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Preface

Foreword from the Conference Chairs

Dear authors and readers,
It is with great pleasure that we write this foreword to the Proceedings of the

fifth Southern African Conference for Artificial Intelligence Research (SACAIR
2024) held in-person at the University of the Free State, Bloemfontein, South
Africa from 2 to 6 December 2024. The programme included an unconference
for students on 2 December 2024 (a student-driven event that included talks
and interactions with industry), a day of tutorials on 3 December, and the main
conference from 4-6 December 2024.

SACAIR 2024 is the fifth conference in the series of trans- and inter-disciplinary
conferences administered by the SACAIR Steering Committee, an affiliate of
the Centre for AI Research (CAIR), South Africa. The Centre for AI Research
(CAIR)1 is a South African distributed research network that was established in
2011 with the aim of building world-class Artificial Intelligence research capacity
in Southern Africa. CAIR conducts foundational, directed and applied research
into various aspects of AI through its various research groups based at higher
education institutions in South Africa.

Although still a young conference, SACAIR is quickly establishing itself as a
premier artificial intelligence conference in the Southern African region. The fifth
conference builds on the success of previous conferences. The inaugural CAIR
conference, the Forum for AI Research (FAIR 2019), was held in Cape Town,
South Africa, in December 2019. SACAIR 2020 was held in February 2021 after
being postponed due to the Covid pandemic and SACAIR 2021 was an online
event hosted by the University of KwaZulu-Natal in December 2021. The 2022
conference edition was held in Stellenbosch, Western Cape, and SACAIR 2023
was held at the 26 Degrees South venue, Muldersdrift, Gauteng, South Africa,
from 4-8 December 2023.

We are pleased that SACAIR 2024 continued to enjoy the support of the
South African artificial intelligence research community. The conference, held
under the theme of Artificial Intelligence for Societal Impact, brought together
a diverse group of researchers and practitioners. Artificial Intelligence has in-
deed made significant strides in sifting information and offering targeted solu-
tions to real-world challenges. The advancement of responsible AI research is of
paramount importance, as the role of AI in shaping our future societies cannot
be overstated. However, the conversion of how these advancements are devel-
oping into tangible outcomes in our immediate contexts is often not achieved.
This is particularly relevant in areas where societal hardships persist due to the
complex interplay of socio-political, economic, historical, and environmental re-
alities. This year’s conference is therefore centred on exploring the actual societal
1 https://www.cair.org.za/



impact delivered by artificial intelligence beyond its potential promises and from
all scientific perspectives.

The conference attracted support from both authors, who submitted high-
quality research papers, as well as researchers who supported the conference
by serving on the international program committee. SACAIR 2024 brought to-
gether a diverse group of researchers and practitioners in the fields of Computer
Science, Information Systems, Knowledge Representation and Reasoning, Law,
and Philosophy of AI. The conference was organized as a multi-track conference
that would cover broad areas of Artificial Intelligence namely:

– Algorithmic and Data-Driven AI (Computer Science).
– Symbolic AI (Knowledge Representation and Reasoning).
– Socio-technical and human-centred AI (Information Systems).
– Responsible and Ethical AI (Philosophy and Law / Humanities).

The accepted papers include contributions from symbolic AI and those from
data-driven AI, as the focus on knowledge representation and reasoning remains
an important ingredient of studying and extending human intelligence. In ad-
dition, important contributions from the fields of socio-technical and human-
centred AI, as well as responsible and ethical AI are included in this volume.
We expect this multi- and interdisciplinary conference to grow into the premier
AI conference in Southern Africa as it brings together nationally and interna-
tionally established and emerging researchers from across various disciplines in-
cluding Computer Science, Mathematics, Statistics, Informatics, Philosophy and
Law. The conference is also focused on cultivating and establishing a network of
talented students working in AI from across Africa.

A conference of this nature is not possible without the hard work and contri-
butions of many stakeholders. We extend our sincere gratitude to our sponsors:
the Artificial Intelligence Journal (AIJ), the National Institute of Computational
Sciences (NiTHeCS), the University of the Free State (UFS) and the Centre for
Artificial Intelligence Research (CAIR). These sponsors have made it possible
to offer generous scholarships to students and emerging academics to partici-
pate in the conference. We sincerely thank the technical chairs for their work in
overseeing the technical aspects of the conference and the publication of the two
volumes of the proceedings, the international panel of reviewers, our keynotes,
authors, and participants for their contributions. Finally, we extend our grati-
tude to the track chairs, the local organising committee, the student organisers,
and the conference organiser for their substantive contributions to the success
of SACAIR 2024.

