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Abstract

The Cognitive Buffer Hypothesis (CBH) posits that larger
brains evolved to enhance survival in changing conditions.
However, larger brains also carry higher energy demands,
imposing additional metabolic burdens. Alongside brain
size, brain organization plays a key role in cognitive ability
and, with suitable architectures, may help mitigate energy
challenges. This study evolves Artificial Neural Networks
(ANNSs) used by Reinforcement Learning (RL) agents to in-
vestigate how environmental variability and energy costs in-
fluence the evolution of neural complexity, defined in terms
of ANN size and structure. Results indicate that under en-
ergy constraints, increasing seasonality led to smaller ANNs.
This challenges CBH and supports the Expensive Brain Hy-
pothesis (EBH), as highly seasonal environments reduced net
energy intake and thereby constrained brain size. ANN struc-
tural complexity primarily emerged as a byproduct of size,
where energy costs promoted the evolution of more efficient
networks. These results highlight the role of energy con-
straints in shaping neural complexity, offering in silico sup-
port for biological theory and energy-efficient robotic design.

Introduction

The evolution of the brain is a fascinating topic that has
been widely investigated, yet much remains to be under-
stood. Many studies have investigated why some animals
have evolved larger brains than others (Sayol et al.| 2016;
Sol, 2009; Michaud et al., [2022). The Cognitive Buffer Hy-
pothesis (CBH) suggests that large brains evolved to im-
prove adaptability and enhance survival in changing condi-
tions, such as seasonal environments (Allman et al., 1993
Sol, 2009; Michaud et al., 2022). However, larger brains
are typically metabolically costly, and it is not always fea-
sible for organisms to increase their energy intake (Sayol
et al.|[2016; Michaud et al.,[2022; [Smaers and Soligol [2013]).
The Expensive Brain Hypothesis (EBH) highlights this con-
straint, proposing that an increase in brain size must be met
by an increase in net energy intake or reduced energy al-
location to other vital organs (Isler and van Schaikl [2009).
Despite these limitations, organisms often face the need to
adapt to environmental changes (Smaers and Soligo, [2013)),
raising the question of how changing environments and en-
ergy costs impact neural complexity evolution.

Alongside brain size, the organization of the brain plays
a crucial role in cognitive ability (Cohen and D’Esposito,
2016). Brain structures that balance functional segregation,
where information is processed within specialized neural
groups, and integration, where these groups communicate,
are key biomarkers for diverse cognitive function (Tononi
et al.l [1994; |Cohen and D’Esposito, 2016). While larger
brains demand more energy, which organisms may strug-
gle to obtain, an optimally structured brain could achieve
similar cognitive functions with lower energy costs (Smaers
and Soligo, 2013). This structural efficiency may be cru-
cial in mitigating the energetic constraints associated with
larger brains (Smaers and Soligo,[2013;|/O1zumi et al.,[2014)).
This raises the question: Does neural evolution favor larger
brains or more efficient wiring under energy constraints?
Hereafter, we use the term neural complexity to refer to the
combined influence of brain size and structural organization.

In neuro-evolution, the artificial evolution of Artificial
Neural Networks (ANNs), provides a valuable tool for
studying neural complexity evolution (Miikkulainen, 2025)).
While both brain size and structural organization contribute
to neural complexity, they are often studied independently.
For example, previous studies in evolutionary robotics have
defined neural complexity in terms of ANN size and investi-
gated whether imposing complexity costs, such as energy
penalties, evolves more efficient robot controllers (Nagar
et al., [2019; [Hallauer and Nitschke, 2020), with less focus
on how structural organization in neural controllers might
adapt to balance these constraints. Similarly, studies on neu-
ral complexity in terms of network structure typically inves-
tigate conditions driving evolution towards more complex
structures, but with constrained ANN size conditions (Ed-
lund et al.,2011;Joshi et al.,2013;|Yaeger and Sporns|2006;
Nitash et al.l [2018).

Thus this study investigates neural complexity evolution
for ANN size and structure, given testing the CBH remains
little investigated using neuro-evolution as an experimental
tool. Also, while CBH focuses on how changing environ-
ments influence the evolution of brain size, little research
has examined its impact on evolving neural structures.
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Figure 1: 20x20 grid-world. Cell color indicates food type
(edible or poisonous). The agent is the white circle. The
legend shows seasonal food-color mappings.

