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In biological societies, complex interactions between the behavior and morphology of evolving organisms and their envi-
ronment have given rise to a wide range of complex and diverse social structures. Similarly, in artificial counterparts such
as swarm-robotics systems, collective behaviors emerge via the interconnected dynamics of robot morphology (sensory-
motor configuration), behavior (controller), and environment (task). Various studies have demonstrated morphological and
behavioral diversity enables biological groups to exhibit adaptive, robust, and resilient collective behavior across changing
environments. However, in artificial (swarm robotic) systems there is little research on the impact of changing environments
on morphological and behavioral (body-brain) diversity in emergent collective behavior, and the benefits of such diversity.
This study uses evolutionary collective robotics as an experimental platform to investigate the impact of increasing task
environment complexity (collective behavior task difficulty) on the evolution and benefits of morphological and behavioral
diversity in robotic swarms. Results indicate that body-brain evolution using coupled behavior and morphology diversity
maintenance yields higher behavioral and morphological diversity, which is beneficial for collective behavior task performance
across task environments. Results also indicate that such behavioral and morphological diversity maintenance coupled with
body-brain evolution produces neuro-morpho complexity that does not increase concomitantly with task complexity.

CCS Concepts: • Computing methodologies → Evolutionary robotics; Cooperation and coordination.

Additional Key Words and Phrases: Swarm-Robotics, Controller-Morphology Adaptation, Quality-Diversity, Behavioral and
Morphological Diversity Maintenance

1 INTRODUCTION
In nature, various complex interactions between evolving organism behavior, morphology, and environment, have
resulted in the emergence of complex and diverse forms of social (collective) behavior [Duarte et al. 2011; Hart
et al. 2002; O’Shea-Wheller et al. 2020]. Similarly, in artificial social systems such as swarm robotics, various forms
of collective behavior arise from coupled dynamics between a robot’s morphology (sensory-motor configuration),
behavior (controller output) and environment (task) [Bredeche et al. 2018]. One perspective is that an embodied
agent’s (robot’s) morphological and behavioral complexity must match its environment complexity [Pfeifer and
Bongard 2006]. However, with varying examples in biology systems [McShea 1996], it remains an open question
as to whether more complex task environments require agents with more complex behaviors and morphologies
[Cheney et al. 2013; Nygaard et al. 2021a; Xu and Wang 2021].

Studies on artificial morphology-behavior (body-brain) evolution using simulated [Cheney et al. 2018; Kriegman
et al. 2018] and physical [Nygaard et al. 2021a; Xu and Wang 2021] evolutionary robotics platforms have received
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significant research attention [Doncieux et al. 2015]. However, work investigating the impact of body-brain
adaptation in collective and swarm robotic systems is less prevalent [Buason et al. 2005; Furman et al. 2019;
Hewland and Nitschke 2015]. Specifically, research investigating how emergent morphological diversity impacts
evolving swarm robotic behavior has received little research attention [Hunt 2021]. This is due to the analytical
difficulty of meaningfully distilling core relationships between a robot’s evolving genotype (body-brain encoding)
and phenotype (body-brain couplings) from the phenotypic interactions between robots and resulting emergent
collective behaviors [Moore et al. 1997].

In both artificial and biological collective behavior systems, a single robot or organism genotype produces
multiple morphology-behavior couplings (phenotypes) in response to varying environmental conditions [Kelly
et al. 2012; Schlichting and Pigliucci 1998; West-Eberhard 1989; Wolf et al. 1999]. For example, local cues about
resource distributions adjust agent foraging parameters in artificial swarms [Just and Moses 2017]. Similarly, in
biological ant colonies, environmental heterogeneity generates variable foraging behaviors [Beverly et al. 2009;
Gordon et al. 2011]. Such phenotypic plasticity resulting from evolving genotype and phenotypic interactions in
collective behavior systems has been argued as a missing adaptive component preventing autonomous robots
from working in unconstrained real-world environments [Hauser 2019].

Previous work [Kriegman et al. 2018; Pfeifer and Bongard 2006] also demonstrated that robot morphology
significantly influences the range and types of behaviors it exhibits, where robot morphology plays a critical
role in determining behavioral complexity. Adapting morphology in company with behavior can reveal novel
motor-sensor relationships, which enhances the evolution of robust behaviors, particularly in challenging and
unfamiliar environments [Birattari and et al. 2019; Bongard 2011; Kriegman et al. 2018; Nygaard et al. 2021b].
Given the demonstrated benefits of evolutionary robotics as an experimental tool for evaluating the evolutionary
and environmental conditions under which specific behaviors emerge [Ferrante et al. 2015; Montanier et al. 2016;
Nitschke et al. 2011; Steyven et al. 2017; Trueba et al. 2013; Trujillo et al. 2011; van Diggelen et al. 2022], this study
uses evolutionary swarm robotics [Dias et al. 2021; Doncieux et al. 2015] as an experimental platform to investi-
gate the impact of varying environment complexity (task difficulty) on the evolution of morphology-controller
(body-brain) couplings in swarm robotic systems.

Within evolutionary swarm robotics, research incorporating evolvable coupled controllers and morphologies
remains scarce and restricted in scope [Dias et al. 2021], with a noticeable absence of studies exploring the impact
of environment (task) complexity on robot phenotypic plasticity and resultant emergent (collective) behavior.
Conventionally, researchers define a specific environment and task (task environment), and then evolve robot
behavior specifically tailored to operate within the given task environment. For example, many swarm robotics
studies consider the task environment as an experimental parameter, where behavioral diversity is evolved using
given morphologies that have been pre-designed to address specific collective behavior tasks [Brutschy et al.
2012; Ferrante et al. 2015; Nitschke et al. 2011; Steyven et al. 2017; van Diggelen et al. 2022]. However, notable
exceptions include self-assembly swarm robotics systems comprising many individual functionally simple robots
that physically attach to each other [Brambilla et al. 2013; Mathews et al. 2019; Mondada and et al. 2013]. This
includes proof-of-concept demonstrations using hundreds of Kilobots [Carrillo-Zapata et al. 2019; Rubenstein
et al. 2013; Slavkov et al. 2018], a mergeable nervous system [Mathews et al. 2017] and a group mind [Otte 2014],
where swarm robotic behaviors emerge from self-organizing neural controllers interconnecting across hundreds
of robots. Other examples include multi-robot organisms [Levi and Kernbach 2010] that adapt morphology
via self-organizing into various problem-solving forms, such as evolving functional specialization in various
interacting body-parts [Auerbach and Bongard 2009], and evolving desired group behaviors via morphological
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adaptation that switches sensors on and off, such that robots adapt to complementary sensory configurations
[Furman et al. 2019; Hewland and Nitschke 2015; Watson and Nitschke 2015].

Furthermore, while previous evolutionary robotics work [Auerbach and Bongard 2014; Miras and Eiben 2019;
Miras and Ferrante 2020; Spanellis et al. 2021] has studied the impact of the environment on body-brain co-
evolution, there have been few studies that investigate environmental impact on body-brain evolution in swarm
robotics [Furman et al. 2019; Nagar et al. 2019a,b]. In most evolutionary swarm robotics studies robot morpholo-
gies are fixed and only controllers evolve [Doncieux et al. 2015], though there are some studies demonstrating
that diverse environments potentially produce diverse behaviors [Ferrante 2013; Ferrante et al. 2015]. Pertinent
examples include the work of Ferrante et al. [Ferrante 2013] demonstrating that flat environments produced
individual behaviors that did not elicit complex self-organized strategies, while sloped environments induced
complex division of labour [Ferrante et al. 2015]. Otherwise, in evolutionary swarm robotics work with evolvable
coupled controllers and morphologies, there is a lack of studies evaluating the impact of task environment
complexity on emergent collective behavior [Dias et al. 2021].

