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Abstract

Abstract dialectical frameworks (in short, ADFs) are one of
the most general and unifying approaches to formal argumen-
tation. As the semantics of ADFs are based on three-valued
interpretations, the question poses itself as to whether some
and which monotonic three-valued logic underlies ADFs, in
the sense that it allows to capture the main semantic con-
cepts underlying ADFs. As an entry-point for such an in-
vestigation, we take the concept of model of an ADF, which
was originally formulated on the basis of Kleene’s three-
valued logic. We show that an optimal concept of a model
arises when instead of Kleene’s three-valued logic, possibilis-
tic logic is used. We then show that in fact, possibilistic logic
is the most conservative three-valued logic that fulfils this
property, and that possibilistic logic can faithfully encode all
other semantical concepts for ADFs. Based on this result,
we also make some observations on strong equivalence and
introduce possibilistic ADFs.

1 Introduction
Formal argumentation is one of the major approaches to
knowledge representation. In the seminal paper (Dung
1995), abstract argumentation frameworks were conceived
of as directed graphs where nodes represent arguments and
edges between these nodes represent attacks. So-called ar-
gumentation semantics determine which sets of arguments
can be reasonably upheld together given such an argumen-
tation graph. Various authors have remarked that other rela-
tions between arguments are worth consideration. For exam-
ple, in (Cayrol and Lagasquie-Schiex 2005), bipolar argu-
mentation frameworks are developed, where arguments can
support as well as attack each other. The last decades saw
a proliferation of such extensions of the original formalism
of (Dung 1995), and it has often proven hard to compare the
resulting different dialects of the argumentation formalisms.
To cope with the resulting multiplicity, (Brewka and Woltran
2010; Brewka et al. 2013) introduced abstract dialectical
argumentation that aims to unify these different dialects.
Just like in (Dung 1995), abstract dialectical frameworks (in
short, ADFs) are directed graphs. In contradistinction to ab-
stract argumentation frameworks, however, in ADFs, edges
between nodes do not necessarily represent attacks but can
encode any relationship between arguments. Such a gen-
erality is achieved by associating an acceptance condition

with each argument, which is a Boolean formula in terms
of the parents of the argument that expresses the conditions
under which an argument can be accepted. As such, ADFs
are able to capture all the major extensions of abstract argu-
mentation and offer a general framework for argumentation
based inference.

The semantics of ADFs are based on three-valued inter-
pretations assigning one of three truth values true (T), false
(F), and undecided (U) to arguments. Even though in var-
ious papers on ADFs, Kleene’s three-valued logic is men-
tioned (Brewka et al. 2013; Polberg, Wallner, and Woltran
2013; Linsbichler 2014), it is not so clear what the exact role
of this logic is, or for that matter any other monotonic three-
valued logic, in ADFs. In this paper, we make an in-depth
investigation of which three-valued logics underlie abstract
dialectical frameworks, i.e. which three-valued logics allow
to straightforwardly encode all semantical concepts used in
ADFs. The entry point of this investigation is the notion of
a model of an ADF, which was mentioned in (Brewka et al.
2013) but barely considered afterwards. We show that, in
contradistinction to a claim made by (Brewka et al. 2013),
the notion of a model of an ADF as based on Kleene’s three-
valued logic is ill-conceived, in the sense that it does not
form a generalization of the set of admissible interpretations.
We then investigate on which logics a sound notion of model
can be based, and show that no truth-functional three-valued
logic using an involutive negation allows to formulate an ad-
equate concept of model for an ADF. Furthermore, we show
that possibilistic logic (Dubois and Prade 1998) is able to
provide an adequate notion of model. In fact, this is the
least informative logic to provide such a notion. Possibilistic
logic can therefore be viewed as a monotonic base logic un-
derlying ADFs. Based on this observation, we characterize
strong equivalence of ADFs and we generalize the seman-
tics of ADFs to allow for possibility distributions as general-
ized three-valued interpretations as a basic semantic unit for
ADFs. We illustrate the fruitfulness of this generalization
by allowing for possibilistic constraints on arguments.
Outline of this paper: We first state all the necessary pre-
liminaries in Section 2 on propositional logic (Sec. 2.1),
three-valued logics (Sec. 2.2), possibility theory (Sec.2.3)
and ADFs (Sec. 2.4). In Section 3 we answer the question
which logics underlie ADFs, by first recalling and general-
izing the notion of model for an ADF (Sec. 3.1), then show-



ing that possibilistic logic underlies ADFs in Section 3.2
and thereafter making a study of the relation between truth-
functional three-valued logics and ADFs, starting with some
general observations (Sec. 3.3) before moving to more spe-
cific results on three-valued logics using an involutive, para-
consistent and intuitionistic negation. Thereafter, we use the
fact that possibilistic logic underlies ADFs to draw some
consequences on strong equivalence for ADFs (Sec. 4) and
generalize the semantics of ADFs to allow for possibility
distributions instead of three-valued interpretations as a ba-
sic semantic unit, allowing for a generalization of ADFs we
call possibilistic ADFs in Sec. 5. Related work is discussed
in Sec. 6 and in Sec. 7 the paper is concluded.

2 Preliminaries
In this section the necessary preliminaries on propositional
logic (Section 2.1), three-valued logics (Section 2.2), possi-
bility theory (Section 2.3), and abstract dialectical argumen-
tation (Section 2.4) are introduced.

2.1 Propositional logic
For a set At of atoms let L(At) be the corresponding propo-
sitional language constructed using the usual connectives ∧
(and), ∨ (or), and ¬ (negation). A (classical) interpretation
(also called possible world) ω for a propositional language
L(At) is a function ω : At → {T,F}. Let Ω(At) denote the
set of all interpretations for At. At(φ) is the set of all atoms
used in a formula φ ∈ L(At). We simply write Ω if the set
of atoms is implicitly given. An interpretation ω satisfies (or
is a model of) an atom a ∈ At, denoted by ω |= a, if and
only if ω(a) = T. The satisfaction relation |= is extended to
formulas as usual.

As an abbreviation we sometimes identify an interpreta-
tion ω with its complete conjunction, i. e., if a1, . . . , an ∈
At are those atoms that are assigned T by ω and
an+1, . . . , am ∈ At are those propositions that are assigned
F by ω we identify ω by a1 . . . anan+1 . . . am (or any per-
mutation of this).

For Φ ⊆ L(At) we also define ω |= Φ if and only if ω |=
φ for every φ ∈ Φ. Define the set of models [X] = {ω ∈
Ω(At) | ω |= X} for every formula or set of formulas X . A
formula or set of formulas X1 entails another formula or set
of formulas X2, denoted by X1 `PL X2, if [X1] ⊆ [X2].

