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ABSTRACT

This paper investigates a novel method combining Scalable Evolu-
tion Strategies (S-ES) and Hierarchical Reinforcement Learning (HRL).

S-ES, named for its excellent scalability, was popularised with demon-

strated performance comparable to state-of-the-art policy gradient
methods. However, S-ES has not been tested in conjunction with
HRL methods, which empower temporal abstraction thus allowing
agents to tackle more challenging problems. We introduce a novel
method merging S-ES and HRL, which creates a highly scalable
and efficient (compute time) algorithm. We demonstrate that the
proposed method benefits from S-ES’s scalability and indifference
to delayed rewards. This results in our main contribution: signif-
icantly higher learning speed and competitive performance com-
pared to gradient-based HRL methods, across a range of tasks.
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« Computing methodologies — Evolutionary Strategies; Hi-
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1 INTRODUCTION

Reinforcement learning (RL) [18] has been used to create artificially
intelligent agents for tasks ranging from robot locomotion [8] to
board games such as chess and Go [17]. Many such agents use
Markov Decision Process or gradient-based learning methods, such
as Deep Q-Networks (DQNs) [11]. Single policy (flat) RL is gen-
erally used for relatively simple problems, however, increasingly
complex problems (with sparse rewards or requiring multiple un-
related skills), are mostly unsolvable by current flat RL methods.
To solve such RL problems (herein referred to as hard tasks) one
can use Hierarchical Reinforcement Learning (HRL). HRL is a class
of RL methods which excel at complex RL problems by decompos-
ing them into sub-tasks, mimicking how humans build new skills
on top of existing simpler skills. Gradient-based RL methods are
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also used by HRL and have solved various hard RL environments
such as Montezumas Revenge [20] and generating complex robot
behaviours [12, 20]. Evolution strategies (ES) [1] have also been ap-
plied to RL task environments, and have demonstrated competitive
task-performance with flat gradient-based RL methods in robot lo-
comotion and Atari game-playing [15]. However, ES has still not
been applied to solve hard HRL problems.

ES has been used as a black-box optimizer for various tasks in-
cluding, robot locomotion [3, 15] and loss function optimization
[7]. There are many variants of ES [1], each with different evolu-
tionary parameters. For example, CMA-ES [9] and (1 + y)-ES [1],
and Scalable Evolution Strategies (S-ES) [15].

All ES methods follow a scheme of sample-and-evaluate . Ini-
tially, policy variants are sampled around current policies parame-
ters and variants are then evaluated to obtain fitness values. This
provides information about the local fitness landscape, which is
used to inform an update to the current policy. S-ES uses fitness
to approximate a gradient and moves current policy parameters
in a direction maximizing average reward. Given that ES is both
a black-box process (making it indifferent to temporal details) and
is a gradient-free method, it suffers from sub-optimal sample effi-
ciency [16]. S-ES has demonstrated results comparable to gradient-
based methods [15] on the MuJoCo and Atari [11] suite of bench-
marks. However, S-ES has not been demonstrated on hard RL tasks
(requiring long-term credit assignment), such as Montezuma’s re-
venge [11] and robot locomotion with navigation [12].

HRL potentially solves much more complex tasks than flat RL
methods, since HRL allows policies to abstract away large amounts
of complexity and focus on solving simple sub-goals [12]. This is
usually done by creating two classes of policies in a policy hierar-
chy: a primitive and a controller. The primitive is responsible for
direct control of the agent and the controller manages the primi-
tive, guiding its actions. For example, the HRL method feudal-RL
[5] allows for communication between the controller and primitive
by having the controller set goals for the primitive to complete.

Recent feudal-RL methods such as FeUdal Networks for HRL (FuN)
[20] and HRL with Off-Policy Correction (HIRO) [12] have shown
promise for learning sparse reward problems and hierarchies re-
quiring complex primitives. HIRO uses a two-level hierarchy (one
controller, one primitive) where the controller sets the goal and
reward for the primitive. The goal takes various forms such as a
position an agent must reach and reward is based on agent dis-
tance to the goal position. HIRO, FuN and related HRL algorithms
use gradient-based RL methods to optimize their hierarchy of poli-
cies [12, 19, 20]. However, to date, non-gradient based RL solvers,
such as ES, have not been extensively tested on hard RL problems
(typically reserved for gradient-based HRL solvers).