Finally, in evolutionary robotics, Quality Diversity (QD) methods [Chatzilygeroudis et al. 2021; Cully and
Demiris 2018; Pugh et al. 2016] have been applied to address the exploration-exploitation trade-off in the search
for suitable body-brain couplings [Nordmoen et al. 2021; Nygaard et al. 2021a], and have been successfully applied
in various single robot tasks including adaptive ambulation [Kaushik et al. 2020; Nordmoen et al. 2021; Nygaard
et al. 2021a] and damage recovery [Allard et al. 2023; Cully et al. 2015; Mailer et al. 2013]. Such QD methods
reformulate the optimization process to consider both behavior-morphology diversity and quality (behavior task
performance), and thus aim to find new behavior-morphology couplings eliciting high-quality solutions. Given
that QD methods have shown diversity of body-brain solutions, computed a priori, is critical for fast adaptation
[Chatzilygeroudis et al. 2021; Cully et al. 2015; Kaushik et al. 2020; Mailer et al. 2013], we hypothesize that
leveraging of behavioral and morphological diversity maintenance during evolutionary body-brain design within
robotic swarms will elicit similarly high quality (collective) behaviors, robust across changing task environments.

1.1 Research Objectives and Contributions
Given previous work that demonstrates the benefits of QDmethods for facilitating behavior diversity maintenance
[Hallauer et al. 2023] and behavior-morphology diversity maintenance [Mkhatshwa and Nitschke 2023] in robot
swarms, we formulate two research objectives to evaluate the impact of behavior and morphology diversity
during swarm (collective behavior) evolution.

(1) Evaluate the impact of behavior and behavior-morphology diversity maintenance on increasingly complex
tasks, given robot controller and controller-morphology evolution.

(2) Evaluate the impact of behavior and behavioral-morphological diversity maintenance on robot controller-
morphology evolution (specifically, the degree of evolved neuro-morpho complexity) necessary to facilitate
behaviors effective on increasingly complex tasks.

This study applies five comparative methods (Sections 2.1-2.5) to individual robot controller and controller-
morphology adaptation, to evaluate the effectiveness of evolved swarm behaviors across increasingly complex
(collective gathering) task environments (Section 3.1). Task complexity is defined by degrees of cooperation
required (between robots) to achieve optimal task performance.The simplest environment requires no cooperation
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Table 1. An overview of each of the evolutionary methods evaluated in this study.

Evolutionary method Behavior map Morphology map Behavior adaptation Morphology adaptation
mEDEA 7 7 3 7

mEDEA-M 7 7 3 3

EDQD 3 7 3 7

EDQD-M 3 7 3 3

Double-Map EDQD-M 3 3 3 3

between robots to push objects into a target-area, whereas the most complex environment requires high degrees
of cooperation (multiple robots must cooperatively push objects into the target-area) to achieve optimal solutions
(Section 3). Experiments aim to address our objectives via gauging the impact of behavior and morphology
diversity maintenance for specific task environments to gain insights into how environment complexity impacts
the evolution of behavior and morphology in the context of swarm (collective) behaviors.

This study’s main contribution are results indicating the effectiveness of behavior-morphology diversity main-
tenance, given robot controller-morphology adaptation across increasing task environment complexity. Whereas
related evolutionary robotics work has demonstrated benefits of behavioral [Babak et al. 2021; Miras and Eiben
2019; Miras and Ferrante 2020; Miras et al. 2018a,c,b] and morphological [Cheney et al. 2018; Nordmoen et al. 2021;
Samuelsen and Glette 2014; Zardini et al. 2021], diversity maintenance when coupled with controller-morphology
evolution [Nygaard et al. 2021a], such previous work focused on single robot tasks (such as gait adaptation) and
the impact of variable environment complexity was usually not considered. We extend such previous research
via demonstrating the impact and benefits of behavioral and morphological diversity maintenance in company
with individual controller-morphology evolution for generating swarm robotic (collective gathering) behaviors
effective across increasingly complex task environments.

We also address the limitations of related work most pertinent to this study [Mkhatshwa and Nitschke 2023],
which also focused on swarm robotic controller-morphology evolution and behavioral-morphological diversity
maintenance, with two key extensions and contributions. First, we evaluate more (five) robotic swarm evolution
methods to demonstrate the efficacy and benefits of behavior and behavior-morphology diversity maintenance
for evolving suitable robot controllers and controller-morphology couplings in swarms that must solve more
(five) cooperative tasks. Second, we demonstrate the relationship between evolving behaviour and morphology
diversity and robot neuro-morpho complexity in swarms evolved across increasingly complex task environments.

2 METHODS
In addition to flexibility, robustness, and scalability, swarm robotic systems offer various emergent behavior
benefits [Hamann 2018], such as automated task discovery and problem-solving [Nitschke and Howard 2022].
The emergence of desired problem-solving behavior is highly desirable across a wide range of high-precision
and hazardous tasks in dynamic application domains such as agriculture, mining, and disaster relief operations
[Arnold et al. 2019], where the exact tasks and optimal solutions cannot be specified a priori. That is, as task
complexity increases, defining the exact body-brain coupling of individual robots, where all possible combinations
of collective behaviors resulting from all possible local interactions among robots and the environment becomes
impractical, making it necessary to automate the design process [Furman et al. 2019].
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We address this robotic swarm collective behavior design problem via applying evolutionary methods for
automated design of robot body-brain couplings to produce desired (task-accomplishing) emergent collective
(swarm) behaviors. Specifically, this study evaluates five controller-morphology adaptation methods for evolving
individual robot behavior-morphology couplings and thus adapting emergent swarm behaviors. First, minimal
Environment-driven Evolutionary Algorithm (mEDEA) [Bredeche and Montanier 2010] (Section 2.1), second,
an extension to mEDEA for adapting robot behavior and morphology, termed: mEDEA-M (Section 2.2), third
EDQD (Environment DrivenQuality Diversity) method [Hart et al. 2018], fourth, EDQD-M (robot morphology
adaptation), and finally, Double-Map EDQD-M (coupled robot behavior-morphology adaptation). Table 1 presents
an overview of these comparative controller-morphology adaptation methods and associated use of behavioral
and morphological diversity maintenance mechanisms by each method.

Also, as a point of comparison, we note marked similarity between these selected methods and related evo-
lutionary methods such as the island model [Konfrst 2004], which was designed for the purpose of running
multiple concurrent genotype (solution) populations and maintaining genetic and thus solution diversity over
extended periods. The island model bears similarity to the minimal Environment-driven Evolutionary Algorithm
(mEDEA) [Bredeche andMontanier 2010] used in this study. Specifically, both methods use# solution populations,
operating in parallel, where encoded solution information is periodically exchanged between populations as
means to adapt each population while maintaining diversity of solutions overall. The success of island models in
these respects [Konfrst 2004; Skolicki and De Jong 2004], but their untested capabilities in the context of collective
evolutionary robotics tasks, motivated the use of similar methods in previous evolutionary work [Bredeche et al.
2018; Bredeche and Montanier 2010] as well as in this study.

Another point of similarity is with swarm intelligence methods [Bonabeau et al. 1999] that attempt to balance
exploration versus exploitation in the search for optimal solutions, given multiple, concurrent interactions
(information exchanges) between # agents (the swarm). In swarm intelligence methods such as Particle Swarm
Optimisation (PSO), the key proponents driving the exploration versus exploitation trade-off in the search process,
are the personal best position (p-best) position of each particle and the global best position (g-best) of the swarm
[Gad 2022]. Such PSO parameters have parallels with the interactions between the adapting (individual) robot
behaviors versus the evolving (swarm) behavior driven by the evolutionary methods in this study (Sections
2.1−2.5). Swarm intelligence methods such as PSO have been successfully applied across various challenging
tasks and the meta-heuristic nature of such methods makes them suitable for collective (swarm) robotic controller
adaptation [Pugh and Martinoli 2016]. However, this study’s goal was to better evaluate the benefits of evolu-
tionary quality-diversity methods (EDQD, Section 2.3), and extensions accounting for body-brain adaptation
(EDQD-M, Double-Map EDQD-M, Section 2.4, 2.5), where the efficacy of such quality-diversity methods for
evolving effective body-brain couplings, and the impact of this on evolving swarm-robotic behavior, had not
previously been evaluated.

