Extreme Environments Perpetuate Cooperation

Abstract—We investigate whether environmental stress posi-
tively impacts the emergence of cooperative behaviour in socially
stratified societies. We achieve this by utilizing NeoCOOP, an
ABM that uses artificial evolution as adaptive mechanisms to
simulate the emergence and evolution of altruistic and selfish
behaviour in Neolithic-inspired agents. We perform scenario
experimentation whereby we monitor the resource trading pref-
erences of these agents by varying the frequency of environmental
stress and the initial beliefs of said agents. Our results indicate
that in extreme conditions, altruism is preferred. Furthermore,
our results suggest that the degree of social stratification of a
population is positively related to its ability to maintain logistic-
like growth while remaining susceptible to environmental stress.

Index Terms—Agent-based Modelling, Cooperation, Social
Stratification, Environmental Stress

I. INTRODUCTION

The scale at which humans exhibit cooperative behaviour is
unlike any other social mammal on the planet. Central to this
behaviour lies the dichotomy of altruism and selfishness [1]].
No time in ancient history demonstrates humanity’s capacity
for both selfish and altruistic acts more clearly than the transi-
tion from the Paleolithic to the Neolithic whereby egalitarian,
hunter-gatherer, groups transitioned into sedentary agrarian
societies exhibiting varying degrees of social stratification [2].

Despite archaeologists best efforts, the underlying dynamics
that caused of this transitory period are not entirely known.
In fact, the mechanisms that led to the agricultural revolution
are likely both multifaceted [3] and region specific but,
environmental stress is theorized to have played a significant
role in the evolution of cooperative behaviour [4].

Agent-Based Models (ABMs) are often used to investigate
emergent complex social phenomena and resource availability,
as a function of environmental stress, on emergent cooperative-
behaviour [5]-[7]. Also, ABMs are frequently used to study
the emergence of social stratification in ancient societies
[2], [8]]. However, research combining these topics is scarce
meaning the impact of environmental stress on cooperative-
behaviour in socially stratified societies remains unknown. We
address whether environmental stress (resource scarceness)
positively impacts resource sharing (altruism) in socially
stratified societies. We used an ABM called NeoCOOP, with
artificial evolution as an adaptive mechanism to simulate
emergent altruistic and selfish behaviour in Neolithic-inspired
households. Our experiments examine agent resource trading
preferences under varying degrees of environmental stress.
This is supplemented by experiments using agent populations
initialized to prefer selfish or altruistic behaviour.

Based on the findings of Ember et al. [9]’s study of the
resource sharing behaviours of societies in the Standard Cross-
Cultural Sample, we hypothesize that environmental stress
duration positively impacts agent resource trading preferences
with longer periods of stress resulting in more altruistic
behaviour in comparison to shorter, more frequent, periods
of stress. We further hypothesize that clear evidence of social
stratification will be present with agents exhibiting altruistic
behaviour towards their peers and selfish behaviour towards
their subordinates.

II. RELATED WORK

ABMs typically implement cooperative behaviour in one
of three ways (although hybrid solutions do exist):

1) Cooperative versus Defective: Agents are categorized
as either purely selfish (defective) or purely altruistic
(cooperative) and the emergent phenomena that arise from
both homogenized and mixed agent populations are compared.
These models are typically older and more exploratory [10].
Imitation or mimicking rules may also be added to these
models to allow the agents to change their behaviour from
cooperative to defective (or vice versa) over time [11]].

2) Network-Based Cooperation: This is the modelling of
agent-to-agent interaction and cooperation as a directed graph
that acts as a form of social network [7], [8]. In order for two
agents to interact directly, they must be connected within this
network. ABMs implementing network-based cooperation
are less common than the other methods of introducing
cooperative behaviour with their existence heavily-reliant
on the partitioning of agents along one or more metrics.
Network-based solutions provide agents with the ability
to specialize their behaviour more than other cooperation
systems at the cost of removing an agent’s ability to generalize.

