS*08] and social force models [LJ14]. It
is also more conceptually accessible, which makes fine-tuning of
learnt behaviour easier for artists and game developers, should this
be necessary.

Furthermore, although the original model cuts off force contribu-
tions at various distance thresholds, creating a derivative discontinu-
ity at these boundaries, this can be rectified by introducing a Gaus-
sian distance weighting that ensures the differentiability required by
many optimization schemes.

Finally, in terms of realism, it has been shown that Boids-
like models can perform comparably on vorticity, and separa-
tion and re-grouping measures of emergent behaviour with dense
herds [WGO*14] and can also be configured for a spread of mo-
tion patterns [CLN*14], such as milling (circular movement around
a central core), schooling (coordinated movement with close align-
ment) and swarming (chaotic movement but with a dominant overall
direction).

While the Boids model provides a sound starting point, in or-
der to support both learning and authoring, we introduce a num-
ber of modifications: a division of agents into leader and follower
roles to control herd navigation, Gaussian weighting to enable dif-
ferentiable optimization, an improved perceptual model that incor-
porates occlusion and separate control over the speed and magnitude
of agent motion.

5.1. Leaders and followers

During both the learning and subsequent authoring phases, it is nec-
essary to have a mechanism for directing the herd as a whole. In-
spired by Herbert-Read’s study [HR16] of coordinated movement in
real groups of animals, we address this by sorting the agents, at each
simulation step, into two classes as follows: leaders and followers
(as shown in Figure 3). Note that an agent can switch dynamically
from one class to the other during the simulation.

We classify agents as leaders if up to two neighbours appear in
their local visual field. Leaders ignore the Boids force calculations
and instead follow either the velocity field Vxy extracted from video
in the case of optimization (see Section 6) or a navigation field pro-
vided during authoring (see Section 7.3). All other agents are clas-
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Figure 3: Agent classification: Red agents are designated as lead-
ers, since the number of neighbours within their perceptual range
is ≤2. They follow the navigation field. White agents are followers
and they obey our new herd-agent model.

sified as followers and obey our force calculations. This allows the
best of both worlds: path navigation initiated by the leaders, while
followers comply with the learnt herd behaviour.

5.2. Updating directional velocity

To ensure our model captures animal behaviour in real herd videos,
we depart for previous microscopic crowd models in how an agent’s
velocity is computed from the set of social forces.

Specifically, we decouple the speed and direction of motion. An
agent’s updated direction is computed for each timestep based on the
previous direction and an integration of applied forces. An agent’s
updated speed is based on a stochastic model, which from our exper-
iments provides a closer match to actual animal behaviour. Another
advantage of this decoupling is the control it provides over the speed
of the herd when the learned model is re-used, a feature difficult to
achieve with standard entangled microscopic models.

Let us detail this change: For each agent ai at frame k for timestep
�t, we update velocity component-wise, as follows:

Vk+1
i = vk+1

i N (Vk
i + �tFk

i ), (2)

where the speed term vk+1
i is a smoothed version of Brownian parti-

cle motion with friction, which will be detailed in Section 6.2, and
N (V) = V/‖V‖ is the normalized version of V .

Here, the normalized direction term N (Vk
i + �tFk

i ) is dictated
by the total force Fk

i exerted by neighbouring agents and environ-
mental obstacles. This force is a weighted sum of a cohesion force
FCk

i , alignment force FAk
i , agent avoidance force FVk

i and obstacle
avoidance force FOk

i , as follows:

Fk
i = � · (WFC · FCk

i +WFV · FVk
i +WFA · FAk

i +WFO · FOk
i

)
(3)

whereWFC,WFV ,WFA andWFO are weights on the component forces,
to be found by optimization. We also introduce a sensitivity modi-
fier � (10 in our case) on the total force, which controls how rapidly
agents respond to their neighbours, but which is not included in
the optimization.

Figure 4: Perceptual terms: Distance to neighbour di→ j and bear-
ing angle φi→ j are defined by the relative position of the current
agent ai and its neighbour a j.

5.3. Perception-related directional forces

Before delving into the details of the component forces, it is first
necessary to define our perception mechanism, which represents a
departure from the standard Boids approach. Instead of including all
neighbouring agents closer than a threshold distance, we exclude
agents that are occluded, which moves our model closer to actual
animal perception. We cast a ray from the focal agent to a potential
neighbour and reject the neighbour if there are any intersected obsta-
cles (either dynamic or static) between them. In the results section,
we will show that, not only does this restriction make our model
more realistic, but it also helps speed up the optimization process.
Furthermore, we introduce an angle-based term, which better mod-
els the field-of-view of real animals.

To be specific, each component force depends on separate dis-
tance and direction terms (see Figure 4). We record the distance di→ j

from a focal agent ai to its neighbour aj and the bearing angle φi→ j

between the forward unit direction vector vi of ai and the unit vector
ui→j pointing towards aj. A bearing angle ui→o for an obstacleObso
can be defined on a similar basis.