All of this study’s methods (Sections 2.1−2.5) are experimentally evaluated in the context of swarm robotic
controller and morphology evolution across varying task environments (Section 3) using a custom evolutionary
swarm robotics simulator1. We selected mEDEA as a benchmark method for swarm behavior evolution since it
has been widely studied in swarm robotics [Galassi et al. 2016; Hart et al. 2018; Shan and Mostaghim 2021; Silva
et al. 2015], and mEDEA-M is a logical extension that evaluates the impact of morphological adaption during
swarm behavior evolution. Similarly, we selected to extend the EDQDmethod since EDQD has been demonstrated
as successfully evolving behaviorally diverse robot swarms without requiring explicit mechanisms for genotypic

1The swarm-robotic simulator is available at: https://github.com/Body-Brain-QD-in-Robotic-Swarms/TELO-2023
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(reproductive) isolation or division of labor [Hart et al. 2018], and has not been tested on increasingly complex
collective behavior task environments.

2.1 mEDEA: minimal Environment-driven Evolutionary Algorithm (EA)
Using mEDEA for controller adaptation, a robot moves about its environment using its Artificial Neural Network
(ANN) controller (Section 2.6) for G simulation iterations (robot lifetime, Table 3). When a robot moves, it broadcasts
its genotype (ANN controller encoding) to all other robots in the environment within broadcast range (Table
3), while concurrently receiving genotypes from all other robots. Once the robot’s lifetime (using its currently
active genotype, encoding its current ANN controller) has ended, the robot randomly selects parents from a
list of received genotypes and applies a variation operator. This takes the form of a Gaussian random mutation
operator that is tuned through a f parameter (Table 3). Following the application of variation operators, the
selected genotype replaces the robot’s currently active genotype (current ANN controller encoding). This study
uses a later mEDEA variant [Perez et al. 2014] that incorporates an explicit objective function to direct robot
(swarm) behavior to accomplish collective behavior tasks (Section 3.1). However the core mechanisms of mEDEA
governing genotype exchange between robots were not changed, except the fitness value was broadcast with
each robot’s genotype and selection occurring with respect to swarm task performance (Section 3.2). The mEDEA
method is otherwise the same as fully described in previous work [Bredeche and Montanier 2010].

2.2 mEDEA-M: minimal Environment-driven EA with Morphology Adaptation
The mEDEA-M method enables robot morphological (sensor) and behavioral (controller) adaptation. Specifically,
in each generation, a random sensor type is chosen to undergo mutation. The mutation operator changes the
sensor range at random until it exceeds a specified minimum or maximum sensor-morpho threshold (Table 2).
When a given sensor’s range drops below this threshold, the sensor becomes inactive, which is indicated by a
zero input to the appropriate ANN sensory input node. Similarly, if the sensor range exceeds the sensor-morpho
threshold due to sensor range mutation, an inactive sensor will reactivate, restoring the prior non-zero connection
weight value for the specified ANN sensory input node. The ground-facing target-area detection sensor (Section
2.6) is not subject to morphological adaptation since all robots must be able to find the target-area. Also, the robot
swarm is morphologically homogeneous, meaning that the same sensor adaptations (sensor range adaptation
and sensors switched on and off) are applied concurrently to all robots in the swarm. Otherwise, mEDEA-M uses
the same controller adaptation as mEDEA (Section 2.1).

2.3 EDQD: Embodied Distributed Quality Diversity
The EDQD method hybridizes the MAP-Elites [Mouret and Clune 2015] and mEDEA (Section 2.1) methods.
Differing from mEDEA, as robots explore their environment they periodically broadcast their behavioral map (list
of genotypes), instead of the genotype encoding the robot’s current ANN controller (Section 2.1). The behavioral
map is received and stored by all robots within broadcast range (Table 3). Such robot behavioral maps are
termed LocalMaps, and contain a map of the genotypes (genome in figure 2, right) corresponding to specific robot
behaviors (phenome, Figure 2, right) previously evaluated for each robot. At the end of each robot’s lifetime, a
genotype (genome) is randomly selected from the SelectMap (formed by merging the received maps with the
robot’s own LocalMap, Figure 2, right), and a mutation operator is applied to produce a new genotype which
replaces the currently active genotype (robot ANN controller and thus behavior).

Applying EDQD to swarm evolution, robots store a 2D behavior map (LocalMap, Figure 1, left) defined by
two behavioral dimensions of the collective gathering task (Section 3). Specifically, resource type collected, and
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Fig. 1. Left: EDQD : Each generation, a random genotype (controller encoding) is selected from SelectMap, merging Re-
ceivedMapList with the robot’s LocalMap. Center-Right: Double-Map EDQD-M: Robots maintain two LocalMaps: LocalMap-1,
LocalMap-2 containing behavior and morphology feature descriptors, respectively.

maximum Euclidean distance traversed (explored) in the environment, by each robot (during its lifetime). The
EDQD method and its extensions: EDQD-M (Section 2.4) and Double-Map EDQD-M (Section 2.5), thus leverage
these behavioral dimensions to promote the evolution of behavioral diversity in terms of resource types collected
and environment exploration.

2.4 EDQD-M: Embodied Distributed Quality Diversity with Morphology Adaptation
EDQD-M extends EDQD (Section 2.3) to enable morphological (sensor), in company with behavioral (controller),
adaptation for each robot. Specifically, at the end of each generation, a random sensor type is selected to undergo
mutation. The mutation operator changes the range of a randomly selected sensor until it reaches a given
sensor-morpho threshold (Table 3). If the range falls below a minimum threshold then the given sensor becomes
inactive, where sensor inactivity is realised by an input of zero to the corresponding ANN sensory input node.
Similarly, if the mutation operator causes the sensor range to exceed the maximum threshold, then an inactive
sensor will reactivate, reinstating the previous non-zero connection weight value for the given ANN sensory
input node. As for mEDEA-M (Section 2.2), the bottom-facing target-area detection sensor is excluded from
morphological adaptation, and the swarm is morphologically homogeneous meaning the same sensor adaptations
are also concurrently applied to all robots. Otherwise, the EDQD-M controller adaptation process using the
LocalMap is identical to EDQD (Section 2.3, Figure 1, left).

2.5 Double-Map EDQD-M: EDQD with Double-Map Morphology Adaptation
Double-Map EDQD-M extends EDQD via enabling co-adaptation of a robot’s morphology and behavior. Double-
Map EDQD-M employs two LocalMaps, the first of which is associated with a robot’s controller (behavior)
feature descriptors and the second with the robot’s sensor (morphology) feature descriptors. This second map
has two (morphological) dimensions: the ratio of active sensor types and the average range of active sensors.
As in EDQD (Section 2.3) and EDQD-M (Section 2.4), a random genotype is selected from each SelectMap to
undergo mutation at each generation of the evolutionary process. The selected genotypes from each SelectMap
replace the robot’s current active behavior (ANN controller) and morphology (sensory configuration), respectively
(Figure 1, center-right). However, given that the selected morphology determines the corresponding controller,
an additional procedure ensures that robot behavior and morphology are appropriately matched. Specifically, a
chosen morphology with G active and ~ inactive sensors automatically re-configures the chosen controller so
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Fig. 2. Left: Each robot’s chassis is equipped with four sensor sets (marked blue), one downward-facing target-area detection
sensor (white circle), below the core-component (red-cube). Each of the four sensor sets comprises five block detection
sensors and three IR proximity sensors (white arrows). Right: Each robot uses a feed-forward ANN controller that fully
connects 33 sensory input nodes to 10 hidden layer nodes and two motor output nodes. Motor output nodes control each
wheel’s speed and thus robot direction and speed. The first 20 sensors comprise four of each sensor type, for detecting
block types A (red), B (green), C (blue), D (yellow), and E (brown) blocks, with one of each block sensor type positioned at
the robot’s front, back and rear-left and rear-right positions (marked blue). The next 12 sensors (marked white) comprise
three types of IR proximity sensors at four periphery sensor positions (marked blue). IR sensors are calibrated for detecting
obstacles, walls, and robots. The final (far-right) sensor is a ground-facing target-area detection sensor to determine if the
robot’s current position is in the target-area (for delivering gathered blocks).

that G sensory input nodes are active and ~ are inactive.

