
Eurographics Symposium on Rendering (2004)
H. W. Jensen, A. Keller (Editors)

Hardware Accelerated Visibility Preprocessing using
Adaptive Sampling

S. Nirenstein† and E. Blake

University of Cape Town, South Africa

Abstract

We present a novel aggressive visibility preprocessing technique for general 3D scenes. Our technique exploits
commodity graphics hardware and is faster than most conservative solutions, while simultaneously not overesti-
mating the set of visible polygons. The cost of this benefit is that of potential image error.
In order to reduce image error, we have developed an effective error minimization heuristic. We present results
showing the application of our technique to highly complex scenes, consisting of many small polygons. We give
performance results, an in depth error analysis using various metrics, and an empirical analysis showing a high
degree of scalability. We show that our technique can rapidly compute from-region visibility (1hr 19min for a 5
million polygon forest), with minimal error (0.3% of image). On average 91.3% of the scene is culled.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three Dimensional Computer Graphics and
Realism]: Visible line/surface removal

1. Introduction

In this paper we present our aggressive visibility preprocess-
ing technique. The term aggressive visibility was introduced
by Nirenstein et al.[NBG02] as an augmentation of the tax-
onomy of Cohen-Or et al.[COCSD03] as an additional dis-
tinction to their terms conservative, approximate, and exact.

Conservative techniques consistently overestimate and in-
cur what we term false-visibility errors. These occur when
primitives that are not visible are considered visible. Ap-
proximate visibility techniques incur both false-visibility
(as above) as well as false-invisibility errors: where visi-
ble primitives are excluded erroneously. Exact visibility so-
lutions avoid both types of error and provide both accurate
images and the tightest possible visible sets.

In contrast, aggressive methods generate a subset of the
exact visible geometry and so exhibit false-invisibility. As
noted by Nirenstein et al.[NBG02], aggressive visibility
causes image error, but can be useful in practice if: (a) the vi-
sual impact of the error is acceptably small for the given ap-
plication, (b) the algorithm has benefit in computational ef-
ficiency or (c) it handles scenes that cannot be treated effec-

† {shaun,edwin}@cs.uct.ac.za

tively with conservative alternatives, due to excessive over-
estimation.

Our technique uses a sampling approach and gains speed
by exploiting graphics hardware. We show that it is able to
handle very complex scenes with many small occluders far
better than existing from-region techniques.

Aggressive algorithms are suited to the extremely com-
plex scenes that arise in actual use of visibility preprocessing
where the amount of time spent on preprocessing becomes
a significant issue. Exact algorithms[NBG02, Bit02] cannot
compete in such cases. We consider those situations where
the amount of very fine grained geometry is so large that
conservative algorithms tend to overestimate visibility sets
excessively. We show this with a forest scene that cannot
effectively be handled, to our knowledge, by any visibility
preprocessing technique.

The issue that then arises is how to minimise the visual
impact of the visibility errors inherent in aggressive tech-
niques. We quantify this error via a number of error metrics
that we develop. We also present error minimization heuris-
tics that exploit adaptive sampling.

Specifically, our contributions are:

• An aggressive hardware accelerated technique that rapidly

c© The Eurographics Association 2004.

S Nirenstein & E Blake / Visibility Preprocessing with Adaptive Sampling

determines visibility from a surface or region. This tech-
nique fits a niche, treating scenes for which conservative
techniques overestimate excessively, or for which exact
algorithms are too slow.

• A heuristic that guides adaptive subdivision to prevent ex-
cessive sampling and reduce under sampling.

• A divide and conquer frame work for sample-based visi-
bility. Our strategy provides effective cache management
for samples, and provides efficient visibility culling to
sample points.

• An effective general purpose visibility preprocessor that
has a relatively simple implementation.

1.1. Overview

We begin with a brief discussion of previous work (Section
2). Next, (Section 3) in a bottom up fashion, we show how
the visibility from a surface may be computed efficiently,
using standard graphics hardware. We then address the is-
sues of sampling and error measures that arise (Section 3.2).
With these preliminaries in place we can present the com-
plete algorithm (Section 4) and an analysis of its complexity
(Section 5). Finally we show how the algorithm performs.

2. Previous work

Visibility culling algorithms are often categorised as either
those that compute visibility from a point or those that
compute visibility from a region. Since our focus is from-
region techniques, for the sake of brevity we refer the in-
terested reader to the comprehensive survey of Cohen-Or et
al.[COCSD03].

The vast majority of visibility algorithms are conser-
vative in nature. Exact algorithms for general scenes do
exist[NBG02, Bit02, Nir03], however, they are ill suited
to rapid preprocessing. The accuracy of conservative
techniques is determined by their ability to perform oc-
cluder fusion. Older techniques[COFHZ98, SVNB99]
are no longer effective. Earlier occluder fusion
techniques[SDDS00, DDTP00] often greatly overesti-
mate visibility.