3) Probability-Based Cooperation: These agents are an
extension to the cooperative or defective agents described
above where the likelihood of agents exhibiting cooperative
or defective behaviour is recorded as some probability p [5],
[12]. These ABMs typically include some form of learning
allowing agents to adapt their p value in accordance with a
predefined set or rules or fitness-based algorithms such as
Evolutionary Algorithms [13]]. Probability-based cooperation
ABMs are the “middle-ground” approach between the
highly generalized cooperate-defect systems and the highly
specialized network-based systems.



ABM research directly related to ours includes Angourakis
et al. [[6] who studied the emergence of cooperative behaviour
in scenarios with varying degrees of food storage efficiency,
Pereda et al. [4] who studied the emergence of cooperation
under varying degrees of environmental stress and Aktipis et
al. [5]] who compared need-based and account-keeping coop-
eration dynamics as they related to the Maasai of East Africa.
More generally, Axelrod and Hamilton’s [[10] seminal work on
the evolution of cooperation, Chliaoutakis and Chalkiadakis’
[8]] self-organizing agent hierarchies and Molin, Kanwal, and
Stone’s [7]], study of emergent cooperation in spatially explicit
environments are relevant to the study presented here.

III. METHODOLOGY

NeoCOOP (Neolithic Agent Cooperation Model) is an it-
erative ABNﬂ that simulates evolving altruistic and selfish
behaviour in a Neolithic inspired artificial society.

A. Agent Definition

In NeoCOOP, each agent represents a Neolithic household.
The motivation for this is that typical Neolithic households
were managed by a single patriarchal figure responsible for
making all of the family’s decisions as well as managing
their resources [|14]]. Additionally, NeoCOOP uses settlements
(Figure to keep track of one or more households. A
settlement’s primary purpose is to store the coordinates of all
the agents contained within that settlement.

Unlike most cooperation-based ABMs, NeoCOOP allows
agents to make decisions based on their social status and
the social status of the agents they are interacting with.
We define social status as the sum of an agent’s available
resources and its load, where load is the amount of resources
the agent has donated to other households over a period
of time. To facilitate social stratification, we use the self-
organization scheme described by Chliaoutakis and Chalki-
adakis [8]] whereby a relationship type can be determined for
every agent pair by comparing their social status. We define
each of the relationship types as follows:

|ha.ss — hy.ss|

. = L 1
is_peer(hi, ho) max(hy.ss, h.s5) - v
| ha.ss — hy.ss
is_auth(hy, hy) = m(a;(fh.ss 225)3) -k *
is_sub(hy, ha) = is_auth(hg, h1) ®)

Where is_peer, is_auth and is_sub describe whether
household hs has a, peer, authority or subordinate relationship
with household h; respectively. h,,.ss is a household’s social
status. L, the load_difference € [0,1] input parameter,
defines how much more social status an agent requires
to be considered an authority over another agent. In
order for a peer, authority or subordinate relationship to be

'Source Code, ODD+D Description and supplementary
material available at https://www.comses.net/codebase-release/
f29e197a-81c4-4242-be3a-7300ba%81e8/

formed, the two households must be from the same settlement.

Lastly, the model facilitates Household adaptation in the
form of two Evolutionary Algorithms (EA). The genotype
used by both EAs comprises four gene values (all constrained
within the [0, 1] range):

1) Peer Transfer: Probability an agent accepts a resource

transfer request from a peer agent.

2) Subordinate Transfer: Probability an agent accepts a
resource transfer request from a subordinate agent.

3) Conformity (0): The degree to which an agent accepts
cultural influence.

4) Attachment (o): How much an agent values its current
settlement. An agent with a high degree of attachment
is less likely to migrate even if the environmental
conditions suggest that it should.
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Fig. 1: Visualization of NeoCOOP at an arbitrary timestep.

Black pixels are settlements, grey pixels are claimed resource
patches and white pixels are unclaimed land.