Each component force is governed by a pair of weights calculated
using a separate Gaussian fall-off function for radial WRi jF and an-
gular WAi jF perception, with range limits RF and �F , respectively,
as follows:

WRi jF = exp

(
−0.5 · d

2
i→ j

R2
F

)
,WAi jF = exp

(
−0.5 · φ2

i→ j

�2
F

)
. (4)

In effect, there are eight additional optimizable parameters for a to-
tal of 12, two for each of cohesion (RFC and �FC), alignment (RFA
and �FA), agent avoidance (RFV and �FV ) and obstacle avoidance
(RFO and �FO). This means that that an agent can have different
sensitivity (field of view and range of vision) depending on the type
of force.

Finally, the component forces are defined as follows:

FCk
i =

∑
a j∈Neighbour(ai )

WRi jFC ·WAi jFC · di→ j · ui→j

FVk
i =

∑
a j∈Neighbour(ai )

−WRi jFV ·WAi jFV · di→ j · ui→j

FAk
i =

∑
a j∈Neighbour(ai )

WRi jFA ·WAi jFA · vj
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FOk
i =

∑
Obso∈Neighbour(ai )

−WRioFO ·WAioFO · di→o · ui→o (5)

5.4. Updating speed

Although our model primarily governs changes in the direction of
herd agents, in the interests of realism, it is important to also con-
trol changes in their speed. To replicate the source behaviour of the
herd as closely as possible, we use an Ornstein–Uhlenbeck (OU)
process proposed in Uhlenbeck and Ornstein [UO30], which emu-
lates Brownian particle motion with friction. This makes use of a
global mean and variance in speed derived from the video data or
supplied by the user during authoring.

At frame k, we define the speed of agent ai as vki , the herd’s mean
speed as vμ and the standard deviation of herd speed as vσ . Then,
according to an OU process, the change in speed of an agent is

vk+1
i − vki = −θ (vki − vμ)�t + vσ

√
�tN(0, 1) (6)

where θ (1 in our case) is the mean reverting rate, N(0, 1) is the
random normal distribution, and �t is the time interval between
frames.

This is a relatively straightforward model for speed adjustment.
Nevertheless, it is amenable to the incorporation of additional fea-
tures. For instance, terrain information, such as slope and surface
properties (e.g. snow, sand and water), could be incorporated into
the grid and then used to adjust speed. In addition, speed could be
modulated according to local herd density. We leave these improve-
ments to future work.

6. Learning Behaviour via Differentiable Optimization

Let us now describe how our herd-agent model from Section 5 can
be tuned to match the macroscopic fields extracted from a video clip
(see Section 4). Since our agent model disentangles the directional
and speed components of velocity, learning needs to take place in
two stages.

6.1. Learning the force parameters for directional velocity

The first learning stage involves tuning the directional force param-
eters (force weights and perception range limits) via differentiable
optimization, using stochastic gradient descent. In total, there are 12
parameters to optimize, three per component force.

As is typical with optimization, the main challenge lies in finding
a meaningful error function to minimize. Thanks to our disentangled
model for velocity, we can focus on a match for mean direction (i.e.
normalized velocity) at the individual agent level or a match for di-
rection variance at the cell level, instead of having to achieve both
speed and direction (i.e. full velocity) simultaneously. In practice,
this makes learning much more efficient.

We define the error function for frame k in two parts as follows:
First, we define the error in mean direction as the accumulated dif-
ference between normalized motion vectors of the simulated agents

(Vi) and video target (Uxy):

Errorkmean =
∑
i

‖N (Vk
i ) − N (Uk

xy)‖, (7)

where the simulated agent ai is located in cell xy of the grid, and N
is again the vector normalization function.

Second, we calculate the error in directional variance by summing
over all individuals the angular variance of the individual’s direction
from that of the cells it inhabits when compared to a cell-based target
variance (Sk

xy), as

Errorkvar =
∑
i

‖Vari∈xy
[
Angle(N (Vk

i ),N (V̄k
xy))

]− (Sk
xy)‖, (8)

Here, agent velocity is calculated per time-step in the expected
fashion:

Vk
i = Vk−1

i + �t · Fk−1
i . (9)

What remains is to define a target motion vector Uk
xy that blends

the macroscopic velocity and density fields extracted from video
(see Section 4), neither of which suffices alone.

From the velocity field, we extract the normalized mean velocity
N (Vk

xy) of a particular grid cell. As shown in Section 7.2.3, it is not
possible using mean velocity alone to fully capture motion from a
video. Indeed, the observed changes of density in the input video
are also a strong indicator of the direction of motion, and we take
them into account as follows. We define a density matching vector
Dk

xy using the gradient of the difference between the simulated (ρ ′
xy)

and target (ρxy) density fields:

Dk
xy = −∇(ρ ′

xy − ρxy). (10)

The intuition is that positive or negative values represent, respec-
tively, an over- or under-supply of agents in a grid cell of the sim-
ulation relative to the target. The inverse gradient thus supplies a
greedy direction for agents to follow so as to correct this imbalance
(as shown in Figure 5).

The final target directionUk
xy is defined as a weighted linear com-

bination of this normalized density gradient and the normalized
mean velocity:

Uk
xy = βN (Dk

xy

)+ (1 − β )N (Vk
xy

)
, (11)

where the weight β (we used values between 0.5 and 0.8) is used to
prioritize either density or velocity field matching. Prioritizing den-
sity yields more accurate position distributions, at the risk of losing
alignment. Prioritizing velocity may improve movement coordina-
tion, but at the expense of positional accuracy.