Research Objective: Specifically, this study investigates
how changing environments and energy costs impact the
evolution of neural complexity, defined by both ANN size
and structure. To do this, we evolve ANNs of Reinforce-
ment Learning (RL) agents in four environments, ranging
from static to highly seasonal (1 to 4 seasons), under two en-
ergy regimes (with and without energy costs that scale with
ANN size). We thus test predictions of the CBH to examine
the relative importance of ANN size versus structural com-
plexity in adaptation, including whether energy costs drive
the evolution of more efficient controllers.

Methods

This section details the task, agent neuro-evolution, energy
costs, task performance and neural complexity metrics.

Task Environment

Agents operate in a 20x20 2D environment (Figure[T), con-
suming edible foods and avoiding poisonous ones, with ed-
ibility signaled by color. Agents expend energy each time
step, gain energy from edible foods, and lose energy from
poisonous ones (Table [I). At the start of each episode, 10
edible and 10 poisonous food items are randomly placed in
the environment, along with the agent’s location. When a
resource is consumed, it is replaced with a new item of the
same type at a random location. Agents have five discrete
actions (move up, down, left, right, or eat) and observe a
9%9 window of nearby cell colors, encoded as 243 RGB val-
ues (9x9x3), normalized to [0, 1]. Each episode ends after
100 time steps (Table|[I).

Agent Rewards: The reward process mirrors the energy
dynamics that agents experience over their lifetime.
* -0.01 at each time step (reflects energy expenditure

* +1 upon consuming edible food (energy replenishment).

1.0.01 is the baseline energy expenditure per step when not
scaled by ANN size (see EquationE[),

* -1 upon consuming poisonous food (energy depletion).

Food Colors and Seasonal Changes: Environments dif-
fer in the number of seasons per episode (1—4), with each
season defined by a unique mapping of colors to food edi-
bility (see Figure[I|legend). At the start of each experimen-
tal run (i.e., per simulation seed), a predefined set of colors
(green, yellow, orange, brown, red, blue, purple, pink) is
shuffled: the first four are assigned as edible (for seasons
1-4), and the rest as poisonous. This mapping remains fixed
across all episodes and generations within a run but varies
between simulation seeds.

Each 100-step episode is evenly divided across seasons,
with agents experiencing the same fixed seasonal sequence.
For example, a 2-season environment consists of 50 steps
of season 1 followed by 50 of season 2. Agents receive no
explicit cues about season transitions and must infer them
through experience, but these changes follow a fixed se-
quence in every episode of a run and are therefore pre-
dictable rather than stochastic. Additionally, each food
item’s final color is generated by sampling each RGB chan-
nel within a 0.2 range of its base color.

Lifetime Learning via Reinforcement Learning

Agents undergo lifetime learning per generation using RL,
where during their lifetime, they adapt by adjusting ANN
controller connection weights given environment interac-
tions. This lifetime learning mirrors natural adaptive be-
havior, potentially enhancing agent ability to adapt to envi-
ronmental changes (Doncieux et al.,|2015; |Urzelai and Flo-
reano, 2001). RL is guided by the Proximal Policy Opti-
mization (PPO) algorithm (Schulman et al.|[2017)). Each RL
agent has an actor and a critic network that share the same
ANN topology, which evolves via NEAT (Stanley and Mi-
ikkulainen, 2002), but differ in their output layers. The actor
network learns the optimal policy, while the critic network
estimates the value function.

* Input layer (243 nodes): Encodes the current state as a
feature vector, representing the RGB color values of each
cell in the agent’s 9x9 field of view.

* Critic output layer (1 node): State-value function V' (s),
estimating the expected cumulative reward from state s.

* Actor output layer (5 nodes): Represents the pol-
icy 7(als), defining the probability distribution over the
agent’s five possible actions in state s.

The RL hyper-parameter and the actor’s ANN evolve
via NEAT. The critic network is derived by replacing the ac-
tor’s output layer with a single state-value node V'(s), which
inherits all incoming output node connections.