2.2 Three-valued logics
A 3-valued interpretation for a set of atoms At is a function
v : At→ {T,F,U}, which assigns to each atom in At either
the value T (true, accepted), F (false, rejected), or U (un-
known). The set of all three-valued interpretations for a set
of atoms At is denoted by V(At). A 3-valued interpretation
v can be extended to arbitrary propositional formulas over
At using various logic systems L. Therefore, we will, given
an interpretation v ∈ V(At), denote the truth-value assigned
by a logic system L to a formula φ as vL(φ).1 Thus, a logic
system L is defined as a function assigning a truth value to

1Notice that vL(α) = vL
′
(α) for any α ∈ At and any two

three-valued logics L and L′.

every formula-interpretation-pair. The (three-valued) mod-
els of a formula φ ∈ L(At) for a logic system L are defined
as VL(φ) = {v ∈ V(At) | vL(φ) = T}.2 A consequence re-
lation `L⊆ ℘(L(At)) × L(At)) can then be defined as usual
by setting Γ `L φ iff VL(φ) ⊇

⋂
γ∈Γ VL(γ). Thus, a logic

system L : V(At) × L(At) → {T,F,U} gives rise to a con-
sequence relation which is most commonly associated with
a logic, and we shall therefore often refer to logic systems
as simply logics.

A particular useful class of logics are truth-functional log-
ics:
Definition 1. We say a three-valued logic L is truth-
functional for an n-ary connective ∗, if for every
φ1, . . . , φn, φ

′
1, . . . , φ

′
n ∈ L(At), vL(φi) = vL(φ′i) for every

1 ≤ i ≤ n implies vL(∗(φ1, . . . , φn)) = vL(∗(φ′1, . . . , φ′n)).
We also introduce a rather weak notion of relevance,

which expresses that the truth-value of atoms not occurring
in a formula φ should not have any impact on the truth-value
assigned by L to that formula φ.
Definition 2. A logic L satisfies relevance iff for any φ ∈
L(At) and s ∈ At, if s 6∈ At(φ) then for any v1, v2 ∈ V(At),
v1(s′) = v2(s′) for any s′ ∈ At \ {s} implies vL1(φ) =
vL2(φ).

This notion of relevance is very similar to the property of
independence (Kern-Isberner, Beierle, and Brewka 2020).
Notice that any truth-functional logic satisfies relevance.

We assume two commonly-used orders ≤i and ≤T over
{T,F,U}. ≤i is obtained by making U the minimal element:
U <i T and U <i F and this order is lifted pointwise as
follows (given two valuations v, w over At): v ≤i w iff
v(s) ≤i w(s) for every s ∈ At. ≤T is defined by F ≤T

U ≤T T and can be lifted pointwise in a similar fashion.
It will sometimes prove useful to compare logics w.r.t.

their conservativeness:
Definition 3. Given two logics L and L′, L is at least as
conservative than L′ iff for every φ ∈ L(At) and every v ∈
V(At), vL(φ) ≤i vL

′
(φ).

As an example, we consider Kleene’s logic K.

Kleene’s Logic K A 3-valued interpretation v can be
extended to arbitrary propositional formulas over At via
Kleene semantics (Kleene et al. 1952):

1. vK(¬φ) = F iff vK(φ) = T, vK(¬φ) = T iff vK(φ) = F,
and vK(¬φ) = U iff vK(φ) = U;

2. vK(φ∧ψ) = T iff vK(φ) = vK(ψ) = T, vK(φ∧ψ) = F iff
vK(φ) = F or vK(ψ) = F, and vK(φ∧ψ) = U otherwise;

3. vK(φ∨ψ) = T iff vK(φ) = T or vK(ψ) = T, vK(φ∨ψ) =
F iff vK(φ) = vK(ψ) = F, and vK(φ∨ψ) = U otherwise.

Proposition 1. Kleene’s Logic K is truth-functional and sat-
isfies semantic relevance.3

2Notice that we assume that T is the only designated value. In
e.g. paraconsistent logics, also U is taking as a second designated
value. However, we stick to the orthodoxy for ADFs and interpret
the third truth-value U as “unknown” and therefore not designated.

3This follows immediately from the fact that Kleene’s logic is
truth-compositional as defined in e.g. (Chemla and Égré 2019).



2.3 Possibility theory and possibilistic logic
In this subsection, we introduce all necessary preliminaries
from possibility theory and possibilistic logic. For more
elaborate introductions to possibility theory, we refer the
reader to (Dubois and Prade 1993).

Preliminaries from possibility theory Given a set of
atoms At, a possibility distribution is a mapping π :
Ω(At) → [0, 1]. We denote the set of possibility distri-
butions over At by P(At). π is normal if there is some
ω ∈ Ω(At) s.t. π(ω) = 1. A possibility distribution
can be compared using the principle of minimum specificity
(Dubois and Prade 1986):
Definition 4. Given two possibility distributions π and π′,
π ≤s π′ iff π(ω) ≤ π′(ω) for every ω ∈ Ω(At).

A possibility distribution induces two measures or de-
grees that say something about formulas, the possibility de-
gree Ππ : L(At) → [0, 1] and the necessity degree Nπ :
L(At)→ [0, 1]. They are defined as follows:
Definition 5. Given a possibility distribution π and a for-
mula φ ∈ L(At):
• Ππ(φ) = sup{π(ω) | ω |= φ}.
• Nπ(φ) = 1−Ππ(¬φ) = inf{1− π(ω) | ω |= ¬φ}.
Possibilistic logic In (Dubois and Prade 1998), a three-
valued logic inspired by possibility theory is presented
which is based on defining lower and upper bounds of the
evaluation of a formula using a possibility and a necessity
measure. In more detail, given a three-valued interpretation
v over At, the set of two-valued interpretations extending a
valuation v is defined as [v]2 = {w ∈ Ω(At) | v ≤i w}.4

Definition 6. Given v ∈ V(At), the necessity measure Nv
and the possibility measure Πv based on v are functions :
Nv : L(At)→ {T,F} and Πv : L(At)→ {T,F}

Πv(φ) =

{
T iff ω |= φ for some ω ∈ [v]2

F otherwise

Nv(φ) =

{
T iff ω |= φ for every ω ∈ [v]2

F otherwise

We can now derive a three-valued evaluation vposs :
L(At)→ {T,F,U} by stating that:5

vposs(φ) =


T iff Nv(φ) = T

U iff Nv(φ) = F and Πv(φ) = T

F iff Nv(φ) = Πv(φ) = F

Example 1. Consider the interpretation v over {a, b} with
v(a) = v(b) = U. Notice that Nv(a ∨ ¬a) = T and thus
vposs(a ∨ ¬a) = T. However, Nv(a ∨ b) = Nv(¬a) = F
and Πv(a ∨ b) = Πv(¬a) = T. Thus, even though v(a) =
vposs(¬a) = v(b) = U, vposs(a ∨ b) 6= vposs(a ∨ ¬a).