The error in mean direction Errormean is usually sufficient for
finding parameters based on video inputs. However, convergence
of the optimization is not guaranteed in cases where the move-
ment of agents in a cell is fully random, as this results in an un-
stable Vk

xy for error calculations. We can set β = 1 to match on the

© 2025 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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X. Gong ET AL / Herds from Video 7 of 16

Figure 5: Density difference field. [Upper left] simulated density
field ρ ′. [Upper right] extracted density field ρ. [Bottom] difference
field and target direction, with blue indicating that the simulated
density is too high, and red that it is too low. The arrows show the
direction of motion for correction.

density field alone, but, because alignment is never optimized to-
wards a steady target, it is still difficult to reach convergence. Dur-
ing experiments, we noticed that the variance in an agent’s veloc-
ity direction is strongly influenced by the alignment force, while
avoidance and cohesion forces act to adjust the spacing between
agents. Accordingly, we use Errorvar to optimize alignment param-
eters separately, such that the alignment force can be fixed with
or without information from the velocity field. Using this error
term, we can even extend our application to learn collective be-
haviour from a single image in cases where individual agents are
randomly aligned. A concrete example will be provided in the next
section.

During learning, we exclude agents identified as leaders from
the optimization process. Instead, they directly follow the mean
velocity field with no deviation. It is worth noting that the classi-
fication of leaders and followers occurs on a per-frame basis, so
that these roles can change dynamically over the course of video
matching.

One slight complication is that agents may need to be removed or
added during optimization. First, in many video clips, animals enter
or exit from outside the camera’s field of view. Second, if the agent
parameters do not align well, then for later timesteps, the simula-
tion will become ever more divergent, hampering convergence. To
detect these cases, we calculate density matching error as the sum of
absolute differences between the simulated and target density fields.
If this exceeds a pre-defined threshold, then we remove agents from
the densest cells and add agents to the sparsest cells.

If we treat the agent model as a function, with agent parameters as
input and the collective herd behaviour as output, it can be charac-
terized as non-injective (many inputs map to a single output). This
lack of injectivity may give rise to flat (zero gradient) regions in the
optimization landscape. To avoid becoming trapped, we use a fixed
update step size and random update direction when a zero error gra-
dient is encountered.

6.2. Extracting speed parameters

Our model is now able to learn force parameters that best match the
salient direction of motion in a video clip. Next, we seek to match
the speed of motion. This is achieved in two steps, as follows.

First, we compute the mean and standard deviation of the speed of
animals in the video. Although we do not identify individual animals
in the source video, we can, nevertheless, infer these statistics using
the dense optical flow of body-pixels (see Section 4.) We begin with
an assumption of relatively homogeneous body sizes within a given
video, so that each animal occupies roughly the same number of im-
age pixels Nbp. Then we calculate the mean and standard deviation
for the speed of body-pixels, vbpμ and vbpσ , respectively. Finally, we
obtain the animal-specific statistics: vμ = vbpμ and vσ = vbpσ /

√
Nbp,

which are fed into Equation (6) to generate the stochastic speed of
the agents.

Second, we account for speed-density correlations by construct-
ing a distribution function of speed with respect to density, based
on the extracted density field. The change in speed provided by the
OU process can then be adjusted according to the local herd density.
This approach significantly improves the local alignment between
the derived and observed speed patterns.

7. Results

In this section, we present a variety of results, including validations
based on biological measures of emergent behaviour, ablation stud-
ies for our implementation choices and case studies in authoring
new herd animations based on learnt behaviours.

For these experiments, we used one image and six input video
clips with durations ranging between 3 and 13 s. The still image is
labelled as ‘seals’ and is a drone photo of a seal herd distributed
on an ocean shoreline.The video clips are labelled as ‘ants-chaotic’,
‘ants-circling’, ‘sheep-broad’, ‘sheep-narrow’, ‘sheep-multi-lines’,
and ‘duck-milling’. In total, they encompass four different animal
species and a variety of emergent behaviours.

The two ant clips showcase, respectively, uncoordinated quasi-
random motion (‘ants-chaotic’) and a coordinated circling motion
(‘ants-circling’) around a central object. The three sheep clips rep-
resent a herd advancing along a wide front with varied velocity
and behaviour, such as grazing (‘sheep-broad’) and a herd migrat-
ing in a long but narrow-fronted arrangement (“sheep-narrow”).
Anisotropic behaviour is apparent in the third clip (‘sheep-multi-
lines’) where sheep evidence different spacing from neighbours
ahead and behind as compared to left and right. This leads to dif-
ferent dividing and merging behaviours when they meet obstacles.
Finally, we have the ‘duck-milling’ clip which captures self-rotation
behaviour without external factors forcing that.

All experiments were performed on a PC equipped with an AMD
Ryzen 7 9800X3D processor (4.70 GHz) and an NVIDIA GeForce
RTX4060Ti. Video data extraction was implemented in Python,
while Unity with C# was used for building the virtual environments
and handling physical interactions, such as collision detection. The
herd simulation and the parameter optimization updates were im-
plemented in C++, via a DLL plugin.