2RL hyper-parameter details here|
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Table 1: Simulation and evolution parameters

Experiment Parameters

Number of runs 20
Episode length (time-steps) 100
Agent energy usage (per time-step) -E
Energy gain (edible food) +1
Energy loss (poisonous food) -1
Simulation Parameters

Grid-world size 20x20
Observation / action space size 243 /5
Neuro-evolution Parameters

Population size 150
Generations 400

Feedforward
Fully connected

ANN architecture
ANN initial connectivity

Hidden nodes 1
Mutation Parameters

Weight mutation rate 0.1
Node add / delete probability 0.5/0.0
Connection add / delete probability 0.5/0.5

Agent Neuro-evolution

The neuro-evolution process uses the NEAT algorithm to
evolve ANN topologies and weights (Stanley and Miikku-
lainen, [2002), outlined in the following:

1. Initialization: 150 RL agents (individuals) are generated
with random RL hyper-parameters and a fully connected
(initial structural complexity No = 0; Equation [2) feed-
forward ANN with one hidden node. This setup reduces
initial network size (fewer connections than no hidden
layer). Weights and biases are initialized from N'(0,1).

2. Lifetime Learning: Before evaluation, RL agents update
their inherited ANN weights over 1000 episodes (100 000
time steps), using their inherited hyper-parameters and the
PPO algorithm (Schulman et al.l 2017). Importantly, any
updates to ANN weights during this learning phase are not
inherited by the next generation (Baldwinian Evolution).

3. Evaluation: After the learning phase, assess each indi-
vidual’s fitness based on RL performance (total reward
per episode), averaged over 100 episodes (using seeds not
seen during learning).

4. Selection, Reproduction, and Replacement: The top
10% (15 individuals) are selected based on fitness to pro-
duce offspring via crossover and mutation, modifying in-
herited architectures, initial weights (pre-learning), and
RL hyper-parameters. The fittest two are preserved. The
remaining 148 are replaced by offspring.

Steps 2-4 are repeated for 400 generations, with each gen-
eration using the same fixed training and evaluation environ-
ment seed split within a given simulation run. Further details

on the evolutionary parametersE] used in this neuro-evolution
process are provided in Table [I] Evolutionary parameters
were optimized via Bayesian hyper-parameter optimization,
and connection and node addition and deletion rates were
manually tuned over values {0.1-0.5} to balance task per-
formance and complexity variance. Node deletion rate was
set to 0, since disconnected nodes could still be removed.

Task Performance Metric: Net Energy Intake

The task performance metric differs from the fitness function
(accumulated rewards over an episode) because it excludes
energy expenditure (E), and primarily focuses on net energy
intake, measured as the number of edible foods consumed
minus the number of poisonous foods consumed during the
agent’s lifetime. Excluding energy costs from the task per-
formance calculation enables a better comparison between
agents with different energy expenditures, that is, those with
energy costs on ANN size versus those without. This still
influences the neuro-evolution process and enables us to in-
vestigate the impact of higher energy costs for larger ANNs
on the evolution of neural complexity.

Rationale for Energy Budget Design Agents were not
assigned an initial energy budget because energy dynamics
did not affect their lifespan or trial duration. This setup was
intentionally chosen to avoid biases when comparing per-
formance between the different energy expenditure condi-
tions. In particular, it avoids the issue noted by |Hallauer and
Nitschke| (2020), where energy depletion shortened agent
lifespans, giving agents without energy costs more time to
perform the task. Since agents in this study could act for the
full duration regardless of energy level, assigning an initial
energy value was unnecessary.

Neural Complexity Metrics

ANN size (Ng): Larger ANNs are often associated with
the potential for more complex behaviors due to their in-
creased number of free parameters (Lehman and Stanley,
2011). Therefore, ANN size is commonly defined as the to-
tal number of free parameters (connections and non-input
nodes) in the network (Nagar et al., 2019; Hallauer and
Nitschke, [2020; [Lehman and Stanley}, [2011; Nitschke and
Didi}, 2017} |Yul 2010), and is calculated using Equationm

Ng = (# connections) + (# non-input nodes) @))

ANN structural complexity (Nc): In neuroscience, two
core principles of brain functional organization are segrega-
tion (specialized processing within groups of neurons) and
integration (efficient information exchange between these
groups) (Sporns| [2013; [Cohen and D’Esposito, 2016). A

3Full NEAT evolutionary parameter details herel
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Table 2: Task Environments (a) and Experiment Sets (b) (NEC = No Energy Costs; EC = Energy Cost)