4In (Ciucci, Dubois, and Lawry 2014), instead of two-valued
interpretations extending a valuation, the notion of epistemic set
Ev is used, which defined as: Ev = {v′ ∈ Ω | v ≤i v

′}. It is clear
that Ev = [v]2 for any v ∈ V .

5Notice that this enumeration of cases is exhaustive, as for any
v ∈ V(At) and any φ ∈ L(At),Nv(φ) ≤T Πv(φ).

Proposition 2. poss is not truth-functional but satisfies rel-
evance.

Remark 1. It can be seen that the possibility and neces-
sity measures given a three-valued interpretation v defined
in Definition 6 are particular cases of possibility and neces-
sity measures given a possibility distribution π. In more de-
tail, given an interpretation v, set πv(ω) = 1 if ω ∈ [v]2 and
πv(ω) = 0 otherwise. Then Πv(φ) = T[F] iff Ππ(v) = 1[0]
and Nv(φ) = T[F] iff Nπ(v) = 1[0]. We call the set of pos-
sibility distributions π : Ω(At) → {0, 1} the set of binary
possibility distributions. Clearly, the set of normal binary
possibility distributions coincides with {πv | v ∈ V(At)}.

2.4 Abstract dialectical frameworks
We briefly recall some technical details on ADFs following
loosely the notation from (Brewka et al. 2013). An ADF D
is a tuple D = (At, L, C) where At is a set of statements,
L ⊆ At × At is a set of links, and C = {Cs}s∈At is a set
of total functions Cs : 2parD(s) → {T,F} for each s ∈ At
with parD(s) = {s′ ∈ At | (s′, s) ∈ L} (also called ac-
ceptance functions). An acceptance function Cs defines the
cases when the statement s can be accepted (truth value T),
depending on the acceptance status of its parents in D. By
abuse of notation, we will often identify an acceptance func-
tionCs by its equivalent acceptance condition which models
the acceptable cases as a propositional formula. We denote
by D(At) the set of all ADFs which can be formulated on
the basis of At.

Example 2. We consider the following ADF D1 =
({a, b, c}, L, C) with L = {(a, b), (b, a), (a, c), (b, c)} and:

Ca = ¬b Cb = ¬a Cc = ¬a ∨ ¬b
Informally, the acceptance conditions can be read as “a is
accepted if b is not accepted”, “b is accepted if a is not ac-
cepted” and “c is accepted if a is not accepted or b is not
accepted”.

An ADF D = (At, L, C) is interpreted through 3-valued
interpretations v ∈ V(At). The topic of this paper is which
logics can be used to extend v to complex formulas in way
that is suited for ADFs. Given a set of valuations V ⊆ V ,
uiV (s) := v(s) if for every v′ ∈ V , v(s) = v′(s) and
uiV (s) = U otherwise. The characteristic operator is de-
fined by ΓD(v) : At → {T,F,U} where s 7→ ui{w(Cs) |
w ∈ [v]2}. Thus, ΓD(v) assigns to s the truth-value that all
two-valued extensions of v assign to the condition Cs of s,
if they agree on Cs, and U otherwise.

Definition 7. LetD = (At, L, C) be an ADF with v : At→
{T,F,U} an interpretation:

• v is a 2-valued model iff v ∈ Ω(At) and v(s) = v(Cs) for
every s ∈ At.

• v is admissible for D iff v ≤i ΓD(v).
• v is complete for D iff v = ΓD(v).
• v is preferred for D iff v is ≤i-maximal among the ad-

missible interpretations for D.
• v is grounded for D iff v is ≤i-minimal among the com-

plete interpretations for D.



We denote by 2mod(D), admissible(D), complete(D),
preferred(D), respectively grounded(D) the sets of 2-
valued models and admissible, complete, preferred, respec-
tively grounded interpretations of D.

Example 3 (Example 2 continued). The ADF of Ex-
ample 2 has three complete models v1, v2, v3 with:
v1(a) = T v1(b) = F v1(c) = T
v2(a) = F v2(b) = T v2(c) = T
v3(a) = U v3(b) = U v3(c) = U

v3 is the grounded interpretation whereas v1 and v2 are pre-
ferred interpretations as well as 2-valued models.

3 Logics for ADFs
In this section, we ask the question of which three-valued
logics qualify as a logic for ADFs. In particular, given a
set of statements At, we will be interested in which logic
V(At) × L(At) → {T,F,U} can be reasonably said to un-
derlie ADFs. We first recall the notion of a model for ADFs
as introduced by (Brewka et al. 2013) and show it is flawed,
after which we define models parametrized to a logic. In
section 3.2, we show that models parametrized to the logic
based on possibility-necessity pairs gives rise to a plausi-
ble notion of model. Finally, in section 3.3, we show that
there are truth-functional logics that give rise to plausible
notions of models, but they commit one to assign determi-
nate truth-values to formulas to which poss assigns the un-
decided truth-value.

3.1 ADF-models
In (Brewka et al. 2013), models are defined as follows:

Definition 8. An interpretation v is a model of an ADFD =
(At, L, C) iff v(s) 6= U implies v(s) = vK(Cs) for every
s ∈ At.

In (Brewka et al. 2013) we find the following claim:
“Note that admissible interpretations (as well as the special
cases complete and preferred interpretations to be defined
now) are actually three-valued models.” The following ex-
ample shows that this claim does not hold:

Example 4. D = ({a, b}, L, C) with Ca = b ∨ ¬b and
Cb = b. Consider the interpretation v with v(a) = T and
v(b) = U. Since ui[v]2(b ∨ ¬b) = T and ui[v]2(b) = U,
v is complete. However, vK(b ∨ ¬b) = U and thus v(a) 6=
vK(Ca), i.e. v is not a model.

One can notice that in (Brewka et al. 2013), Kleene’s logic
is only used in the definition of models. For all of the other
semantics, no reference to Kleene’s logic is made. Instead,
the ΓD-operator is used, which makes use of the comple-
tions [v]2 of an interpretation v. Thus, models are the only
concepts based on Kleene’s logic in (Brewka et al. 2013).

We can now generalize the concept of a model by param-
eterizing it with the underlying logic L as follows:

Definition 9. Given a logic L s.t. L : V(At) × L(At) →
{T,F,U} and an ADF D, the set of L-models of D is the
set ML(D) = {v ∈ V | for every s ∈ At if v(s) 6=
U then v(s) = vL(Cs)}.