Katinka de Wet and Herkulaas Combrink
Organising Chairs: SACAIR 2024
December 2024
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The program committee comprised 156 members (representing some 73 re-
search institutions), 29 of whom were from outside Southern Africa. Each paper
was sent for review to at least three members of the program committee in a
rigorous, double-blind peer-review process. Most papers received at least three
reviews, often followed by a meta-review by the respective track chairs. Great
care was taken to ensure the conference’s integrity, including careful attention to
avoid conflicts of interest. The following criteria were used to rate submissions
and to guide decisions: relevance to SACAIR, significance, technical quality,
scholarship, and presentation (including quality and clarity of writing).

We received 153 abstracts, and after submission and a first round of evalua-
tion, 101 submissions were sent to our SACAIR program committee for review.
The papers consisted of 70 in the CS track, 12 in the IS track, 5 in the KRR
track and 14 in the P&L track. Twenty-one full research papers were selected for
publication in this online volume (acceptance rate 21%). The total acceptance
rate for publication in the two SACAIR 2024 proceedings volumes was 50% for
reviewed submissions. In total, two papers from the Responsible and Ethical AI
track, four papers from the Socio-technical and Human-Centered AI track, and
13 papers from the Algorithmic and Data-Driven AI track were accepted for
publication in this online SACAIR volume.

Thank you to all the authors who submitted work of an exceptional standard
to the conference and congratulations to the authors whose work was accepted
for publication. We place on record our gratitude to the Program Committee
members, whose thoughtful and constructive comments were well received by
the authors.

Aurona Gerber, Jacques Maritz and Anban Pillay
Technical Chairs: SACAIR 2024
December 2024
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SACAIR2024 Attestation

The 2024 Southern African Conference on AI Research (SACAIR 2024) held
as a hybrid-online and in-person event at the University of the Free State, Bloem-
fontein, South Africa from 4 to 6 December 2024.

We received 153 abstracts, and after submission and a first round of evalua-
tion, 101 submissions were sent to our SACAIR program committee for review.
The papers consisted of 70 in the CS track, 12 in the IS track, 5 in the KRR
track and 14 in the P&L track. All the papers were also double-blind and peer-
reviewed by at least two technical reviewers from the program committee.

The program committee comprised 156 members (representing some 73 re-
search institutions), 29 of whom were from outside Southern Africa. Each paper
was reviewed by at least two members of the program committee in a rigor-
ous, double-blind process. Great care was taken to ensure the integrity of the
conference including careful attention to avoid conflicts of interest. The follow-
ing criteria were used to rate submissions and to guide decisions: relevance to
SACAIR, significance, technical quality, scholarship, and presentation, which
included quality and clarity of writing.

Twenty-one full research papers were selected for publication in this online
volume (acceptance rate 21%). This is the second SACAIR 2024 proceedings vol-
ume, the first volume is published as a volume of Springer CCIS (CCIS 2326).
The total acceptance rate for publication in the two SACAIR 2024 proceedings
volumes was 50% for reviewed submissions. In total, two papers from the Re-
sponsible and Ethical AI track, four papers from the Socio-technical and Human-
Centered AI track, and 13 papers from the Algorithmic and Data-Driven AI track
were accepted for publication in this online SACAIR proceedings volume with
the ISBN number 978-0-7961-6069-0 (e-book).

Authors of accepted papers were affiliated with various national and inter-
national universities. The table below indicates the percentage of authors from
the respective institutions for this online proceedings volume.

We can thus confirm that more than 75% of the papers were authored by
researchers from different universities.