As in EDQD-M (Section 2.4), ANN controller connection weights remain active, and robot sensory configuration
(morphology) is adapted by switching specific sensors on and off, with zero values as controller inputs correspond-
ing to switched-off sensors. Thus, Double-Map EDQD-M adapts both LocalMaps to promote morphological and
behavioral diversity. In contrast to EDQD and EDQD-M (only accounting for behavioral diversity maintenance),
these two maps (LocalMap-1, LocalMap-2, Figure 1) enable both robot behavior and morphology to be subject to
diversity maintenance.

2.6 Robot Controllers
Robots explore the environment for their lifetime duration (Table 3), using ANN controllers (Figure 2, right), where
ANN behavior is adapted by either mEDEA, mEDEA-M, EDQD, EDQD-M or Double-Map EDQD-M (Sections 2.1,
2.2, 2.3, 2.4, 2.5). Each robot (Figure 2, left) uses the same controller topology, a fully connected feed-forward
ANN comprising 33 sensory input nodes (proximity, color, target-area detection), a 20 node hidden layer, and 2
motor output nodes (Table 3). To be consistent with previous work [Bredeche et al. 2012; Hart et al. 2018], all
nodes in the ANN used Sigmoidal activation units. The two ANN outputs were the rotational and translational
speed of each robot (normalised to: [0, 1]) at each simulation iteration (of the robot lifetime).

The sensory input nodes corresponded to three forward-facing proximity sensors, one backward-facing
proximity sensor, and a bottom-facing target area detection sensor (constantly active). Proximity sensors were
primed to detect the closest object in the environment, where the closer an object to the robot, the higher the
sensor activation value (normalised to: [0, 1]). For each forward and backward-facing proximity sensor, there
were seven object type (color) detection sensors that activated to discriminate between the colors of five resource
types, walls, and other robots (Table 3). A robot’s periphery comprised four sensor sets (each containing eight
sensors) and one downward-facing target-area detection sensor, where these 33 sensors corresponded to the ANN

ACM Trans. Evol. Learn. Optim.

 



Body and Brain Quality-Diversity in Robot Swarms • 9

Table 2. Parameters for robot ANN controllers and swarm evolution methods (Sections 2.1-2.5).

Sensory input nodes 33

Hidden layer nodes 20

Motor output nodes 2

Node activation function Sigmoidal
Sensory input-Motor output weight range [0.0, 1.0]
Neuron weight range [−400, +400]
Mutation operator Gaussian (pre-tuned f) [Hart et al. 2018]
Sigma range [0.001, 0.5]
Update sigma step 0.35

Mutation probability 0.34

Sensor-morpho threshold ≤0: Sensor inactive; > 0: Sensor active

Map archive size 100

Number of dimensions per (behavior, morphology) map 2

Number of intervals per map-dimension 10

Table 3. Experiment and collective gathering task parameters.

� 0.08 x 0.08 x 0.08

� 0.50 x 0.50 x 0.08

Resource-types (size: G , ~, I: meters) � 0.8 x 0.8 x 0.08

� 1.0 x 1.0 x 0.08

� 1.2 x 1.2 x 0.08

Infrared Proximity [0.0, 1.0]
Sensor types: Range Color [0.0, 1.0]

Target-area detector Bottom facing

Run length (per experiment) 100 generations
Robot lifetime 10000 (simulation iterations)
Swarm size 100 robots
Wait for assistance time (cooperative resource-pushing) Remaining lifetime
Initial robot & block position Random (Outside target-area)
Environment size | Target-area size (meters) 20 x 20 | 20 x 2

Robot LocalMap broadcast range Environment size
Robot LocalMap broadcast frequency 1 (per lifetime)

ACM Trans. Evol. Learn. Optim.
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Table 4. Collective gathering task environments and associated complexity.

Task Environment Task Resource Type Combination
Environment Type Complexity (A, B, C, D, E)

1 Flat Simple 42, 2, 2, 2, 2
2 Flat Medium-Low 30, 5, 5, 5, 5
3 Flat Medium 10, 10, 10, 10, 10
4 Flat Medium-High 5, 5, 5, 5, 30
5 Flat Difficult 2, 2, 2, 2, 42

� 1 robot
� 2 robots

Cooperation required � 3 robots
to move resource type � 4 robots

� 5 robots

input layer. The controller genotype adapted by each method (Sections 2.1-2.5), thus comprised 700 connection
weights, that is, 33 input nodes fully connected to 20 hidden nodes (33x20 connections), fully connected to two
output nodes (20x2 connections). We also note that while the robots operate in a 3D environment (Section 3.2),
each robot’s sensory construct is such that it experiences the environment in 2D. That is, sensors positioned
on each robot’s periphery (Figure 2) perceive block types and obstacles at a given angle and distance (in a 2D
plane) relative to the robot’s current position in the environment. Additionally, the target-area sensor detects if
the robot’s current position in the environment is within the 2D space that defines the target-area for gathered
blocks.

3 EXPERIMENTS
This study uses an evolutionary swarm robotics simulator2 to address our research objectives (Section 1), via
running swarm robotic evolution experiments with various robot controller and controller-morphology evolution
methods (Sections 2.1-2.5) and environments (Table 4), to observe how behavioral and morphological diversity
impacts collective (swarm) behavior evolution. Five experiment sets (Table 5) were conducted to address our
research objectives. Each experimental run entailed evaluating one of the swarm evolution methods in a given
task environment, via running a swarm for one lifetime (10000 simulation iterations) and 100 generations, where
one generation represented a swarm lifetime. Each run, robots and resources were re-initialized in new random
positions and orientations. To complete the collective gathering task, robots had to search the environment for
resources, and then cooperatively move found resources to the target-area.

3.1 Task Environments
Task difficulty was determined by the level of cooperation required for robots to collect all resources in the
environment. Each resource type (�, �,� , � , �) differed in geometric size (Table 3) and so required varied degrees
of cooperation to transport to the target-area. Table 4 presents the five task environments tested in this study,
where task environment complexity is determined by the degree of cooperation required for robots to move
a given resource type (�, �, � , � , �). Simple environments, for example, contained a high proportion of type

2The swarm-robotic simulator is available at: https://github.com/Body-Brain-QD-in-Robotic-Swarms/TELO-2023
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Fig. 3. Example collective gathering task environment. Task difficulty is tuned via distribution of resource types (Table 4): A
(red), B (green), C (blue) and D (brown). Resource type E is not shown in this example.

� resources (collectable without the need for cooperation), whereas difficult environments contained a high
proportion of type � resources (requiring five cooperating robots to transport). Figure 3 presents an example
task environment illustrating robots attempting to cooperatively move various resource types. This experimental
setup, using task difficulty equated with the degree of cooperation required for task accomplishment, is motivated
by the success of previous evolutionary robotics experiments investigating emergent altruism in robot groups
foraging for resources [Waibel et al. 2011].

Furthermore, it is important to note that this experimental setup using the degree of cooperation required
between robots, is only one possible mechanism to tune task difficulty in the environment. We selected this
definition given the simplicity in adjusting task difficulty via manipulating the composition of block types (Table
4), and the established use of this task difficulty definition in previous work [Hewland and Nitschke 2015; Nagar
et al. 2019a]. However, ongoing work is integrating other experimental mechanisms for tuning task difficult
including the slope and traction of the environment’s surface, obstacles in the environment [Spanellis et al.
2021], and variable morphologies indicative of sensor and actuator damage that thus limits possible behaviours
[Putter and Nitschke 2017]. The use of such task difficulty factors in related work has demonstrated that varying
definitions of task difficult impact body-brain evolution in significantly different ways. Thus future work will
consider the impact of a broad range of task difficulty definitions on body-brain evolution in robotic swarms.

