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Abstract. Typical user-friendly renderings of knowledge graphs are vi-
sualisations and natural language text. Within the latter HCI solution
approach, data-driven natural language generation systems receive in-
creased attention, but they are often outperformed by template-based
systems due to suffering from errors such as content dropping, halluci-
nation, or repetition. It is unknown which of those errors are associated
significantly with low quality judgements by humans who the text is
aimed for, which hampers addressing errors based on their impact on im-
proving human evaluations. We assessed their possible association with
an experiment availing of expert and crowdsourced evaluations of hu-
man authored text, template generated text, and sequence-to-sequence
model generated text. The results showed that there was no significant
association between human authored texts with errors and the low hu-
man judgements of naturalness and quality. There was also no significant
association between machine learning generated texts with dropped or
hallucinated slots and the low human judgements of naturalness and
quality. Thus, both approaches appear to be viable options for designing
a natural language interface for knowledge graphs

1 Introduction

As the Google Knowledge Graph and related knowledge bases keep gaining pop-
ularity especially in industry, it elevates the importance of end-user interaction
with the graph. The main tried and tested approaches are graphical visualisa-
tions and natural language text and, to some extent with the ‘infoboxes’, tables
as well. We focus on the natural langue interface for the interaction with knowl-
edge graphs. While a template-based approach to generating natural language
text has a long history, it demands resources, which has generated recent inter-
est in data-driven systems for natural language generation (NLG) in the hope
to reduce start-up costs. The data-driven approaches score relatively well on au-
tomated evaluation metrics, but humans evaluators—the ultimate consumers of
the outputs—beg to differ: there were mixed results in the WebNLG1 and E2E2

1 https://webnlg-challenge.loria.fr/challenge_2017/
2 http://www.macs.hw.ac.uk/InteractionLab/E2E/
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NLG challenges held in 2017. For instance, a ‘grammar-infused’ template sys-
tem such as UPF-FORGe [7] outperformed all the systems (except the baseline)
in quality based on human judgements. Similarly, even though most template-
based systems tend to have low scores for human judged quality and naturalness
in the E2E challenge, the template-based systems TUDA [9] and DANGNT [8]
outperform a large number of data-driven systems.

Puzikov and Gurevych [9] and Smiley et al. [11] have offered possible rea-
sons after analysing a small sample of the generated texts (100 and 25, re-
spectively). They attribute the low quality of sequence-to-sequence (seq2seq)
generated text to its grammaticality errors and the content dropping and hallu-
cination habit (generating text not based on the graph’s content) of such mod-
els. For instance, the graph may have {"Name ID":"Leo McKern",..."child":

{"mainsnak":"Abigail McKern"}],..., but due to the male-oriented training
data (natural language text), this is then rendered as “Leo McKern’s son Abigail
McKern”, rather than “child” or, as it was more precisely in the original hu-
man authored text, “daughter”. These issues may erode the trust by the user in
the rendering of the graph and it should be at least minimised, and preferably
avoided. It is unknown, however, whether there is a significant association be-
tween low naturalness and quality judgement scores of the text and a model’s
amount of content dropping/hallucination or grammaticality errors. An answer
would enable a prioritization of the problems based on the impact their solutions
would have on end users’ perceived naturalness and quality.

In this paper, we investigate this association through the collection and anal-
ysis of expert and crowdsourced evaluations of human authored text, template
generated text, and seq2seq model generated text. In particular, we seek to ad-
dress the following research questions:

RQ1 Are there significant differences in the perceived quality or naturalness of
the text that is human authored, or generated by templates or data-driven
methods?

RQ2 Are texts with content dropping/hallucinations perceived by raters as hav-
ing significantly lower naturalness and quality when compared to their coun-
terparts?

RQ3 Are texts with grammaticality errors perceived by raters as having signifi-
cantly lower naturalness and quality when compared to their counterparts?

Our results with the systems tested showed that there is no significant differ-
ence i) in quality and naturalness between human-authored, template-generated
or seq2seq generated texts, ii) between human authored texts with errors and
the low human judgements of naturalness and quality, and iii) between machine
learning (ML) generated texts with dropped or hallucinated slots and the low
human judgements of naturalness and quality.

