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ABSTRACT
The design of chemical products requires the optimization of de-
sired properties in molecular structures. Traditional techniques
are based on laboratory experimentation and are hindered by the
intractable number of alternatives and limited capabilities to iden-
tify feasible molecules and either test or infer their properties for
optimization. Computational techniques based on deep learning
and multi-objective evolutionary optimization have spurred chem-
ical product design, but the definition of appropriate metrics to
compare techniques is challenging. We suggest the adoption of two
complementary assessments to account for quantitative as well
as qualitative features of different techniques, and then test our
proposed assessments by comparing two heuristics to build new
generations of molecular candidates, termed respectively, direct
correlation and extended search.
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1 INTRODUCTION
Chemical product design requires the optimization of properties in
molecules. Traditional optimization techniques are based on labora-
tory experimentation, which can be expensive and time consuming.
In recent years, computational techniques have been successfully
employed for generation and selection of molecules given desired
properties. These techniques are, inmost cases, comparatively faster
and more cost effective than their traditional counterparts [14, 18].
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The chemical design space is large, with estimated existence of
over 10200 organic molecules [6]. As a consequence, the develop-
ment of computational techniques to generate and optimize molec-
ular properties is challenging [17]. Promising results have been ob-
tained with the use of computational chemistry for symbolic repre-
sentation of molecules and their properties, deep learning for molec-
ular generation and property estimation [12, 23], and evolutionary
algorithms for property optimization [4, 7, 8, 10, 11, 16, 19, 20, 22].
Computational techniques employ search procedures to identify
solution sets, and search is based on some organization of the chemi-
cal design space assuming that: (1) Molecules which are structurally
similar present similar property values, and (2) Changes in prop-
erty values can be controlled by incremental changes in molecular
structures. These assumptions are only approximately observed
empirically, thus imposing limitations in the accuracy of computa-
tional techniques. Moreover, The multifaceted nature of molecular
property optimization demands effective trade-off between objec-
tives, and techniques such as the Multi-objective Covariance Matrix
Adaptation Evolution Strategy (MO-CMA-ES) [13] have been specif-
ically designed for multi-objective optimization (MOO).

Effective heuristics to explore the molecular search space delimit
search to a neighbourhood around effective molecules. Suitable se-
lection of effective molecules (seed molecules) can reduce the search
space to a manageable size, preserve properties of interest across
solution candidates, and retain diversity in the constrained search
space so that new molecules can still be found. We introduce two
heuristics for exploration of the molecular search space starting
from seed molecules, coined resp. direct correlation and extended
search. Direct correlation selects a neighbourhood with sufficiently
high similarity with respect to seed molecules. The obtained search
space is then explored to identify optimal molecules. Extended
search initially selects a belt of molecules featuring a specified
similarity level around the seed molecules, and then uses this belt
to expand the set of seed molecules for direct correlation. Direct
correlation is less exploratory than extended search, since search is
strongly influenced by the choice of seed molecules, at the cost of
reducing solution diversity and innovation in discovered molecules.

The definition of appropriate metrics to compare optimization
techniques and heuristics is challenging, since the quantity as well
as the quality of candidate design solutions are important: it is
clearly important that solution sets comprise optimized properties
and, given the accuracy limitations of computational techniques, it
is also important that a variety of alternatives are obtained for ex-
perimental fine tuning of product design. We suggest the adoption
of two complementary assessments to account for quantitative as
well as qualitative features of different techniques, and then test
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our proposed assessments by comparing the two proposed heuris-
tics to build new generations of molecular candidates. Quantitative
assessment is grounded on the cardinality of solution sets, whereas
qualitative assessment is based on mean and variance of property
values observed in solution sets. Our results contribute molecular
design synthesis guidelines that can be integrated into the method-
ology of future computational tools for chemical product design.

2 METHODS AND EXPERIMENTS
Our molecular optimization method has been tested for automated
domestic detergent synthesis [2, 3], with the optimization attributes:

• Reference likeness targeting an optimal similarity of 90%,
• Minimization of molecular weight,
• Minimization of molecular complexity,
• Maximization of XlogP, and
• Complete elimination of molecules featuring fish toxicity.