Institution Author Percentage
CSIR 2
North-West University 2
Stellenbosch University 4
University of Cape Town 19
University of Johannesburg 6
University of KwaZulu-Natal 10
University of Pretoria 15
University of the Free State 6
University of the Western Cape 8
International Institutions 23

Aurona Gerber, Jacques Maritz and Anban Pillay
Technical Chairs: SACAIR 2024
December 2024

Aurona Gerber, Emma Ruttkamp-Bloem, Anban Pillay, Edgar Jem-
bere
SACAIR Steering Committee
December 2024
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Deep Learning for Cleaning Cultural Heritage
Point Clouds

Luc Hayward1[0000−0003−3667−961X], Patrick Marais1[0000−0001−8747−7765], and
Jan Dirk Wergner2[0000−0002−0290−6901]

1 University of Cape Town, Cape Town, South Africa
hywluc001@myuct.ac.za

2 University of Zurich, Switzerland
jandirk.wegner@uzh.ch

Abstract. Laser scanning technology is often used in the Cultural Her-
itage domain to capture the 3D structure of a site, with each scan con-
sisting of a set of 3D point coordinates — a point cloud. Before these
point clouds can be utilsied to build a complete 3D surface model, un-
wanted points must be removed. While manual point cloud cleaning is
time-consuming, previous work has shown promise in automating parts of
the process. This study builds on a previous approach which interprets
point cloud cleaning as a segmentation task accomplished via binary
point classification, applied to individual point clouds. This approach
uses a basic Random Forest (RF) classifier with hand-crafted features,
is designed to clean scans one by one via incremental per scan train-
ing, and requires a complex graph-based post-processing step to achieve
acceptable results. By contrast, we leverage modern point-based deep
learning models to directly learn useful features, and develop a frame-
work that processes the fully registered set of point clouds, rather than
cleaning scans individually. Our method focuses on purely geometric at-
tributes, uses a few-shot fine-tuning approach and, unlike the single scan
method, does not require segmentation post-processing to improve re-
sults. Under this scheme, users label 2.5 − 50% of an unlabelled scan,
and a model is trained to label the rest. We assess three deep learning
point-based models (Pointnet++, KPConv, Point Transformer) along
with a baseline Random Forest model, focusing on speed, accuracy, and
the reduction of total labelling effort. Our findings reveal that modern
deep learning requires minimal human labelling, with up to 85% reduc-
tion in total labelling effort. KPConv stands out for its efficiency with
less human input, while Random Forests work best for simpler scenes.
This study highlights deep learning’s effectiveness in reducing manual
labour in point cloud cleaning in the cultural heritage domain.

Keywords: Point Clouds · Deep Learning · Cultural Heritage

1 Introduction

Cultural Heritage sites throughout the world are a source of religious, cultural,
historical and archaeological importance. Increased tourism can lead to some of

Hayward, L. et.al.
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L. Hayward et al.

Fig. 1: Comparison of point cloud (red = discard, blue = keep) and real world
environment for Bagni di Nerone

these sites rapidly eroding whilst natural disasters may result in permanent dam-
age or complete destruction. To aid in the documentation of a site or structure
one can acquire a series of laser scans around the site of interest, which densely
sample surfaces to yield one or more point clouds (see Figure 1). This point cloud
set can be aligned (registered) and then used to generate a 3D surface model.
Before the point cloud can be meshed to create a 3D model, unwanted points
must be removed from each scan in a process known as point cloud cleaning.
For simple cases such as ground detection or foliage removal simpler “semantic
segmentation” algorithms can be used to partition the point cloud into groups
of semantically related points. Unwanted point categories (such as foliage) can
then be discarded. This labelling task is complicated in the cultural heritage
setting where objects may be deemed undesirable due to modelling/aesthetic
choices. This is a key problem for training a general machine learning model as
each scene may differ drastically in its modelling and cleaning requirements [22].

Previous work in the segmentation of point clouds has focused on single
scans and used multi-class labels covering different semantic groups such as trees,
ground, and walls. An alternative approach [9], the basis for this expanded study,
changed the cleaning problem to one of binary point classification. Under this
approach, every point is labelled as either “keep” or “discard” with the latter
corresponding to points to be removed during cleaning. This approach is based
on non-deep learning methods, uses handcrafted features, and operates on in-
dividual scans rather than fully registered point clouds [11, 9, 15]. Although the
approach works surprisingly well, it does not utilise a fully registered set of scans
or attempt to assess the utility of point-based deep learning (DL) models for the
cleaning problem. It also requires post-processing steps to increase the quality
of the segmentation. A significant issue in the use of machine learning for this
task is the potential for highly imbalanced datasets. Class label disparity can be
as high as 99 : 1, despite the change to a binary labelling scheme. Bias can occur
towards either “keep” or “discard” labels and is scene dependent.

