
Low-Resource Language Modelling of South
African Languages

Stuart Mesham, Luc Hayward, Jared Shapiro, and Jan Buys

Department of Computer Science, University of Cape Town, Cape Town, South Africa
{MSHSTU001,HYWLUC001,SHPJAR002}@myuct.ac.za,jbuys@cs.uct.ac.za

Abstract. Language models are the foundation of current neural network-
based models for natural language understanding and generation. How-
ever, research on the intrinsic performance of language models on African
languages has been extremely limited, and is made more challenging by
the lack of large or standardised training and evaluation sets that exist
for English and other high-resource languages. In this paper, we evaluate
the performance of open-vocabulary language models on low-resource
South African languages, using byte-pair encoding to handle the rich
morphology of these languages. We evaluate different variants of n-gram
models, feedforward neural networks, recurrent neural networks (RNNs),
and Transformers on small-scale datasets. Overall, well-regularized RNNs
give the best performance across two isiZulu and one Sepedi datasets.
Multilingual training further improves performance on these datasets.
We hope that this work will open new avenues for research into multi-
lingual and low-resource language modelling for African languages.
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1 Introduction

Language modelling has applications in many areas of NLP including machine
translation [33], information retrieval [4], speech recognition [10] and question
answering [17]. Improvements in language modelling have resulted in improved
model performance in the above tasks, making language modelling a valuable
area of study. High-resource languages have enjoyed substantial improvements
in language modelling performance in recent years due to large neural models
such as GPT-2 [26], BERT [8] and XLNet [34]. However, most African languages
are low-resource, and the limited availability of high-quality training data makes
training large language models challenging.

In this paper we focus on South African Benue-Congo languages, which are
better resourced than most other Benue-Congo languages, but still clearly low-
resource.1 The two groups of South African languages with the largest number

1 The Benue-Congo languages are a subdivision of the Niger-Congo language family.
Most Benue-Congo languages are part of what linguists refer to as the Bantu sub-
family.



Ubusuku obuhle namaphupho amamnandi!
Ubu _suku obu _hle nama _phupho ama _mnandi !

Robalang gabotse
R _o _ba _la _ng gabotse

Fig. 1. Example sentences and their BPE tokenizations in isiZulu (top) and Sepedi
(bottom). The tokenizers use BPE vocabulary sizes of 8000 and 2000 respectively.

of total speakers are the Nguni and Sotho-Tswana groups of closely-related lan-
guages. In South Africa these languages represent 43.3% and 24.7% of speakers
respectively [18]. In our data sources, the isiZulu and Sepedi languages had the
largest amounts of text available, respectively, within these language groups.

In addition to the lack of large amounts of high quality data, Benue-Congo
languages are typologically2 very different from the Indo-European languages
most widely studied for language modelling. Even in large multilingual studies,
African languages are usually underrepresented if included at all. Benue-Congo
languages are agglutinative and morphologically rich [25]: Most words are formed
out of a combination of smaller morphological units; grammatical relations (such
as subject or object) are indicated by changes in the words rather than the
relative position of words in the sentence; and all nouns belong to one of a large
number of noun classes which governs the choice of many morphemes. This
leads to potentially very large and sparse word-level vocabulary, even though
individual morphemes or sub-words may be more frequent in a corpus (as they
are used in many different words).

This paper examines the application of n-gram models [5], feed-forward neu-
ral networks (FFNNs) [2], recurrent neural networks including Long Short Term
Memory (LSTMs) [14] and Transformer [31] models on isiZulu and Sepedi. We
use byte pair encoding (BPE) [27] to control the vocabulary size and to en-
able open-vocabulary language modelling (see Figure 1), making the choice of
vocabulary size a hyperparameter.

Our results show that the relative performance of the different model classes
is similar to what have been found in previous work on small-scale language
modelling in English and other languages. Well-regularized RNNs, the AWD-
LSTM [22] and QRNN [3], have the best overall performance, outperforming
the Transformer. The n-gram, FFNN and baseline LSTM models performed
worse across all datasets. We also perform an evaluation of multilingual train-
ing, showing that training on text from multiple related languages improves
performance without any modifications to the model architecture. The ben-
efits can be seen using text from either the same language group or a dif-
ferent but related language group, despite orthographic differences. The code,
data processing scripts, and trained versions of all our models can be found at
https://github.com/StuartMesham/low_resource_lm.