In order to achieve effective culling various assump-
tions have to be made about the scene structure. For
indoor scenes it is possible to partition the scene into
cells separated by portals. In this case, the visibility of
a cell is reduced to determining the existence of a stab-
bing line through a sequence of portals between two
cells[ARJ90, TS91]. Other assumptions include those of a
2D or 2 1

2 D scenes[KCCO01, WWS00, BWW01] and even
2 1

2 D+ ε scenes[LSCO03]. None of these techniques can be
applied to large, general 3D scenes.

Our technique is similar to the ray casting approach of
Gotsman et al. [GSF99]. They use a sequential analysis to
control the termination of a random ray sampling process.
In contrast, we use a hardware approach that allows ray sam-
ples to be taken several orders of magnitude faster, however,

our ray distribution is not uniform: relatively few ray origins
are used. We compensate by selecting these intelligently us-
ing heuristic guided adaptive sampling. We cannot compare
error results since Gotsman et al. did not report any. Sayer
et al.[SLCO∗04] also use aggressive visibility. Imposters are
used to mask false-invisibility error in their aggressive visi-
bility approach.

Van de Panne and Stewart[vdPS99], Schaufler et
al.[SDDS00] and Leyvand et al.[LSCO03] have imple-
mented naïve viewpoint sampling techniques as reference
solutions. Wilson and Manocha[WM03] use view point sam-
pling to build incremental textured depth meshes.

3. Visibility From a Surface

In this section our novel sampling approach to “from-region”
visibility is presented. We describe a sampling method that
is based on the hemi-cube[CG85, HA00] and exploits the
performance of common graphics rendering hardware.

3.1. The Visibility Cube

A visibility sample is defined to be the set of polygons vis-
ible from a given point. A visibility cube (closely related
to a radiosity hemi-cube) is used to generate such samples
(Figure 1). This is created by treating each of the six sides
of a tiny cube enclosing the sample point as independent
depth and frame buffers onto which the scene is rendered.
Each polygon is assigned a distinct 32 bit colour. The set
of polygons mapped by at least one pixel in any of the six
frame buffers is considered to be the set of polygons visible
from the sample point. The visibility cube can be consid-
ered a high density sampling over the angular domain, for a
fixed spatial position. The intended application for visibility

Figure 1: The Visibility Cube. A sample of several visibility cubes
over a surface. The visible geometry (of several teapots) has been
projected onto the cubes.

culling is invariably a rasterization engine. A useful heuristic
for obtaining good accuracy for visibility samples in prac-
tice is to set parameters (frame buffer resolution, bit depth
of depth buffer and near and far planes) similar to that of the
desired output parameters. For full accuracy, these factors
should be set at the Nyquist limit.

Sub-sampling the intended rendering resolution is bene-
ficial, however, since it enhances performance by minimiz-
ing frame buffer reads and reducing the required fill rate.

c© The Eurographics Association 2004.

S Nirenstein & E Blake / Visibility Preprocessing with Adaptive Sampling

This allows accuracy to be traded for speed. Although ac-
curacy is reduced, sub-sampling results only in the occa-
sional omission of polygons which only contribute to few
visible pixels, and therefore have little visual impact. This is
known as approximate culling or equivalently contribution
culling[ASVNB00, BMH98, Zha98].

We only consider visibility at the triangle level, since
our algorithm is an aggressive from-region approach. Ob-
ject level visibility could be achieved easily by assigning
a colour per object, however, the algorithm then becomes
approximate, and the degree of conservativity would de-
pend on object granularity. This may be preferable though,
if the scene consisted of many sub-pixel sized triangles, and
was intended to be rendered at high resolutions with multi-
sample anti-aliasing.

3.2. Sampling for From-region Visibility

The “from-region” visibility set can be defined in terms of
visibility samples. This is simply the union of the visible
sets of all possible visibility samples taken within the rect-
angular region. In theory, it would be possible to find a finite
set of samples from which exact visibility could be deter-
mined by partitioning the region into areas of constant vis-
ibility and generating one sample per area. This would be
ideal, however, the high combinatorial complexity of evalu-
ating such a partition is prohibitive[Pla92]. Instead, we use
heuristic guided adaptive sampling that examines the struc-
ture of the visibility samples in order to generate a sample
pattern that approximates the theoretically ideal subdivision.
We present our heuristic based approach in this section.

Uniform sampling is a naïve solution to our sampling
problem (see Figure 2a). With this approach, under-sampling
may manifest as unacceptable false-invisibility errors, while
over-sampling may lead to prohibitive execution costs.

Our adaptive technique proceeds as follows: we assume
a rectangular sample domain embedded in 3-space. To be-
gin with, visibility samples are evaluated at the corners of
the rectangle. Then a decision is made whether or not to
refine the rectangle into four subregions based on our er-
ror minimization heuristic. The user specifies a threshold
(see below). The subdivision proceeds recursively, in a man-
ner equivalent to the depth-first generation of a quad-tree.
A rectangular subregion, with visibility samples at its four
corners, is treated as a node in the quad-tree. Corners are
shared between parents and children and among siblings in
the quad-tree. It is important to cache shared visibility sam-
ples in order to prevent redundant computation. A typical
adaptive subdivision is illustrated in Figure 2b.