Modern DL models have shown promise in the semantic segmentation of
large benchmark datasets, without the need for human-engineered features [27,
28]. The principal aim of this work is to investigate the usefulness of such state-
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of-the-art point-only deep learning models under this binary segmentation point
cloud cleaning approach.

This work logically continues from the single-scan approach of Marais et
al. [9] to fully registered point clouds and removes the requirement for explicit
feature engineering as well as segmentation post-processing, which was integral
to their better results.

More specifically, we investigate several open-source deep learning models:
Pointnet++, KPConv, and Point Transformer. We also examine a baseline Ran-
dom Forest (RF) to allow for easier comparison with the original study. Each
of these models (where applicable) is tested on our datasets both by training
from scratch as well as fine-tuning after pre-training on the Stanford 3D in-
door benchmark (S3DIS). This paper explores the performance of these models
across a range of training set sizes and scenes, as well as methods to minimise
the amount of human labelling needed to train the model for a given scene. To
evaluate the performance of the models we make use of the mean Intersection
over Union (mIoU).

Scope and Limitations: This work focuses on methods for reducing the
amount of time a human needs to spend labelling during the cleaning process.
We chose to focus on more established models in Pointnet++ and KPConv,
in addition to the Random Forest baseline. The Point Transformer model was
added since, at the time of testing, it was the best performing model with a
stable implementation on GitHub. We forego a direct comparison with manual
labelling as it would require extensive user studies and access to experts.

2 Background and Related Work

Point cloud semantic segmentation can be accomplished either with or without
recourse to machine learning (ML). Non-ML techniques include model fitting
(e.g. RANSAC [4] for plane extraction [23]), region growing [13, 16, 26], and
clustering [5]; although these may be limited in their ability to handle complex
scenes [27]. Since our interest is specifically focused on machine learning based
methods, we do not give further consideration to non-ML approaches. Several
existing tools are available for manual segmentation using 2D polygon selection
and brushes, as well as semi-automated approaches for specific semantic classes
such as ground plane removal (often via RANSAC) and foliage removal, although
this has been shown to mislabel heritage structures [15].

Pointnet [17] marked the start of viable DL models for the segmentation and
classification of large 3D point clouds. Pointnet++ [18] improves on Pointnet by
taking into account local neighbourhood information with hierarchical spatial
structures, accounting for both local and global contexts. Whilst many future
models use Pointnet++ as a backbone, its performance suffers compared to
newer, larger models described below.

KPConv is an efficient CNN-based approach for point cloud classification and
segmentation tasks [25]. At release, it achieved state-of-the-art (SOTA) results on
several point segmentation and classification benchmarks, including S3DIS Area
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(a) 2.5% (b) 5% (c) 25% (d) 50%

Fig. 2: Bagni di Nerone: Each training split is a strict subset of the next. Dark
blue/pink indicates the training set.

(a) Bagni di Nerone (b) Church (c) Lunnahoja

(d) Montelupo (e) Piazza

Fig. 3: Overview of each scene (red is discard, blue is keep)
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of 2cm to reduce the effect of noisy or non-uniform point densities inspired by
KPConv. The labels in the subsampled point cloud are assigned to the majority
label from the nearest neighbours in the original cloud.

Table 1: Number of points and percentage “discard” labels for each point cloud
as well as reprojection accuracy. The central columns representing the number
of points and the percentage labelled for discard each contain two measurements
seperated by a “/”. These are the measurements on the subsampled and the
original point clouds.

Scene Subsampled / Original Reprojection
Accuracy Area m2

Num. Points Discard (%)
Bagni di Nerone 5.4 / 55.4M 2.4 / 6.8M

(44.8% / 12.3%)
99.5% 19k

Church 1.0 / 21.9M 0.05 / 0.3M
(4.6% / 1.4%)

100% 4.7k

Lunnahoja 2.2 / 30.7M 1.6 / 12.4M
(70.5% / 40.6%)

96.9% 11k

Montelupo 3.1 / 115.4M 1.9 / 52.6M
(62.1% / 45.6%)

99.6% 2.9k

Monument 2.8 / 49.4M 2.7 / 40.9M
(97.4% / 82.7%)

99.9% 3.5k

Piazza della Signoria 16.2 / 55.1M 0.7 / 1.4M
(4.2% / 2.5%)

99.8% 52k

We determined empirically in Table 1 that the subsampled point clouds can
be reprojected onto the original point clouds using nearest neighbour reprojec-
tion with at least 98% accuracy across all datasets. Second, using a 1m2 grid in
the XY plane, any cells containing fewer than 100 isolated points are removed.
This removes less than 0.1% of points in all scenes without incorrectly discarding
any points.