2 Typology refers to the linguistic properties and characterization of a language.

https://github.com/StuartMesham/low_resource_lm


2 Background

A language model assigns a probability P (Wn
1 ) to a sequence of n words Wn

1 =
w1, ..., wn. The probability is usually decomposed using the chain rule to predict
the words one at a time (from left to right) by assigning a probability to each
word for following the given context [15]:

P (Wn
1 ) =

n∏
k=2

P (wk|W k−1
1 ) . (1)

2.1 Sub-word Tokenization

Language models traditionally estimate the next word probability as a distri-
bution over a fixed vocabulary, where the input text has been tokenized into
words, and all words outside the vocabulary replaced with a special unknown
token. South African Benue-Congo languages are highly agglutinative, making
whole-word tokenization sub-optimal for language modelling due to potentially
large vocabulary sizes and subsequent data sparsity. In contrast, character-level
tokenization requires the model to learn to model very long sequences. To bet-
ter represent the structure of the languages, we use byte-pair encoding [11],
[27] to break words into sub-word units based on their frequency. Language
modelling with BPE has previously been shown to perform competitively for
open-vocabulary language modelling [23].

Byte-pair encoding is a compression algorithm which has been adapted for
sub-word tokenization. The algorithm starts with character-level tokens and finds
pairs of adjacent tokens which occur most frequently. These token pairs are
replaced with single tokens containing the concatenation of the characters in
each token. This process is repeated until a desired vocabulary size is reached
[27]. To ensure fair model evaluation, we train BPE tokenizers using only the
training sets. Example BPE tokenizations in isiZulu and Sepedi are shown in
Figure 1.

2.2 Evaluation

The quality of a language model can be evaluated either extrinsically or intrin-
sically. Extrinsic evaluation measures a model’s usefulness in some downstream
task such as speech recognition or machine translation whereas intrinsic evalua-
tion uses statistical measures to assess a model’s quality. In this paper we focus
on intrinsic evaluation metrics related to cross-entropy and perplexity.

In information theory, entropy represents the average number of units of in-
formation produced per observation [28]. The cross-entropy of a language model
on a given sample of text Wn

1 is estimated as

H(Wn
1 ) = − 1

n
log2 P (Wn

1 ) , (2)



with the units of information being bits due to the log base 2 [15]. The more
accurately the model approximates the true distribution of the language, the
lower the cross-entropy. Language models with a fixed vocabulary are usually
evaluated based on perplexity, which is computed as 2H(Wn

1 ). However, closed-
vocabulary language models have to set the size of the vocabulary and treat all
other words as unknown. Consequently, perplexity cannot be compared directly
across models with different vocabularies.

In this paper we are studying open-vocabulary models, and we want the
choice of tokenization and vocabulary to be a modelling choice. This necessitates
an evaluation metric which is independent of the tokenization.

As evaluation metric we use bits per character (BPC), a measure of cross-
entropy which is normalised by the character length of the text and is therefore
independent of the tokenization. The BPC of a model on a test set Wn

1 is cal-
culated as

BPC(Wn
1 ) =

n

c
H(Wn

1 ) , (3)

where the text consists of c characters.

2.3 Models

n-gram Models n-gram language models make the Markov assumption of
restricting the conditioning context for predicting the next word to the last
n− 1 words [15]. Traditional n-grams are based on various smoothing methods,
of which modified Kneser-Ney smoothing [16] has been shown to lead to the best
performance in general [5]. Sparsity increases as the n-gram size increases, which
leads to practical limits on the size of n that is used.

Feedforward Neural Networks The first neural network-based language
models were based on feedforward neural networks (FFNNs), which also make
the Markov assumption, and are therefore effectively neuralized n-gram mod-
els [2]. One of the key advantages of neural language models over n-grams is
that word embeddings allow them to generalise better, as words with similar
meanings or grammatical functions will have similar embeddings [24].

The first layer of an FFNN takes the concatenation of the context word
embeddings as input. The embedding layer is learned jointly with the rest of
the model and weight-tied to the output layer, following standard practice in
RNN-based language modelling. We use a rectified linear unit as non-linearity.