(a) Task Environments (b) Experiment Sets
- . ) Experimental Evaluation
Environment | Seasons Experiment Set | Energy Expenditure (E)
- Variables Metrics
1 (Static) 1 -
. Neural Complexity
2 1,2 1 (NEC) -0.01 Environments: 1-4
Task Performance
3 1,2,3 -
Ngment i Neural Complexity
4 1,234 2 (EC) —0.01 x =0 Environments: 1-4
N§ Task Performance

balance between segregation and integration has been shown
to support diverse cognitive abilities and rich, flexible dy-
namics (Tononi et al., [1994; Deco et al., 2015). Neural
complexity (N¢) is considered high when this balance is
achieved, and low when networks are either fully segre-
gated or fully integrated (Tononi et al., |1994). |Tonont et al.
(1994)’s original N measure, a precursor to Integrated In-
formation Theory (IIT) measures, becomes computationally
infeasible for networks larger than 20 nodes, as it requires
evaluating every possible bipartition (Toker and Sommer,
2019; Mediano et al.l [2018)). To address this, we define the
N¢ metric for evolved ANN controllers as the ratio between
modularity (segregation) and global efficiency (integration),
both well-established, scalable graph-theoretic measures for
functional segregation and integration (Toker and Sommer)
2019; Palma-Espinosa et al., [2025; |Van Diessen et al., 2014;
Cohen and D’Espositol 2016; (Capouskova et al.| 2022).

Modularity (M): Measures segregation (range: [0, 1])
(Cohen and D’Esposito, [2016), by comparing within-
module connection density to between-module connec-
tions (Newman, 2010). Higher values indicated greater
segregation. Modules were identified using the Louvain
community detection algorithm (Blondel et al., [2008).

Global Efficiency (E): Measures integration (range: [O,
1]) (Capouskova et al.,[2022)), computed as the average in-
verse shortest path length between all pairs of nodes (La-
tora and Marchiori, 2001). Higher values indicate greater
integration through more efficient global communication
across the ANN.

The neural complexity ratio is computed with Equation [2}

Ne — min (M(G), E(Q)) @
max (M(G), E(G))

Where G is the graph representation of the ANN, ana-
lyzed using NetworkX (Hagberg et al., 2008). This ratio is
sensitive to changes in either component, decreasing when
one measure dominates the other. When Ngo =~ 1, segre-
gation and integration are well-balanced (high neural com-
plexity). When N¢ =~ 0, one property dominates, indicating
low neural complexity.

Energy Costs

We consider two energy expenditure scenarios: one without
ANN-size-dependent energy costs (NEC) and one where en-
ergy costs scale with ANN size (EC).

NEC (No Energy Costs): Agents have a constant energy
expenditure per time step (Equation 3)):

E=-0.01 3)

Over a 100 time-step trial, total energy loss is —1, mean-
ing edible food consumption (+1) replenishes energy,
while poisonous food consumption (—1) depletes it. NEC
serves as a baseline to evaluate agent performance without
additional energy constraints.

EC (Energy Costs): Energy expenditure scales with ANN
size (Equation [4):

E=-001xC 4)

Where, C is the ratio of the current ANN size (Ng) to its
initial size at generation 0 (Ng = 254), and where there
is a selective pressure imposed against larger networks.

Experiments

Experimentﬂ investigate the impact of energy costs and
changing environments on neural complexity evolution.

The Environment Set: Consists of four increasingly dy-
namic environments that differ in the number of seasons an
agent experiences over its lifetime (Table[2).

Experiment sets: Two experiment sets (Table [2) reflect-
ing different energy scenarios, NEC (No Energy Costs,
Equation [3) and EC (Energy Costs, Equation [)), are used
to investigate the impact of changing environments and en-
ergy costs on neural complexity evolution, where both eval-
uate neural complexity and task performance metrics of the
fittest agent evolved per environment, averaged over 20 runs.

‘https://github.com/sianmay/ECNCECE
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Comparisons within each experiment set examine how
changing environments influence neural complexity evolu-
tion. This shows if environmental variation alone drives
changes in network size and structure, or only when cou-
pled with energy constraints. Comparisons between the two
experiment sets evaluate how energy costs on ANN size im-
pact neural complexity and task performance versus no en-
ergy costs, highlighting trade-offs and their overall effect on
agent task performance across environments.