For each scene, we select 5%, 10%, 25%, and 50% train-test splits (with each
training set being a strict subset of the next, see Figure 2) using the column grid
method described in Section 4.1. These splits are determined by area, rather
than point density, to better approximate labelling effort. The reasoning behind
these splits, rather than a larger, 75%/25% training / test split for instance, is
that we are aiming to emulate the human labelling process. Given the aim of
reducing human labelling effort we chose to use these smaller training set sizes.

In several scenes, there are inconsistent labellings in the ground truth labels
which likely negatively impacted the model training. Figure 5a illustrates an
example of this in which regions of the ground points (centre of the figure) are
incorrectly labelled “discard” when they should be marked as “keep”.

The Stanford 3D Indoor Scene (S3DIS) is a large-scale indoor dataset which
is commonly used for benchmarking models. We use it as a pretraining dataset
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as the sampling density, object sizes, and data format are similar to our point
clouds. Both SemanticKITTI [1] and Paris Lille [21] were considered as alter-
native pretraining datasets. However, the car-mounted LiDAR scans produce
different point density distributions — in the form of repeating circular pat-
terns — compared to the TLS-based heritage scans. Following the completion of
this study, and so not used as part of our experiments, the authors were made
aware of the ArCH dataset [14]. This is a collection of cultural heritage buildings
scanned using terrestrial laser scanning, UAVs, and photogrammetry methods.
Unlike S3DIS which was evaluated in the original papers of our three deep learn-
ing models, to the best of our knowledge ArCH does not have published results
on either KPConv or Point Transformer.

4 Experimental Design and Implementation

Here we detail the implementation of the models used and explain issues related
to data preparation/pre-processing and experimental setup.

4.1 Pre-processing and data prepararation

Point Features: Although several scenes contain additional RGB and Intensity
features, we use only the XYZ coordinates. RGB data is unreliable in heritage
environments due to changing lighting conditions [9]. Furthermore, initial testing
with both pretrained randomly initialised Pointnet++ models indicated that the
laser return intensity did not reliably improve mIoU scores (x = 0, σ = 0.17)).

Dataset tiling: Drawing inspiration from PointPillars [8], the scenes are split
into 1×1m2 columns in the XY plane. This size preserves geometric detail whilst
keeping points per sample small. To maintain consistency between the models,
we precompute the splits when creating the different training set sizes such that
there is no overlap with the test data (see Section 3). We use this sampling
strategy for Pointnet++ and retain the original spherical sampling strategy for
both KPConv and Point Transformer.

Data Augmentation: The default augmentations of Z-rotation, scaling, and
random perturbation are used.

4.2 Exploratory experiments

It is important to reiterate that model development and hyperparameter tuning
are performed exclusively on the Church scene (cf. Table 2).

Pointnet++ was the main model explored during the exploratory study, al-
though training was erratic and struggled to converge on the imbalanced class
labels. We tuned Pointnet++’s hyperparameters using a grid search over several
hyperparameters: learning rate, weight decay, number of points, whether to aug-
ment the points, and use of intensity or xyz features. The largest improvement
came from increasing the weight decay parameter in the Adam optimizer [6] from
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Table 2: Descriptions of datasets used for experiments
Scene - Description Discarded data and labelling inconsistencies
Bagni di Nerone
Ancient Roman bath site

Structures around the area of interest, vegetation,
railings, cars, trees, and people, noisy ground la-
bels and parts of railing, tree foliage and people

Church
Underground Church & stepped
courtyard

Railings, gates, interior scaffolding, gate frames
and ground labels

Lunnahoja
Wood and stone cabin in the
woods

Trees and surrounding buildings, points inside the
main building, ground labels around the perimeter
of the main building are noisy

Montelupo
Church site with clutter and fo-
liage, including a deep alcove with
irregular geometry

Vegetation around the area of interest and unin-
tuitive labelling of people and wall in one area

Piazza della Signoria
Busy Piazza in Florence

People and vehicles, scattered data due to window
glass, buildings at the periphery of the scene

0.0001 to 0.01, at the cost of slower convergence. We found increased weight de-
cay to be particularly useful for all models in smoothing the learning.