A minimal condition on the set of models is that it in-
cludes all the admissible models:
Definition 10. A logic L is admissible-preserving if
ML(D) ⊇ Admissible(D).

Notice that any admissible-preserving logic L also
guarantees that ML(D) ⊇ Sem(D) for any Sem ∈
{Preferred,Grounded,Complete} since for any Sem-
interpretation v, v is admissible.

The following result is a central first insight in the class
of admissible-preserving logics:
Lemma 1. A logic L satisfying relevance is admissible-
preserving iff vL(φ) ≥i ui[v]2(φ) for every v ∈ V(At) and
every φ ∈ L(At).6

3.2 Possibilistic logic preserves admissibility
In this section, we show that possibilistic logic poss un-
derlies ADFs. We first show the following crucial lemma,
which show that for any interpretation, vposs is identical to
ui[v]2, the latter being a central technical notion in the se-
mantics of ADFs.
Lemma 2. For any v ∈ V(At) and any φ ∈ L(At),
ui[v]2(φ) = vposs(φ).

From this Lemma it follows that poss is admissible-
preserving:
Proposition 3. Possibilistic logic poss is admissible-
preserving.

Furthermore, interestingly enough, the set of models of an
ADF under the logic poss collapses to the set of admissible
interpretations:
Proposition 4. For any ADF D, Mposs(D) =
Admissible(D).

Finally, we notice that the ΓD-function, which is of cen-
tral importance to the semantics of ADFs, can be easily
captured in possibilistic logic. Indeed, for any ADF D =
(At, L, C), v ∈ V(At) and s ∈ At, ΓD(v)(s) = vposs(Cs)
(this is immediate from Lemma 2). From this, it follows that
the set of complete models of an ADFD = (At, L, C) coin-
cides with the following set of interpretations: {v ∈ V(s) |
v(s) = vposs(Cs) for every s ∈ At}.
Remark 2. We draw some consequences from the results
above for the case of abstract argumentation frameworks
(Dung 1995). An abstract argumentation framework is a
tuple (Args, ) where Args represents a set of arguments
and  ⊆ Args × Args is an attack relation between argu-
ments. We denote by A+ = {B ∈ Args : B  A} the
set of attackers of A. It it shown in (Brewka et al. 2013)
that argumentation frameworks can be translated in ADFs
as follows: given (Args, ), D(Args, ) = (Args, , C)
where CA =

∧
B∈Args:B∈A+ ¬B. Notice that for any

A ∈ Args, CA is a conjunction of negated literals. For
such formulas, Kleene’s logic K and Poss coincide, i.e.
vK(φ) = vPoss(φ) for any φ built up solely from negated
atoms using ∨ and ∧ (Ciucci, Dubois, and Lawry 2014,

6In view of spatial restrictions, proofs have been left out, but
can be found in an online appendix.

https://www.dropbox.com/s/4mvg92vsagrfgy8/Kleene.pdf?dl=0


Prop. 4.5). It thus follows that for any argumentation frame-
work (Args, ), v is complete iff v(A) = vK(CA) for ev-
ery A ∈ Args. Likewise, other classes of formulas for
which (the non-truth-functional) poss is equivalent to (the
truth-functional) K or to other logics, is useful for classes of
ADFs, such as bipolar ADFs (Brewka and Woltran 2010;
Diller et al. 2020) and ADFs corresponding to logic pro-
grams.

3.3 Truth-functional logics
We have shown in the previous section that possibilistic
logic underlies ADFs. However, according to Proposition 2,
possibilistic logic is not truth-functional. We might therefore
ask whether there are some truth-functional three-valued
logics that can be seen as a logic for ADFs. A first obser-
vation we make is that for any admissible-preserving three-
valued logic (truth-functional or otherwise), either the logic
coincides with poss or the logic assigns a determinate truth-
value T or F to at least one formula φ (relative to at least one
interpretation v) for which poss evaluates φ to U. In other
words, poss is the most conservative logic that is admissible-
preserving.
Proposition 5. For any admissible preserving logic L, if
there is a φ ∈ L(At) and a v ∈ V(At) s.t. vL(φ) 6= vposs(φ),
then L is strictly less conservative than poss.

In the rest of this section, we make some observations
on what this means for truth-functional logics. To limit our
study to a sensible class of three-valued truth-functional
logics, we start by making some assumptions on the
evaluation of connectives. Firstly, we will assume that
any connective conforms with classical logic to deter-
minate truth values, i.e. for any n-ary connective ∗, if
v ∈ Ω(At), then vL(∗(φ1, . . . , φn)) = vPL(∗(φ1, . . . , φn)).
Notice that for a truth-functional logic, this means that
for every v ∈ V , vL(φi) ∈ {T,F} for every 1 ≤ i ≤ n,
implies vL(∗(φ1, . . . , φn)) = v′PL(∗(φ1, . . . , φn)) where
v′ ∈ Ω(At) s.t. v′(φi) = v(φi) for every 1 ≤ i ≤ n. For
conjunction, negation and disjunction this means that every
logic has to conform to the following partial truth-tables:
∧ F U T

F F F
U
T F T

∨ F U T

F F T
U
T T T

¬
F T
U
T F

The full range of possibilities for filling out the ¬U-cell
of the truth-table for negation results in three negations,
known as the involutive ¬i, the paraconsistent ¬p and the
intuitionistic ¬c (c stands for constructive). These negations
have the following truth-tables:

v(φ) v(¬iφ) v(¬pφ) v(¬cφ)

T F F F
U U T F
F T T T

We can show that for any truth-functional logic if the logic
is admissible-preserving, it is strictly less conservative than
poss. We notice that this can be shown without making any
assumptions on the connectives other than conformity with
classical logic.

Proposition 6. No truth-functional logic L at least as con-
servative as poss is admissible-preserving.

In passing, we notice that poss also uses an involutive
negation, which also implies that ¬, in contradistinction to
∨ and ∧, is a truth-functional connective in poss.

Fact 1. ¬ is a truth-functional, involutive negation under
poss.

In the rest of this section, we will further look at which
truth-functional logics are exactly admissible-preserving
(even though they are strictly less conservative than poss).
We shall follow (Ciucci and Dubois 2013) and assume
some very basic properties of conjunction, namely (1) ≤T-
monotonicity (i.e. if X ≤T Y then X ∧ Z ≤T X ∧ Z and
Z ∧ X ≤T Z ∧ Y for any X,Y,Z ∈ {T,F,U}) and (2) Sym-
metry (i.e. U ? T = T ? U). This results in the following
partial truth-table:

∧ F U T

F F F F
U F
T F T

In the rest of this section, we determine which truth-
functional logics with a conjunction as defined above are ad-
missible preserving, by systematically studying all options
for the cells U ∧ U, U ∧ T and T ∧ U.