3.2 Swarm Behavior Evolution and Evaluation
Table 5 presents an experiments overview, where experiments are defined by robot behavior or behavior-
morphology evolution given application of mEDEA, mEDEA-M, EDQD, EDQD-M, and Double-Map EDQD-M.
The objective of all experiments is to investigate the impact of varying degrees of task complexity (Table 4) on
evolved collective gathering behavior in robotic swarms, given behavioral diversity maintenance (EDQD, EDQD-
M) versus behavior-morphology diversity maintenance (Double-Map EDQD-M) versus no diversity maintenance
(mEDEA, mEDEA-M).
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For each experiment, a 3D environment (simple-difficult task environments, Table 4) was initialized with a
swarm of 100 robots and 50 resources in random positions and orientations. Robots and resources were set up
outside of a target-area (where the collected resources were delivered to). For all swarm evolution methods
(Sections 2.1-2.5), the percentage of resources pushed into the target-area in each swarm lifetime was used to
compute average (over 30 runs) swarm task performance (behavior quality, equation 1), normalized to the range:
[0.0, 1.0].

14ℎ0E8>A @D0;8C~ =
A4B>DA24+0;D4

=D<14A%DBℎ8=6'>1>CB
∗ 38BC0=24'4B>DA24">E43

C>C0;�8BC0=24%>BB81;4
(1)

In equation 1, resourceValue is the minimum number of robots required to push a resource, numberPushingRobots
is the number of robots pushing a given resource, distanceResourceMoved is the straight line distance that the
resource is moved towards the gathering area, and totalDistancePossible is the straight line distance from one end
of the environment to the center of the target-area.

Each swarm comprised 100 robots with identical morphologies (sensory-motor configurations) and ANN
controllers. For mEDEA-M and EDQD-M, the swarm remained morphologically homogeneous, meaning any
controller-morphologymutations were concurrently applied to all robots in the swarm, while the swarm evolved to
be morphologically heterogeneous for Double-Map EDQD-M. However, the swarm was behaviorally heterogeneous
for all methods, given that each robot was initialised with varying random ANN connection weight values and
ANN connection weight mutations were independently applied to each robot during behavioral adaptation
(Section 2).

3.3 Behavioral and Morphological Diversity Evaluation
Each run (100 generations, Table 2), we determined the behavioral diversity for EDQD, EDQD-M, and Double-Map
EDQD-M as the number of distinct behaviors (occupied cells in LocalMap, sections 2.3-2.5). Average swarm
behavioral diversity was then computed over 30 runs of EDQD, EDQD-M, and Double-Map EDQD-M. For Double-
Map EDQD-M, we calculated a swarm’s average morphological diversity (over 30 runs) as the number of distinct
morphologies (occupied cells in LocalMap2, section 2.5) per run (100 generations, Table 2). The mEDEA and
mEDEA-M methods do not use behavior map diversity maintenance; however, for the purposes of comparative
analysis, per generation, a behavior map was created and updated (following the same procedure as the EDQD
methods). Similarly, mEDEA-M and EDQD-M do not use morphology maps, but in order to compare adapted
morphologies with Double-Map EDQD-M, per generation, a morphology map was created and updated (following
the same procedure as Double-Map EDQD-M). Such behavior and morphology maps were not used by the
evolutionary processes of these other methods and were only maintained for comparative results analysis
(Section 4). For consistency with previous work [Pugh et al. 2015], we also calculate the average (over 30 runs per
experiment, Table 5) QD score for behaviors evolved by mEDEA, mEDEA-M, EDQD, EDQD-M, and Double-Map
EDQD-M. We further calculate the average (over 30 runs per experiment) QD score for morphologies evolved by
mEDEA-M, EDQD-M, and Double-Map EDQD-M.

3.4 Simulator
All experiment simulations used the RoboGen [Auerbach et al. 2018] open-source framework. RoboGen has a 3D
physics simulation and artificial evolution engine and includes utilities for creating 3D-printable design files
for body components and compiling neural network controllers to run on an Arduino micro-controller boards3.
Since the original platform could only simulate one robot, we extended RoboGen’s simulation engine to allow for

3https://www.arduino.cc/
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Table 5. Experiments evaluate swarm evolution methods for adapting either robot behavior (Sections 2.1, 2.3) or behavior-
morphology (Sections 2.2, 2.4, 2.5), across task complexity to address our objectives (section 1).

.

Experiment Method Task Complexity Research Objective
1 mEDEA Simple - Difficult Investigate the impact of task complexity on be-

havioral diversity and swarm behavior quality in
fixed-morphology swarms.

2 mEDEA-M Simple - Difficult Investigate the impact of task complexity on
behavioral-morphological diversity and swarm be-
havior quality in adaptive-morphology swarms.

3 EDQD Simple - Difficult Investigate the impact of task complexity on be-
havioral diversity and swarm behavior quality in
fixed-morphology swarms.

4 EDQD-M Simple - Difficult Investigate the impact of task complexity on
behavioral-morphological diversity and swarm be-
havior quality in adaptive-morphology swarms.

5 Double-Map
EDQD-M

Simple - Difficult Investigate the impact of task complexity on
behavioral-morphological diversity and swarm be-
havior quality in adaptive-morphology swarms.

swarm robotic simulation. This entailed numerous design considerations, such as performance, accuracy, and
handling potential communication between robots. The extended version4 used in this study is written in C++.
All simulations were executed on the Centre for High Performance Computing (CHPC) Lengau cluster5, using
Intel 5th generation CPUs on 1368 compute nodes with 24 cores and 128 GiB memory. Local implementation
and testing were conducted on a Linux Ubuntu 22.04.2 LTS computer with an 11th Gen Intel Core i7-1165G7 (@
2.80GHz × 8) processor, Intel iRISxe graphics and 32 GB of RAM.

4 RESULTS AND DISCUSSION
This section first examines comparative task-performance (behavior quality) differences between respective
swarm evolution methods (section 4.1), relates this to exhibited differences in evolved behavioral (section 4.2) and
morphological (section 4.3) quality-diversity and neuro-morpho complexity (section 4.4). For all statistical signifi-
cance tests presented in this section, results data were found to be non-parametric using the Kolmogorov–Smirnov
normality test with Lilliefors correction [Ghasemi and Zahediasl 2012]. Mann–Whitney U statistical tests (?<0.05)
[Flannery et al. 1986] were then applied in pair-wise comparisons with Effect Size [Cohen 1988] treatment6.

4.1 Swarm-Robotic Task-Performance
Figure 4 presents average task performance (quality) progression over 100 evaluations (generations), for robotic
swarms evolved by each method (Section 2, Table 1), in each task environment (Table 4). Average swarm quality
was calculated at the end of each run (100 generations) and over 30 runs. The highest-performing swarms evolved
in the simple task environment, followed by the medium-low environment, the medium environment, and the
medium-high environment. The least effective swarms evolved in the difficult environment. To comprehend

4The simulator used in this study is available online: https://github.com/Body-Brain-QD-in-Robotic-Swarms/TELO-2023
5https://wiki.chpc.ac.za/chpc:lengau
6Complete statistical test details are in Supplementary Material (A.1: Statistical Comparisons): https://github.com/Body-Brain-QD-in-Robotic-
Swarms/TELO-2023
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Fig. 4. Average swarm task performance (behavior quality) over 100 evaluations (generations), where task performance of
1.0 indicates all resources in environment gathered during the swarm’s lifetime. Note that the difficult environment has
been zoomed into the task-performance range: [0.0, 0.1] so as one can readily discern performance differences between the
respective methods.

these average swarm quality differences, it is beneficial to examine the characteristics of the various environments.

In the simple and medium-low task environments, resources were primarily type � (Table 4), representing 84%
and 60% of all resources, respectively. These could be collected individually without the need for cooperation.
The remaining 16% and 40% of resources were evenly distributed among types �, � , � , and �, requiring the
cooperation of two, three, four, and five robots to gather (Table 4). Thus, in the simple and medium-low envi-
ronments, near-optimal task performance is achievable without extensive cooperation. Moreover, with enough
robots (100), there was enough concurrent resource gathering to result in nearly optimal swarm task performance.
In the simple environment, EDQD evolved the highest quality swarms, significantly outperforming mEDEA
(Mann-Whitney U, ?<0.05), while no statistical difference was observed between mEDEA and all the other
methods (Mann-Whitney U, ?≥0.05). All Quality Diversity (QD) based methods (EDQD, EDQD-M, Double-Map
EDQD-M, section 2), significantly outperformed mEDEA-M, whereas there was no statistical difference between
the QD methods. Conversely, in the medium-low environment, all QD methods significantly outperformed
mEDEA (Mann-Whitney U, p<0.05), while there was no statistical difference between mEDEA and mEDEA-M.
There was also no significant difference between the QD methods, indicating that methods focused on evolving
behavioral diversity are better suited for evolving collective behavior, even without morphological adaptation
(EDQD). This is particularly evident in the simple and medium-low environments, where significant resource
portions can be collected concurrently without the need for high degrees of cooperation (Table 4).