The subdivision heuristics we use are based on visibility
sample similarity. This is derived from the simple observa-
tion, that if two viewpoints see similar item-buffer images,
then any viewpoint between the two, will also most likely
see a similar image. We begin with a metric based on the

(a) (b)

Figure 2: Uniform vs. Adaptive Sampling. (a) A uniform distri-
bution of visibility cubes on a 2D surface. (b) A non-uniform distri-
bution of visibility cubes generated by an adaptive subdivision. The
adaptive sub-division attempts to minimise both error, and the num-
ber of samples required. A quad-tree structure is effectively built on
the surface.

sampled visible set only. We then consider a strict metric
that directly compares each pixel of the panoramic visibility
sample. Finally, we relax the per pixel equivalence constraint
by subdividing the image into subsections, and applying a
visible set similarity criterion to each subsection. We also
consider the more obvious visual benefits of an image based
heuristic, although a full analysis is beyond the scope of this
paper.

3.3. Basic Error Metric

Adaptive subdivision requires a decision at each quad-tree
node (rectangular subregion) whether or not to continue sub-
dividing. This decision is based on a heuristic that employs
a sample-error metric to establish, given four corner visibil-
ity samples, if any interior view points are likely to contain
additional polygons.

Ideally, areas with high frequency changes in visibility
should be sampled more densely. Our first attempt is to ex-
plicitly encode the normalised difference between visibility
samples. Given the visible sets from four visibility samples,
s0,s1,s2,s3, we define:

Err(s0..3) = 1−min3
i=0

(
|⋂3

j=0 s j|
|si|

)
(1)

Err returns 1 iff there are no elements common to all the
visibility samples and 0 iff they are identical.

This metric admits an efficient implementation and works
well in practice. However, it does not account for the angular
distribution of error across the field of view. If error does oc-
cur, a more uniform distribution of this error has perceptual
benefit, in contrast to a (potentially) clustered distribution.

3.4. Strict Error Metric

Before we detail our stratified error metric, we would like the
reader to consider an alternative. We assume that the pixels
(directional subdivisions) of each visibility cube are enumer-
ated consistently from 1 to N. We define s j(i) as the polygon
mapped by pixel i of visibility sample j. We define a new
heuristic as follows:

Err′(s0..3) = 1− ∑N
i=1 diff(s0(i), s1(i), s2(i), s3(i))

N
(2)

where

c© The Eurographics Association 2004.

S Nirenstein & E Blake / Visibility Preprocessing with Adaptive Sampling

diff(a,b,c,d) =
{

1 if a = b = c = d
0 otherwise

Err returns 0 iff every sample sees the same polygons, Err′
return 0 iff each sample generates the same visibility cube.
This adds an extra constraint: it is not sufficient for a polygon
to simply be seen by all samples, it must be visible in exactly
the same directions/pixels. This heuristic defines a measure
of image based similarity. It is even possible for each sam-
ple to see exactly the same set of polygons, but for Err′ to
still return 1. It should be clear that if four samples see the
same polygons, at the same pixels (i.e., they see the same
images), then it is highly improbable that further refinement
is necessary.

This measure is infeasible in practice, since 0 error will
only occur when samples are taken very near each other.
This would most likely lead to excessive sampling. In the
next section we present a stratified metric that provides a
beneficial compromise between Err and Err′.

3.5. Stratified Error Metric

The error distribution problem can be solved by partition-
ing each visibility cube into a fixed number of regular sub-
regions. To ensure a reasonably uniform error distribution,
the similarity among corresponding sub-regions must be
above a certain threshold. Let sa(b) be the set of poly-
gons visible from visibility sample a within the angular sub-
region b. The revised error metric over d sub-regions is de-
fined as:

Err′′(s0..3) = maxd
k=0

(
1−min3

i=0

(
|⋂3

j=0 s j(k)|
|si(k)|

))
(3)

If d = 1, then Err′′ is equivalent to that defined by Err. Sim-
ilarly, if d = N (for N pixels on the visibility cube), then this
metric is equivalent to that defined by Err′.

In practice, a minimum (sample) distance constraint is
necessary to enforce termination where an arbitrarily small
movement in the view-point results in a large change in vis-
ibility. Without this, excessive subdivision may result. Al-
though this implies that we may not refine areas of very high
change, we take the union of these samples when calculat-
ing the visibility set for the cell thereby aggregating these
differences, i.e., it is only those objects that are invisible at
the corners, yet become visible within the approximated sur-
face that will be erroneously omitted. Given that the size of
this surface is small (as determined by the minimum distance
constraint), the magnitude of the error and the (temporal) du-
ration of the error tends to be small, although we have not yet
found a theoretical bound on the maximum error.

3.6. Treating and Exploiting Manifold Meshes

Another approach that improves the error heuristic is the ex-
ploitation of specific scene properties. For instance, many
scenes consist only of manifold surfaces with interiors that
do not represent valid view-points. In this case, each of the

four visibility samples can be classified as interior or exte-
rior. Equation 3 is applied to each case independently. We
denote the set of exterior and interior samples as E and I,
respectively. Some simple properties are: |E|+ |I| = 4 and
E∩ I = ∅. Two thresholds te and ti are defined. We subdivide
iff any of the following conditions hold:

• |E| = 1 A single exterior point does not provide sufficient
information for a final decision.

• |E|> 1 and Err′′(E) > te. The error threshold is exceeded
for those samples at valid camera positions.

• |I| > 1 and Err′′(I) > ti. The interior difference/error is
high, therefore there is a good chance that intermediate
visibility samples will be external. E.g., the interior sam-
ples might lie inside different objects.