Results & Discussion

Figure [2| presents neural complexity and task performance
results (averaged over 20 runs) for the fittest individu-
als evolved across environments with increasing season-
ality, under both energy scenarios (NEC, EC). To evalu-
ate differences in evolved complexity across environments,
Kruskal-Wallis (Kruskal and Wallis, |1952) tests (p < 0.05)
were conducted and Dunn’s post-hoc tests (Dunn, [1964)
with Bonferroni correction for pairwise comparisons (Ta-
ble E]) Spearman rank correlations (Spearmanl, |1961) were
used to examine associations between seasonality and neural
complexity, as well as evolutionary trends over generations
(Table E]) Finally, Mann—Whitney U tests (Mann and Whit-
ney, [1947) compared evolved neural complexity and task
performance between the NEC and EC scenarios (Table|[6).

No Energy Cost (NEC) Scenario

When we investigated whether changing environments alone
impact neural complexity evolution, without considering
ANN-size-dependent energy costs (NEC scenario), we
found no significant differences in evolved ANN size (Ng)
or structural complexity (N¢) across environments. That is,
from the static 1-season environment to the 4-season envi-
ronment (Kruskal-Wallis, p > 0.05). Across all conditions,
ANNS increased in both Ng and N¢ over evolutionary time
(Figures[2](b, d), Table[5). The absence of energy constraints
likely allowed unrestricted ANN growth, leading to larger
and more complex ANNSs regardless of environmental dy-
namics. These results suggest that environmental dynamics
alone do not directly drive the evolution of neural complex-
ity, but instead interact with other selective pressures, such
as energy constraints. This result is supported by experimen-
tal analysis in evolutionary biology (Fristoe et al.l [2017),
elucidating that evolutionary transitions in brain size (for ex-
ample, in an avian global phylogeny case study), resulted in
larger brains evolving with equal likelihood in stable and
changing environments. This suggests that other environ-
mental and evolutionary factors similarly impact the shaping
of neural complexity in both simulation and nature.

Energy Cost (EC) Scenario

The EC scenario further explores the interplay between
changing environments, energy constraints and neural com-
plexity evolution by imposing energy costs on larger ANNS.

Impact of Changing Environments on ANN size (Ng):
When higher energy costs were introduced for larger ANNSs,
significant differences in evolved ANN sizes (/Ng) across en-
vironments were observed (Kruskal-Wallis, p < 0.05, 7]2 =
0.194). Specifically, a notable decrease in Ng was found in
the 4-season environment compared to both the 1-season and
2-season environments (Table[3). Spearman correlation tests
(Table ) revealed that Ng modestly increased over genera-
tions for the environments with 1 to 3 seasons, but this trend
disappeared in the 4-season environment. Figure [2p, indi-
cates that unlike other environments, the mean Ng of the
4-season environment initially grew but then decreased after
approximately 150 generations.

We also confirmed a significant negative association be-
tween the number of seasons and Ng (p = -0.4322, p <
0.05, Spearman rank correlation coefficient), indicating that
increased environmental change is associated with the evo-
Iution of smaller networks, refuting the CBH. One expla-
nation is the impact of increasing seasonal changes on task
performance (p = -0.5389, p < 0.05, Spearman rank corre-
lation coefficient), suggesting that increased environmental
dynamics with concomitantly increased task difficulty, leads
to reduced consumption of edible food and consequently
lower net energy intake. In the current experiment setup,
where agents had no competing energetic costs, the EBH
implies that sustaining larger ANNs requires higher net en-
ergy intake (higher task performance). Thus, environments
enabling higher agent task performance, such as static envi-
ronments, are more likely to support the evolution of larger
ANNSs, which is in line with the EBH.

Furthermore, a bootstrap mediation analysis (Preacher
and Hayes| 2004) was conducted to test whether task perfor-
mance (reflecting energy intake) mediates the relationship
between environmental variability (number of seasons) and
Ng. The analysis indicated a significant negative indirect
effect of seasonal variability on Ng (Table d). Specifically,
as the number of seasons increased, task performance de-
creased (e.g., -1.46 for 2 seasons, -2.02 for 3 seasons, and
-3.56 for 4 seasons), and higher task performance was as-
sociated with larger Ng (coefficient of 14.50). The indi-
rect effect of -102.09 (95% confidence interval of [-151.91,
-60.63]) indicates that decreasing task performance due to
environmental variability leads to smaller Ng. This supports
the EBH given that environmental change limits ANN size
indirectly by reducing performance, thereby limiting energy
intake and the feasibility of evolving larger ANNS.