The rest of the paper describes related work (Section 2), the experiment set-
up (Section 3), presents the results (Section 4) that are discussed afterwards
(Section 5) and concludes (Section 6).
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2 Related work

Since we seek to compare approaches to generating a natural language interface
to knowledge graphs, the related works focuses on the extant literature on com-
parisons. The WebNLG-2017 challenge, with 9 participating systems, focused on
the generation of text from RDF while the E2E NLG challenge, with 21 systems,
focused on the same process but from other meaning representations. The ten
best performing systems in the E2E challenge, based on the normalised average
of automated metrics (BLEU, NIST, METEOR, ROUGE-L, and CIDEr), all
use data-driven approaches. The best performing systems in the WebNLG chal-
lenge, based on automated metrics (BLUE, TER, and METEOR), are largely
data-driven—the exception being the METEOR metric comparisons where a
template system enhanced with some grammar (also called ‘grammar-infused’
[6]) outperforms all systems.

In both challenges, there are template-based systems that outperform a num-
ber of data-driven systems. For instance, the grammar-infused template system
UPF-FORGe [7] outperforms the other eight systems of the WebNLG challenge
(except the baseline) in quality based on human judgements. Similarly, even
though most template-based systems tend to have low scores for human judged
quality and naturalness in the E2E challenge, the template-based systems TUDA
[9] and DANGNT [8] outperform a large number of data-driven systems.

The only works that have investigated why template-based systems perform
better than some data-driven models attributes the difference to the former
having fewer grammatical errors, no content dropping and hallucination, and
no degenerative repetitions [9,11]. While one can choose any of the problems
to address (e.g., [2] focus on degenerative repetition), from a human interaction
viewpoint, a prioritization according to which one has a significant impact on
improving human judgements of quality and naturalness may be most effective.
To the best of our knowledge, there is no work that seeks to determine whether
there is a significant association between the various mentioned errors and low
human judgement errors.

3 Methods

The aim of the experiment is to investigate whether there is a significant asso-
ciation between the various discussed errors and low human judgement errors
and answer the research questions posed in Section 1. We first describe the
materials, being the data set with the knowledge graph used and the systems
developed, and then the set-up of the human evaluation of the natural language
texts generated.

3.1 Materials

We created two NLG systems, one template-based and the other data-driven,
and used a dataset that is different from prior comparisons [9,11].
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A

B

Fig. 1. Dataset summary A: Original text from the Wikipedia people dataset; B: the
stored graph (structured data) that can be used for text generation (reference text at
the “...” omitted). (partially recreated from [13])

Dataset We used an existing dataset that was extracted from Wikipedia and
Wikidata [13]. It is a collection of texts describing people and animals, but for
this work we only considered the people subset. The subset contains exactly
100K persons, of which the general idea is shown in Fig. 1; see [13] for details.
The dataset was split into three subsets: training (60%), validation (30%) and
testing (10%) and they were the same for both NLG systems.

NLG systems A summary of the approach of the two NLG systems is shown in
Fig. 2 with an example.

To build the template-based system, we used cosine similarity on the training
dataset’s input meaning representations and reference text to determine which
sentences are similar and used them to manually extract templates. Due to the
time-consuming nature of template creation, the templates only cover 75% of the
training data and thus, by design, lack full coverage (as distinct from unintended
content dropping). A sampling of templates is shown in Fig.3, which also shows
that templates with similar communicative goals for the same sequence of slot
types are grouped together. In each of these template clusters, we further pro-
cessed the templates to obtain subject-verb-object (SVO) underspecified trees.
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Fig. 2. NLG pipelines of the two systems, with an example. “Meaning representation”
at the top refers to the knowledge graph, with an example shown in abbreviated format.