In the medium environment, all resource types (�, �, � , � and �) were evenly distributed (Table 4). One-fifth
of the resources could be collected individually, while all remaining resources required varying degrees of coop-
eration. Consistent with previous work [Furman et al. 2019], swarm quality was enhanced given the relative ease
of acquiring a fifth of total resources without cooperation. In the medium environment, EDQD-M significantly
outperformed all other methods (Mann-Whitney U, ?<0.05). However, there was no statistical difference between
mEDEA-M, EDQD, and Double-Map EDQD-M, highlighting the benefit of combining behavioral diversity main-
tenance and morphological adaptation (EDQD-M), in specific environment types (medium task environment in
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this case).

In the medium-high and difficult environments, 60% and 84% of resources were type �, necessitating the coop-
eration of five robots. The remaining 40% and 16% of resources (for the medium-high and difficult environments,
respectively), were evenly distributed among resource types �, � , � , and �. These environment configurations
resulted in lower average evolved swarm quality for all methods, compared to swarms evolved in the simple,
medium-low, and medium environments (Figure 4). Also, cooperation used a wait-for-help period (Table 3), that
entailed robots waiting for help whenever they encountered type �-� resources. Thus, in environments requiring
high degrees of cooperation, for example, given many type � resources (Table 4), robots spent a significant
portion of their lifetime awaiting assistance. This resulted in significantly reduced average behavior quality for
swarms evolved (by all methods) in the medium-high and difficult environments. This observation is further
supported by the lack of any statistically significant differences between all methods in the medium-high and
difficult environments (Mann-Whitney U, ?≥0.05).

Thus, the average behavior quality elicited by evolved swarms indicates that QD based methods using behav-
ioral diversity maintenance (EDQD, EDQD-M, Double-Map EDQD-M), yield significantly higher average quality,
compared to mEDEA and mEDEA-M. However, this significant difference only holds for the simple, medium-low
and medium environments, with only EDQD-M yielding a significantly higher quality over other methods in the
medium environment (Mann-Whitney U, ?<0.05). Though figure 4 indicates that as task complexity increases
(from medium-low to difficult), that a QD based method invariably yields the highest average quality overall.
Specifically, swarms evolved by either EDQD-M (medium environment) or Double-Map EDQD-M methods
(medium-low, medium-high and difficult environments). Related work supports such task performance benefits
enabled by behavior-morphology diversity maintenance in controller-morphology adaptation in increasingly
complex (single robot ambulation) tasks [Miras and Eiben 2019; Miras and Ferrante 2020], as does previous
work with swarm-robotic cooperative gathering using behavior-morphology diversity maintenance in controller-
morphology evolution [Mkhatshwa and Nitschke 2023]. In summary, these task performance results support
the benefits of morphology adaptation coupled with behavior (EDQD-M) and behavior-morphology diversity
maintenance (Double-Map EDQD-M). The impact of behavioral and morphological diversity maintenance is
further discussed in sections 4.2 and 4.3.

4.2 Evolved Behavior Quality-Diversity (QD)
Swarm behavior evolved by mEDEA, mEDEA-M, EDQD, EDQD-M, and Double-Map EDQD-M (section 2), was
characterized by two behavioral descriptors. First, resource types collected, and second, the maximum distance
covered in a robot’s lifetime (Table 3). These descriptors enabled behavioral diversity in terms of the types of
resources collected and the portion of the environment explored (section 3.3). The QD score [Pugh et al. 2015] was
calculated (section 3.2, equation 1) as the overall quality (task performance) in filled cells within a QD behavior
map7 (section 2). A high average QD score indicates swarms with high average behavioral diversity (resource
types gathered and distance covered) and quality (many resources of all types gathered).

Figure 5 presents the average QD score (over 30 runs) of swarms evolved by each method in each environment.
In the simple environment, EDQD evolves swarms with the highest average QD score over 100 evaluations
(generations), indicating swarm adaptation in the simple environment (demanding the least cooperation) benefits

7QD behavioral map visualisations of average swarm behavior are available in Supplementary Material (A.2: Evolved Behavior Quality
Diversity): https://github.com/Body-Brain-QD-in-Robotic-Swarms/TELO-2023.
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Fig. 5. Average behaviorQuality-Diversity (QD) progression over the 100 evaluations (generations) of a run (average computed
over 30 runs), for swarms evolved by each method in each task environment.

from behavioral diversity maintenance (EDQD) but does not require morphological adaptation. In the simple
environment, 84% of the resources can be moved without requiring cooperation (Table 4), so EDQD, promoting
behavioral diversity in company with behavioral optimisation, is sufficient for evolving diverse, high quality
swarm behaviors.

However, as task difficulty increases, behavior diversity maintenance coupled with morphological adaptation
becomes advantageous. For example, in the medium-low, medium and difficult environments, EDQD-M yields the
overall highest average QD score, and in the medium-high environment, Double-Map EDQD-M evolved swarms
yield the highest average QD score. Given increasing task complexity, this underscores the benefits of coupling
morphological adaptation with behavioral diversity maintenance during swarm behavior optimisation (EDQD-M,
Double-Map EDQD-M).

The efficacy of EDQD-M and Double-Map EDQD-M for evolving high-quality swarm behaviors is also sup-
ported by the behavior QD maps visualising environment exploration and gathering of diverse resource types for
swarms evolved by EDQD-M and Double-Map EDQD-M in the medium-low to difficult environments. These
demonstrated benefits of behavioral diversity maintenance and morphological adaptation in cooperative tasks of
increasing complexity are supported by comparable previous work. Specifically, collective robotic task perfor-
mance benefits from morphological (sensory configuration) adaptation across increasingly difficult cooperative
transport tasks [Furman et al. 2019; Hewland and Nitschke 2015; Nagar et al. 2019a,b]. The benefits of behavioral
diversity maintenance for boosting collective robotic task performance across increasingly difficult cooperative
(RoboCup Keepaway soccer) tasks have similarly been demonstrated [Nitschke and Didi 2017]. As in this study
(section 3.1), task complexity in such related work was equated to the degree of cooperation required to achieve
optimal collective behavior task performance. For example, robots required for cooperative transport of each
resource type in collective gathering [Furman et al. 2019; Hewland and Nitschke 2015; Nagar et al. 2019a,b], and
number of taker robots that keeper robots must keep a passed ball away from in Keepaway [Nitschke and Didi
2017]).
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Overall, morphological adaptation in company with behavior (EDQD-M) or behavior-morphology (Double-Map
EDQD-M) diversity maintenance is most beneficial in terms of diversity of evolved behaviors and behavior quality
across task environments. EDQD-M evolves swarms with the highest average QD score in the medium-low,
medium, and difficult environments, and Double-Map EDQD-M evolves swarms yielding the highest QD score
in the medium-high environment. Though, for all environments, the average QD scores of swarms evolved by
EDQD-M and Double-Map EDQD-M were statistically comparable. In summary, these results partially address
this study’s first research question (section 1.1), via demonstrating the benefits of behavior diversity maintenance
(EDQD-M and Double-Map EDQD-M) in evolving swarms eliciting high quality (collective gathering) behaviors
effective across increasingly complex environments. To fully address this study’s first research question, section
4.3 discusses the impact of morphological adaptation coupled with behavior and behavior-morphology diversity
maintenance on evolved swarm behavior quality.