© 2025 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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8 of 16 X. Gong ET AL / Herds from Video

Our method is not optimized, but nevertheless achieves compu-
tational performance of approximately 0.2 s per frame for the pre-
processing phase, in which macroscopic density and velocity fields
are extracted from video. For herds of size 500, 1000 and 1500
agents, the optimization process takes 0.1, 0.3 and 1.2 s per frame,
respectively, and the simulation takes 0.02, 0.05 and 0.3 s. Note that
the time required for optimization and simulation may vary depend-
ing on local density, as ray casting is performed for each neigh-
bour to test for occlusion. Higher densities result in longer simu-
lation times.

Data availability statement. Data sharing is not applicable to
this article as no datasets were generated or analysed during the
current study. The source code can be found at https://github.com/
XavierScor/HerdFromVideo.

7.1. Validation

7.1.1. Ground-truth convergence

Before operating on real video data, we first performed a pilot study
to test whether our macroscopic approach could converge accurately
to a known simulated ground truth. We created a test environment,
manually set the parameters of our agent model, ran a simulation and
then computed gridded velocity and density fields in a format that
matched our video extraction. We then performed several optimiza-
tion runs with different initial parameters to test for convergence
between learnt and ground truth agent parameters.

All optimized parameters are expressed in a normalized range
in [0, 1]. The cumulative error over the 12 parameters thus lies in
[0, 12]. We report an average accumulated error of 0.72, where the
averaging is performed over the results obtained from different ini-
tial conditions, or, in other words, an average error of 6% per pa-
rameter.

Figure 6 shows side-by-side frames at t = 1.9 s from the ground
truth and the simulation using the learnt parameters.

7.1.2. Measures of emergent behaviour

It is important in any assessment of herd behaviour to carefully con-
sider the emergent (macroscopic) properties. In this regard, the typ-
ical emergent measures used in the physics, biology and graphics
literature are as follows:

• Density. How closely grouped or spread the individuals of the
herd are relative to their neighbours [PFO*23].

Figure 6: Convergence to a manual ground truth. [Left] The target
herd with manually configured parameters. [Right] A herd simu-
lated using parameters learnt from the target on the left via opti-
mization.

• Speed. How fast the herd moves over time, usually measured by
the mean and standard deviation of the magnitude of agent veloc-
ity.

• Shape. What is the shape of the convex hull (or some other enclos-
ing shape) of the herd in relation to its prevailing direction of mo-
tion? A typical measure is the aspect ratio of the motion-aligned
bounding box fitted around the members of the herd [PFO*23,
HH11]. The lowest aspect ratio occurs when a herd files behind
a single leader. Conversely, the highest aspect ratio involves all
members moving abreast in a row.

• Polarity. How closely aligned the members of the herd are in
terms of their movement direction [CLN*14, PCHFJ16]. It is
commonly measured by

P(t ) = 1/N

∥∥∥∥∥
N∑
i=1

N (Vi(t ))

∥∥∥∥∥, (12)

where P(t ) ∈ [0, 1] is the polarity (or sometimes order [VZ12])
at timestep t, N is the number of individuals in the herd and
N (Vi(t )) is the normalized movement vector of an individual.

• Angular momentum. This indicates the extent to which the herd
circles around a common centre, and is often used as an indication
of milling behaviour [CLN*14].

M(t ) = 1/N

∥∥∥∥∥
N∑
i=1

N (Ri(t)) × N (Vi(t))

∥∥∥∥∥, (13)

whereRi(t) is the vector connecting the agent position to the cen-
tre of the rotational behaviour. By default, we consider this to be
the centre of the image.

• Spatial organization. Certain animals adopt characteristic lattice-
like formations while moving collectively. For instance, birds
have a tendency to avoid flying nose to tail in formation. It
is very common to use a radial density histogram to capture
this [PFO*23, HR16, PGM14, PCHFJ16]. This shows the ex-
pected density of neighbours around an individual, plotted as a
function of neighbour distance and angular placement relative to
the direction of motion.

• Overall motion pattern. High-level descriptive terms are often
used to characterize the global movement pattern of herds. These
include milling (moving in a circular pattern around a central
core), schooling (members act with strong coordination and high
polarity moving in a single dominant direction) and swarming (in-
dividual members move chaotically but nevertheless move in a
collective direction). It is possible to identify such motion pat-
terns using a suite of other measures. However, these terms re-
main rather nebulous and ill-defined.

For the purposes of validation, we handle these measures in dif-
ferent ways. Density (along with velocity) is integral to our learn-
ing process and so easily evaluated using the density component of
the optimization error function (Equation 7). Shape, polarity and
angular momentum statistics can be derived from the velocity and
density fields of the source and simulation and provide independent
verification of match quality. Finally, the overall motion pattern is a
qualitative rather than quantitative attribute, which is best assessed
by directly examining video outputs (see Figures 1 and 17).

© 2025 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Figure 17: Authoring an anthill. A counterclockwise guidance ar-
row is drawn around a large square obstacle and swarming (red
rectangle) and milling (blue rectangle) behaviours are assigned
from corresponding video clips (on the left).

Speed was directly measured from the extracted macroscopic
fields as a function of density (Section 6.2) so it matches the input
by construction. We therefore excluded it from the validation.

Unfortunately, the remaining measure, namely spatial organiza-
tion, cannot be usefully assessed in our framework, because it would
require the ability to detect individual animals in the source video.
We will directly show the result by comparing simulated and target
frame images.