In each tree, there are three nodes and a tense annotation. The left-most node
in a tree contains a template for generating the subject phrase, the right-most
node contains template for generating the object phrase, and the node in be-
tween contains a verb. At generation time, the template-based system estimates
the appropriate template cluster for each given input MR via its first module.
After that, the cluster’s SVO trees are ordered based on the input graph via the
planning component and the realiser’s first task is to insert slot values into the
respective positions in each tree’s templates. The last realisation task takes a
tree, whose nodes are text, and uses SimpleNLG [1] to inflect the middle node’s
verb based on the tense annotation and flattens the tree to obtain surface text.

The data-driven system consisted of a sentence planner and linguistic realiser.
The sentence planner takes a set of tokens as input and tries to place these to-
kens into groups; these groups are then turned into natural language sentences
by the linguistic realiser. The sentence planner is used to generate sentence plans
using a Markov Chain type data structure where each state consists of an n-gram
of tokens and the transition probabilities are given by the probability of a new
token coming after the current sequence of tokens. The realiser component has
two components: the first is a seq2seq model created using OpenNMT [4] for
translating a sequence of ordered slot types to delexicalised text (i.e., templates)
and the second component is responsible for inserting slot values into the re-
spective positions, application of a simple rule to ensure that the output starts a
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Fig. 3. An example of templates used in the template-based system. The template
do not necessarily include all variables available, which is largely due to resource con-
straints in crafting the templates.

capital letter, formatting whitespaces around parenthesis and punctuation, and
removing special tokens produced by the seq2seq model (e.g., 〈unk〉 for out-of-
vocabulary words). At runtime, once the sentence plans have been constructed,
they are used as input to the realiser to produce a natural language sentence for
each for the groups of tokens in the sentence plan.

A full ‘round trip’ from the data to the systems’ respective outputs is shown
in Fig. 4. As can be seen, content is missed in the knowledge base creation,
which may then be reduced further in the generated text; e.g., Fig. 4-D suffers
both from content dropping (no place of death) and repetition (place of birth
twice). A preliminary evaluation of the text was conducted with 91 respondents
at the University of Cape Town. Each participant was presented with 10 paired
descriptions taken from the two systems or a human reference text. This small
sampling indicated that the template-based system was favoured, having sen-
tences with higher clarity and fluency, and they were deemed more natural than
those produced by the data-driven system. However, this is not a convincing
picture due to the small number of texts evaluated. Details of the systems and
results are available as supplementary material3.

3.2 Comprehensive evaluation procedure

To gain a better understanding of the effects on a larger, and therewith more
representative sample, we gathered 210 sentences (with their meaning represen-
tations, i.e., the graph snippets): 70 were human-authored, 70 were template-
generated, and 70 were ML generated, using the systems as described in the
previous section. We divided the sentences into five packages made up of com-
bined human, ML, and template generated texts. The first four packages are

3 https://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2019/dunn_poulter.

zip/results.html

https://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2019/dunn_poulter.zip/results.html
https://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2019/dunn_poulter.zip/results.html
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A. Original text that the tuple was created from:
Dallas Green (baseball) ( August 4 1934 – 2013 March 22 2017 ) was an American
pitcher manager and executive in Major League Baseball. After playing for the
Philadelphia Phillies Washington Senators and New York Mets from 1960 through
1967 he went on to manage the Phillies New York Yankees and Mets. Green was
born in Newport, Delaware. After Green pitched to a 6 – 2013 0 win-loss record
and an 0.88 earned run average ( ERA ) in 1955 his junior year Jocko Collins a
scout for the Philadelphia Phillies signed Green as an amateur free agent. Pitching
for the Phillies Washington Senators and New York Mets Green had a career
20 – 2013 22 record and 4.26 ERA in 185 total games with 46 games started.
After acquiring left fielder Gary Matthews and center fielder Bob Dernier from
Philadelphia before the 1984 season Green’s Cubs became serious contenders for
the first time in more than a decade. On March 22 2017 Green died at Hahnemann
University Hospital in Philadelphia.