Involutive negation We show that no truth-functional
logic based on an involutive negation is admissible-
preserving. Intuitively, the reason is that any such logic is
strictly more conservative than poss. A particularly relevant
example of this is a tautology like a ∨ ¬a, which is evalu-
ated to U by any truth-functional logic based on an involutive
negation if v(a) = U.

Proposition 7. There exists no truth-functional logic L with
an involutive negation that is admissible-preserving.

Paraconsistent negation When we look at truth-
functional logics using a paraconsistent negation (and
a ≤T-monotonic conjunction conformant with classical
logic), a logic can only be admissible-preserving if it
makes use of the conjunction known as Bochvar’s external
conjunction (Bochvar and Bergmann 1981) and which we
denote by ∧B. As disjunction, we use ∨1 (defined below).
These connectives have the following truth-tables:

∧B F U T

F F F F
U F F F
T F F T

∨1 F U T

F F U T
U U U T
T T T T

The main theorem of this section expresses that there ex-
ists a truth-functional three-valued logic using a paraconsis-
tent negation that is admissible-preserving, but it is strictly
less conservative than poss. Notice that the fact that this
logic is strictly less conservative than poss follows imme-
diately from Proposition 6: the main positive result here
is that there exists a truth-functional three-valued logic us-
ing a paraconsistent negation that is admissible-preserving.
Since the goal of Proposition 8 is to show merely that an



admissible-preserving logic based on paraconsistent nega-
tion exists, no particular motivation for the choice of con-
junction and disjunction is needed, besides the fact that it
fulfils some basic properties like≥T-monotonicity and sym-
metry (and similarly for Proposition 9).

Proposition 8. L¬
p,∧B,∨1

is admissible-preserving and
strictly less conservative than poss.

Intuitionistic negation For an intuitionistic negation, we
can show similarly to the previous section that there is a
logic which is admissible-preserving (but again less conser-
vative than poss). With regards to disjunction, note that con-
formity with vposs requires that v(U∨F) = v(F∨U) = T to
ensure that e.g. vL(a ∨ ¬a) = T even when v(a) = U. The
other cells of the truth-table for disjunction can then be filled
in using conformity to classical logic and left- and right-
monotonicity. We shall use here the conjunction known as
Sette’s conjunction (Sette 1973). This is, in fact, not the only
conjunction that can be used (even though ∧B would not re-
sult in an admissible-preserving logic).7 The truth-tables for
∧S is written out below. We shall use for a disjunction ∨2 as
defined below:

∧S F U T

F F F F
U F T T
T F T T

∨2 F U T

F F T T
U T T T
T T T T

We can now show the main result of this section:

Proposition 9. L¬
c,∧S,∨2

is admissible preserving and
strictly less conservative than poss.

4 Strong equivalence
Strong equivalence (Lifschitz, Pearce, and Valverde 2001)
is a notion of equivalence for non-monotonic formalisms
which states that two knowledge bases (in this case, ADFs)
are strongly equivalent if after the addition of any new infor-
mation, the knowledge bases are equivalent (i.e. the seman-
tics coincide). On the basis of our characterisation results
in Section 3.2, one might expect to derive characterisations
of strong equivalence for ADFs. After all, in Section 3.2
we have shown that possibilistic logic is a logic underlying
abstract dialectical argumentation. Indeed, our results can
be used to derive a characterisation of strong equivalence
for ADFs. In more detail, we show that strong equivalence
for ADFs coincides with pairwise equivalence of acceptance
conditions under classical logic. Given our results from Sec-
tion 3.2, this is not surprising, as equivalence under classical
logic coincides with possibilistic logic:

Proposition 10. For any φ, ψ ∈ L(At), Vposs(φ) =
Vposs(ψ) iff φ and ψ are PL-equivalent (i.e. [φ] = [ψ]).

We first elucidate the concept of strong equivalence for
ADFs in more detail. Recall that a central concept in the

7To see this, observe that then e.g. v(a) = v(b) = U would set
vL((a ∧ b) ∨ (¬a ∧ b) ∨ (a ∧ ¬b) ∨ (¬a ∧ ¬b)) = F even though
vposs((a∧b)∨(¬a∧b)∨(a∧¬b)∨(¬a∧¬b)) = T, contradicting
Lemma 1 and the assumption that L is admissible-preserving.

definition of strong equivalence is the addition of knowl-
edge. For many formalisms, addition of knowledge can be
modelled using set-theoretic union. For ADFs, this is not
feasible for several reasons. Firstly, simply combining two
ADFs under set-theoretic union does, rather evidently, not
result in a new ADF but rather in a set of ADFs. Secondly,
one has to ensure that one models appropriately the combi-
nation of two ADFs with shared atoms. Consider e.g. two
ADFs D1 = ({a}, L1, C

1
a) and D2 = ({a}, L2, C

2
a) with

C1
a = a and C2

a = ¬a. Clearly, the combination of ADFs
has to be modelled on the basis of some logical operator
combining C1

a and C2
a in a single new condition Ca. We

specify a general model of addition of ADFs which allows
for the combination of conditions using either disjunction or
conjunction. Given a set of atoms At, an and-or-assignment
for At is a mapping � : At → {∧,∨}. Intuitively, an and-
or-assignment specifies for every atom s ∈ At whether con-
ditions for s will be combined using ∧ or using ∨. Based on
an and-or-assignment�, we can now define the combination
of two ADFs using �:
Definition 11. 8 Let D1 = (At1, L1, C1) and D2 =
(At2, L2, C2) be two ADFs and� an and-or-assignment for
At. Define D1 d�D2 = (At1 ∪At2, L1 ∪L2, C

�) with and
C� = {C�s }s∈At, where:

C�s =


C1
s�(s)C2

s if s ∈ At1 ∩ At2
C1
s if s ∈ At1 \ At2

C2
s if s ∈ At2 \ At1

Example 5. Consider D as in Example 2, D′ =
({a, b, d}, L′, C) with Ca = b, Cb = d ∧ ¬a and Cd =
¬a, and �(a) = �(b) = ∧ and �(c) = �(d) = ∨. Then
D1 d� D2 = ({a, b, c, d}, L1 ∪ L2, C

�) where:

C�a = ¬b ∧ b C�b = ¬a ∧ d ∧ ¬a
C�c = ¬a ∨ ¬b C�d = ¬a

We now define strong equivalence for ADFs as follows:
Definition 12. Two ADFs D1 = (At, L1, C1) and D2 =
(At, L2, C2) are strongly equivalent under semantics Sem
iff for any D ∈ D(At) and any and-or-assignment � for At,
Sem(D1 d� D) = Sem(D2 d� D).