B. Environment

NeoCOOP places agents on a n xn grid-world. Each cell on
the grid contains resources € [0, 1] that are assigned to it every
iteration. Stress is applied to these cells by varying the amount
of collectable resources received each iteration according to
sine waves of different frequencies. Denoting f as the desired
number of stress waves, we linearly interpolate (Equation
[B) every iteration i between two predefined ranges called
max_resources = [0.4,1.0] and min_resources = [0.0, 0.6]
using the the output of the sine waves (Equation [4)) at iteration
i/M as the mixing parameter x. This approach blends work by
Molin, Kanwal and Stone [[7] and Angourakis et al. [[6] where
environmental stress is induced periodically and between to
predefined ranges respectively. This approach allows us to
simulate a wide variety of stress scenarios ranging from short,
but frequent, periods of stress (at high f) to longer, infrequent,
periods of stress (at low f). Averaged over an entire simulation
run, a household is expected to receive a total of 0.5 resources
per iteration. An example of what the result of this process
looks like can be seen in Figure
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The motivation for choosing a spatially explicit environment
is because even ideal environments have a carrying capacity.
Most spatially implicit ABMs do not consider population
carrying capacity which limits their capabilities of accessing
cooperative behaviour dynamics between two distinct popula-
tion groups (those with and without direct access to resources).

lerp(rmin; Tmax, l‘) = Tmin T S(.I’) * (Tmaz - Tmin)
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Fig. 2: Example of the available resources on a single environ-
ment cell over the course of the simulation run when f = 4.

C. Resource Acquisition, Transfer and Consumption

Every iteration, agents gather resources from a patch of
land that they own (Grey pixels in Figure [T). The amount of
resources gathered is equal to the full amount of resources
available at said patch. These resources are then put into the
agent’s storage. In this work, agents are only allowed to own
one patch of land. If an agent does not own any land, it will
try to claim some by looking at its settlement’s neighbouring
cells. An agent that does not own any land will not receive
any resources during the resource acquisition phase.

Once acquisition is complete, agents determine if they have
enough resources to satisfy their needs for the iteration. An
agent needs to consume 0.5 resources per iteration to avoid
the risk of dying. If an agent does not have enough resources,
it first asks its authority agents if they would be willing to
donate some of their excess resources. For each authority
asked, a random value € [0,1] is generated and compared
to the authority agent’s subordinate_transfer property. If the
generated value is less than the subordinate_transfer property,
the authority agent is willing to grant donations for that
iteration. Whenever a donation is granted, the authority agent
has its load property increased by the resources donated. If an
agent has asked all of its authority agents for resources and
it will still go hungry, it then repeats this process for its peer
relationships with the donating agent using its peer_transfer

property to determine if the donation succeeds.

If that is still not sufficient, the agent will then ask
all of its subordinates for resources. Given that we are
modelling Neolithic households, if a subordinate is asked
to give any of its excess resources to an authority agent,
it does so with 100% certainty. The peer and subordinate
transfer properties allow us to simulate agent types that
exhibit varying degrees of altruistic and selfish behaviour.
For example, an agent may exhibit nepotistic tendencies
whereby it is is more likely to grant resource donations to
its peers (high peer_transfer) but less likely to grant the
same donations to its subordinates (low subordinate_transfer).

When resource transfer is complete, agents consume their
resources and determine their hunger using equation [6]

h.resources

hunger(h) = min( 1.0)  (6)

h.required_resources’
D. Population Growth, Loss and Migration

Every iteration, households may birth additional households
in accordance with the birth_rate and their hunger (Equation
. When this occurs, the split_household function is called
and the household is divided into two separate households.
Resources are split amongst the two new households but load
is not. That is, the new household signifies the arrival of a new
patriarchal figure in the community and one who must work
to gain the same social status as their parent household.

birth(h) = random() < h.hunger = birth_rate  (7)

Households may lose one or more occupants in accordance
with the death_rate and their hunger (Equation [§). If a
household dies of starvation, it is removed from the simulation.

death(h) = random() x h.hunger < death_rate (8)

Agents can migrate to another settlement or form a set-
tlement of their own every yrs_per_move iterations. This
decision is based on the agent’s satisfaction and its attachment.
Satisfaction is the average hunger of the agent over the past
yrs_per_move iterations. The boolean function for determining
if an agent will move is described by Equation [9]

move(h) = 2oy, * satisfaction(h) < random()

(©))

Where « is the attachment of household h and random()
returns a random value € [0, 1]. If the satisfaction of the agent
is low, it is more likely to move. This is partly mediated by
the agent’s attachment which when < 0.5, makes the agent
skittish and when > 0.5 makes the agent more likely to stay
at a given location regardless of its objective circumstances.
In population migration research, the inverse of satisfaction
is often called grievance [15]].