We conducted our validation experiments by dividing each of the
five video clips in half. The first half was used to learn agent param-
eters, while the second half was used for assessment, by initializing
based on the first frame of the second half and then comparing sim-
ulation runs, with parameters before and after optimization, against
the video on a frame-by-frame basis. For density and velocity, we
used a relatively coarse 10 × 10 grid to accumulate error since this
captures behaviour at a larger scale than the finer resolution used for
optimization. In this regard, we look for a significant drop in error
before and after parameter optimization.

For shape, polarity and angular momentum, we made an assump-
tion of consistency, based on observing generally coherent herd be-
haviour within each clip. Given this assumption, the standard devia-
tion of each measure can be used as a rough bound on the acceptable
mean error, allowing us to claim equivalent behaviour in such case.

7.1.3. Case study: funnelled sheep herd

We began validation with the simplest case: ‘sheep-narrow’. In this
clip, all sheep move in the same direction from right to left with
a greater uniform local distribution than other cases. Accordingly,
polarization is close to the maximum (at 0.971) and angular mo-
mentum to the minimum (at 0.039). To account for the limited cam-
era view, in optimizations, agents moving outside the frame are re-
moved, while new agents are generated in predefined entry cells to
maintain a population count consistent with the video.

Table 1 shows our mean simulated error values to be of the same
order of magnitude as the STD of the corresponding measures from
video, meaning that our simulated result reproduces equivalent be-
haviour based on polarization and angular momentum. However, in

Table 1: Sheep-narrow results.

Video Simulated Simulated
measure value error

Polarization Mean 0.971 0.958 0.016
STD 0.015 0.018 N/A

Angular
momentum

Mean 0.039 0.028 0.016
STD 0.024 0.019 N/A

Figure 7: Simulation based on ‘sheep-narrow’. [Left] Target video
frame. [Middle] Learnt simulation. [Right] Simulation with random
parameters before optimization.

Table 2: Duck-milling results.

Video Simulated Simulated
measure value error

Polarization Mean 0.288 0.212 0.056
STD 0.065 0.007 N/A

Angular
momentum

Mean 0.839 0.916 0.060
STD 0.042 0.015 N/A

this example, the camera focused on a subset of the herd, leaving
the aspect ratio undefined, which is something we address in Sec-
tion 7.1.5.

Figure 7 shows the herd simulation before and after optimization.
We performed multiple experiments with different random initial
starting parameters and they all converged to the same optimum.
During the course of optimization, accumulated density (εD) and
velocity (εE ) errors decrease from typical starting values of 3.614
and 2.114 to converge on 2.114 and 0.120, respectively.

7.1.4. Case study: milling ducks

The ‘duck-milling’ clip demonstrates the other extreme of polar-
ization and angular momentum (at 0.288 and 0.839, as show in
Table 2). This shows a flock of ducks circling around a point in a
river. This is an example of a spiral motion without trajectory au-
thoring (as opposed to ‘ants-circling’, which is guided by a user-
specified trajectory around an obstacle in Figure 17). Again, the
video frame does not always contain the entire flock, so the aspect
ratio cannot be assessed.

To emulate the confines of the river banks, we add obstacles,
shown with a grass texture in Figure 8, on the left and right of our
simulated scene. Figure 8 [right] shows a flock simulation with ran-

© 2025 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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10 of 16 X. Gong ET AL / Herds from Video

Figure 8: Simulation based on ‘duck-milling’. [Left] Target video
frame. [Middle] Learnt simulation. [Right] Simulation with random
parameters before optimization.

Table 3: Sheep-broad results.

Video Simulated Simulated
measure value error

Polarization Mean 0.771 0.842 0.069
STD 0.020 0.008 N/A

Angular
momentum

Mean 0.202 0.277 0.068
STD 0.025 0.015 N/A

Aspect ratio Mean 0.892 0.889 0.038
STD 0.074 0.028 N/A

dom parameters set for high avoidance and low cohesion and align-
ment (εD = 1.232, εV = 1.266). Figure 8 [middle] is a frame from
simulation after optimization (εD = 0.585, εV = 0.207). Here opti-
mization is hampered because the flock is clipped along the bottom
edge in the video, leading to incorrect matching in the bottom right
of the simulation. Despite this, our model still learns correct milling
behaviour as confirmed by the polarization and angular momentum
measures.

7.1.5. Case study: complex sheep herd

The previous clips have two shortcomings. First, they do not cap-
ture the entire herd or flock, making it impossible to evaluate as-
pect ratio. Second, herd behaviour takes place in relatively unob-
structed environments. We overcome this by including the ‘sheep-
broad’ clip, which captures in its entirety a large herd of approxi-
mately 1300 sheep crossing a field littered with bushes and rocky
outcroppings.

This is a challenging case because the terrain is complex,
there is significant interaction between the sheep and environ-
mental obstacles, and there is out-of-frame influence from sheep-
dogs and humans. Despite these challenges, we achieve simula-
tion error rates within the same order of magnitude as the STD of
video results for polarization, angular momentum and aspect ratio
(see Table 3).

Although the match between target and simulation is improved
through optimization (from errors of εD = 2.25, εV = 1.26 down to
εD = 1.96, εV = 0.44), as shown in Figure 9, the match is not exact
due to these extraneous factors. Nevertheless, the simulated herd ex-

Figure 9: Simulation based on ‘sheep-broad’. [Left] Target video
frame. [Middle] Learnt simulation. [Right] Simulation with random
parameters before optimization.