These results align with empirical biological systems re-
search supporting the EBH (Isler and van Schaik, [2009)), in-
cluding studies on amphibians (Luo et al., 2017), eutheri-
ans (Van Woerden et al., 2010; |Graber, 2017; [Van Woerden
et al.,|2012)) and marsupials (Weisbecker et al., 2015)), which
similarly show that increased environmental seasonality is
often associated with smaller brain sizes due to energy limi-
tations.
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Figure 2: Left: Box plots for neural complexity metrics and task performance. The x-axis represents the environments,
labeled by the number of seasons, from the static 1-season environment to the most dynamic 4-season environment. The y-axis
displays neural complexity metrics / task performance for the fittest evolved ANNs from the final generation (fitness evaluated
after lifetime learning using the same evaluation seeds as during evolution), averaged over 20 runs. Right: Neural complexity
metrics and task performance over evolutionary time of the current fittest genome, averaged over 20 runs. (NEC = No Energy
Costs; EC = Energy Costs)



Table 3: Experiment set 2 (EC): Post-hoc Dunn test results (Bonferroni-corrected) for pairwise comparisons of ANN size (Ng)
and structural complexity (N¢) across environments with increasing seasonal changes. Significant p-values (p < 0.05) in bold.

Ns Nc
Seasons | 2 seasons 3 seasons 4 seasons | 2 seasons 3 seasons 4 seasons
1 season 1.0000 0.1875 0.0028 1.0000 0.3051 0.0040
2 seasons 0.6017 0.0167 1.0000 0.0468
3 seasons 1.0000 0.8836

Table 4: Mediation analysis testing whether task performance mediates the relationship between environmental variability
(number of seasons) and ANN size (Ng). The indirect effect (ab) is significant, with a 95% confidence interval (CI) of [-
151.91, -60.63], indicating that task performance mediates the relationship between environmental variability and Ng.

a: Effect of n_seasons on Task
Performance (2, 3, 4 seasons)

b: Effect of Task
Performance on Ng

ab: Indirect Effect | 95% CI for ab

-1.4585 (2), -2.0205 (3), -3.5610 (4) | 14.5020

-102.0939 [-151.91, -60.63]

Table 5: Spearman rank correlation coefficients reflecting
the strength and direction of monotonic trends between gen-
eration number and neural complexity metrics (Ng and N¢)
for each environment and energy scenario. Bold values in-
dicate statistically significant correlations (p < 0.05).

No Energy Cost (NEC) | Energy Cost (EC)
Seasons | Gen-Ng Gen-N¢o Gen-Ng Gen-N¢
1 0.5551 0.6127 0.4627 0.6603
2 0.5414 0.6454 0.3288 0.5319
3 0.4531 0.5343 0.1308 0.4675
4 0.6036 0.7521 0.0034 0.4449

However, ascertaining the exact correlation between
ANN size and environmental change, in support of the CBH,
remains the topic of ongoing research.

Impact of Changing Environments on ANN structural
complexity (N¢c): A significant difference was found in
evolved ANN structural complexity (N¢) across environ-
ments (Kruskal-Wallis, p < 0.05, n> = 0.168), with the
4-season environment resulting in lower N¢ than both the
1-season and 2-season environments (Table[3). We also con-
firmed a significant negative association between the number
of seasons and N¢ (p = -0.4062, p < 0.05, Spearman rank
correlation), indicating that increased environmental change
is also generally associated with the evolution of less com-
plexly structured networks. However, while ANN size did
not significantly increase over generations in the 4-season
environment (Figures [2] (b, d), Table 5], N¢ still showed a
moderate upward trend (p = 0.44, p < 0.05, Spearman rank
correlation), suggesting that structural complexity continued
to increase concomitant with fitness (Joshi et al., 2013; [Ed-
lund et al., 2011; |Albantakis et al., 2014).

Impact of Energy Costs on Neural Complexity and
Task Performance

Mann-Whitney U tests (p < 0.05) tested for significant dif-
ferences in task performance and neural complexities (Ng
and N¢) between networks evolved with and without en-
ergy costs imposed on ANN size (NEC vs. EC scenarios),
across each environment in the set. These tests (see Table
[6) revealed that, across all environments, imposing energy
costs on ANN size led to the evolution of smaller ANNs
with comparable task performance.