To classify sample points as internal or external, a half-space
comparison is made against the plane of any polygon in the
visible set. A point in the same half-space as the normal of
a visible polygon is considered exterior. Caveat: in practice,
discretization errors typically cause a few pixels from back-
facing polygons to be visible along the silhouette of an ob-
ject. To counter this, the polygon that contributes the most
pixels is chosen as the half-space classifier. This classifier
selection can be efficiently integrated into the processing of
the visibility cube buffers.

4. Algorithm Framework

We have shown how an adaptive algorithm may be used to
sample visibility from a rectangular surface efficiently. In
this section, we detail how this algorithm is used in tradi-
tional cell partitioning.

4.1. Visibility From a Volumetric Region

Consider a generic bounding box P for which a visible set
has been computed. This can be partitioned by a single rect-
angle R, orthogonal to an axis of P. The partition can be
situated anywhere along this axis. We refer to the two par-
titions as P− and P+. All sight lines from P+ to P− must
intersect R. A polygon visible at the end of a sight segment
is visible from all points along it. It follows that any polygon
that intersects P− and is visible from a point in P+, must be
visible from R. Now, the set of visible polygons V (P+) from
cell P+, can be expressed as:

V (P+) = V (R)∪ I(P+) (4)

V (R) represents the visibility from the rectangle R, and can
be evaluated with the method discussed in Section 3.2. The
set I(P+) is simply those polygons that intersect P+, and
can be computed with a simple polygon-cuboid intersection
algorithm. Similarly, V (P−) may be expressed as:

V (P−) = V (R)∪ I(P−) (5)

In general, the visibility set, V (C), of a cell, C, is the union
of those polygons that intersect C and those polygons visible
from the surface of C. Next, we discuss at the implementa-
tion details of this hierarchical subdivision.

c© The Eurographics Association 2004.

S Nirenstein & E Blake / Visibility Preprocessing with Adaptive Sampling

4.2. Hierarchical Subdivision

In practice, we begin with the scene bounding box as the root
cell of the hierarchy. The hierarchy is evaluated by splitting
in a top-down depth-first manner. The axis of subdivision
is cycled as standard for kd-trres. Only the visibility in the
current leaf nodes are maintained at any point. The subdivi-
sion process of a cell is illustrated in Figure 3. Our method
for maintaining, reusing and distributing samples is also dis-
cussed in this section. The grid of cells is generally non-

(a) (b)

(c) (d)

Figure 3: Hierarchical Subdivision. (a) A typical cell within the
hierarchy. (b) The chosen splitting plane within the cell. (c) New
samples are generated on the sub-division. (d) The original cell is
now partitioned. Note, that when a cell is subdivided, only those
samples on the partition plane need to be evaluated. The samples
shown in (a) are cached. Should both cells terminate subdivision
after (d), then the samples shown in (c) would be obsolete and can
then be deleted from the cache.

uniform, since subdivision is terminated when the number
of visible polygons falls below a set threshold, or triangle
budget[KS99]. We adopted this threshold technique, from
Saona-Vásquez et al.[SVNB99], since this is a straightfor-
ward solution to enforce upper bounds on rendering compu-
tations (and hence frame rates).

Infinite subdivision could occur if the number of polygons
visible from some point is greater than the triangle budget.
This is prevented by setting a maximum depth for the implicit
binary hierarchy. In practice, this event is unlikely since the
polygon throughput required for acceptable frame-rates is
generally much greater than the number of polygons visi-
ble from any single point (or small neighborhood around a
point). For certain scenes (e.g., a flight simulation over a ter-
rain, where a lot of geometry is visible from high altitudes),
a worst case situation can occur. A level of detail approach
is often more suited for this type of scene.

When the subdivision of a cell ceases, all samples on the
surface of the cell are aggregated. The union of the set of

visible polygons for all samples is computed and stored with
the cell.

An advantage of top-down hierarchical subdivision is
that smaller sub-cells that do not contribute significantly to
culling, are never evaluated (in contrast to the bottom-up
subdivision of van de Panne and Stewart[vdPS99]). A sec-
ond advantage is that previously computed information in
the upper levels of the hierarchy may be exploited to accel-
erate the evaluation of the lower levels.

4.2.1. Superset Simplification

The set of polygons visible from a cell, C, is a superset of
those visible from any view-point, q, within C: V (q)⊆V (C)
∀q ∈C. This allows the process of splitting a view cell to be
optimised. When generating samples on the rectangle that
splits the cell, only polygons known to be visible (V (C)),
need be rendered. This implies that the cost of building a vis-
ibility sample decreases as the current depth in the binary hi-
erarchy increases. This technique of superset simplification
is also used by Durand et al.[DDTP00] and Saona-Vásquez
et al.[SVNB99].

Although superset simplification can be applied to any
from-region technique, the rate of decay for the size of the
superset as subdivision occurs is maximal only for exact
and aggressive algorithms. Indeed, many conservative algo-
rithms perform poorly when applied to large view cells.

Since our visibility preprocess is aggressive, there may
be potential omissions of visible polygons in the superset
as calculated. However, due to the effectiveness of our sam-
pling heuristic, such error is minimal and superset simplifi-
cation yields a significant preprocessing performance bene-
fit. Should a significantly faster output-sensitive renderer be
used to perform the sampling, superset sampling may be-
come redundant.