When an agent moves, it chooses between all settlements in
its vicinity or an unclaimed cell. Typically, an agent will move
to the settlement with the most resources. However, if none of
the neighbouring settlements have an average resource value
> 0.5, the agent will choose to make its own settlement at a
new, randomly chosen, location.

E. Agent Adaptation

In this model, agent adaptation uses two evolutionary algo-
rithms: a Genetic Algorithm (GA) [16] for vertical generational
adaptation and a Cultural Algorithm (CA) [17] for horizontal
generational adaptation. Both the GA and CA utilize the agent
genotype described before and a concept called influence.
Influence is used to determine best performing settlements and
describes the probability that two settlements will interact with
each other. This is done using XTENT [8] (Equation [I0):

I(s1,82) = W(Sz)ﬁ —mD(s1, $2) (10)

Where, s; and s, are settlements, I(s1, $2) is the influence
of so on sy, W (ss) is the social status of so, D(s1,s1) is
distance from s; to s5. 5 and m are coefficients describing the
required social status of one settlement to influence another.
Calculating the influence of every settlement on a given
settlement, gives a probability distribution (equation [IT].

1(81,52)
P(s1,8) = =220
(81, 52) EkeK I(s1, k)

Where P(s1,82) is the probability of settlement s
influencing settlement s; and K is the set of neighbouring
settlements that have a positive influence value I(s1, i) on 1.

(1)

The GA executes whenever the split_household function
is called. The child agent produced is a combination of two
parents with the first parent being the household that called
the split_household function and the second parent gotten
via roulette wheel selection [16]]. This selection uses the
social status of other agents within the same settlement of
the first parent and from other settlements that have enough
influence (I(s1,s2) > 0). The offspring agent is produced
using Uniform crossover and random mutation.

The CA uses Knowledge Sources [18] to diversify how
agents are influenced. These are:

« Normative: Influence on agent genes from its settlement.

o Spatial: Influence on agent genes from another settle-
ment.

o Domain: Equivalent to GA mutation function, where
domain influence mutates one of the agent’s genes.

Every influence_frequency iterations, agents are influenced
in accordance with the influence_rate. If an agent is selected
for influencing, a roulette wheel is spun to determine from
which knowledge source influence will come from. Influence
from the Domain knowledge source occurs at a rate defined
by the mutation_rate parameter. Influence from the Normative

and Spatial knowledge sources occur with varying probability
defined by equations [12] and

N(sp,s;) = max( Sh-5%

,1.0) (12)

$;.SS

S(sh,si) = 1.0 — N(sp,s;) (13)

Where, N and S are the probability of choosing the
Normative and Spatial knowledge sources respectively,
sp is the settlement of the agent being influenced, s; is
the settlement that would influence agent h. If the spatial
knowledge source is selected. s; is determined by performing
roulette wheel selection on all neighbouring settlements
with a positive influence on settlement s;. Roulette wheel
weights are determined by the values returned by Equation [T1]

Each settlement’s beliefs are represented by Belief Spaces
B,. Belief Spaces have the same structure as the agent
genotype with each property calculated using a weighted
average of the corresponding property of all agents within
that settlement. The weight an agent contributes to the belief
space is determined using its social status relative to the social
status of the other agents in the same settlement. If an agent
is influenced by the normative knowledge source, the belief
space that influences it is the belief space of the settlement
the agent belongs to B;,. If the agent is influenced by the
spatial knowledge source, the belief space that will influence
the agent is the belief space of the settlement selected during
roulette wheel selection (B;,). Agent properties are influenced
as follows (equation [T4):

Ghi1(p) = Gni(p) + on(Bst(p) — Ghie(p)) x ®(h, By t)
(14
Where, p is the agent property (genes 1-4), ¢ is the timestep,
G is the agent’s genotype, o is the conformity of the agent,
B is the selected belief space (B;, or Bs,) and ® is the
Homophily term which returns a value € [0,1] describing
how similar the agent’s genes are to the belief space that
is influencing it. Homophily is a sociological principle that
describes the tendency for individuals that are similar, either
biologically or culturally, to gather together. The value of Phi
is 1.0 for interacting entities that have exactly the same genes,
and close to 0.0 for entities whose gene values are further
apart. This approach is similar to interaction probability in
Axelrod’s cultural dissemination model [19]. In our model, ®
limits the degree to which an agent is influenced if the belief
space influencing it contains drastically different gene values.
Formally, ® is one minus the average absolute difference
between the agent and influencing belief space’s genes.