Table 4: Occlusion ablation results. Columns show the standard deviation
in the original source video (except for density and velocity, which are cumu-
lative metrics), and error, with and without perceptual occlusion for various
macroscopic properties.

Video Without With
STD occlusion occlusion

Density N/A 0.09 0.08
Velocity N/A 30.80 21.67
Polarization 0.04 0.10 0.04
Angular momentum 0.05 0.11 0.07
Aspect ratio 0.04 0.05 0.03

Figure 10: Assessing the impact of vision occlusion. [Left] A tar-
get video frame. [Middle] Learnt simulation with vision occlusion.
[Right] Learnt simulation without vision occlusion.

hibits the correct overall movement, spatial organization and split-
ting and merging behaviour around obstacles, without the need for
trajectory authoring.

7.2. Ablation studies

7.2.1. Ablation of vision occlusions

We also undertook a comparison between our agent model with and
without vision occlusion. Including perceptual occlusion tends to
create more disparity in agent response because even nearby agents
can have quite different views of the environment depending on the
arrangement of obstacles and other agents. We undertook an ab-
lation study using the ‘sheep-broad’ video clip and found that in-
corporating occlusion always reduces error (see Table 4), in many
cases from above to below the standard deviation of the original data
source. In addition, we have included a side-by-side visual compar-
ison in Figure 10 showing the impact this can make over the course
of a simulation.

© 2025 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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X. Gong ET AL / Herds from Video 11 of 16

Figure 11: Simulation based on ‘sheep-multi-lines’. [Left] Target
video frame. [Middle] Learnt simulation. [Right] Simulation with
random parameters before optimization.

Table 5: Sheep-multi-lines results.

Video Simulated Simulated
measure value error

Polarization Mean 0.763 0.922 0.069
STD 0.044 0.017 N/A

Angular
momentum

Mean 0.008 0.277 0.017
STD 0.020 0.015 N/A

Aspect ratio Mean 0.423 0.633 0.179
STD 0.111 0.033 N/A

7.2.2. Ablation of angular perception

The literature posits a link between spatial organization, particu-
larly anisotropic separation and the angular range of animal vi-
sion [HR16, PGM14]. However, it is unclear what impact this has in
our framework, which is an important concern given the additional
computation cost involved. Accordingly, we performed an ablation
study on the impact of angular perception ranges on anisotropic spa-
tial organization.

We based our experiments on the ‘sheep-multi-lines’ clip, which
shows the formation of linear structures in a large sheep herd,
where the nose-to-tail separation between individuals is much
smaller than the orthogonal shoulder-to-shoulder separation (see
Figure 11 [left]).

First we show that our model can reproduce the collective be-
haviour based on the polarization, angular momentum and aspect ra-
tio measures (see Table 5 and Figure 11). The learnt angular ranges
for avoidance, cohesion, alignment and obstacle avoidance forces
are 1.000, 0.271, 0.886 and 0.442, respectively. This means that
all neighbours within the perception radius influence avoidance, but
neighbours outside bearing angles of 48ºhave little cohesion influ-
ence on the focal agent.

Next, we built a new ablation environment (see Figure 12) with
three obstacles, no guide trajectories and agents facing upward. In
Figure 12 [left], we did not impose any limits on angular range, re-
sulting in a lattice-like structure with agents locked into position.
In Figure 12 [middle], we applied the learnt angular ranges from
‘sheep-multi-lines’, giving rise to more natural split-and-merge be-
haviour. Finally, in Figure 12 [right], we removed the obstacles and
further restricted the cohesion and alignment angular range, which
causes strongly anisotropic behaviour even in unobstructed environ-
ments.

Figure 12: Simulation with different angular range. [Left] All an-
gular range to 1. [Middle] Parameters from optimization. [Right]
Cohesion angular range set to 0.100, alignment angular range set
to 0.300.

Figure 13: Assessing the impact of density matching. [Left] The
target herd with the same parameters as in Figure 6. [Right] A herd
simulated using parameters learnt from the target, but without den-
sity matching.

7.2.3. Ablation of density matching

Solely matching on the velocity direction field during optimization
does not adequately capture motion from video (as mentioned in
Section 6). This is demonstrated in Figure 13, where the target be-
haviour (on the left) is poorly matched by the behaviour optimized
without a density term (on the right). This should be compared to
the distribution in Figure 6, which incorporates density and repre-
sents a closer correspondence. Total average error values (0.72 with
and 0.85 without density) confirm this.

7.2.4. Ablation of direction variance matching

Up to this point, we have concentrated on examples with little dis-
persion in agent direction within a cell. However, swarms and herds
(such as ants and locusts) often move in a more uncoordinated fash-
ion, and the resulting unstable velocity field can hamper conver-
gence. To overcome this, we include a direction variation matching
term in our optimization, which brings the added benefit of enabling
optimization on a single input image, in cases where alignment is
less dominant.