B. Tuple in the knowledge base:

{"Name_ID": "Dallas Green (baseball)",

"date of birth": [{"mainsnak": "August 4 1934"}],

"instance of": [{"mainsnak": "Human"}],

"sex or gender": [{"mainsnak": "male"}],

"member of sports team": [{"mainsnak": "New York Mets"},

{"mainsnak": "Philadelphia Phillies"}],

"place of birth": [{"mainsnak": "Newport, Delaware"}],

"date of death": [{"mainsnak": "March 22 2017"}],

"place of death": [{"mainsnak": "Philadelphia"}]

C. Template-based text generated:
Dallas Green (baseball) (August 4
1934 – March 22 2017) was born
in Newport, Delaware. He played for
the New York Mets and Philadelphia
Phillies. He died in Philadelphia.

D. Data-driven text generated:
Dallas Green (baseball) (August 4
1934 – March 22 2017) was an Amer-
ican football position played on team
/ speciality who played for the New
York Mets. He was born in Newport,
Delaware in Newport, Delaware.

Fig. 4. A: original text; B: corresponding tuple in the knowledge base of [13]; C and
D: text generated by our systems, which were evaluated on fluency, clarity, and natu-
ralness.
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made up of 45 sentences each and the last is made up of 30. Examples of the
sentences are, among others:

T46 Wilhelm Dörpfeld (born on 26 December 1853 in Barmen and died on 25 April
1940 in Lefkada) was a Architect from Germany.

ML46 Wilhelm Dörpfeld (26 December 1853 – 25 April 1940 in Lefkada) was a Ger-
many Architect of Barmen and a member of the. He was buried at the Nydri in
Nydri.

T56 Nathan Paulse (born 7 April 1982 in Cape Town) is from South Africa and he
played for Ajax Cape Town F.C., Ajax Cape Town F.C., Hammarby IF, Ajax Cape
Town F.C. and Ajax Cape Town F.C.

ML56 Nathan Paulse (born 7 April 1982 in Cape Town) is a South Africa professional
sport who plays for Ajax Cape Town F.C. Ajax Cape Town F.C. Hammarby IF
and Ajax Cape Town F.C.. He made his debut for the Ajax Cape Town F.C. on 1
January 2010 in a 2 – 2 win over Manchester City.

See supplementary material at https://github.com/AdeebNqo/TemplVsMLData
for all sentences evaluated and the appendix for illustrative pairs of graph snip-
pets with the respective corresponding texts generated by the two systems. For
each package, we added one question as an attention check, using the following
text “Please select X for Quality and Y for Naturalness. This is an instruction.
It is not text to be evaluated.” where X and Y are variables for values in the
5-point Likert scale labeled ‘very bad’, ‘bad’, ‘neutral’, ‘good’, and ‘very good’.

The five text packages were evaluated by humans who were remunerated
0.29 USD for each judgment on the crowdsourcing platform MTurk. Each par-
ticipant was asked to rate the quality and naturalness of the text at most once.
We ensured that for each question, there must be at least three judgements per
text and at most 20. We presented texts to each participant and asked them to
“Rate the overall quality of the utterance, in terms of its grammatical correct-
ness, fluency, adequacy and other important factors” on the 5-point Likert scale
labelled ‘very bad ... very good’ scale. We also asked them to rate whether “[t]he
utterance could have been produced by a native speaker” on the same scale.
To ensure the quality of the responses, we eliminated participants who gave the
same kind of judgment after the 10th text.

The faithfulness and grammaticality of the texts were evaluated through
analysis of the systems’ internal representations and analysis of the text. We
annotated and counted the number of dropouts and hallucinations per text.
We also used LanguageTool4 to find grammatical errors, manually analysed the
resulting errors and classified them into specific types, and measured the number
of error types per text.

For purposes of comparison, we categorised the evaluated texts based on
the different kinds of errors present in them, assessed the judgements overall
and compared to each other, including also squashing the judgements into a 3-
value scale (positive, neutral, and negative) to assess tendencies, and to examine
validity of converting to numerical values for statistical analysis.