ES has multiple advantages over gradient-based RL methods,
but two of these advantages make ES especially suited for HRL
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problems. First, it is invariant to delayed rewards and second, it
has a more structured exploration mechanism [3, 15].

Furthermore, contrary to state-of-the-art RL and HRL methods,
S-ES is highly robust to hyper-parameter changes [15]. Since HRL
methods only introduce more hyper-parameters, the brittleness of
current RL methods [8, 13] greatly increases HRL parameter tun-
ing time. Thus, we introduce a new method! for training two-level
policy hierarchies, optimized using a S-ES method: Scalable Hier-
archical Evolution Strategies (SHES).

We compare SHES task-performance to other gradient-based
HRL methods, also evaluated on the same tasks [12, 20]. The main
objective is to demonstrate that SHES performs well on tasks that
are challenging for gradient-based HRL methods and hence that S-
ES is suitable for training hierarchies of policies. Our SHES method
addresses various RL and HRL deficiencies by leveraging the ben-
efits of S-ES to create an HRL method requiring minimal hyper-
parameter tuning and that is competitive with state-of-the-art HRL
methods across three hard HRL task environments.

2 METHODS

This section presents our method for learning hierarchical policies
using S-ES: Scalable Hierarchical Evolution Strategies (SHES).

2.1 Policy Hierarchy

SHES is a Feudal RL [5] style method where high-level policies
(controllers) direct and provide rewards to lower-level policies (prim-
itives). The initial feudal RL method used a multi-level feudal hier-
archy, whereas SHES uses a two-level hierarchy consisting of a
single controller policy u¢ and a single primitive policy p?.

The controller sets goals and cannot directly perform task en-
vironment actions, while the primitive directly controls the agent
with actions in the task-environment. Such actions aim to achieve
goals set by the controller. More formally, given an environment
state s, the controller produces a goal g; € R (g; ~ p¢(s¢)). The
controller produces g; every c steps, where c is a hyper-parameter
known as the controller interval. The goal is transformed using a
static function such that it is always relative to the current state.
For example, if the goal is a position it is updated every time-step
so that the position is relative to the agent. The controller inter-
val ¢ is kept as a hyper-parameter since we observed that learning
c often results in it degenerating into the simplest cases where ¢
becomes 1 or the maximum episode length [20].

This provides the controller with a level of temporal abstraction
which (for tested task-environments) enables it to plan a path with-
out having to plan all agent actions required to follow this path.
The primitive is passed the goal g; and the state s; and is tasked
with reaching the goal. It samples an action a; ~ pP (sz,g;) from
its policy which is applied to the agent. The controller receives a
reward from the environment, however is also responsible for re-
warding its primitive. As in similar works, the primitive reward
is based on its distance to its goal g; [12, 20], however, the exact
reward function is discussed in section 2.2.

In feudal RL, rewards are not shared between controller and
primitive. For example, if the primitive reaches the goal set by the
controller, but this does not provide a high enough reward then
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the primitive will receive a high reward, but the controller will not.
This is known as reward hiding and is a key principle of feudal-RL
[5]. SHES follows this primitive reward scheme and SHES does not
share rewards between primitives and controllers [20], since it in-
troduces an unnecessary hyper-parameter.

SHES is an extension of S-ES, where the main difference is that
SHES co-evolves two policies and stores a set of parameters for
both the controller ¢ and primitive 7. Every generation it creates
n new controller and primitives pairs by perturbing the parame-
ters ¢ and 6P. Perturbation is done by adding a small amount
of noise sampled from an n-variate Gaussian to the parameters
07 = 0°+¢€° ~ N(0, 02). The primitive is similarly perturbed us-
ing a noise vector sampled from the same Gaussian e” ~ N (0, 52).
A shared noise table [15]2, allows for the sharing of common ran-
dom numbers at negligible extra memory cost compared to single
policy S-ES and increases the scalability and efficiency of SHES.