For ablation, we performed optimization on the ‘seals’ image
(see Figure 14 [left]) with and without density matching. Here, the
seals are randomly aligned, but with differing density in three zones
(ocean demarcated in red, shoreline in yellow and in-shore in blue).
We thus performed optimization and simulation with separate pa-
rameters for each zone. We set seal speed to 3.0 and 0.5 body lengths
per second in water and on land, respectively, based on known body-
length and movement characteristics.

© 2025 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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12 of 16 X. Gong ET AL / Herds from Video

Figure 14: Simulation based on ‘seals’ image. [Left] Target im-
age. [Middle] Learnt simulation with direction variance matching.
[Right] Learnt simulation without direction variance matching.

Figure 15: Density error for simulations before and after optimiza-
tion with and without direction variance error.

Without direction variance matching (see Figure 14 [right]), the
seals move and cluster in an unrealistically coordinated and aligned
fashion. With direction variance (see Figure 14 [middle]) set at a
uniform target of 3000 for all cells, based, by inspection, on random
orientation of seals in the image, the visual match is much closer.
This is quantitatively supported by lower density matching error, as
shown in Figure 15.

7.2.5. Speed matching and its relationship with density

To highlight the necessity for speed matching, we simulated the
‘sheep-narrow’ clip using a fixed maximum allowed speed for the
agent model. In the simulation, agents exhibited a consistent speed
close to the allowed maximum, with a negligible standard deviation
of < 10−5. However, the observed standard deviation in the video
footage was much larger, at 1.78, indicating that the speed of ani-
mals in the clip varies significantly more than evidence by the sim-
ulation. By employing the OU process, we were able to more accu-
rately match both the mean and standard deviation of animal speeds.

Figure 16 reports the relationship between speed and animal den-
sity measured for the ‘sheep-narrow’ clip. Interestingly, at very low
densities, the sheep move slowly, contrary to the expectation that
they should move faster in obstacle-free areas. This behaviour is
likely due to the sheep grazing and wandering in sparse areas. As
density increases, speed initially rises, reflecting movement towards
the centre of the migrating group. However, at very high densities,
speed decreases again, likely due to crowding and friction as the an-
imals move in close proximity. This dynamic relationship between
speed and density highlights the necessity of incorporating such be-
haviours in our simulation model.

Figure 16: Relationship between velocity and density in ‘sheep-
narrow’, where the few isolated animals go much slower, and the
most densely packed ones need to slightly slow down.

7.3. Authoring

Once herd parameters have been learnt from a series of video-clips,
users can author herds of any size in new environments and control
their overall paths by drawing guidance arrows, providing a desti-
nation goal, or through a combination of the two.

Once guiding arrows in the form of oriented polylines have been
drawn onto the landscape by a user, they are transformed into a sin-
gle grid-based normalized navigation field GFij, to be subsequently
used by leader agents. This is carried out as follows: Each guiding
arrow is sub-divided into oriented line segments whose lengths ac-
cord with the resolution of GFij. Next, every grid cell intersected
by one or more arrows is assigned the average direction of the in-
cident line segments. Then line-segment directions are propagated
iteratively to neighbouring cells and averaged out to a fixed user-
specified radius, after which an exponential decay is applied.

During propagation, a cancelling field around obstacles is also es-
tablished to prevent navigating on a collision course. In cases where
the guidance field is going to be propagated from a grid-cell Gi j to
an inaccessible obstacle cell Gmn, we define a cancelling field CFij,
as follows:

CFij =
{
0, if GFij · Vij→mn < 0

−(GFij · Vij→mn)Vij→mn, otherwise,
(14)

where Vij→mn is the unit vector from Gi j to Gmn. Cancelling fields
are also propagated out to a pre-set radius, and can be summed up
to the navigation field to create a final guidance field.

Inspired by the modified Disjkstra’s algorithm proposed in Patil
et al. [PvdBC*11], we further provide the possibility to define the
navigation field in terms of a single target destination. The results
from this algorithm can be blended with the guidance field for ad-
ditional flexibility.

In addition, users are able to control the speed of agents either by
applying a speed-density correlation from a video clip or by directly
painting a maximum speed cap into the environmental grid.

We constructed two test cases to demonstrate herd authoring in
action:

1. Anthill (Figure 17). This depicts an environment with a large
central obstacle surrounded by narrow vertical and broader hor-
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Figure 18: Continuous transition from filled milling to hollow
milling.

izontal lanes. A circular guidance arrow was drawn around the
obstacle. The upper (red bordered) and lower (blue bordered)
regions were assigned ‘ant-swarm’ and ‘ant milling’ parame-
ters, respectively.

2. Sheep pasture (Figure 1 [right]). This represents a corridor with
various obstructions. The sheep herd is directed to follow a
sinusoidal guidance arrow, with ‘sheep-narrow’ and ‘sheep-
broad’ parameters painted on the left- and right-hand sides, re-
spectively.

As demonstrated by these figures and the accompanying video,
our authoring framework can be used to successfully transplant de-
sired herding behaviours from video clips to authored scenes.

7.4. Visual continuity of simulated behaviour

A concern when agents switch roles or change control parameters
is the potential introduction of motion discontinuities. Fortunately,
since our model is forced-based, transitions are gradual even when
parameter changes are abrupt.