4 https://github.com/languagetool-org/languagetool

https://github.com/AdeebNqo/TemplVsMLData
https://github.com/languagetool-org/languagetool
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4 Results

There were 50 respondents to the survey, 78% of them self-reported as L1, 14%
as L2, and 8% as L3 English speakers; 29 participants passed the attention
check. No respondent was eliminated based on their responses, since none gave
the same responses for all the texts after 10 judgements. Of the 70 sentences,
1-2 were lost during packaging, so there were 68 template generated (TT), 69
ML generated (TML), and 68 human authored (TH) text in the survey. Since
the missing ones were not all the same, there were overall 66 graph snippets
with texts for comparison of the texts across the modes. The results exclude
ratings provided by participants who failed the attention check. The 210 texts
and their judgements are given as supplementary material https://github.

com/AdeebNqo/TemplVsMLData.

Table 1. Average (avg.) judgement in each text category for quality and natural-
ness (natural.) when converted to a 5-point scale (1=Very bad, 5=Very good), and
percentages of respective ratings over all rated sentences.

Category Avg. quality very bad bad neutral good very good
Avg. natural. very bad bad neutral good very good

Human-authored (TH)
3.54 0.7 12.6 32.9 39.5 14.3
3.59 0.7 10.2 30.0 46.2 12.8

ML-generated (TML)
3.64 0.5 11.2 32.2 35.6 20.5
3.60 1.2 8.6 28.0 51.2 11.0

Template-generated (TT)
3.74 1.0 7.9 28.4 38.9 22.4
3.73 1.0 6.0 27.8 48.3 15.8

Overall, there were 413 ratings for the human-authored sentences, 419 for the
ML ones and 413 for the template-based ones; the percentages of ratings received
is included in Table 1, with template-based texts faring very slightly better when
‘good’ and ‘very good’ are combined into ‘positive’. Using the categorical squash
and pitting positive against negative+natural, then all three are largely positive,
with the NLG-generated text slightly beating negative+natural compared to TH
for naturalness (52, 53, and 46 for the 66 graph snippets for TT, TML, and TH,
respectively) and considerably outperforming TH text for quality (46, 40, and
31, respectively). For positive+neutral against negative, it reaches 66 (or 100%)
for TT and 65 for the other two, and 66 for all three for quality. Conversely, there
are also minor differences regarding the ratio of texts with bad quality, with the
TT and TH texts having 5 and 11 texts with ≥ 2 people considering them as
bad or very bad, and 9 of the TML texts. This also holds for naturalness, with
7 such negatively rated sentences for TT and TH texts and 8 of the TML texts.

Since the categorical data is intended to be roughly equidistant, we converted
them to numerical data and calculated the respective individual and overall
averages of the judgements, which are given in Table 1. Using these to count
‘winners’ for each comparable text from the same graph snippet, the TT texts

https://github.com/AdeebNqo/TemplVsMLData
https://github.com/AdeebNqo/TemplVsMLData
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won 34 times, TML 17, and TH texts 18 times for quality and 34, 17, and
25 for naturalness, respectively (in case of a tie, both were awarded a point).
Correlations between quality and naturalness a weak: 0.47 for TT, 0.45 for TML,
and 0.51 for TH texts. Paired t-test on the numerical values for TT vs TML was
significant for naturalness (p=0.0180) but not quality (p= 0.0879). That said,
while the histograms for quality look roughly normally distributed, none of them
are (Shapiro-Wilk tests), and naturalness is skewed to ‘good’/4, hence, these test
outcomes are to be considered with caution.

The sample sentences of the previous section received an average quality of
3.6 for TT46 and 3.8 for its ML version (ML46), whereas TT56 received 4.3
template vs 3.7 for the ML56, whereas the sentences of Fig. 4 (no. 3) both
average to 4; for naturalness, their averages are, respectively: 3.9 vs 3.6, 3.9 vs
3.4, and 4.2 for both. Regarding positive vs neutral+negative for template vs
ML: it is positive on quality for TT3, ML46, and both T56 and ML56, and for
naturalness only TML3 was not positive and the rest positive.

There were 9 types of valid errors detected by LanguageTool in the generated
texts, which were only present in the human authored and ML generated text;
the categories are shown in Table 2. The errors were only present in the human
authored and machine learning generated text as shown in Figure 6.

Fig. 5. Number of hallucinated (Hal.) and dropped (Drop.) slots in the template-based
(templ.) and data-driven (ML) NLG systems.