IV. EXPERIMENT DESIGN

Before running our experiments, we parameter tuned our
model (See Table [) using the same process described in
Gower-Winter and Nitschke [20]. A report of the tuning
process is included with the source code!. Given our goal



to find the environmental conditions under which social
stratification occur, we ran our experiments as follows.

We first defined initial resource trading belief distributions
for the agent types (denoted [A, S, F)). For purely altruistic A
initialization, agents have their peer and sub transfer properties
initialized to 1.0. For purely selfish S initialization, agent
peer and sub transfer properties are set to 0.0 and the mixed
population F' scheme initializes the agents’ resources trading
beliefs such that half of them follow the A initialization
scheme and the other half follow the S initialization scheme.
We use differing initialization schemes since the initial
resource trading beliefs of an agent population may affect
how they evolve over time.

When then defined the stress scenarios investigated as
follows: f € [1,2,4,8,16,32,64,128]. We also explore two
scenarios where resource availability is confined to the range
[0.4,1.0] and [0.0,0.6] for the entire simulation run (denoted
as the non-existent (/N) and perpetual (P) stress scenarios
respectively). The motivation for choosing the aforementioned
frequencies is based on preliminary experiments where it was
observed that selfish behaviour could emerge at low f-values.
We then expanded the scope of the experiments to include
higher f-values to see if this trend persisted.

Using the three initialization schemes and 10 f-values, 30
scenarios where created. For each scenario, 50 simulations
were run for a total of 1500 simulations across all scenarios.
Each simulation was initialized with 100 agents and 10 set-
tlements. At initialization, each agent in the model had their
peer_transfer and sub_transfer agent properties set to either
1.0 or 0.0 depending on the initialization scheme (A scenario
denoted as 16 A indicates that the A initialization scheme was
used with an f-value of 16). Settlements were randomly placed
on the grid-world and the model was run for M = 10000
iterations. All stochastic processes utilized a pseudo-random
number generator to ensure reproducibility.

TABLE I: NeoCOOQOP Initialization Parameters.

Property Value
Tterations (M) 10 000
Initial Households 100
Initial Settlements 10
L 0.6%
Years Per Move 5¢
Birth Rate 0.15%°
Death Rate 0.1%°
B 1.5¢
m 0.005¢
Mutation Rate 0.1¢
Influence Rate 0.1¢
Influence Frequency 15¢
Conformity Range € 10.2,0.7]¢

2Properties taken from Chliaoutakis and Chalkiadakis [8].
bPropertics taken from Cardona, Catala, and Prats [21]].
“Properties that were parameter tuned using Optuna

as described in Gower-Winter and Nitshcke [20].

V. RESULTS

Figures [3] f] and [5] showcase the evolution of the resource
transfer genes for the A, S and F initialization schemes across
all stress scenarios. A clear visual distinction between the
evolution of the peer and subordinate transfer genes is present.
To confirm this, a Wilcoxon rank-sum test (p = 0.05) was
performed to see if their was a significant difference between
the agents’ peer and subordinate resource transfer beliefs. As
shown in Table [[I} all scenarios with f > 8 exhibited statisti-
cally significant stratification between the peer and subordinate
transfer properties. The magnitude of this difference ranged
from 1.32% to 3.74%. However, the trend this difference
followed was not consistent across all initialization schemes.
Scheme S consistently exhibited differences > 2.65% while
schemes A and F' exhibited lower differences for f = [64, 128]
stress frequencies compared to f = [8, 16, 32] suggesting there
may be an optimal range for which greater degrees of social
stratification occur.