Each perturbed controller and primitive pair is evaluated in the
task environment, where controller fitness is the cumulative envi-
ronmental reward and primitive fitness is the cumulative reward
from its controller. Both primitive and controller fitness are sepa-
rately ranked and shaped as in S-ES. Ranked and shaped fitness
is then used to approximate the gradients for the controller and
primitive, which are optimized using the ADAM optimizer [10].

In feudal RL, controllers must adapt to non-stationary problems,
since controllers and primitives learn simultaneously. That is, the
controller learns not only how to solve the problem, but also how
to recommend suitable goals to the current primitive. Such non-
stationary problems are particularly challenging for many meth-
ods [12], however, SHES’s robustness to noise made this trivial to
solve. That is, the SHES controller simply interprets the primitive’s
changing behaviour as noise and suitably adapts its behaviour.

2.2 Primitive Reward

There are various ways to formulate the primitive reward [4, 12,
20], but in this study primitive reward is equated to the agent reach-
ing its target consistently and quickly while avoiding local minima.
SHES rewards the agent based on the portion of total distance cov-
ered, plus a bonus for reaching the target: R‘f =1-d;/dc+(1ifd; <
Lelse0) Where, d;: Euclidean distance between agent and goal, g;:
time-step ¢, d.: distance at time-step, ¢: most recent time-step the
controller recommended a goal, L: distance threshold (L = 1 here).

2.3 The Goal

A new goal is recommended once every c steps by the controller
and for c¢-1 steps this goal is transformed using a fixed goal transi-
tion function. Each step, current goal g; is concatenated onto the
primitive’s observations. We encode the primitive goal as the sin
and cos of the angle from the agent to the goal, via allowing the
controller to output a relative vector from the agent to the target
and transforming this vector into an angle from agent to target.
The sin and cos of this angle is the goal g; passed to the primitive.

2The sharing of common random numbers was shown by Salimans et al. [15] to allow
for near linear speedup when scaling up to 1440 CPU cores.
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2.4 Mutation Policy

The SHES method uses a many-to-many perturbation policy, mean-
ing that each time a controller is perturbed a primitive is also per-
turbed. The benefit of this approach is that it decreases compute
time and increases the sample efficiency since both the primitive
and controller learn at the same time. However, it ranks controllers
on an uneven playing field as they used different primitives vari-
ants, which can have a large impact on task performance.

2.5 Noise Sampling

SHES adapts S-ES antithetic sampling [2, 14], to operate on two
policies and reduce variance. Since the controller and primitive
both sample their own noise vectors (e, €p), one way to perform
antithetic sampling in SHES is to evaluate negatively perturbed
policies (—€¢, —€p) and positively perturbed policies (+ec, +€p).

Though, this leaves out two potential combinations when com-
bining the positive with the negative perturbations. Using four per-
turbations instead of two led to a minor speed increase because of
how it allows one to simplify the final matrix dot product when ap-
proximating the gradient, however it did not lead to a significant
performance increase.

2.6 Speedup

Given that SHES is an extension of S-ES, it is expected to yield the
same linear speedup and scalability benefits as S-ES [15]. Thus it is
expected that SHES run-time is reduced by a factor of the number
of cores used. The key difference between SHES and S-ES is com-
munication overhead. However, the difference is minimal, since
SHES communicates an extra three numbers (one 32 bit float and
two integers), for each evaluation to represent the performance of
two policies instead of one. Given the small amount of extra data
sent between CPU cluster nodes, we do not expect the extra com-
munication of SHES to significantly impact its speedup.

3 EXPERIMENTS

SHES was evaluated, in comparison to HIRO, in three environ-
ments (Ant Gather, Ant Maze, Ant Push). These tasks were selected
since each is defined by sparse rewards or deceptive local min-
ima and require learning both robot locomotion and navigation
behaviour.

Ant Gather: The agent receives +1 reward for each food object
it collects and —1 reward for each poison object it collects (figure 1,
left). Food and poison are placed in random positions at the start
of each episode. The evaluation score is defined as the maximum
reward throughout an episode.