Answering RQ1, then, there is a tendency that template-based texts receive
more favourable ratings, but the effect is not unequivocal. Noting the caution of
category to number conversion, it then does amount to a statistically significant
difference between template and human for quality and between template and
ML and human for naturalness.
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Table 2. List of error categories detected by LanguageTool, detected in the human
and ML-generated text.

Error category Description Example

PropOrthography Orthographic errors resulting
from the use of lower-case letters
in proper nouns and acronyms,
or upper-case for common nouns

“gavra played with” vs “Gavra
played with”

Denonym Errors due to incorrect form of
the denonym

“was an United States journal-
ist” vs “was an American jour-
nalist”

UnneccessarySpace Introduction of space writing
punctuation

“he is a 7 ’ 0 ” 240 lb” vs “he is
a 7’0” 240 lb”

WrongSlotValue Use of an incorrect value in a
specific position, likely due to
placing the incorrect value in a
slot.

“Nadine de rothschild (née Na-
dine de Rothschild” vs. “Nadine
de Rothschild (née Nadine Lho-
pitalier”)

Agreement Incorrect use of the indefinite
article

“is an United Kingdom” vs. “is a
United Kingdom”

Typo Typographical errors. “as an assistanr coach along” vs.
“as an assistant coach along”

URLInfo Errors due to the inclusion of
text formatted for HTML’s alt
attribute

“file : Fotothek df ps 0000106
Blick vom Turm des Neuen
Rathauses.jpg”

Repetition Repetition of words or phrases “born in Belleville, New jersey
New jersey and” vs. “born in
Belleville, New Jersey and”)

MissingWordAfter Missing word/phrases to com-
plete a sentence

“the United States Navy Lieu-
tenant” vs. “the United States
Navy as a Lieutenant”

Texts with content dropping/hallucinations are not rated significantly lower
in naturalness and quality for the data-driven system, therewith answering RQ2
in the negative as well. In particular, the texts could have any of 4 categories of
slot errors: (1) no hallucination, no dropping, (2) hallucination, dropping, (3) no
hallucination, dropping, and (4) hallucination, no dropping. The template-based
system’s texts all are of category 3; hence, the question cannot be resolved. The
ML model’s text were present in the first three categories: there were 47 texts
in category 3, 14 texts in category 2 and 7 texts in category 1. Regarding these
ML-generated texts, there is no significant difference in perceived naturalness or
quality between any of the error categories, based on Fisher’s exact test (p=1).

Concerning RQ3, on grammar errors and ratings for naturalness and quality,
we have observed again that there is no difference. More specifically, there are no
detected errors in template-generated text and only 1 error in the ML generated
texts; hence, the question cannot be resolved. In the human authored text, we
observed that there is no significant difference in the ratio of good/bad quality
and naturalness judgement between the texts with different kinds of errors (based
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Fig. 6. Number of grammar errors found by LanguageTool in the three categories of
texts (B refers to number before and A refers to after manual verification.)

on Fishers exact test (p = 1)). Likewise, there is no difference in the ratio of
good/bad quality and naturalness judgements between the texts with errors
when compared to those without, based on Fishers exact test (p = 1).

5 Discussion

Overall, thus, the evaluation could not settle the debate unequivocally either
way in favour of template-based vs. data-driven approaches. Or, phrased in the
positive: both approaches still seem viable options to a natural language interface
for knowledge bases. This thus also suggest that the speculated attribution of
reasons for any possible differences [9,11], as noted in Section 2, turned out to
not affect the human judgements of the sentences.