The target similarity threshold of 90% for reference likeness is set
to ensure that the selected molecules exhibit a managed deviation
from the seed molecules, thereby capitalizing on the advantageous
properties of seed molecules and fostering innovation at the same
time. The process begins by setting seed molecules and a surround-
ing molecular space characterized by a minimal 80% similarity with
respect to seed molecules. Effective seed molecules are then deter-
mined using either direct correlation or extended search. Selection
is then conducted iteratively using MOO. Fish toxicity is inferred
using a trained model based on Uni-Mol, which is a universal 3D
molecular representation learning framework [24] grounded on
pre-trained 3D structures of 210 million molecules crafted with
RDKit and represented using SMILES [21]. To assess fish toxicity, a
data set extracted from the publicly available PubChem database
[9] has been used to tune Uni-Mol. Given seed molecules𝑀0, three
hyper-parameters are used to control molecular selection:

(1) similarity threshold 𝑇 ,
(2) parent selection 𝛽 , and
(3) offspring selection 𝜆.

Higher 𝑇 preserves similarity (and quality) of candidate solu-
tions with respect to seed molecules, however can lead to additional
cycles prior to stabilization; larger 𝛽 increases breadth in explo-
ration; and larger 𝜆 decreases randomness in molecular selection –
if 𝜆 ≥ |solution set|, randomness is eliminated. For extended search,
an exact similarity value 𝑇0 is also employed to generate belts with
similarity exactly 𝑇0 with respect to at least one molecule𝑚 ∈ 𝑀0,
which are used to expand the set of seed molecules. Once candidate
molecules are selected, toxic molecules can be eliminated, and a
solution set containing only optimal molecules is selected.

We impose constraints to prevent exploration frontiers from
veering towards molecules with less desirable properties. These
constraints are organized as in-experiment, that is, constraints ap-
plied to property values between each iteration of optimization
procedures, and post-experiment, that is, constraints applied to final
solution sets only. Post-experiment constraints are more stringent
than in-experiment constraints, and are used only at the end of
the optimization procedures to avoid premature convergence and,

therefore, preserve robust exploratory capabilities. Table 1 presents
constraints tuned for our experiments. The final data set (combin-
ing all the frontiers found at each step) is then processed to remove
any molecule dominated by another in terms of any property.

Our adopted variation of MO-CMA-ES is non-parametric, in that
it does not assume any specific prior distribution over the search
space. Reference points in the search space are determined using
either direct correlation or extended search given𝑀0 and 𝑇0, thus
defining the set 𝑀𝑐

0 . By definition, 𝑀0 ⊆ 𝑀𝑐
0 ; the set �̃�

𝑐
0 ⊆ 𝑀𝑐

0 is
then selected based on removal of toxic molecules identified using
Uni-Mol. From these, Pareto optimal solutions are built, thus assem-
bling the initial Pareto optimal solution set 𝑆0. Given a generation
size determined by 𝛽 and 𝜆, a randomly selected 𝛽 parent molecules
{𝑚01, ..., 𝑚0𝛽 } ⊆ 𝑆0, random 𝜆 offspring are selected using 𝑇 simi-
larity with the respective parent. Offspring are combined to form
𝑀1 as candidates for the new solution space 𝑆1.

This procedure is repeated to build 𝑆2, 𝑆3, . . . , until a run-time
limit or stability criteria is reached in 𝑆𝑁 for some 𝑁 – for example,
no change observed in all the frontiers combined after removal of
dominated molecules. To help avoid local optima, we also include,
following the strategy of MO-CMA-ES:

(1) A growth factor 𝐺 > 1 for 𝛽 and 𝜆
(2) If |𝑀𝑘+1 |

|𝑀𝑘 | < 1, then 𝛽 and 𝜆 are updated by a factor ×𝐺 ,
(3) And if |𝑀𝑘+1 |

|𝑀𝑘 | > 1, then they are updated by a factor 𝑡𝑖𝑚𝑒𝑠 1
𝐺
.