4.2.2. Cache Management

Using a top-down approach for many existing algorithms is
a non-trivial optimisation problem. Firstly, it is necessary to
consider the efficiency of the algorithm with respect to the
size of view cells in the upper level of the hierarchy since
these tend to be rather large. Secondly, it is important to con-
sider whether or not sufficient benefit is gained by evaluating
a given cell, rather than evaluating its children directly.

Typical implementations result in a set of cells being gen-
erated on a uniform grid. Each grid element can then be ex-
panded into a hierarchy. Cohen-Or et al.[COFHZ98] use a
fixed two level hierarchy. Durand et al.[DDTP00] also use
an initial grid.

Our approach, however, has an interesting property that
allows us to evaluate a parent cell, and then split the par-
ent (if so desired) into two child cells, at the same cost as
generating the child cells initially. This requires the ability
to partition an existing rectangular region, while being able

c© The Eurographics Association 2004.

S Nirenstein & E Blake / Visibility Preprocessing with Adaptive Sampling

to disseminate the correct visibility information to the parti-
tions, without (significant) additional computation. Since we
use a sample based approach, all the samples belonging to
the parent region are distributed to their incident partitions.
In order to keep the cost low, we cache all samples until they
are no longer required.

The process proceeds as follows (illustrated in Figure 3):
First, we assume that the visibility (surface samples) from
some cell C has been computed (Figure 3a). Second, if sub-
division is indicated (depending on subdivision criteria), a
splitting plane is chosen (by a heuristic) that splits the cell
into C− and C+ (Figure 3b). Third, the required samples on
the shared boundary of C− and C+ are computed (subject
to the visibility set V (C)) (Figure 3c). Fourth, the samples
in the negative and positive half-spaces (as defined by the
splitting plane) are propagated to C− and C+, respectively
(Figure 3d). Finally, cell C is deleted.

In order to save memory resources, it is necessary to com-
pute which of the samples associated with the current (now
finalised) cell are redundant, and which will be used again.
We associate a counter with each sample. When subdivision
terminates for a cell, the counter of each sample on the cell
is updated. Once all cells adjacent to a sample have finished
subdividing, the sample is deleted. The depth-first traversal
that builds the hierarchical subdivision thus allows for the
early removal of samples. Also note that all sample data is
RLE compressed.

5. Algorithm Analysis

The adaptive nature of the algorithm makes it difficult to
obtain a useful upper bound. Given that k samples are gen-
erated in total, the overall complexity is O(k f (n)), where
O(f (n)) is the complexity of the from-point approach used.
If O(f (n)) is fully output sensitive, the complexity becomes
O(kv). Using superset simplification, our implementation
approaches O(kv) from above, since the first few samples
are not output sensitive.

The value of k itself is a complex function of the scene
size and particular scene configuration. Intuitively, k charac-
terizes the degree of variation of visibility within a scene. It
should grow as the combinatorial complexity of those visi-
bility events that result in the appearance or disappearance of
a polygon in a scene grow. The growth of k would be far less
than proportional to the number of these events, however,
since a single visibility sample can pick up the change in
visible polygons resulting from many such visibility events.
For our scenes, of the order of millions of polygons, results
have indicated that for low error in practice, k is in the order
of tens of thousands.

6. Implementation

The computation of a visibility cube consists of six render-
ings of scene geometry from a single point. For each render,

the frame buffer needs to be read in order to obtain the vis-
ible polygon indices. In this section we examine the perfor-
mance issues and propose several optimizations.

Any acceleration technique that can be applied to tradi-
tional point rendering(e.g., Zhang et al.[ZMHI97] or Govin-
daraju et al.[GSYM03]) can also be applied to visibility cube
rendering. The algorithm presented in this paper therefore
scales with the performance of the point renderer utilised.
We incorporate frustum culling into our implementation and
we utilise information already computed by the preprocess
to accelerate rendering (see Section 4.2.1). This occlusion
method can be used to enhance most point based visibility
techniques. Using our GeForce4 Ti 4600 we achieve 17 mil-
lion triangles per second throughput.

Frame-buffer reading is often a bottle neck. Wonka et
al.[WWS00] claim that it takes approximately 54% of their
run-time. This is most likely due to their only rendering sim-
plified scenes (their 8 million triangle scene is actually repre-
sented by a much smaller building “facade”), and thus may
exaggerate the frame buffer read times for general scenes.
Frame buffer reading consists of a considerably smaller part
(20%) of our run-times, although this may grow with faster
hardware and/or a superior point rendering implementation.
The performance of frame buffer reads has not improved at
the same rate as triangle rendering, is due to limitations on
bus technology. This should be alleviated soon with the ad-
vent of the PCI Express bus[Int03].

7. Results

In this section we present empirical results illustrating the
practicality of our aggressive algorithm. We present results
to quantify the performance of our technique. We also con-
sider it necessary to quantify the error produced, and we give
empirical evidence showing that for the scenes tested, error
can be contained in order to give acceptable image quality.