For any of the admissible, complete, preferred and
grounded semantics, pairwise equivalence of conditions un-
der classical logic is a sufficient and necessary condition for
strong equivalence:
Proposition 11. Let some Sem ∈
{Admissible,Complete,Preferred,Grounded} and two
ADFs D1 = (At, L1, C1) and D2 = (At, L2, C2) be given.
Then: for every s ∈ At, Cs1 ≡PL Cs2 iff D1 and D2 are
strongly equivalent under semantics Sem.

Interestingly enough, if we restrict the and-or-
assignments allowed in combinations of ADFs, our
result above does not hold anymore. In particular, for
⊕ ∈ {∨,∧}, we say that D1 and D2 are ⊕-strongly

8Our notion of composition of ADFs is clearly a generalization
of that of (Gaggl and Strass 2014).



equivalent if for any D ∈ D(At) and any and-or-
assignment � for At for which �(s) = ⊕ for any s ∈ At,
Sem(D1 d� D) = Sem(D2 d� D).

Proposition 12. Let some Sem ∈
{Admissible,Complete,Preferred,Grounded} and some
⊕ ∈ {∨,∧} be given. Then there exist ⊕-strongly
equivalent (under Sem) ADFs D1 = (At, L1, C1) and
D2 = (At, L2, C2) for which for some s ∈ At, Cs1 6≡PL C

s
2 .

Proof. We show the claim for � = ∧. Consider the ADFs
D1 = ({a, b, c}, L, C1) and D2 = ({a, b, c}, L, C2) with:

C1
a = ⊥ C2

a = ⊥
C1
b = ⊥ C2

b = ⊥
C1
c = ¬a ∧ b ∧ c C2

c = a ∧ ¬b ∧ c

Notice that C1
c 6≡PL C2

c . We show that for any
D3 = ({a, b, c}, L, C3), Admissible(D1 ⊗ D3) =
Admissible(D2 ⊗ D3). Indeed, notice first that for any
φ ∈ L({a, b, c}), any 1 ≤ i ≤ 2 and any x ∈ {a, b},
u[v]2(Cix ∧ φ) = F. Thus, if v ∈ Admissible(D1 ⊗ D3),
v(x) ≤i F for any x ∈ {a, b}. For any such v, u[v]2(¬a ∧
b ∧ c ∧ φ) ∈ {U,F} and u[v]2(a ∧ ¬b ∧ c ∧ φ) ∈ {U,F}.
Thus, for 1 ≤ i ≤ 2, if v ∈ Admissible(Di⊗D3), v(c) ≤i F.
Suppose now first that v(c) = U. Then v(c) ≤i v(C2

c ∧ φ)
and thus v ∈ Admissible(D1 ⊗ D3). If v(c) = F, then
clearly u[v]2(¬a∧ b∧ c∧ φ) = u[v]2(a∧¬b∧ c∧ φ) = F.
Otherwise, u[v]2(¬a ∧ b ∧ c ∧ φ) ≥i v(c) and u[v]2(a ∧
¬b ∧ c ∧ φ) ≥i v(c). Thus, v ∈ Admissible(D1 ⊗D3) im-
plies v ∈ Admissible(D2 ⊗ D3). By symmetry we obtain
Admissible(D1 ⊗D3) = Admissible(D2 ⊗D3). The proof
for other semantics is similar.

To show the claim for � = ⊕, a similar counter-example
can be constructed.

We leave the further investigation of such weaker notions
of strong equivalence for future work.

5 ADFs from the perspective of possibility
Theory

We now look further into the perspective offered by possibil-
ity theory on ADFs. In more detail, based on the strong con-
nection established between ADFs and possibilistic logic
(Sec. 3.2), we unpack the semantics of ADFs using con-
cepts known from possibility theory. This will allow us to
straightforwardly formulate generalizations of ADFs. We
first show how all semantic concepts from abstract dialec-
tical argumentation correspond to notions from possibility
theory. Thereafter, we use these correspondences to define
possibilistic ADFs.

5.1 ADFs interpreted in possibility theory
In this section we interpret the semantics of ADFs in terms
of possibility theory, and generalize the semantics of ADFs
to possibility distributions.

We start by looking closer at the information ordering.
Recall that one interpretation v is less or equally informa-
tive than v′ iff v′ assigns the same determinate truth-value to

every atom s for which v assigns a determinate truth-value.
It turns out that this is equivalent to requiring that:

Nv(s) ≤ Nv′(s) and Πv(s) ≥ Πv′(s) for every s ∈ At

or, equivalently:

Πv(s) ≥ Πv′(s) and Πv(s) ≥ Πv′(s) for every s ∈ At

Fact 2. For any v, v′ ∈ V , v ≤i v′ iff Πv(s) ≥ Πv′(s) and
Πv(s) ≥ Πv′(s) for every s ∈ At.9

From this relation, we can derive that ≤s and ≤i are
each-others converses when we look at three-valued inter-
pretations (or equivalently, normal binary possibility distri-
butions):

Proposition 13. For any interpretations v, v′ ∈ V(At), v ≤i
v′ iff πv′ ≤s πv .

Based on Fact 2, we can define the information-ordering
≤i over the set of possibility distributions P(At) as follows:
π ≤i π′ iff Ππ(s) ≥ Ππ′(s) and Ππ(s) ≥ Ππ′(s) for
every s ∈ At. In other words, more informative possibil-
ity distributions assign lower possibility measures to literals.
This might seem at first counter-intuitive, when rephrased in
terms of the dual necessity measures, the intuition becomes
clearer:

π ≤i π′ iff Nπ(s) ≤ Nπ′(s) and Nπ(s) ≤ Nπ′(s) ∀s ∈ At

Proposition 13 only generalizes to the setting of possi-
bility distributions in one direction: indeed ≤i as defined
over possibility distributions is a generalization of the re-
verse specificity-ordering:

Fact 3. For some possibility distributions π, π′ ∈ P(At),
π ≤s π′ implies π′ ≤i π.

The following examples shows that the reverse direction
of Proposition 13 does not generalize to the case of arbitrary
normal possibility distributions:

Example 6. Consider the following possibility distributions
π, π′ ∈ P({a, b}):

ω π(ω) π′(ω) ω π(ω) π′(ω)

ab 1 1 ab 0.1 1
ab 1 0.1 a b 1 1

Notice that Ππ(s) = Ππ′(s) for any literal s and thus
π ≤i π′ and π′ ≤i π. However, π and π′ are ≤s incompara-
ble, as π(ab) ≤ π′(ab) and π(ab) ≤ π′(ab). This shows that
Proposition 13 does not generalize from V(At) to P(At).