KPConv’s default hyperparameters produced immediately useable results.
Based on suggestions by the author , we use class balanced sampling to re-
duce the effect of the imbalanced scenes, the non-deformable network for faster
training, and a smaller initial radius to better pick up fine detail structures
such as gates and scaffolding. Whilst class balanced sampling was not used on
Pointnet++ nor Point Transformer — a possible avenue for future work — the
relative performance of the models is broadly consistent across the scenes with
both imbalanced and balanced class labels.

Point Transformer did not have an original implementation available, we
make use of the reimplementation from POSTECH CVLab at Pohang University.
Experimentation with this model is constrained by the need for a GPU with at
least 12GB of VRAM in order to train effectively on our dataset. We use a
Bayesian hyperparameter optimization via Weights and Biases Sweeps to tune
the hyperparameters against the test loss on the Church dataset. These following
parameters are tuned: the learning rate, power, scheduler type, max points per
sample, warmup length, weight decay, and whether to freeze the network body
during training. Unlike the previous two models which are relatively stable,
the Point Transformer is highly sensitive to the chosen hyperparameters with
different training set sizes requiring different hyperparameters.

Random Forest and XGBoost utilise Scikit-Learn’s RF and the default XG-
Boost implementation enabling a train-predict loop of between ten and one hun-
dred seconds depending on the scene and amount of training data.
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4.3 Experimental Design

Our preferred metric is mIoU (rather than accuracy) as it provides a more in-
formative measure for our imbalanced binary labelling task. Accuracy is only
used to ease comparisons with our baseline from Marais et. al. [9]. To quantify
the utility of the model’s predictions, we introduce a secondary metric Effective
mIoU: the effective performance over the entire scene taking into account the
“perfect” labelling of the training set. We use the formula Predicted mIoU ∗
(1 − labelling%) + labelling% where labelling% is the percentage of the scene,
by area, labelled by the user.

Early experiments showed that it was infeasible to create a third represen-
tative split for validation or to randomly select samples for the training set:
scenes are typically focused around a central point of interest and often have
imbalanced label and geometry distributions. We select the splits by hand into
training and test splits, ensuring the labels are not visible during selection. This
aims to mimic a real-world interaction where the labeller is asked to select “rep-
resentative and informative” regions for labelling. It is important to note that
we only tune the models on the Church scene. The remaining scenes are tested
blind to not unduly bias the results.

5 Results and Discussion

We focus our discussion on two aspects of model performance. Firstly, the Total
Labelling Effort needed to fully label the scene is derived from the mIoU: 100%−
mIoU×prediction labels %. Intuitively this is the proportion of the scene which
must be labelled for fine-tuning plus the amount of corrections which must still be
done on the model’s outputs. We also compare the running time and accuracy of
our results to the baseline, acknowledging that for imbalanced datasets accuracy
may be difficult to compare. Improvements in the runtime of the RF models
are due to the change in implementation rather than the use of faster hardware
than the baseline. Both of these are important metrics for understanding the
real world applicability of the models.

It is important to reiterate that Marais et. al. [9] examined single scans which
exhibit different point densities and geometric representations. Whilst this makes
for a less direct comparison, this study also aims to determine whether the shift
to a registered point cloud can directly improve results.

5.1 Total Labelling Effort

A key focus of this study was reducing the human labelling effort. Figure 4 shows
the median total labelling effort of each of the models across each of our scenes.
, with the core summary results available in Appendix A.

Our experiments demonstrate that a 5% initial labelling is, on average, the
most efficient approach, with the lowest mean total labelling effort of 25.85%
achieved by the 5% Randomly Initialised KPConv model. This is followed closely
by the Pretrained Point Transformer at 29.86%.
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Fig. 4: Mean Total Labelling Effort for each
model across the scenes.

(a) 2.5% Ground Truth Back Cor-
ner Railings

(b) 2.5% Predictions Back Corner
Railings

Fig. 5: Bagni di Nerone: KP-
Conv Pretrained prediction re-
sults with 2.5% training data.
Green: training keep, Pur-
ple: test/predict keep, Yellow:
test/predict discard.