7.1. Performance

We begin by showing that the algorithm can be used to pre-
process scenes that cannot be processed effectively by exist-
ing solutions. We use a large forest scene consisting of 5 mil-
lion polygons (see Figure 4). Nearly 200 trees, each highly
detailed, consisting of 25 000 polygons each. A “small” for-
est scene, consisting of 2 million polygons is also tested.
This scene consists of 80 trees, also of 25 000 polygons
each. Note: Internally, we make no use or assumption of in-
stanced geometry. For reference, we pre-process the forest
scene used by Durand[Dur99]. This scene consists of ap-
proximately 1450 trees, at 1000 polygons each Although,
simpler in terms of polygon granularity, this scene has a
far higher depth complexity than our forest scenes, imply-
ing that more culling can be performed. We also test a large,
complex town scene used by Nirenstein et al.[NBG02] com-
prising 1.35 million triangles This scene is realistic, and con-
sists of a mix of simple and detailed objects. The hardware

c© The Eurographics Association 2004.

S Nirenstein & E Blake / Visibility Preprocessing with Adaptive Sampling

Exp. Scene Size Threshold Time/Cell No. Cells Visible Set

1 Forest 5m 0.2 9.23s 512 8.68%
2 Forest 2m 0 5.48s 512 14.84%
3 Forest 2m 0.999 4.17s 512 13.63%
4 Durand et al. 1.45m 0.99 2.57 400 0.79%
5 Town 1.35m 0 2.5s 512 1.45%
6 Town 1.35m 0.999 2.46s 512 1.35%

Table 1: Aggressive Algorithm/Preprocess – Performance Results. The Experiment column is the experiment reference number. Each experi-
ment number corresponds to one preprocess and analysis. They may be used to cross-reference the error results in Table 2. The Scene column
indicates the type of scene. The Size column gives the size of the scene (in triangles (m = millions)). The Threshold column indicates the error
threshold used in the preprocess (see Section 3.5). The Time/Cell column gives the time taken per cell. The Number of Cells column shows
the number of cells into which the bounding box was subdivided (512 = 8× 8× 8 and 400 = 20× 20). The Visible Set column provides the
percentage of visible geometry averaged through all cells. The scenes were all sampled using 512×512 pixel item buffers.

Exp Avg. Error Max. Error CR Count Avg. Max. CR Tot. Max. CR

1 0.338% (886) 6.293% (16497) 267.27 0.032% (84) 0.607% (1591)
2 0.315% (826) 1.3% (3408) 453.42 0.016% (42) 0.09% (236)
3 0.888% (2328) 5.88% (15414) 605.91 0.083% (218) 0.66% (1730)
4 0.561% (1471) 1.71% (4490) 110.23 326.23% (326) 0.915% (2400)
5 0.116% (304) 1.034% (2711) 14.2 0.107% (80) 0.745% (1953)
6 0.117% (307) 1.034% (2711) 14.97 0.105% (275) 0.745% (1953)

Table 2: Aggressive Algorithm/Preprocess – Error Results. The Experiment column is the experiment reference number. Each experiment
number corresponds to one preprocess and analysis. They may be used to cross-reference the performance results in Table 1. The Average Error
column gives the average image error for a sampled camera path (details in Section 7.2). The values in parentheses are the absolute number
of pixels corresponding to the percentage (a 512×512 pixel view is used for our tests). The Maximum Error column is the image error for the
frame with the largest error. The CR Count column gives the minimum number of connected regions (CR) into which the erroneous pixels may
be partitioned. The CRs are averaged over the frames in our test path. The Average Maximum CR column is the average size of the largest CR
in each frame. The Total Maximum CR column is the size of the maximum CR over all frames of the walk through. The scenes were all sampled
using 512×512 pixel item buffers.

Figure 4: Test Scene – Forest Model (5m). A very complex for-
est model consisting of 5 million polygons. Each tree consists of 25
thousand polygons. The image shows the output of our algorithm.
11.9% of the scene is rendered from the region containing the view
point.

used for our tests is a Pentium 4 1.7Ghz, with an NVidia
GeForce4 Ti 4600 and 1.2GB of memory.

First, we consider the visible set size. Being an aggres-
sive algorithm, it is to be expected that the visible subset is

less than or equal to the results of an exact solution. Durand
et al.[Dur99] cull 75% of their scene, resulting in a visible
set of 25%. In comparison, we are able to cull 99.21% from
the model (see Figure 5). Where the extended projection al-
gorithm took 17 seconds per cell, our technique takes 2.57
seconds per cell. It is difficult to compare timings directly
due to hardware differences. For rendering, the SGI Onyx2
can render 11m tri/sec in comparison to our 17m tri/sec.

Second, we consider the effectiveness of the algorithm
when applied to our large forest scene. 91.32% of the scene
is culled on average (see Figure 6a). This allows for an ac-
celeration of 11.5 times that of naïve rendering. We have
no knowledge of any existing alternative algorithm capa-
ble of preprocessing this scene to a significant degree. In-
deed, although the exact algorithm presented by Nirenstein
et al.[NBG02] is capable of processing it, without the pos-
sibility of error, the time required is excessive for a single
workstation. The large forest model is processed at a rate of
9.23 seconds per cell for a total time of 79 minutes.

The town scene is processed at 2.5 seconds per cell for a

c© The Eurographics Association 2004.