Structural complexity (/N¢) was also significantly lower
in the EC scenario compared to the NEC scenario, suggest-
ing a potential dependency between Ng and No. Over-
all, these results highlight the value of incorporating energy
constraints to promote the evolution of more efficient neu-
ral architectures. Ongoing work is investigating the effects
of varying energy costs to identify thresholds where energy
limitations begin to significantly impact task performance.

Evaluating the Dependency Between Ng and N¢

To examine whether structural complexity (N¢) was simply
a byproduct of network size (Ng), 20 additional evolution-
ary runs were conducted using the same parameters as the
previous experiments, but with fitness values assigned ran-
domly from a uniform distribution U (0, 1), thereby remov-
ing task-based selection pressure. This approach evaluated
whether randomly evolved ANNs, under the same evolution-
ary dynamics, exhibited similar N values for a given Ng
(as those observed in the task-driven experiments).

Given Ng decreased over generations in some task-driven
evolutionary runs, a pattern not observed in the random-
fitness runs, the additional random-walk evolutionary runs
included an explicit penalty on ANN size to encourage
smaller networks and enable a more direct comparison. The
resulting scatter plot (Figure [3) presents Ng versus N¢
across all generations, with random-fitness runs in grey and



Table 6: Statistical comparisons (Mann—Whitney U test) for task performance and neural complexity between networks evolved
with no energy costs (NEC) and with energy costs (EC) across environments with increasing seasonal dynamics (1 to 4 seasons).
Comparisons are shown for overall task performance, network size (Ng), and structural complexity (N¢). == indicates no
significant difference, and *>’ indicates significantly greater than (given, p < 0.05).

Task Performance

Ng Nc

1 season

NEC == EC (p=0.27) | NEC >EC (p=0.01)
2 seasons | NEC == EC (p=0.54) | NEC >EC (p=0.01)
3 seasons | NEC == EC (p=0.30) | NEC >EC (p=0.00) | NEC == EC (p=0.06)
4 seasons | NEC == EC (p=0.56) | NEC >EC (p=0.00)

NEC >EC (p=0.03)
NEC >EC (p=0.04)

NEC >EC (p=0.00)
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Figure 3: Network size (INg) versus structural complexity (N¢) over generations. Grey points and crosses are random-walk
evolution without and with an ANN size penalty, respectively. Colored markers show task-based evolution (1-4 season environ-
ments). Overlap across conditions suggests N primarily reflects evolved Ng given mutation rather than task driven selection.

task-driven runs in color. The colored points predominantly
fall within the same bounds as the grey points, suggesting
that No may have emerged primarily as a consequence of
evolving Ng under the given mutation settings, rather than
from task-driven pressures. Structural complexity, therefore,
cannot be isolated as a key driver of performance in this con-
text. This is likely a result of the limitations of the feedfor-
ward neural controllers (Nolfi and Floreano, 2000) used in
this study’s experiments. Ongoing work is testing recurrent
connections (memory) in ANNS, to elucidate whether struc-
tural complexity plays a critical role in facilitating adaptive
and energy efficient solutions across dynamic environments.

Conclusions
This study investigated how energy costs and changing en-
vironments influence the evolution of neural complexity in
RL agent ANN controllers. Results indicated that chang-
ing environments only impacted neural complexity evolu-
tion when energy costs were imposed, with more seasonal
environments driving the evolution of smaller networks. Re-
sults support the Expensive Brain Hypothesis (EBH) over
the Cognitive Buffer Hypothesis (CBH), within the context
of this foraging task, providing in silico evidence that or-

ganisms in fluctuating environments may evolve smaller,
more energy-efficient brains. Structural complexity in-
creased with fitness, but is hypothesized to have emerged
as a byproduct of evolution given current mutation set-
tings. Moreover, imposing energy costs encouraged the evo-
Iution of more efficient ANNs, with implications for as-
sisting the design of energy constrained robotic controllers
(Nagar et al. 2019), such as those that must adapt to
changing robot morphologies and environments (Watson
and Nitschkel 2015 Mailer et al.| 2021). While these ex-
perimental environments allow controlled testing of energy
costs and environmental variability, they are highly simpli-
fied, so generalization to neural evolution should be made
with caution. Overall, this study’s key contribution was its
demonstration of the role of energy costs in shaping neural
complexity.
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