The final solution set, combining S1, . . . ,S𝑁 then removes dom-
inated molecules. An initial search space of approximately 700, 000
molecules encoded as SMILES strings was sourced from PubChem,
and then refined to 30, 000 molecules considering neighbourhoods
around seedmolecules. This refinement process utilized theMACCS
Tanimoto similarity measure, with a threshold set at 70%. Experi-
ments gauged MO-CMA-ES effectiveness using either direct cor-
relation or extended search, with respect to solution set diversity
and quality. To ensure reproducibility, all code and experimental
results have been made publicly available online [1]. The diversity
of solutions is assessed considering the cardinality of obtained so-
lution sets, assuming that larger cardinality correlates with higher
diversity of alternatives for experimental exploration. The quality
of solutions is assessed using box plots of each property indepen-
dently, considering that optimized mean values (for example, high
reference likeness and XLogP are desired properties) and decreased
variance for each property correlates with higher quality of solu-
tions as a whole.

3 RESULTS AND DISCUSSION
Experiments were run for 50 generations for eachmethod and for 20
runs per method. Convergence criteria were deliberately excluded
to assess comparative method capabilities in escaping local optima
and to examine exploratory behaviour. Figure 1 illustrates the aver-
age diversity of solutions over the course of an evolutionary run,
as measured by the quantity of unique molecules discovered over
the evolutionary search process of MO-CMA-ES using direct corre-
lation versus extended search for determination of seed molecules.
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Table 1: Solution Set Property Constraints

Property In-experiment Post-experiment

Molecular Complexity ≤ 500 250 ≤ · ≤ 350

Molecular Weight ≤ 500 250 ≤ · ≤ 350

XLogP ≥ 4 5 ≤ · ≤ 10

Figure 1: Discovered molecules by MO-CMA-ES using either direct correlation or extended search.

According to this measure, extended search augments solution set
diversity in comparison with direct correlation.

Figure 2 displays box plots that compare the average quality
of the final solution sets with respect to various optimized vari-
ables: molecular complexity, molecular weight, XLogP, and reference
likeness. In these diagrams, data is normalized within a range of
0 to 1, based on the maximum and minimum values obtained af-
ter application of constraints as defined in table 1, and quality is
measured according to fluctuations of mean values of properties
towards desired goals (which can be either maximization or mini-
mization of values) and to reduction of variance across solution sets
(corresponding to reduction in height of the green rectangles). In
this particular experiment, no significant fluctuation in quality was
observed with changes between direct correlation and extended
search, suggesting that, in this case, extended search can improve
diversity of solution sets while preserving the quality of solutions
with respect to optimization of properties. In other scenarios, it can
happen that the quality of solutions is also affected by the choice
of heuristics to guide evolutionary search. In these cases, quality
and diversity must be balanced, according to priorities determined
for each particular (molecular property optimization) problem.

4 CONCLUSION
The study conducted comparisons between two heuristics to guide
search in MOO for chemical product design (direct correlation and
extended search). Empirical findings indicate that extended search
can improve the diversity of solution sets without altering the qual-
ity of obtained solutions. Our key contribution is the design of
appropriate metrics to compare different optimization strategies
for innovative product design. Specifically, we propose the combi-
nation of two perspectives, focusing respectively on diversity and
quality of solution sets, measured objectively by the cardinality of
solution sets and by statistical measures for each property of inter-
est as observed in each obtained solution set. Experimental results
also indicated that the chemical design space is highly unevenly
distributed in terms of similarity across molecules and correspond-
ing observable property values, leading to entrapment by local
optima, particularly in MOO scenarios. Ongoing work is enhanc-
ing dynamic parameter optimization and fine-tuning parameter
interactions (such as 𝛽 and 𝜆), and enriching datasets with virtually
generated molecules (for example, using Generative Adversarial
Networks) and evolutionary transfer learning [5, 15] to avoid local
optima and produce diverse solutions.
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Figure 2: Box plot comparisons of compound properties. Upper Left: Molecular Complexity; Upper Right: Molecular Weight;
Lower Left: XLogP; Lower Right: Reference Likeness.
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