S Nirenstein & E Blake / Visibility Preprocessing with Adaptive Sampling

(a) (b) (c)

Figure 6: Aggressively Culled Scenes – Large Forest, Small Forest and Town. Sample output from our aggressive algorithm. Green polygons
are visible and red polygons are invisible. The view point used is that of the yellow sphere. (a) 4 million polygons are culled (21.6% of the scene
is visible) from the given view point. (b) 1.9 million polygons are culled (10.3% of the scene is visible) from the given view point. (c) 1.1 million
polygons are culled (2.5% of the scene is visible) from the given view point.

Figure 5: Test Scene – Aggressive Culling of Durand’s Forest.
The forest scene used by Durand et al.[Dur99]. From the cell of the
given view point (yellow sphere), 0.8% of the scene is visible. Visible
and invisible polygons are shown in green and red respectively.

total time of 21 minutes. An average of 1.45% of the scene
was determined to be visible (see Figure 6c).

Using the error threshold, we see that it is possible to trade
quality for performance. Using the 2 million polygon forest
scene we see that a 32% performance increase was gained
by increasing the threshold. This tradeoff was less effective
for the town scene. We discuss this and the quality tradeoffs
in Section 7.2. Given the exponential shape of this sensitiv-
ity, end user application (i.e., a person wishing to preprocess
a model) should use a logarithmic scale to manipulate the
threshold scale.

In order to ascertain scalability with respect to the num-
ber of cells, we have executed the preprocess for our 2 mil-
lion polygon forest scene using a varying number of cells.
The results are shown in Figure 7. The decrease in per-cell
evaluation results from the increased output sensitivity as the
hierarchy depth is increased.

7.2. Image Error

The error results are found by analyzing a walkthrough of
several thousand frames. We present error results for the var-

0

4

8

12

0 512 1024 1536 2048 2560

Total Cells
Se

co
nd

s
/ C

el
l

Figure 7: Scalability by Cell. The average time taken per cell
(vertical) is plotted against the number of cells by which the bound-
ing box is subdivided. As evidenced, there is rapid decay in the time
taken per cell. The model used is our 2 million polygon forest model.

ious models in Table 2. For each frame, the visible geometry
is rendered in green (flat shaded and unlit). Similarly, the
geometry determined to be invisible is rendered in red. We
count those pixels that are red, and consider this to be the
number of erroneous pixels or error in the frame. See Fig-
ure 8 for an example.

Figure 8: Error Measure. A 1600×1200 screen shot from a walk
through. Green polygons are those determined to be visible by our
aggressive algorithm, while the red polygons are determined to be
invisible. The appearance of red pixels mark erroneous rendering.
Shading and lighting are used for this image, although our auto-
mated error evaluator uses constant colouring.

We also utilise several connected region (CR) metrics.
The CR count is the number of connected regions of erro-
neous pixels (found per frame, by recursive search). Given

c© The Eurographics Association 2004.

S Nirenstein & E Blake / Visibility Preprocessing with Adaptive Sampling

a number of erroneous pixels, the CR count constitutes in-
formation about the distribution of the error on the display.
A high CR count (relative to error) implies that the error
is fairly scattered, and will most likely manifest as noise
(more easily filtered by our visual system than coherent
artefacts[Coo86]). A low CR count (with respect to error)
implies that the errors are clustered together, and are more
likely to be noticeable. We present the average error and the
average CR count over all frames. We also include the largest
connected region in the walkthrough.

Consider the five million triangle forest model. An aver-
age of 8.68% of the geometry is visible. This is a subset of
the “truly” visible geometry. When evaluating the results of
a walk through, we found that 0.337% of the average frame
comprised erroneous pixels. In isolation, this appears to be
very little, however the distribution of error is also impor-
tant. Indeed, the largest error on any frame was a signifi-
cantly higher 6.293%. Our experiments have shown the er-
ror to comprise, of an average of 267.27 disjoint connected
regions. Indeed, on average, the largest connected region in
each frame (only those frames with error are considered), is
only 0.016% of the frame. The largest connected region in
any frame in the walkthrough (consisting of several thousand
frames), is 0.607%.

The other experiments show how our technique fared for
other scenes, using small and large thresholds. The town
scene resulted in lower average and maximum error, while
the forest scene resulted in more fragmented errors.

0

1000

2000

3000

0 0.25 0.5 0.75 1
Threshold

Pi
xe

l E
rr

or

Forest 2M

Town

Figure 9: Error vs. Threshold. The average pixel error for a walk
through as a function of threshold. It should be noted that a higher
threshold necessarily implies that a subset of the samples of a lower
threshold are utilised, thereby making any error/threshold graph
monotone. This allows only a few samples to depict the trend.

We show how error is affected by error thresholding. The
forest scene is particularly sensitive to this threshold, as de-
picted in the graph of Figure 9, while the town scene is not.
The reason for this disparity is that the forest allows for grad-
ual changes in visibility as a view sample moves through
a region. In contrast, the town scene can have a very large
change in visibility from one nearby view sample to another
(e.g., if an adjacent view sample crosses a wall). This large
change in visibility will force any reasonable threshold to
continue subdividing, thus resulting in the constant, low im-
age error shown in the figure.

0

10

20

30

0 0.25 0.5 0.75 1

Threshold

A
vg

. C
on

ne
ct

ed
 R

eg
io

n
Pi

xe
l A

re
a

Forest2M
Town

Figure 10: Average Connected Region vs. Threshold. The aver-
age size of the connected error regions (in pixels) for a walk through
as a function of threshold.