LSTMs LSTMs [14] are a widely used variant of the standard recurrent neural
network (RNN) architecture allowing for longer term dependencies to be mod-
elled more effectively by using a number of gates along with a memory vector in
the recurrent cell. The gates and the memory vector enable information to pass
more effectively across time steps. LSTMs generally perform as well or better
than Gated Recurrent Units (GRUs) in language modelling, so we do not con-
sider GRUs or other gated RNN variants here. We use a Basic-LSTM model as
a baseline for the more complex AWD-LSTM and QRNN models (see below).



This model is regularized using dropout, which temporarily hides a random
subset of neurons during each training step [29]. This adds noise and prevents the
model from being overly reliant on any particular neuron. However, dropout in
RNN models cannot be applied between time steps on the recurrent connection as
it inhibits the model’s ability to retain long term dependencies, so the standard
approach is to apply dropout only on the input and output connections [35].
The Basic-LSTM baseline does not use the more complex regularization and
optimization techniques used by the other models.

AWD-LSTM The AWD-LSTM model [21] is used widely for language mod-
elling and forms the basis of the current state-of-the-art language modelling on
small English datasets without dynamic evaluation [30]. In order to enable a fair
comparison across models we do not using a continuous cache pointer [13] or
dynamic evaluation.

The AWD-LSTM uses a number of improved regularization and optimiza-
tion techniques. Regularization is particularly important in low-resource settings.
DropConnect [32] is a form of dropout on the hidden-to-hidden weights.3 Vari-
ational dropout [12] generates a dropout mask once which is then used over the
entire forward and backward pass, rather than resampling at every timestep.
The AWD-LSTM model uses a combination of DropConnect for the hidden-to-
hidden transitions within the LSTM and variational dropout over the inputs
and outputs. Other techniques used include using variable length backpropaga-
tion sequences, word dropout (masking entire word embeddings), and L1 and
L2 regularisation.

Quasi-Recurrent Neural Networks The Quasi-Recurrent Neural Networks
(QRNN) [3] is a modification of RNNs that parallelizes parts of the RNN compu-
tation and obtained similar or even slightly better performance than the AWD-
LSTM on some English datasets [20]. The QRNN applies convolutional layers on
the input, followed by an recurrent pooling function resembling LSTM gating.
This significantly increases training speed compared to LSTMs of similar sizes.

Transformers The Transformer [31] presents another approach to speeding
up sequential processing over RNNs by relying entirely on attention mecha-
nisms [1] instead of recurrent connections for propagating information across
time steps. An attention mechanism can process all the input embeddings for
a (fixed-length) sequence simultaneously and selectively weight certain features
based on a learned function.

The original Transformer model was used for translation and has an encoder-
decoder structure [31]. For the task of language modelling, only the decoder

3 This method is particularly useful as it is applied once to the weight matrices before
the forward and backward pass, allowing the use of black box RNN implementations
such as NVIDIA’s cuDNN LSTM which can be many times faster due to hardware
optimisations [21].



Table 1. Dataset sizes, reported in thousands of words, after preprocessing. The vali-
dation and test sets of each corpus are approximately equal in size.

Corpus Tokens (000s)
Training Valid/Test

NCHLT (isiZulu) 979 122
Isolezwe (isiZulu) 940 117
NCHLT (Sepedi) 1 357 170

architecture is used [19]. We follow the architecture used by GPT-2 [26]. A
learned positional embedding is added to each input token embedding. Multiple
layers, each including an attention and a feedforward sub-layer, are stacked to
create the larger model that can propagate information more efficiently across
time steps. In each attention sub-layer multiple attention mechanisms are used
to extract features; this strategy is termed multi-headed self-attention. Finally,
a residual connection and layer normalisation is applied over each sub-layer. To
regularise the Transformer models we use dropout on all weights of the model.

3 Experimental Setup

3.1 Datasets

We focus on language modelling for isiZulu and Sepedi, but we processed data
for all 11 non-European official South African languages, and use the other lan-
guages’ data for multilingual training (Section 5). We use two dataset sources:

NCHLT: We use the corpora from the National Centre for Human Language
Technology (NCHLT) Text project [9] made available by the South African Cen-
tre for Digital Language Resources (SADiLaR).4 Monolingual text corpora are
available for all 11 of South Africa’s official languages. We processed the cor-
pora for the Nguni languages (isiZulu, Siswati, isiNdebele and isiXhosa) and the
Sotho-Tswana languages (Sesotho, Sepedi, Setswana), as well as Xitsonga and
Tshivenda, the other two Benue-Congo languages. A significant proportion of
these texts were scraped from governmental websites. The corpora range in size
from 1 to 3 million tokens. Sepedi and isiZulu have the largest datasets in their
respective language groups.