Some of the errors we have identified in the text belong to the error classes
identified by Puzikov and Gurevych [9]. Our Agreement, Typo, Repetition, and
MissingWordAfter error categories all subsume their bad grammar error type.
Their modified contents error type encapsulates WrongSlotValue, their dropped
contents is the same as the dropped slot, their punctuation errors type encap-
sulates UnneccessarySpace, and their questionable lexicalization error type en-
capsulates Denonym errors. However, we have shown that the texts with the
errors in Table 2 do not have significantly worse human judgements than the
texts without errors. Consequently, for well-resourced languages, a data-driven
approach might thus still produce acceptable results. An issue still could be the
hallucinations that an end-user consumer of the knowledge graph may not be
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aware of since they are not privy to the graph’s actual content. This unless it
is obvious, like assigning Abigail as being a “son”, as noted in the introduction,
which was a ML-generated sentence in the test set. Such potential bias in the
language model, learned from the source data, is not an issue for a manually-
crafted template-based systems. A template-based system seems also to be a
route taken for the Abstract Wikipedia [12], although presumably soon ‘gram-
mar infused’ templates or fully grammar-based systems, like SimpleNLG [1], will
be made possible.

A grammar-supported approach would certainly be needed for the gram-
matically rich Niger-Congo B languages spoken in Sub-Saharan Africa [3]. In
that regard, ‘dropped content’ may be a preferred limitation, especially for
under-resourced languages. Considering Abstract Wikipedia’s basis, Wikidata,
the translations for properties are patchy, except for Afrikaans that has all rel-
evant properties translated, but it should be possible to generate at least some
basic person text in local languages. Straight-forward data points and short
sentences may help populating currently non-existing pages. Several template
and grammar-based text generation algorithms for knowledge graphs exist for
Afrikaans and isiZulu [3,10], with translations and algorithms yet to be devel-
oped for the eight other official South African languages.

6 Conclusion

The paper presented the first attempt to determine whether there is a significant
association between texts with content dropping, hallucination, or grammatical
errors and low human judgements of quality and naturalness. The two in-house
developed NLG systems tested on the knowledge base of the Wiki people dataset
revealed that: i) human authored texts are not significantly associated with low
human judgements of naturalness and quality; and ii) the machine learning gen-
erated texts with dropped or hallucinated slots were also not significantly as-
sociated with low human judgements of naturalness and quality. Consequently,
addressing one of these errors will not necessarily result in a significant improve-
ment in perceived naturalness and quality and both approaches thus still could
be used to generate natural language interfaces to knowledge graphs.

Acknowledgments

This work was financially supported by Hasso Plattner Institute for Digital En-
gineering through the HPI Research School at UCT and the National Research
Foundation (NRF) of South Africa (Grant Number 120852).

References

1. Gatt, A., Reiter, E.: SimpleNLG: A realisation engine for practical applications. In:
Krahmer, E., Theune, M. (eds.) Proceedings of the 12th European Workshop on
Natural Language Generation (ENLG’09). pp. 90–93. ACL (2009), march 30-31,
2009, Athens, Greece



14 Mahlaza et al.

2. Holtzman, A., Buys, J., Du, L., Forbes, M., Choi, Y.: The curious case of neural
text degeneration. In: 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net (2020),
https://openreview.net/group?id=ICLR.cc/2020/Conference

3. Keet, C.M., Khumalo, L.: Toward a knowledge-to-text controlled natural lan-
guage of isiZulu. Language Resources and Evaluation 51(1), 131–157 (2017).
https://doi.org/10.1007/s10579-016-9340-0

4. Klein, G., Kim, Y., Deng, Y., Senellart, J., Rush, A.M.: OpenNMT: Open-source
toolkit for neural machine translation. arXiv preprint arXiv:1701.02810 (2017)

5. Krahmer, E., Gatt, A., Goudbeek, M. (eds.): Proceedings of the 11th International
Conference on Natural Language Generation, Tilburg University, The Netherlands,
November 5-8, 2018. Association for Computational Linguistics (2018), https:

//www.aclweb.org/anthology/volumes/W18-65/

6. Mahlaza, Z., Keet, C.M.: A classification of grammar-infused templates for ontol-
ogy and model verbalisation. In: Garoufallou, E., et al. (eds.) 13th Metadata and
Semantics Research Conference (MTSR’19). CCIS, vol. 1057, pp. 64–76. Springer
(2019), 28-31 Oct 2019, Rome, Italy

7. Mille, S., Dasiopoulou, S.: FORGe at WebNLG 2017. Tech. rep., Universitat
Pompeu Fabra, Barcelona, Spain (2017), https://webnlg-challenge.loria.fr/
files/upf-forge_report.pdf