TABLE II: Summary of the mean difference of the agents peer
and subordinate resource transfer beliefs.

Initialization schemes
) A F S
diff (%) P diff (%) P diff (%) P

P 0.0 N/A 0.0 N/A 0.0 N/A

I 071 0.69 357 0.82 1.21 0.25

2 0.92 0.06 -0.02 0.58 0.22 0.44

4 0.39 0.26 1.13 0.19 1.82 0.06

8 2.30 3 x10~5 2.11 2 x 10~ 4 2.80 2 x 10~6
16 3.74 1 x 10— 12 3.33 1x 108 3.31 6 x 10— 12
32 2.69 4 x 107 2.51 5 x 10~6 3.45 3 x 1011
64 1.39 0.041 1.41 0.011 2.65 5 x 10~°
128 1.32 0.003 1.95 0.0007 3.00 8 x 10~8
N 0.92 0.007 123 0.004 0.77 0.06
A value p < 0.05 (bolded) indicates a Wilcoxon rank-sum test determined the

stratification of the resource transfer beliefs was significant.

To investigate this observation further, supplementary
experiments were performed using the F' initialization
scheme for f = [24,40,48,56] under the same conditions
highlighted in our Experiment Design. Figure [6] showcases
the results of these experiments. Again, significant (p = 0.05)
stratification between the peer and subordinate transfer beliefs
was found for all stress scenarios. Additionally, results
indicate that the magnitude of the stratification is not uniform
with greater values (> 2.5%) found between 8 < f < 40
compared to the < 2% difference found for 40 < f < 64. This
supports the claim that there our optimal conditions under
which stratification of resource trading preferences may occur.

For the perpetual stress scenario P, agent populations died
out within 2000 iterations across all initialization schemes.
Whereas, for the no stress scenario N, agent populations,
on average, reached a carrying capacity of approximately
12000 households by iteration 9750. From iteration 9750
and on, stratification began to occur whereby the difference
between the peer and sub transfer genes increase by between
[0.77,1.23]%. This indicates that while stratification occurs in
harsher environments, it can also occur in environments with
no environmental stress.
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Fig. 3: The average evolution of the peer (a) and subordinate (b) transfer agent properties over the course a simulation for all
stress scenarios investigated using the A-type initialization scheme.
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Fig. 4: The average evolution of the peer (a) and subordinate (b) transfer agent properties over the course a simulation for all
stress scenarios investigated using the S-type initialization scheme.

54.0 54.0
525 525
1o 51.0
49.5 ' ’
48.0 .
46.5
45.0
45.0 43.5
43.5 ST A 4.0

T u T T T
2000 4000 6000

N
©
w

Stress Scenario
Peer Transfer %
Stress Scenario
S
==
o
Sub Transfer %

N
>
v

0 2000 4000 6000
Iterations Iterations

(@) (b)

Fig. 5: The average evolution of the peer (a) and subordinate (b) transfer agent properties over the course a simulation for all
stress scenarios investigated using the F'-type initialization scheme.
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Fig. 6: The average evolution of the peer (a) and subordinate (b) transfer agent properties over the course a simulation for all
supplementary stress scenarios investigated using the F'-type initialization scheme.
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Fig. 7: Household Population levels for F' initialized supple-
mentary stress scenarios.

In terms of the evolution of cooperative behaviour, both the
peer and subordinate transfer properties, across all scenarios
investigated, converged to values between the [0.4, 0.6] range.
Agents evolved away from both extreme altruistic and selfish
behaviours with the A and S initialized agents becoming
more selfish and altruistic respectively. This “middle-ground”
phenomena has been documented previously [6] in scenarios
where cooperative food storage is low and household stor-
age efficiency is high (Both of which are applicable here).
Interesting behaviour was observed for the F' scheme with
altruistic behaviour preferred for lower frequency stress sce-
narios (f = [1F,2F,4F,8F]) and selfish behaviour preferred
in higher frequency stress scenarios (all other F' scenarios).
This is most apparent (See Figure [5) earlier on in a simulation
run where agents in higher frequency stress scenarios rapidly
evolve, comparatively, selfish behaviour while agents in lower
frequency stress scenarios evolve altruistic behaviour. These
results indicate that for harsher (low frequency) periods of
environment stress, cooperative behaviour is preferred.