4.3 Evolved Morphology Quality-Diversity (QD)
Figure 6 presents the average (over 30 runs) morphology QD score of swarms evolved by mEDEA-M, EDQD-M,
and Double-Map EDQD-M, per task environment. As with the QD behavior score (section 4.2), the QD morphol-
ogy score was the overall swarm behavior quality (task-performance) across all filled cells but within the QD
morphology map (used by morphology-adaptation methods: mEDEA-M, EDQD-M, and Double-Map EDQD-M).
Figure 7 displays the average (over 30 runs) number of unique morphologies evolved by each method in each
environment, calculated by tallying the number of QD morphology map (LocalMap for morphologies, section
2.5) cells filled per run for mEDEA-M, EDQD-M, and Double-Map EDQD-M. Note that mEDEA-M and EDQD-M
do not retain a morphological map (LocalMap) during their swarm evolution process. Thus, for these methods,
a morphological map was generated exclusively for analysis. For all QD morphology maps, morphological
descriptors were designed to promote diverse usage of sensor ranges and active sensors in emergent unique
morphologies. The QD morphology maps also indicate how effective evolved morphologies are for evolving
swarm behaviors effective across various task environments. Figures 8-12 present QD morphology map visualisa-
tions, displaying the highest-performing swarm morphologies evolved by each method per environment. A high
average morphology QD score indicates swarms with high morphological diversity coupled with high swarm
behavior quality.

Figure 6 indicates the morphology QD score of swarms evolved by Double-Map EDQD as significantly higher
(Mann–Whitney U, ?<0.05), for all environments, than the morphology QD scores of mEDEA-M and EDQD-M
evolved swarms. Figure 6 thus indicates the benefit of behavior-morphology diversity maintenance, coupled with
morphological adaptation. That is, the diverse array of evolved morphologies with associated high behavioral
quality (task performance) is reflected in terms of high morphology QD scores for Double-Map EDQD-M per
environment. The diverse range of morphologies evolved per environment is evidenced by the significantly higher
(Mann–Whitney U, ?<0.05) number of morphologies evolved by Double-Map EDQD-M versus morphologies
evolved by mEDEA-M and EDQD-M, per environment (Figure 7). The advantage of an evolved diverse range of
morphologies is also evidenced by the high average behavior quality of swarms evolved by Double-Map EDQD-M
per task environment (Figure 4). Specifically, the benefits of morphological adaptation coupled with both behav-
ioral and morphological adaptation in Double-Map EDQD-M (section 2.5) versus other morphological adaptation
methods (employing behavioral diversity maintenance), mEDEA-M and EDQD-M, are most evident from the
morphological QD maps of swarms evolved by Double-Map EDQD-M. Figures 8-12 present the morphological
QD maps of the highest quality swarms evolved by Double-Map EDQD-M in the simple-difficult environments,
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indicating Double-Map EDQD-M as consistently effective in evolving morphological diversity and generating
high-quality behaviors across all environments.

Figures 8-12 visualise the portion of the morphological space (average sensor range, average sensor ratio),
explored by the morphological adaptation methods: mEDEA-M, EDQD-M and Double-Map EDQD-M. For each
environment, the effectiveness of exploration versus exploitation in Double-Map EDQD-M swarm behavior
evolution is evident from the greater portion of the morphological space covered with associated higher quality
behaviors (darker shading of more cells in Double-Map EDQD-M morphology QD maps in figures 8-12). Specif-
ically, the best-performing morphologies evolved by Double-Map EDQD-M exhibited active sensor portions
and average active sensor ranges ranging from 0.1 to 1.0 (Figures 8−12). That is, morphologies with quality
exceeding 90%, were observed when sensors were active between 65% and 95% and operated at 85% to 100%
of maximum range (Figures 8-12). Figures 8-12 thus indicate sensor activity and sensor ranges evolved by
Double-Map EDQD-M were suitable for achieving high quality swarm (collective gathering) behaviors in each
environment. However, comparable quality was observed for morphologies evolved by EDQD-M (employing
behavioral diversity maintenance and morphological adaptation) in the simple, medium-low, medium-high, and
difficult environments.

Figures 8-12 also highlight, for all methods and environments, the highest average quality morphology is that
using all sensor types at maximum range. However, Double-Map EDQD-M evolved morphologies are character-
ized by many (Figure 7), diverse combinations of sensor ranges and associated active sensor ratios (Figures 8-12).
Morphological value is evidenced by Double-Map EDQD-M exhibiting higher quality compared to counterpart
morphologies in mEDEA-M and EDQD-M evolved swarms in terms of a significantly higher (Mann-Whitney U,
?<0.05) average morphology QD scores for all environments (Figure 6). The benefit of these morphologies is
also evident in the average quality of evolved swarms across all environments (Figure 4), where Double-Map
EDQD-M yields the highest quality (except in the simple and medium environments). However, in the simple
environment, morphological adaptation was demonstrated as unnecessary since most resources (84%), can be
gathered concurrently without cooperation (Table 4). Whereas, in the medium environment, gathering most
resources (80%) required some cooperation (Table 4). In this case, behavioral diversity maintenance coupled
with morphological adaptation (EDQD-M) was sufficient, meaning swarms in the medium environment did not
benefit from behavior-morphological diversity maintenance in addition to morphological adaptation (Double-Map
EDQD-M).

Overall, these results highlight the QD benefits of behavioral diversity maintenance and behavior-morphology
diversity maintenance when coupled with morphological adaptation (EDQD-M, and Double-Map EDQD-M) and,
more generally, the benefits of morphological adaptation (mEDEA-M) as task complexity increases. These results
are supported by related evolutionary robotics work that has similarly demonstrated the benefits of behavioral
and morphological diversity maintenance in controller-morphology adaptation in robots operating in varying
environments. For example, they demonstrated the benefits of behavioral diversity maintenance in company with
controller-morphology co-evolution across increasingly complex tasks (robot ambulation and gait adaptation)
[Babak et al. 2021; Miras and Eiben 2019; Miras and Ferrante 2020; Miras et al. 2018a,c,b].

Furthermore, morphology diversity maintenance [Cheney et al. 2018; Nordmoen et al. 2021; Samuelsen and
Glette 2014; Zardini et al. 2021] has also been demonstrated as beneficial for boosting the quality of evolved
controller-morphology couplings in robot ambulation [Cheney et al. 2018; Nordmoen et al. 2021] and soft-robotic
goal tasks requiring morphological deformation [Zardini et al. 2021]. However, few [Nordmoen et al. 2021] have
demonstrated the benefits of morphological diversity across increasingly complex task environments and as
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Fig. 6. Average morphology Quality-Diversity (QD) progression over the 100 evaluations (generations) of a run (average
computed over 30 runs), for swarms evolved by each method in each task environment.

Fig. 7. Average number of distinct morphologies (average computed over 30 runs) of swarms evolved by mEDEA-M, EDQD-M,
and Double-Map EDQD in each task environment.

a result showed that as task environment complexity increases, the necessity for morphological diversity also
increases.

In summary, these results directly address this study’s first research question (section 1.1), and demonstrate
the benefits of behavior-morphology diversity maintenance (Double-Map EDQD-M) in evolving diverse, high
quality controller-morphology couplings that enable emergent swarm robotic (collective gathering) behaviors
that are effective across increasingly complex task environments. Furthermore, these results are relevant to future
evolutionary swarm robotic system design methods. For example, to inform optimal sensory configuration designs
for specific tasks within given environments. So, if minimal sensor complements operating at specific ranges are
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Fig. 8. Morphology QD of highest performing swarms evolved (per method) in the simple environment.

Fig. 9. Morphology QD of highest performing swarms evolved (per method) in the medium-low environment.

evolved as effective for given tasks, then designers can avoid the cost of equipping hundreds to thousands of
robots in a swarm with maximal sensor complements operating at full capacity, thus reducing overall energy
consumption and hardware costs. Similarly, related work has demonstrated devising evolutionary operators that
integrate morphological diversity into evolutionary robot (morphology) design and optimisation can boost task
performance [Weissl and Eiben 2023].