On Bagni Nerone for instance, KPConv achieved an effective mIoU of 93.2%
with just 5% of the scene labelled, translating to a total labelling effort of 11.8%.
This demonstrates the potential for these models. Across the scenes tested, KP-
Conv trained on 5% achieves a total labelling effort of as low as 11.8% on Church
with a maximum of 42% on Piazza. This demonstrates a significant reduction in
labelling that must otherwise be done by a human to complete a scene.

5.2 Accuracy and Runtime

In Table 3, the accuracy and runtimes from our baseline (Marais et. al. [9]) on
each scene are compared with our highest accuracy DL and RF models, under
25% training data, on each scene. For the baseline we report the average overall
accuracy across all the scans in a given scene. The runtime includes the end-to-
end pipeline for training and inference including data processing. Lunnahoja is
not included in these results as there are no result for the baseline and we do
not feel our accuracy alone meaningfully contributes.

The accuracy of the models varied significantly across different scenes and
training conditions. For instance, in the Church scene, KPConv with 5% training
data achieved the highest average mIoU. However, in terms of overall accuracy,
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Table 3: Comparison of model accuracy and runtime for our best deep learning
and tree based models (under 5% training data) vs the baseline on each of the
shared scenes.
Scene Model Overall

Accuracy (%)
Time
(minutes)

Bagni Nerone Marais RF Post Processed 98.1 75
Point Transformer 2.5% Random Init. 99.5 67
RF 5% (ours) 94.4 0.4

Church Marais RF 99.1 14.75
Point Transformer 5% Pretrained 99.6 63
RF 2.5% 98.3 1.7

Montelupo Marais Post Processed 93.0 81
Point Transformer 2.5% Random Init. 95.7 60
RF 5% (ours) 90.3 0.2

Piazza Marais RF Post Processed 97.9 298
Point Transformer 2.5% Random Init. 97.8 67
RF 2.5% (ours) 84.8 1.2

the Point Transformer model with 5% pretrained data achieved a 99.6%. The
training and inference times also varied notably. RF models were significantly
faster, taking as little as two minutes for training, while deep learning models
required several hours. This presents a clear trade-off between the accuracy and
time efficiency of the models. Moreover, whilst we can broadly compare our
results against the chosen baseline, one should be careful of placing undue trust
in these results where they may seem to contradict the mIoU numbers. In deeply
imbalanced scenes such as Church and Piazza, a high accuracy is not necessarily
indicative of real world labelling effectiveness. Due to the way in which mIoU is
calculated, a slight decrease in overall accuracy can still translate into a signficant
increase in mIoU, as the average class accuracy improves.

5.3 Qualitative Results on Bagni di Nerone

Figure 5 compares the target and predicted results when fine tuned on just 2.5%
of the scene. When fine tuned with 2.5% of the scene, KPConv appears to label
“thin” objects as discard, and to keep the larger surfaces mostly. This works well
in the main site area but leads to trees and the buildings on the periphery being
poorly labelled. Additionally, we see an example of KPConv correctly handling
the ground regions that are (incorrectly) labelled as “discard” in the ground
truth. However, even with 50% for fine-tuning some areas are poorly handled. In
particular, regions which were unable to be scanned correctly or contain many
holes — such as the front face of the main building and one of the trees — are
predicted incorrectly.
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5.4 Trends Between models

In general, the RF and PointNet++ models achieve higher mIoU scores on sim-
ple scenes, while KPConv and Point Transformer perform better on larger and
more complex scenes. Additionally, on scenes in which there were significant
inconsistencies in the ground truth labelling we found KPConv — and Point
Transformer to a lesser extent — to accurately correct for these in its predic-
tions.

Pretrained vs Randomly Initialised Weights
Pretraining was generally beneficial for maximising mIoU over an unseen test set.
This is particularly evident for the Point Transformer at lower training percent-
ages on our scenes with an average improvement of 11%. However, on some less
complex scenes in which the labelling decision was based largely on the position
within the scene pretraining unexpectedly reduced model performance. KPConv
was found to be more variable in whether or not pretraining improved perfor-
mance, though on average the randomly initialised models slightly outperformed
on our data.