While smooth transitions were observed in previous test cases
(sheep in Figure 1 [right] and ants in Figure 17), these involved an
authored guidance field and changes were only applied to agents as
they crossed zone boundaries. To provide clearer evidence of the
model’s intrinsic smoothing capabilities, we designed a test case
without authoring, focusing on a sheep herd transitioning between
milling patterns.

This is illustrated in Figure 18: the top left and top right im-
ages show distinct filled and hollow milling behaviours learnt from
video clips (bottom left and right). When the control parameters are
switched discontinuously from filled to hollow, the simulation does
not exhibit any jarring motion. Instead, as shown in the top mid-
dle image, the herd passes through a smooth, visually continuous
intermediate state. This demonstrates that our model can achieve
seamless behavioural changes directly from discontinuous param-
eter updates, without requiring explicit interpolation between pa-
rameter sets. The inherent dynamics of our force-based framework
naturally smooth the transition.

Figure 19: Integration with existing ecosystems. [Left] Herd of
reindeer with our parameters during free wandering. [Right] A wolf
pack that tends to walk in lines when searching for deer.

7.5. Integration with fully simulated ecosystems

One of our stated aims is to allow straightforward deployment of
learnt collective behaviours. To demonstrate integration with exist-
ing systems, we enhanced a virtual environment depicting a prehis-
toric valley to include more natural animal bahaviours when they are
freely wandering in the valley (see Figure 19). We utilized one set
of learnt parameters for the herd of reindeer. Leveraging the force-
based nature of our model, an additional pre-defined force is in-
cluded for predator avoidance in response to wolf predation.

Wolves were simulated with another set of parameters to govern
pack movement during hunting. Upon detecting the deer, the wolves
initially accelerated while adhering to our agent model to maintain
formation. Once close to the herd, they transitioned to a pre-defined
behavioural model, implementing specific hunting strategies, de-
signed separately and informed by biological studies, to isolate and
target vulnerable deer.

This example highlights our model’s ability to preserve learnt col-
lective behaviours while remaining compatible with external appli-
cations, contributing to more naturalistic agent simulations within
virtual environments.

7.6. Limitations

Here, we note a few limitations of our model. First, the video pre-
processing used to extract density and velocity values is relatively
simple, lacks robustness in the case of large camera deformations
and requires manual input. This processing could be replaced by
more advanced computer-vision techniques, which would remove
the requirement for camera stabilization and colour contrast be-
tween the animal species and background, without impacting the
remainder of the pipeline. Second, our force-model is limited to a
subset of herd behaviour. For instance, the separation of direction
and speed simplifies learning and enhances authoring for generally
homogeneous herds. However, our model cannot capture the be-
haviour of a crowd where agents have markedly different speeds,
such as a mixture of slow, older animals and fast, younger ones.
Lastly, the parameters in our extended Boids model do not estab-
lish a one-to-one correspondence with the resulting behaviour. Dif-
ferent parameter sets can lead to similar behaviours, which means
the optimized parameters may differ from those expected for real
animals. For instance, the perceptual range and field of view may
not align with known biological traits for a species. However, per-
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forming coupled optimization across multiple videos with the same
species could help refine these parameters towards more biologi-
cally plausible values.

8. Conclusion

In this work, we have proposed a framework for learning general
herd behaviour from videos, by optimizing the parameters of an
agent-based simulation. This is based on a modified Boids model,
which integrates a per-agent perception systemwith dynamically as-
signed roles. Agents in a leader role follow a local preset trajectory,
while those in a follower role are influenced by neighbouring agents
and environmental obstacles. The parameters of the Gaussian force
model are optimized to greedily match macroscopic density and ve-
locity direction fields extracted from a video, while the speed and
its correlation with density are extracted independently.

We have demonstrated that our approach successfully reproduces
various herd configurations, with emergent behaviours that quanti-
tatively align with the aspect ratio, polarization, and angular mo-
mentum of the reference video. In addition, our method can be
used as an authoring tool to map and simulate specific herd be-
haviours in new environments, including modification of the herd
size, the speed and trajectory of animals, and the position of obsta-
cles. More broadly, our approach is well-suited to a painting inter-
face, in which users are able to select a brush, representing a partic-
ular herding behaviour, and then paint with it on specific regions of
a virtual terrain, resulting in distinct animal behaviours in different
areas.

In terms of future work, adding additional parameters to the op-
timized force model would enable a broader range of scenarios. For
instance, accounting for correlations between terrain slope and an-
imal behaviour would improve simulation accuracy for real-world
topographies. Another potential improvement would involve mod-
elling the interaction between different species, such as predator-
prey dynamics, so as to better represent the complex dynamics ob-
served in nature. Another avenue would be to capture the behaviour
of animals at multiple scales. While our model is able to fit to macro-
scopic emergent behaviour, such as the global herd profile, it does
not handle sub-clusters that may exhibit individual trajectories. For
instance, ants might follow individual locally-oscillating trajecto-
ries that cannot be captured at the level of resolution of our study.
Introducing a multi-scale representation of the density and veloc-
ity grid could allow us to extract different behaviours at varying
levels of detail. Finally, at the authoring level, we would like to
study the possibility of smoothly interpolating between different
behaviours. Indeed, a simple interpolation in the Boids parameter
space is not likely to lead to the expected transition between emer-
gent behaviours. Incorporating additional differentiable loss func-
tions in the optimization process (such as aspect ratio) might well
open such an avenue.
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