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Introduction
Evolutionary robotics (Doncieux et al., 2015) has produced
a vast array of adaptive design paradigms applicable to
body-brain (controller-morphology) adaptation. However,
within the purview of adaptive body-brain evolutionary
robotic architectures, folding (origami) robotics (Felton
et al., 2014) has received relatively little research attention.
An open problem in evolutionary robotics, and more
broadly embodied evolution (Eiben and Smith, 2015),
is how to automatically design robots that are general
problem-solvers across various task environments. Propos-
als include AutoFacs: self-designing methods for producing
novel robot (body-brain) designs for given environments,
evaluated as problem-solvers in such environments and then
re-configured (with adapted body-brain designs) for the
next generation of robots (Nitschke and Howard, 2022).

The potential benefits of origami-robots capable of rapid
body-brain artificial evolution, folding into many forms
with varying functionalities (Rus and Sung, 2018), has been
supported by advances in 4D printing (de Marco et al.,
2018), using multi-material (soft-robotics) and directed-
assembly approaches (Cichos et al., 2020). Such advances
in 4D multi-material printing are hypothesized to lead to the
development of future origami-robot actuators printed with
forms and functions specific to their task and environment
(Fischer et al., 2018). Such advances in intelligent materials
have recently been demonstrated for adaptive form and
function in physical origami robots (Yan et al., 2023).

To address such challenges, we investigate evolutionary
methods to automate the programming of origami-robot
form and function. The difficultly of envisaging how robotic
forms may adapt, from one beneficial body-brain coupling
to another (Buresch et al., 2005), makes pre-programming
folded designs impractical for general environment adap-
tation. Evolutionary robotics is thus a natural pairing, as
artificial evolution does not follow conventional design
logic, which is a limiting factor for adaptive origami robot
design and development (Belke and Paik, 2017).

In this study, body-brain adaptation (self-folding) is
driven by distance covered in ambulation tasks. Basic
movement comprises a significant portion of an origami-
robot’s controller, where multiple controllers distributed
across robotic modules enables potential refolding to han-
dle varying task environment constraints (in this study, vary-
ing surface types). Our study also incorporates evolutionary
transfer learning (Nitschke and Didi, 2017) to leverage basic
learned (evolved) behaviour in order that robots can function
across increasingly complex tasks (Hua et al., 2021).

Research Objectives and Contributions
We thus formulate this study’s research objectives as:

• Evaluate and compare the evolutionary adaptation (Eiben
and Smith, 2015) of folding-robot body-brain designs
(Miyashita et al., 2015; Zhakypov et al., 2015) when ap-
plied to different ambulation tasks across environments,
using both brick and triangle based designs.

• Compare this evolutionary adaptation of folding-robots
coupled with evolutionary transfer learning (Nitschke and
Didi, 2017; Hua et al., 2021) to performance on specific
evolution for tasks and environments.

These objectives are motivated by a lack of research
on evolutionary controllers (to adapt robot body-brain
configurations) in origami-robotics (Prabhu et al., 2018).
Similarly, transfer learning in evolutionary folding robotics
lacks significant demonstrated work, despite showing
value in other evolutionary robotic applications (Didi and
Nitschke, 2016; Nitschke and Didi, 2017; Hua et al., 2021).

We envisage our evolutionary folding (body-brain) robot
design and simulation framework will provide an auto-
mated design methodology for future work within modular
origami-robotics (Felton et al., 2014; de Marco et al., 2018).
We anticipate our methodology will constitute an automated
design platform and provide a comparative benchmark for
future work within adaptive folding-robotics.



(a) All appendages
laid flat.

(b) Some appendages an-
gled down for walking.

(c) Lower appendages
folded up as a gripper.

(d) Robot and block folds
adapted for walking.

(e) Robot and block folds
adapted for catapulting.

Figure 1: (a, b, c): An example of a modular re-configurable origami robot using triangular modules. Red modules are active
modules with active hinges to manipulate edges. White modules are passive modules, with no active control function. (d, e):
Simulator screenshots presenting robot designs evolved for different forms of locomotion, (walking vs launching).

Methods
Our automated folding design methodology extends the
artificial evolution of adaptive modular configurations
(Belke and Paik, 2017; Spanellis et al., 2021). This includes
controller adaptation within each module to control indi-
vidual module behavior and module connection behavior
and thus the folding-behavior of specific module subsets
and thus the overall body-brain configuration (behavior) of
complete robots. Our current experimental system only uses
brick-shaped modules, given the versatility and many be-
haviors observed in previous work (Belke and Paik, 2017).
However our evolutionary design method and computa-
tional framework accommodates use of various modular
shapes1. Our simulation framework uses NVIDIA’s Isaac
Gym2 simulation environments and API (Makoviychuk
et al., 2023) coupled with the Revolve 2 robotics simulator3

to implement our evolutionary folding methods.

Current experiments focus on the evolution of modu-
lar (foldable) robot configurations for various ambulation
tasks. These experiments compare the efficacy of robot de-
signs with brick-based folds, akin to modular triangular
folds observed in previous work (Belke and Paik, 2017).
Similarly, a single centralised controller currently controls
the behavior of all modules comprising a robot, though fu-
ture work will use distributed controllers, where individual
robot modules each have their own controller and controllers
(modules) evolve to work in concert to elicit overall (robot)
task accomplishing behaviors. The fitness function driving
evolutionary design within each ambulation task minimises
the time taken for evolved robots to move from a start posi-
tion to a goal position in each environment. The efficacy of
our evolutionary design method is tested across various ter-
rain types, for example, degree surface traction and surface
slope. Figure 1d, 1e shows simulator screenshots present-
ing robot designs evolved for two forms of motion. Also, an
example robot to perform a traversal and manipulation task

1https://github.com/Rhett-Flanagan/revolve2-isaac-sim.git
2https://developer.nvidia.com/isaac-gym
3https://github.com/ci-group/revolve2

with a sensor configuration for future experiments is shown
in Figure 1. Such a robot should be able to perform multiple
tasks (not specifically evolved for) via reforming its body
for the task, moving with the form shown in Figure 1b and
manipulation in Figure 1c, using adapted controllers.

Results and Future Work
Preliminary experiments on various motion task environ-
ments, without sensor modules, have demonstrated a range
of evolved robot designs that successfully ambulate to
desired locations. In such cases, the fitness function is only
given robot coordinate information and the goal location.
Evolved robots also generalised when trained on flat terrain,
and transferred to rough terrain to perform tasks, and vice
versa, where such evolved robots successfully completed
their ambulation tasks in new environments. However,
there was degraded task performance with environment
transference. For example, robots trained on flat terrains
struggled with rough terrains, often barely lifting a folded-
leg to move forward, which resulting in robots being caught
on the terrain. However, the reverse appears much more
successful, though robots exhibited less efficient movement.
These preliminary results indicate that our design paradigm
has promise for such tasks, and similar work on retrieval
and ball balancing tasks (Belke and Paik, 2017) indicate that
our automated folding robot design method has potential to
adapt to other tasks. Particularly, if controllers (distributed
across modules) evolve generalised behavior that enables
evolving robot (body-brain) configurations to suitably refold
in response to sensor input in varying task environments.

Further experiments will incorporate these concepts into a
broad range of tasks including motion across environments
of increasing difficulty (with obstacles and disjointed ter-
rain), and transport of object types (of varying shape, size
and weight thus transport difficulty). Future work will also
investigate the generalisation ability of robots evolved for
different tasks using evolutionary transfer learning.
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