We now characterize admissible and complete interpreta-
tions in terms of possibility and necessity measures. Admis-
sible interpretations correspond to possibility distributions
for which every node s has:

• a degree of necessity equal or less than the degree of ne-
cessity of the corresponding condition Cs; and

• a degree of possibility equal or higher than the degree of
possibility of the corresponding condition Cs.

9Recall that ≤s is defined in Definition 4.



In other words, the interval formed by the degree of possibil-
ity and necessity of Cs is a sub-interval of the correspondent
interval for s.

Completeness strengthens this by requiring the necessity
degree, respectively the possibility degree, of a node to be
equal to the corresponding degree of its condition.

Proposition 14. Given an ADF D = (At, L, C) and an in-
terpretation v ∈ V(At):

1. v is admissible iff for every s ∈ At,Nv(s) ≤ Nv(Cs) and
Πv(s) ≥ Πv(Cs) (or, equivalently Πv(¬s) ≥ Πv(¬Cs)
and Πv(s) ≥ Πv(Cs)).

2. v is complete iff for every s ∈ At, Nv(s) = Nv(Cs) and
Πv(s) = Πv(Cs) (or, equivalently Πv(¬s) = Πv(¬Cs)
and Πv(s) = Πv(Cs)).

We can now straightforwardly generalize the ADF seman-
tics to possibility distributions:

Definition 13. Given an ADFD = (At, L, C) and a normal
possibility distribution π ∈ P(At):

• π is admissible (for D) iff Ππ(¬s) ≥ Ππ(¬Cs) and
Ππ(s) ≥ Ππ(Cs) for every s ∈ At.

• π is complete (for D) iff Ππ(¬s) = Ππ(¬Cs) and
Ππ(s) = Ππ(Cs) for every s ∈ At.

• π is grounded (forD) iff π is a≤i-minimal complete pos-
sibility distribution.

• π is preferred (for D) iff π is a ≤i-maximal admissible
possibility distribution.

We can show that these semantics satisfy the following
basic argumentative properties for ADFs:

Proposition 15. Given an ADF D = (At, L, C): (1) there
exists a unique grounded possibility distribution for π; (2)
any preferred possibility distribution for π is complete.

The above proposition is shown by defining a function
GD : P(At) → P(At) that returns, for a possibility distri-
bution π, a new possibility distribution GD(π) s.t. for any
s ∈ At, ΠGD

(π)(s) = Ππ(Cs) and ΠGD
(π)(s) = Ππ(Cs).

To define such a GD-function constructively, we need some
preliminaries first. Given a set of formulas {φ1, . . . , φn} and
a possibility measure π ∈ P(At), we call the possibility-
vector of {φ1, . . . , φn} given π the vector 〈 ˙φi1 , . . . ,

˙φi1〉 s.t.
for every 1 ≤ i ≤ n, φi and φi both occur exactly once in the
vector and the vector is arranged w.r.t. ascending degree of
possibility, i.e. for j ≤ k it holds that Ππ( ˙φij ) ≤ Ππ( ˙φik).
We can now define the GD-function as follows:

Definition 14. Let a possibility distribution π ∈ P(At),
an ADF D = (At, L, C), and the possibility-vector
〈Ċsi1 , . . . , Ċsik 〉 of {Cs1 , . . . , Csn} given π be given.
Then we define GD(π) as the possibility distribution s.t.
GD(π)(ω) = supπ([Ċsij ]) for every ω ∈ [ ˙sij ] \

⋃j−1
l=1 [ ˙sil ]

for every 1 ≤ j ≤ k.10

10This construction has been implemented in Java using the
Tweety-library. The implementation can be found online.

Thus, GD(π) is constructed iteratively, starting with the
literal ṡ for which Ππ(Ċs) is the lowest among all literals.
For all worlds satisfying ṡ, we set GD(π)(ω) = Ππ(Ċs).
Then, we take the second element ṡ′ of the possibility-
vector, and proceed similarly for all worlds satisfying ṡ′ but
not satisfying ṡ. This process is repeated for all elements of
the possibility-vector.

Example 7. Let D2 = ({a, b, c}, L, C) with:

Ca = ¬b ∧ ¬c Cb = ¬a Cc = c

and consider π1 defined by:

ω π1(ω) ω π1(ω) ω π1(ω) ω π1(ω)

abc 0.1 abc 0.2 abc 0.3 abc 1.0
abc 0.3 abc 0.2 abc 0.1 abc 0.1

π gives rise to the following possibility measures for accep-
tance conditions and their negation:

φ Ca ¬Ca Cb ¬Cb Cc ¬Cc
Ππ(φ) 1.0 0.3 0.3 1.0 0.3 1.0

This results in the following possibility-vector for D
given π: 〈Ca, Cb, Cc, Cb, Ca, Cc〉.

Since Ca occurs first in the possibility-vector, we
set GD(π)(abc) = GD(π)(abc) = GD(π)(abc) =
GD(π)(abc) = 0.3. Since Ππ(Cb) = Ππ(Cc), we
proceed similarly with all worlds that satisfy c or b, i.e.
GD(π)(abc) = GD(π)(abc) = GD(π)(abc) = 0.3.

Then, we proceed to the next element of the possibility-
vector, Cb, and, since Ππ(Cb) = 1.0, we set GD(π) for
every world that satisfies b but does not satisfy a, c or b
(i.e. every element of [b] \ ([a] ∪ [c] ∪ [b])) to 1.0. Thus,
GD(π)(abc) = 1.0. Since every world in Ω(At) has been
assigned a value, the construction of GD(π) is finished.

The GD-function is a faithful generalization of the ΓD-
operator (in view of Remark 1):

Proposition 16. For any ADFD and any three-valued inter-
pretation v ∈ V(At), ΠΓD(v)(s) = T[F] iff ΠGD(πv)(s) =
1[0] and NΓD(v)(s) = T[F] iff NGD(πv)(s) = 1[0].

Thus, the information order, as well as the semantics of
ADFs can all be straightforwardly rephrased using possibil-
ity measures Π and necessity measures N . On the basis of
this interpretation, the semantics for ADFs were generalized
from three-valued interpretations – which can be viewed as
binary possibility distributions) – to arbitrary possibility dis-
tributions. In the next section, we use this generalization to
define possibilistic ADFs.

5.2 Possibilistic ADFs
We now introduce possibilistic ADFs as a a quantitative ex-
tension of ADFs, which can assign a degree of plausibility
to the acceptance of nodes. This allows, among others, the
incorporation of possibilistic constraints on nodes and their
acceptance condition.