Isolezwe: News articles from the isiZulu Isolezwe newspaper, one of the
largest daily African language newspapers in South Africa, have been scraped
and consolidated by the Newstools initiative.5 This is the largest publicly-available
newspaper corpus among the languages we are considering that we are aware of.
We use articles published between 2016 and 2020. The dataset has a similar size
to the NCHLT isiZulu corpus but provides a second evaluation domain.

4 Datasets are available at https://repo.sadilar.org/handle/20.500.12185/7
5 Available at https://github.com/newstools

https://repo.sadilar.org/handle/20.500.12185/7
https://github.com/newstools


We performed a number of data preprocessing and normalization steps. We
removed instances of English, HTML and Javascript lines, and other repetitive
or erroneous data, as these would not naturally be found in general language.
Each dataset was split into a training, validation and test set using an 80% /
10% /10% split. The splits were done using sequential blocks to preserve the
order of the sentences. Table 1 compares the dataset sizes.

3.2 Model Implementation and Optimization

The BPE preprocessing for all models uses the HuggingFace tokenizers library.6

Due to computational constraints we were not able to train and evaluate models
across multiple random seeds.

n-gram Models We use an n-gram language model with modified Kneser-Ney
[5] smoothing, as implemented in KenLM.7 We tuned the models by testing BPE
vocabulary sizes ranging from 100 to 10000 and n-gram orders from 2 to 6. The
isiZulu and Sepedi models performed best with BPE vocabulary sizes of 500
and 2000 respectively. For all datasets, an n-gram order of 6 yielded the best
performance.

Feedforward Neural Networks We implemented a feed-forward neural net-
work (FFNN) language model in PyTorch so that it can be trained efficiently in
a similar manner to RNN and Transformer language models. The training data
is divided into chunks of 64 tokens and batched to enable parallel processing. We
follow the optimization and regularization setup of the FFNN baseline used by
[6]. We use a learning rate decay schedule where the learning rate is multiplied
by 0.25 after each epoch if the validation loss does not improve. The models
were trained for 50 epochs with a batch size of 32 and an AdamW weight decay
of 0.01. Both word embeddings and hidden layers had a size of 500.

Using grid search, we evaluated BPE vocabulary sizes 1000 and 2000 to 10
000 with an interval size of 2000, n-gram orders {2, 4, 6}, word embedding and
hidden layer sizes in the range {500, 2500} with an interval of 250, dropout rates
of {0.3, 0.5} and {2, 4, 6} hidden layers.

For both NCHLT isiZulu and NCHLT Sepedi a BPE vocabulary size of 8000
yielded the best performance, and on Isolezwe 10 000 performed best. For both
Isolezwe and NCHLT isiZulu, an n-gram order of 2 performed best and for
NCHLT Sepedi an order of 4. We were unable to find a fully satisfactory expla-
nation of why the FFNN did not perform better with higher n-gram orders.

LSTMs We use the PyTorch implementation of the AWD-LSTM [21].8 We
tuned its hyperparameters on the word-level WikiText-2 dataset as the starting

6 https://github.com/huggingface/tokenizers
7 Available at https://github.com/kpu/kenlm
8 Available at https://github.com/salesforce/awd-lstm-lm

https://github.com/huggingface/tokenizers
https://github.com/kpu/kenlm
https://github.com/salesforce/awd-lstm-lm


Fig. 2. The validation loss of the basic LSTM, AWD-LSTM and QRNN while training
on the NCHLT isiZulu dataset.

point for tuning our models, as the size of that dataset is comparable to ours.
We performed a partial grid search over the embedding size {400, 800}, hidden
layer size {1150, 1200, 1550}, number of layers {1, 2, 3, 4}, learning rate9 {5,
10, 30}, batch size {40, 80}, vocab size {2500, 5000, 7500, 10000} as well as
dropout rate {0 - 0.7} and weight drop {0 - 0.5} (both in increments of 0.1) and
L1/L2 regularisation values {0, 1, 2}. Model development was primarily done
on the isiZulu NCHLT corpus. Most improvement came from increasing the
total model size by either increasing the number of hidden layers or increasing
the input embedding size. Changing the BPE vocabulary size did not have a
significant effect on performance. The Basic LSTM was tuned similarly, aside
from excluding the regularization techniques it does not use.