Model efficiency can be split into time optimised, and human labelling opti-
mised results. Unsurprisingly, pre-labelling 50% of the scene results in the least
post-prediction corrections, with an average effective mIoU of 90.3%. Our anal-
ysis shows that labelling 2.5-5% of the scene as fine-tuning labels is the optimal
proportion to minimize total labelling effort after correcting the resulting pre-
dictions.

The RF models are an order of magnitude faster to train and predict labels
for the remainder of the scene compared to the deep learning models. On rela-
tively simple scenes (Bagni di Nerone, Montelupo, and Monument), it is more
efficient to correct the additional 5−10% of labels than to wait for a deep learning
model. This is particularly useful if cleaning must be done in the field without
access to powerful GPU computing. XGBoost generally performed worse than
our RF models in our experiments. Although XGBoost is often the “default”, it
can require more extensive tuning. It is possible that further tuning and addi-
tional precomputed features as in Marais et. al. [9] could improve the model’s
performance. Both models suffer when the geometry and/or decision boundaries
are not axis-aligned. This is particularly evident on Lunnahoja in which both
models perform worse than random guessing or even majority class prediction.
We attribute this to the cabin’s diagonal orientation to the XY axes. Further-
more, both models can often have their prediction performance improved by
going up to 25% training data. The additional effort could be considered to be
offset by the far faster training and inference times of these models compared to
any of the three deep learning models.

Deep learning models, in contrast, are most useful when reducing the la-
belling effort is more important than the increased training and inference times.
The Randomly initialized KPConv model consistently requires the least total
labelling effort. During training, KPConv quickly achieves a reasonable level
of performance before taking a long time to reach the maximum mIoU for an
experiment.
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Point Transformer, despite often requiring the least labelling effort, is highly
inconsistent in the amount of training data needed and the effect pertaining will
have. Additionally, we observed the Point Transformer model to occasionally
produce a low total labelling effort, but with a far lower than expected average
class accuracy compared to the corresponding KPConv model with a similarly
low total labelling effort. Conversely, KPConv, particularly when randomly ini-
tialized and trained on 5% of the scene, produces consistently good results with
a maximum total labelling effort of 43%, averaging at 25 ± 11%. KPConv is
consistently within the top two models tested. The trade-off for this consistency
is longer training times, notably three to four hours compared to Point Trans-
former’s one hour, while RF models train in under two minutes.

Finally, our baseline deep learning model, Pointnet++, is not particularly fast
to train or particularly effective. It is often unable to learn anything meaningful
in more complex scenes, whilst on simple scenes the more traditional RF is within
a few percentage points for total labelling effort and is far faster to train.

Recent Advances, such as PointNext [19] and Stratified Transformer [7], have
been released since the conclusion of our experiments which improve upon the
Point Transformer S3DIS benchmark. We believe that the improvements of the
newer models would not significantly affect the outcome of our experiments,
although these could be explored in future works. The changes proposed in
PointnNeXT are of particular interest as they demonstrate the majority of their
performance via improved data augmentation strategies.

6 Conclusion

This work compares modern deep learning methods with traditional machine
learning approaches in a point cloud cleaning setting, building on the binary
classification approach proposed by [9]. We show the potential for deep learning
models to reduce the human labelling effort by as much as 85% across a range
of scene types, including highly imbalanced class distributions.

Model performance can vary significantly based on the dataset. KPConv and
RF most consistently require the least labelling effort and training/prediction
time respectively. RF models are efficient in simpler scenes but less capable in
complex geometries. Point Transformer occasionally required the least labelling
effort, however, it was too inconsistent to recommend for real-world use.

Future Work: The major limitation of the study is the lack of further scenes to
evaluate the models across a broader range of environments. Potential directions
for future work include leveraging RF’s fast training for real-time labelling as-
sistants or exploring a combination of whole scene input and human-engineered
features [9].
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SUPPLEMENTARY MATERIAL

A Total Labelling Effort Detailed Results
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(b) Church
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(c) Lunnahoja
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(d) Montelupo
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(e) Piazza

2.5% 5% 25% 50%
Training Percentage (not to scale)

60

40

20

0

20

40

m
Io

U 
Sc

or
e

Pointnet++ (pretrained)
Pointnet++ (random)
KPConv (pretrained)
KPConv (random)
Point-Transformer (pretrained)
Point-Transformer (random)
Random Forest (random)
XGBoost (random)

(f) Legend

Fig. 6: Total Labelling Effort for each tested model on each scene in our data.
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