Definition 15. An ADF with possibilistic constraints
(pADF) is a tuple D = (At, L, C, ρ) where (At, L, C) is
an ADF and ρ : At→ [0, 1].

http://tweetyproject.org/index.html
https://github.com/TweetyProjectTeam/TweetyProject/tree/main/org-tweetyproject-logics-translators/src/main/java/org/tweetyproject/logics/translators/adfpossibilistic


The intuitive interpretation of ρS is that they form an up-
per limit on the possibility of the nodes of an pADF.

Example 8. Consider the following pADF:

D = ({a, b, c}, L, {Ca = ¬b ∧ ¬c, Cb = ¬a,Cc = c},
{ρ(a) = 1, ρ(b) = 0.8, ρ(c) = 0.4})

Definition 16. Given a pADF D = ((At, L, C, ρ), a normal
possibility distribution π : S → [0, 1] is:

• p-permissible (for D) iff Ππ(s) ≤ ρ(s) for every s ∈ At.
• p-admissible (for D) iff it is admissible and p-permissible

for D.
• p-complete (for D) iff it is complete and p-permissible for
D.

• p-grounded (for D) if it is ≤i-least specific p-complete
interpretation for D.

• p-preferred (for D) if it is a ≤i-maximal p-admissible in-
terpretation for D.

Example 9. The following possibility distributions is p-
grounded for the pADF D from Example 8:

ω π1(ω) ω π1(ω) ω π1(ω) ω π1(ω)

abc 0.4 abc 0.8 abc 0.4 abc 1
abc 0.4 abc 0.8 abc 0.4 abc 0.8

The following distributions is p-preferred for D:

ω π2(ω) ω π2(ω) ω π2(ω) ω π2(ω)

abc 0 abc 0 abc 0 abc 1
abc 0 abc 0 abc 0 abc 0

Notice that the grounded possibility distribution for D =
({s, c}, L, {Cs = ¬c, Cc = ¬s}) is not p-complete for D.
Indeed, the grounded extension forD is given by π3(ω) = 1
for every ω ∈ [{a, b, c}]. To see that π3 is not p-complete
for D, it suffices to observe that Ππ3(b) = 1 > ρ(b) = 0.8.

We remark here that there might not exist a unique p-
grounded extension for a given pADF. Furthermore, there
might be pADFs for which there do not exist even p-
admissible extensions. For example, if we change ρ(a) =
0.9 in the pADF from Example 8 there does exist a normal
p-admissible possibility distribution. A pADF for which no
p-admissible extensions exist can be seen as faultily speci-
fied model. This is not unlike epistemic approaches to prob-
ablistic argumentation (Hunter and Thimm 2017), where
certain requirements such as coherence w.r.t. an argumen-
tation framework are required in order to ensure a good fit
between a probability function and an argumentation frame-
work (Hunter and Thimm 2017). We leave the investigation
of such requirements for pADFs for future work.

6 Related work
In this paper, we have investigated three-valued monotonic
logics underlying ADFs. To the best of our knowledge, this
work is the first systematic such study, but there are some
works which contain some similar results or questions. In
(Baumann and Heinrich 2020), it is shown that there is no
truth-functional three-valued logic L s.t. for every v ∈ V(At)

and every φ ∈ L(At), vL(φ) = ui[v]2(φ). Lemma 1 is
a generalization of this result. Our paper continues where
(Baumann and Heinrich 2020) stopped, since we show
which truth-functional logics are admissible-preserving, and
that there is a non-truth-functional monotonic three-valued
logic, poss for which vposs(φ) = ui[v]2(φ) for every v ∈
V(At) and every φ ∈ L(At). In (Heyninck and Kern-
Isberner 2020) ADFs are translated in autoepistemic logic
via epistemic models, which are related to possibilistic logic
(Ciucci and Dubois 2012).

With respect to the possibilistic ADFs introduced in this
paper, we make a comparison with weighted ADFs (Brewka
et al. 2018). Weighted ADFs generalize ADFs by allowing
interpretations which map nodes to elements of VU, which is
a complete partial order constructed on the basis of a chosen
set V of values combined with the U-value, which forms the
≤i-least element under the information order over VU. This
is a very general model of weighted argumentation, which
possibilistic ADFs cannot lay claim to. On the other hand,
in possibilistic ADFs, there is no need to postulate an addi-
tional value U, since it arises naturally from the possiblistic
semantics as a discrepancy between the necessity measure
N and the possibility measure Π. (Wu et al. 2016) defines
fuzzy argumentation frameworks, where arguments and at-
tacks are assigned a degree of belief. The central concept
in this work is the concept of a tolerable attack which is an
attack such that the belief in the attacked argument is not
greater than the composition (according to an appropriate
composition operator such as the Gödel t-norm) of the be-
lief in the attacking argument and the belief in the attack.
Argumentation semantics can then be defined using this con-
cept of weakening attack. (Janssen, De Cock, and Vermeir
2008) uses a similar semantics. It can be seen that these se-
mantics are dependent on the syntactical structure of argu-
mentation frameworks consisting of arguments and attacks.
Furthermore, it should be noticed that even though possib-
listic logic is related to fuzzy logic, they are far from equiv-
alent. Among the most poignant differences between these
two formalisms in our setting is probably truth-functionality.
For example, given the fuzzy degree of belief in two for-
mulas φ1 and φ2, one can exactly determine the fuzzy de-
gree of belief in φ1 ∧ φ2, whereas based on the possibil-
ity measure assigned to φ1 and φ2 according to π, one can
merely determine an upper bound min{Ππ(φ1),Ππ(φ2)}
on Ππ(φ1 ∧ φ2).

7 Conclusion
In this paper, we have investigated monotonic three-valued
logics that underlie abstract dialectical argumentation. The
central result is that possibilistic logic is closely related to
abstract dialectical argumentation, as it is the most conser-
vative admissible-preserving logic, and allows to straight-
forwardly codify all central semantical notions from abstract
dialectial argumentation. We have also exhaustively investi-
gated the ADF-related properties of truth-functional three-
valued logics, showing that truth-functional logics using
involutive negation are not admissible-preserving, whereas
there exist admissible-preserving truth-functional logics us-
ing an intuitionistic or paraconsistent negation, but these are



strictly less conservative than possibilistic logic. Further-
more, we have illustrated the fruitfulness of our results by
(1) characterising strong equivalence and (2) proposing pos-
sibilistic ADFs, which allow for quantitative reasoning in
ADFs in a way that faithfully generalizes (qualitative) rea-
soning in ADFs. We believe that the connection between
possibilistic logic and possibility theory on the one hand,
and (abstract) argumentation and ADFs on the other hand,
will provide a useful tool for work argumentation, by provid-
ing opportunities for the application of results and insights
from possibility theory in argumentation.
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