8. Nguyen, D.T., Tran, T.: Structure-based generation system for E2E NLG chal-
lenge. Tech. rep., University of Information Technology, VNU-HCM, Ho Chi Minh
City, Vietnam (2017), http://www.macs.hw.ac.uk/InteractionLab/E2E/final_
papers/E2E-UIT_DANGNT.pdf

9. Puzikov, Y., Gurevych, I.: E2E NLG challenge: Neural models vs. templates. In:
Krahmer et al. [5], pp. 463–471. https://doi.org/10.18653/v1/w18-6557

10. Sanby, L., Todd, I., Keet, C.M.: Comparing the template-based approach to GF:
the case of afrikaans. In: Gardent, C., Gangemi, A. (eds.) Proceedings of the 2nd
International Workshop on Natural Language Generation and the Semantic Web,
WebNLG 2016, Edinburgh, UK, September 6, 2016. pp. 50–53. Association for
Computational Linguistics (2016)

11. Smiley, C., Davoodi, E., Song, D., Schilder, F.: The E2E NLG challenge: A tale of
two systems. In: Krahmer et al. [5], pp. 472–477. https://doi.org/10.18653/v1/w18-
6558.

12. Vrandecic, D.: Capturing meaning: Toward an abstract Wikipedia. In: van Erp,
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Graph Snippet 7 {"Name_ID": "Ted Kleinhans",

"date of death": [{"mainsnak": "July 24 1985"}],

"date of birth": [{"mainsnak": "April 8 1899"}],

"instance of": [{"mainsnak": "Human"}],

"sex or gender": [{"mainsnak": "male"}],

"member of sports team": [{"mainsnak": "Philadelphia Phillies"},

{"mainsnak": "Cincinnati Reds"},

{"mainsnak": "New York Yankees"}],

"place of birth": [{"mainsnak": "Deer Park, Wisconsin"}],

"place of death": [{"mainsnak": "Redington Beach, Florida"}]

TML7: Ted Kleinhans (April 8 1899 in Deer Park, Wisconsin – July 24 1985 in Red-
ington Beach, Florida) was a Major League Baseball pitcher who played for the
Philadelphia Phillies Cincinnati Reds and New York Yankees.

TT7: Ted Kleinhans (April 8 1899 – July 24 1985) was born in Deer Park, Wisconsin.
He played for the Philadelphia Phillies, Cincinnati Reds and New York Yankees.
He died in Redington Beach, Florida.

Graph Snippet 59 {"Name_ID": "Souleymane Nd\u00e9n\u00e9 Ndiaye",

"sex or gender": [{"mainsnak": "male"}],

"date of birth": [{"mainsnak": "6 August 1958"}],

"member of political party": [{"mainsnak": "Senegalese Democratic

Party"}],

"country of citizenship": [{"mainsnak": "Senegal"}],

"instance of": [{"mainsnak": "Human"}],

"place of birth": [{"mainsnak": "Kaolack"}],

"occupation": [{"mainsnak": "Politician"}, {"mainsnak": "Lawyer"}]

TML59: Souleymane Ndéné Ndiaye (born 6 August 1958 in Kaolack) is a Senegal
Politician and Lawyer of the Senegalese Democratic Party.

TT59: Souleymane Ndéné Ndiaye (born 6 August 1958 in Kaolack, Senegal) is a
Politician and Lawyer.

Graph Snippet 52 {"Name_ID": "Xu Huaiwen",

"sex or gender": [{"mainsnak": "female"}],

"date of birth": [{"mainsnak": "August 2 1975"}],

"instance of": [{"mainsnak": "Human"}],

"country of citizenship": [{"mainsnak": "Germany"},

{"mainsnak": "China"}],

"place of birth": [{"mainsnak": "Guiyang"}],

"sport": [{"mainsnak": "Badminton"}]

TML52: Xu Huaiwen (born August 2 1975 in Guiyang Germany) is a retired Bad-
minton from China.

TT52: Xu Huaiwen (born August 2 1975) is from Germany$$China.
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