4.4 Evolved Neuro-Morpho Complexity
Given that sections 4.2 and 4.3 highlighted the swarm behavior-quality, morphology-quality and overall collective
behavior benefits of controller-morphology adaptation methods that promote behavioral and morphological
diversity, this section further examines the types of controllers evolved by the controller-morphology adaptation
methods: mEDEA-M, EDQD-M and Double-Map EDQD-M. Specifically, evolved neuro-morpho complexity,
referred to as such since robot neural controller complexity is closely coupled to morphological complexity, that
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Fig. 10. Morphology QD of highest performing swarms evolved (per method) in the medium environment.

Fig. 11. Morphology QD of highest performing swarms evolved (per method) in the medium-high environment.

is, sensory inputs are activated and deactivated via switching controller inputs (and associated connections), on
and off (section 2.6).

Figure 13 presents the progression of average (over 30 runs) neuro-morpho complexity for the swarm, evolved
by each method in each environment, over 100 evaluations (generations). The neuro-morpho complexity metric
("2 , equation 2), extended the neural complexity metric from previous work [Nitschke and Didi 2017], to account
for adaptive sensor configurations and coupled adaptive connectivity between sensory inputs and a robot’s neural
controller in swarms evolved by the morphological adaptation methods: mEDEA-M, EDQD-M, and Double-Map
EDQD-M.

"2 =
1
2
((' + (�) (2)
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Fig. 12. Morphology QD of highest performing swarms evolved by each method in the difficult environment.

Fig. 13. Progression of average (over 30 runs) morphological complexity evolved by mEDEA-M, EDQD-M, and Double-Map
EDQD-M, over 100 evaluations (generations).

Where, (' represents the normalized average sensor range, and (� represents the proportion of active sensors.
Both (' and (� are constrained within the [0.0, 1.0] range. The multiplication by 1

2 normalizes "2 to the [0.0,
1.0] range. A higher "2 value indicates a greater degree of morphological complexity. Specifically, equation
2 defines the degree of body-brain (neuro-morpho) complexity per robot, since a robot’s neural complexity
is tightly coupled to its morphology. That is, each active sensor corresponds to a connection weight F8 (F8 >

0.0), connecting the input neuron (for the given sensor) to the neural controller’s hidden-layer (Figure 2). All
robots begin with maximal neuro-morpho complexity ("2 = 1.0), meaning that initially all sensors are active
and the neural controller’s sensory input layer is fully connected to the hidden-layer. Whereas, inactive sensors
correspond to inactive sensory-input to hidden-layer connection weights (F8 = 0.0), meaning more inactive
sensors correspond to lower neuro-morpho complexity.
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Figure 13 presents a distinction between the average neuro-morpho complexity of swarms evolved by each
morphological adaptation method: mEDEA-M, EDQD-M, and Double-Map EDQD-M. Specifically, swarms evolved
by Double-Map EDQD-M, in all environments, quickly converge (after approximately 20 generations), to a mini-
mal neuro-morpho complexity of approximately 0.55), which is retained until run completion (100 generations).
Whereas, the neuro-morpho complexity of swarms evolved by mEDEA-M and EDQD-M also initially decreases
but then fluctuates between 0.65 and 0.55 after approximately 40 generations. These observed differences in
evolved neuro-morpho complexity are supported by statistical comparisons (Mann–Whitney U, ?<0.05), indicat-
ing significantly lower average neuro-morpho complexity of swarms evolved by Double-Map EDQD-M compared
to swarms evolved by mEDEA-M and EDQD-M (medium and medium-high environments), while demonstrating
an overall lower complexity for all environments (Figure 13).

These results address this study’s second research objective, via indicating that behavioral-morphological
diversity maintenance (Double-Map EDQD-M), enables the evolution of relatively low neural complexity (com-
pared to methods employing only behavior diversity maintenance: mEDEA-M, EDQD-M). The interaction of
these low-complexity neural controllers, within the context of a swarm, in turn, enables high quality emergent
collective gathering behaviors, that are effective across increasingly complex task environments (Figure 4). The
effectiveness of evolved low neuro-morpho complexity of robots is supported by the associated (significantly)
higher average morphology QD score (Figure 6) and number of distinct morphologies (Figure 7) in swarms
evolved by Double-Map EDQD-M (versus mEDEA-M and EDQD-M).The overall effectiveness of swarm (collective
gathering) behaviors evolved by Double-Map EDQD-M is also evident in the consistently high average behavior
quality across increasingly complex environments (Figure 4). These results are supported by previous work on the
evolution of neural complexity in multi-agent (collective behavior) systems. For example, social interaction exper-
iments using evolutionary robotics [Reséndiz-Benhumea et al. 2021] found that when lower neural complexity
agents interacted, the complexity of their interactions resulted in emergent group behaviors comparable to those
behaviors obtained by more neurally complex single agents. That is, agents with lower neural complexity could
enhance their neural complexity through social interaction, thereby offsetting their reduced neural complexity.
Similarly, in previous evolutionary robotics experiments [Nagar et al. 2019a], that investigated the impact of
neural complexity in collective gathering tasks, results indicated lower (individual robot) neural complexity was
sufficient for solving a range of collective behavior (cooperative) tasks with group task performance comparable
to that of robots equipped with higher degrees of neural complexity (larger controllers connected to more sensors).

Similar results supporting this study’s demonstrated benefits of minimal neuro-morpho complexity have
also been reported for other cooperative tasks. For example, across increasingly complex RoboCup Keep-away
tasks, where increased robot neural complexity offered negligible benefits to group task performance [Didi and
Nitschke 2016; Nitschke and Didi 2017]. This and related previous work supports the notion that under specific
environmental and evolutionary conditions, suitably simple neural controllers are sufficient for agents to take
advantage of social interaction. Thus, during the evolution of sociality, an individual’s neural structure need
only become complex enough, since it is not an individual’s neural complexity, but rather many interacting
individuals that enables overall increased complexity (manifest in emergent collective behavior). These results are
also pertinent to body-brain complexity evolution in biological social systems. For example, some social insects
have evolved simpler bodies and brains than solitary insects [O’Donnell et al. 2015], though such social insect
colonies exhibit relatively more complex behaviors [Farris 2016].
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5 CONCLUSIONS
This study’s objective was to ascertain the impact of behavioral and morphological diversity maintenance on
evolving robot controller and controller-morphology (body-brain) couplings within a swarm-robotic system that
must solve increasingly complex tasks. Task complexity was equated with the degree of cooperation necessitated
between robots to optimally solve a collective gathering task. Results indicated that the Double-Map EDQD-M
method, evolving swarm behavior and morphology with mechanisms for behavioral and morphological diversity
maintenance, was most beneficial as task environment complexity increased. Specifically, results demonstrated
that swarms evolved by Double-Map EDQD-M, operating across increasingly complex environments benefited
from the evolution of a diverse range of morphologies to support behavior-morphology evolution. The benefits
of morphological diversity were manifest as a significantly higher morphology QD score (compared to other
morphological adaptation methods: mEDEA-M and EDQD-M), and a correspondingly high behavior quality (task
performance) across all environments. Overall, behavior-morphology diversity maintenance in swarm-robotic
systems co-adapting robot behavior and morphology enabled the evolution of morphological diversity needed for
evolving sufficiently complex robot neuro-morpho complexity (coupled controller-morphology configurations).
The interaction of many such robot controller-morphology couplings in a swarm then resulted in the synthesis
of collective gathering behaviors effective across environments of increasing complexity.

These results are supported by related work [Kriegman et al. 2018], demonstrating an inter-dependency in the
co-evolution of behavior, morphology, and the environment, where morphology determines, to a large extent, the
types and complexity of behaviors that can be exhibited by robot controllers, and changes in the environment
drive morphological adaptations, which in turn enable behavioral adaptations [Buresch et al. 2005]. As such, the
discovery of diverse morphologies also leads to the evolution of diverse behaviors resulting from adaptation to
specialized functional roles [Nitschke et al. 2006]. The evolution of such diverse behaviors and morphologies
in turn makes the swarm more adaptable to changes in the environment [Hart et al. 2018]. These results also
contribute to the development of future AutoFac systems [Nitschke and Howard 2022] to automate swarm robot
design with controller-morphology complexity suitable for solving collective behavior tasks in unknown dynamic
environments [Furman et al. 2019].
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