QRNN The QRNN is also implemented in the AWD-LSTM packages. We tuned
the embedding size, vocabulary size, number of hidden layers and batch size,
using similar ranges as for the AWD-LSTM. The best QRNNs used an embedding
size of 800, hidden layer sizes of 1550, and 4 hidden layers.

Figure 2 shows how the validation loss changes while the RNN-based models
(Basic LSTM, AWD-LSTM, and QRNN) train on the NCHLT isiZulu corpus.
The plot shows how the QRNN’s loss decreases faster than that of the AWD-
LSTM time. The Basic LSTM initially trains faster, but then overfits drastically.

9 Following previous work we start with a large learning rate, which is then reduced
during training.



Table 2. Language modelling results on the isiZulu and Sepedi corpora, reported as
bits-per-character (BPC). The BPE vocabulary size and number of parameters of each
model are also given.

NCHLT (isiZulu) Isolezwe (isiZulu) NCHLT (Sepedi)

Model Params Vocab BPC Params Vocab BPC Params Vocab BPC

n-gram 7.5M 500 1.588 6.9M 500 1.544 5.7M 2000 1.656
FFNN 4.7M 8000 1.572 5.7M 10000 1.532 5.1M 8000 1.723

Basic-LSTM 3.3M 5000 1.548 3.3M 5000 1.677 3.3M 5000 1.625
AWD-LSTM 29.8M 5000 1.325 29.8M 5000 1.259 29.8M 5000 1.421
QRNN 29.5M 10000 1.323 29.5M 10000 1.264 29.5M 5000 1.421

Transformer 8.6M 8000 1.391 8.6M 8000 1.320 7.1M 2000 1.495

Transformers We used the GPT-2 [26] PyTorch implementation provided by
the open-source HuggingFace transformers library.10 The training data was fed
to the model in blocks of 128 consecutive tokens with a batch size of 32, created
using a sliding window over the training data with a stride of 16 tokens. Model
evaluation was performed using an input block size of 128 with a stride of 64.

For hyperparameter tuning, models were trained for up to 200k steps, with
evaluation on a validation set every 5k steps. Training was stopped early if
the validation loss did not decrease after any four successive evaluations. The
model and vocabulary sizes were tuned first with little regularization to ensure
that the models had enough capacity to overfit the data. Increasing amounts of
regularization were then applied until the model no longer overfit the data.

We used 8 hidden layers and 8 attention heads. Preliminary experiments
showed that the model was relatively insensitive to the number of hidden layers
and the number of attention heads. We used an initial learning rate of 10−4

with a learning rate schedule that linearly decreases to 0 over the course of the
training. Across all 3 corpora, the best performing models had a hidden layer
size of 256, a dropout probability of 0.3 and a weight decay of 0.2. The isiZulu
and Sepedi models performed best with BPE vocabulary sizes of 8000 and 2000
respectively.

4 Results and Discussion

4.1 Results

All the test set results are given in Table 2. The n-gram and FFNN language
models performed fairly similarly to each other across the datasets and lan-
guages, even though the FFNNs used smaller n-gram orders. On the isiZulu
datasets, the FFNN performed slightly better than the n-gram models, while on
the Sepedi dataset the n-gram model performed better. On all datasets, we found

10 https://huggingface.co/transformers/

https://huggingface.co/transformers/


Fig. 3. Test set results (as reported in Table 2), plotted to show the relative perfor-
mance of the models on each of the three datasets (lower is better). The AWD-LSTM
and QRNN consistently outperform the other models while within close margin of each
other, followed by the Transformer, while the n-gram, FFNN and Basic-LSTM perform
substantially worse.

that the n-gram models tended to perform better with smaller BPE vocabulary
sizes, whereas the FFNN models performed better with larger vocabulary sizes.

The performance of the AWD-LSTM and QRNN models was closely matched
(within 0.005 BPC) across all datasets with the QRNN slightly outperforming on
the two NCHLT datasets, and the AWD-LSTM ahead on the Isolezwe dataset.
The basic LSTM under-performed the others substantially, with performance
closer to, or even worse than, that of the n-gram and FFNN models.

The transformer models achieved competitive performance on all datasets,
but were outperformed by the QRNN and AWD-LSTM. We hypothesize that
the main reason is that these models used more sophisticated regularization
techniques that our Transformer implementation did not use. Additionally, the
RNNs had more parameters, but the Transformer’s performance did not improve
with more parameters in our experiments.