Ant Maze: The agent must learn to reach a target within a U-
shaped maze. During training the target is randomly generated,
however at evaluation time it is placed on the opposite side of the
maze (red dot in figure 1, centre). Evaluation reward is based on
the distance to the target and at evaluation time the agent is given
a score of 1 if it is within 5 units of the final step of the episode.

Ant Push: The agent must learn to push the red block to the
right allowing it to reach the end goal at the top of the maze (red
dot in figure 1, right). It is rewarded based on its distance to the
red dot and receives an evaluation score of 1 if within 5 units of
the red dot on the final step of the episode.
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SHES experiments were executed on a cluster comprising Intel
Xeon 24 core CPUs running at 2.6GHz with 64GB of RAM. HIRO
was executed on the same hardware with a Nvidia V100 GPU.

4 DISCUSSION

Figures 2 (a), (b) and (c) indicate SHES is competitive with HIRO
[12]. In Ant Gather SHES outperforms the maximum evaluation
reward yielded by HIRO by a factor of 1.24, and significantly ex-
ceeds the mean evaluation reward of our own HIRO experiments
(p = 0.008, Mann-Whitney U test [6]). For Ant Push (Figure 2, c),
SHES evaluation reward significantly exceeds our HIRO method
re-run (p = 0.0007) and SHES on higher core counts (600) outper-
forms the original HIRO experiments by achieving the maximum
evaluation reward of 1. However, for Ant Maze (Figure 2, b), re-
sults indicate that SHES is unable to learn to solve the task (thus
flat evaluation reward results), and significantly under-performs
compared to our HIRO method (p < 0.0001).

These results demonstrate that SHES outperforms HIRO on two
of the three tasks. However, this comes at the cost of sample effi-
ciency. SHES requires over 100X more samples than HIRO to at-
tain this performance. Though, this is not unexpected given that
gradient-free optimization has been shown to be less sample effi-
cient than gradient-based optimization [16].

SHES does, however, out-perform HIRO in terms of run-time,
when given sufficient compute. For example, for the Ant Gather
task (figure 2, a), SHES task-performance over time, rises faster
than HIRO indicating increased learning speed, as well as demon-
strating the distributed computing benefits of SHES. In the case
of the Ant Push task (Figure 2, c), SHES yields a comparable task-
performance to HIRO, however, later task-performance (after ap-
proximately 3 hours) rises faster than HIRO further supporting the
learning speed and distributed computing benefits of SHES.

Also consider, SHES (600 cores) matched the evaluation score of
HIRO (Nachum et al.) in under an hour, on both the Ant Gather and
Ant Push tasks. Replication of HIRO on these tasks (10 million train-
ing steps [12]), took over 12 hours to achieve the same evaluation
score when executed on an Nvidia V100 GPU. Thus SHES offers at
least a 12X compute speedup and increased task performance over
the HIRO method. Also, the high task-performance of SHES on Ant
Gather (figure 2, a), further supports the SHES method’s indiffer-
ence to delayed rewards in HRL problems. Ant gather is the task en-
vironment (of tasks tested) with the most sparse reward and is the
task on which SHES yields the highest task-performance relative
to HIRO, supporting SHES applicability to sparse reward problems
and its benefit over gradient-based methods.

5 CONCLUSION

The main contribution of this work was a new evolutionary HRL
method: SHES. Across all hard HRL tasks tested, SHES achieved
a high learning speed, as well as significantly out-performing a
current state of the art off-policy HRL method (HIRO) in most en-
vironments tested. In comparison to HIRO, SHES performed espe-
cially well on sparse reward RL tasks. SHES addresses a need for
computationally expedient HRL methods that yield high-task per-
formance across a range of HRL (and more generally RL) tasks.
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Figure 1: Ant Gather environment (left) Ant Maze environment (centre) and Ant Push environment (right). These three task-
environments were used to evaluate the SHES method.
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Figure 2: SHES, HIRO (48 CPU cores) average evaluation reward (10 runs) in (a): Ant Gather, (b): Ant Maze, (c): Ant Push. HIRO
Nachum et al. maximum evaluation reward (not reward over time) is also plotted. Shaded regions show standard deviation.
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