VI. DISCUSSION

In this paper we sought to answer whether environmental
stress positively impacted resource sharing in socially stratified
societies. We hypothesized that the duration of environmental
stress impacts agent resource trading preferences with longer
periods of stress resulting in more altruistic behaviour in
comparison to shorter, more frequent, periods of stress. We
further hypothesized that clear evidence of social stratification
would be present with agents exhibiting altruistic behaviour
towards their peers and selfish behaviour towards their
subordinates. For the most part, our results indicate these
hypotheses were correct. Low frequency stress scenarios
exhibited higher peer and subordinate transfer values and
clear stratification between these two resource trading
beliefs were found at higher frequencies. However, there
is nuance to these statements which require further discussion.

Our results suggest that in extreme conditions, altruism is
favoured. When stress is frequent, selfishness is favoured.
This makes sense in the context of the model as at both
extremes, resource sharing has a clear benefit. In harsh
environments, sharing resources acts as a safety mechanism.
Helping a household now means they might reciprocate in
the future. In environments with no stress, there is no harm
in sharing resources because there’s no risk you may not
have access to more resources in the future. These results
are also supported in literature where is has been argued that
resource sharing may be reduced after a stress period and
that frequent stress may cause selfish behaviour to emerge [9].

Furthermore, our results not only show the emergence
of social stratification by way of differing resource trading
preferences amongst peers and subordinates, they also suggest
that there is an optimal range under which this stratification
can occur. This is clearly demonstrated in Figure |6a) where it
can be seen that the magnitude of this stratification decreases



for f > 40. While our experiments were not explicitly
designed to test for such a relationship, we believe that the
degree of stratification exhibited by a society is related to its
ability to maintain logistic growth while still being affected
by environmental stress. This relationship is shown in Figure
where it can be seen that for scenarios 16F through 40F"s
populations maintain logistic growth while showing clear
susceptibility to environmental stress. These are also the
scenarios that exhibited the greatest degree of stratification
supporting our claim. From a historical perspective, some
neolithic societies maintained a two-stage logistic-like growth
curve [22] despite environmental stress, and in the case of Tell
Halula in the Middle Euphrates, there is a clear emergence of
social classes [23]]. This is a region which received frequent
environmental stress and, while only indirectly attributed in
literature, the presence of both a social class and frequent
environmental stress further supports our theory.

Lastly, we highlight the social behaviour dynamics that
emerge when a population reaches non-environmental stress
related carrying capacity. For the N stress scenarios, emergent
stratification was observed across all initialization schema
once the populations had reached carrying capacity. This type
of cultural evolution is distinct from the cultural evolution
investigated in this paper because it is not brought about by
the application of stress on the collective of agents but rather
by the partitioning of the agents into two groups: those with
and without access to resource patches. Our experiments did
not run at carrying capacity for a long enough period of time
for us to make any postulations but, there is opportunity to
study this further in future work.

VII. CONCLUSIONS AND FUTURE WORK

We investigated the emergence and evolution of cooperative
behaviour in artificial Neolithic societies exposed to varying
degrees of environmental stress. We achieved this by using the
NeoCOOP ABM, which utilizes EAs as adaptive mechanisms
to facilitate emergent social behaviour including resource
trading beliefs in households (agents). Results indicate
that in extreme scenarios, altruism is favoured with selfish
behaviour favoured as the frequency of environmental stress
increases. Furthermore, results indicate that the magnitude of
social stratification is related to agent population capacity to
maintain logistic-like growth while remaining susceptible to
environmental stress. If a population collapses or completely
withstands an environmental stress event, the magnitude of
stratification is likely to be lower.

Future work will directly deal with the limitations of this pa-
per in the hopes of affording us a greater understanding of the
complex dynamics that gave rise to the Neolithic agricultural
revolution. These efforts will focus on the implementation of
food storage efficiency [6] and studying the emergence of non-
environmental stress related social stratification such as direct
access to resources through land availability.
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