4.2 Discussion

The results show that the relative performance of the models is similar to lan-
guage modelling results previously reported on widely used PTB and WikiText2
English datasets [22], which are comparable in size to our corpora. While BPC
results cannot be compared directly across corpora and languages, [23] reported
1.468 for a BPE-based LSTM on WikiText2, and results in the range 1.31 to
1.85 across 7 European languages. Our BPC results are therefore in a similar
range to previous work.

Regarding the performance of the Transformer, it has been reported that
a modified Transformer architecture with segment-level recurrence can obtain
similar results on standard English datasets to the AWD-LSTM when using
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Fig. 4. Multilingual language modelling results, reported as bits-per-character (BPC),
evaluated on the isiZulu and Sepedi test sets. Models were trained on the target lan-
guage (Monolingual), and additionally also on multiple languages in the same language
group (Nguni and Sotho-Tswana, respectively), languages from the other language
group, or on text from all 9 non-European official South African languages.

the same sophisticated regularization techniques [7], but other researchers have
struggled to reproduce these results independently.11

We found that the relative performance of the language models was simi-
lar across the three datasets (Figure 3). This supports the hypothesis that the
same models would likely perform well across all the languages in the Nguni
and Sotho-Tswana language groups. The AWD-LSTM and QRNN models were
consistently close in performance, followed by the Transformer model across all
datasets. The remaining n-gram, FFNN and Basic-LSTM models had different
relative performances on the datasets with no consistent pattern, although the
n-gram and FFNN are closer to each other. The poor performance of the n-gram
and FFNN models represents a trade-off between training time and model per-
formance. If training time was a factor, reduced performance could be accepted
in order to produce models more quickly. The n-gram models are also much
faster when queried in downstream applications.



5 Multilingual Models

As an additional experiment, we investigated the potential for multilingual lan-
guage modelling by concatenating training data from multiple languages and
evaluating on the same target languages as before. For practical reasons, we
only train Transformer models for this experiment. We use the NCHLT corpora
as they provide text in the same domain across all South African languages.

We train models in a number of different settings. In particular, we were
interested in comparing the effect of training on additional languages from the
same language group (all Nguni languages for isiZulu; all Sotho-Tswana lan-
guages for Sepedi) compared to training on languages from the other language
group (isiZulu: Sotho-Tswana languages; Sepedi: Nguni languages). Finally, we
also evaluated a model trained on all 9 Benue-Congo South African languages
in the NCHLT corpus. Model hyperparameters were tuned separately in each
instance using the same methodology as for the monolingual Transformers.

The results are shown in Figure 4. For both target languages, concatenating
training data from other Benue-Congo languages improves performance. In gen-
eral, training on more languages improves performance regardless of the language
group. In the case of Sepedi as target language, concatenating the other Sotho-
Tswana languages yields a greater performance improvement than concatenating
Nguni languages. On the other hand, for isiZulu the results of including addi-
tional data from the same or the other langauge family were similar. For both
isiZulu and Sepedi models, the best performance is obtained by concatenating
data from all languages. We hypothesize that transfer may be more effective
from disjunctively written languages (Sotho-Tswana) to conjunctively written
languages (Nguni) than the other way around, but this needs to be investigated
further. Our results suggest that the use of data from multiple languages is a
promising future direction for modelling South African languages.

6 Conclusions

The experiments conducted in this paper demonstrated that improved regular-
ization techniques and model architectures developed on relatively small English
datasets also improves language modelling performance when applied to African
languages such as isiZulu and Sepedi. The AWD-LSTM and QRNN performed
notably better than the other models. As expected, n-grams and FFNNs, as
well as the Basic LSTM, under-performed the more advanced models. However,
the stronger models are computationally more expensive. Our results suggest
that further improvements in RNN- and Transformer-based language modelling
would likely be directly applicable to low-resource African languages. Addition-
ally, we showed that BPE is an effective method for open vocabulary language
modelling across multiple models, effectively accounting for the large (word-
level) vocabulary sizes of agglutinative African Languages. Finally, we showed
that multilingual language modelling is a promising direction for future research,

11 https://twitter.com/srush_nlp/status/1245825437240102913

https://twitter.com/srush_nlp/status/1245825437240102913


as many African languages occur in groups of closely related languages which
might benefit from such an approach.
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