0

100

200

300

0 0.25 0.5 0.75 1
Threshold

M
ax

. C
on

ne
ct

ed
 R

eg
io

n

Forest2M
Town

Figure 11: Maximum Connected Region vs. Threshold. The
largest connected error region (in pixels) for a walk through as a
function of threshold.

Similarly, we show how the threshold relates to the aver-
age size of the connected regions in Figure 10, and the maxi-
mum size of the connected regions in Figure 11. Despite the
fact that the average error is lower, the town scene results in
a larger average connected region error, since when an er-
ror does occur, it tends to be larger, because the town scene
contains larger triangles than the forest. The maximum con-
nected region error is larger for the forest scene, although
this is because several viewpoints of the test path contain
clusters of sub-pixel size polygons. Such regions are usually
perceived as noise and polygon omissions here do not impact
significantly on image quality.

8. Conclusion

We have presented an novel aggressive visibility algorithm
that efficiently preprocesses difficult scenes at the cost of
possible image error. The algorithm exploits graphics hard-
ware for increased performance.

Adaptive sampling is used to obtain the set of visible ge-
ometry. An efficient scheme is used to share samples be-
tween cells and to minimise their memory resident lifespan.
We have developed an efficient heuristic to guide the sam-
pling process with the goal of minimizing error.

Results show this technique to be nearly three orders of
magnitude faster than exact techniques, while still not suffer-
ing from the large overestimation exhibited by conservative
techniques. Also, we show that this technique can be used to
preprocess highly complex scenes effectively. Image error is

c© The Eurographics Association 2004.

S Nirenstein & E Blake / Visibility Preprocessing with Adaptive Sampling

minimal resulting in images that are more than sufficient for
most applications.

Acknowledgements – We would like to thank James Gain
for his input, and for building the town model. We would
also like to thank the NRF for supporting this research.

References

[ARJ90] AIREY J. M., ROHLF J. H., JR. F. P. B.: Towards
image realism with interactive update rates in com-
plex virtual building environments. 1990 Symposium
on Interactive 3D Graphics 24, 2 (1990), 41–50. 2

[ASVNB00] ANDÚJAR C., SAONA-VÁZQUEZ C., NAVAZO I.,
BRUNET P.: Integrating occlusion culling and lev-
els of detail through hardly-visible sets. Computer
Graphics Forum 19, 3 (August 2000), 499–506. 3

[Bit02] BITTNER J.: Hierarchical Techniques for Visibility
Computations. PhD thesis, Czech Technical Univer-
sity in Prague, October 2002. 1, 2

[BMH98] BARTZ D., MEISSNER M., HÜTTNER T.: Ex-
tending graphics hardware for occlusion queries in
opengl. 1998 SIGGRAPH / Eurographics Workshop
on Graphics Hardware (1998), 97–104. Portugal. 3

[BWW01] BITTNER J., WONKA P., WIMMER M.: Visibility
preprocessing for urban scenes using line space subdi-
vision. In 9th Pacific Conference on Computer Graph-
ics and Applications (2001), IEEE, pp. 276–284. 2

[CG85] COHEN M. F., GREENBERG D. P.: The hemi-cube:
A radiosity solution for complex environments. Com-
puter Graphics (Proceedings of SIGGRAPH 85) 19, 3
(August 1985), 31–40. San Francisco, California. 2

[COCSD03] COHEN-OR D., CHRYSANTHOU Y., SILVA C. T.,
DURAND F.: A survey of visibility for walkthrough
applications. IEEE TVCG 9, 3 (2003), 412–431. 1, 2

[COFHZ98] COHEN-OR D., FIBICH G., HALPERIN D., ZADI-
CARIO E.: Conservative visibility and strong occlu-
sion for viewspace partitioning of densely occluded
scenes. Computer Graphics Forum 17, 3 (1998), 243–
254. 2, 5

[Coo86] COOK R. L.: Stochastic sampling in computer graph-
ics. ACM Transactions on Graphics (TOG) 5, 1
(1986), 51–72. 9

[DDTP00] DURAND F., DRETTAKIS G., THOLLOT J., PUECH

C.: Conservative visibility preprocessing using ex-
tended projections. Proceedings of SIGGRAPH 2000
(July 2000), 239–248. 2, 5

[Dur99] DURAND F.: 3D Visibility, analysis and appli-
cations. PhD thesis, U. Joseph Fourier, 1999.
http://graphics.lcs.mit.edu/˜ fredo. 6, 7, 8

[GSF99] GOTSMAN C., SUDARSKY O., FAYMAN J. A.: Opti-
mized occlusion culling using five-dimensional subdi-
vision. Computers & Graphics 23, 5 (1999), 645–654.
2

[GSYM03] GOVINDARAJU N. K., SUD A., YOON S.-E.,
MANOCHA D.: Interactive visibility culling in com-
plex environments using occlusion-switches. In Pro-
ceedings of the 2003 symposium on Interactive 3D
graphics (2003), ACM Press, pp. 103–112. 6

[HA00] HOLZSCHUCH N., ALONSO L.: Using graphics hard-
ware to speed-up visibility queries. Journal of Graph-
ics Tools 5, 2 (2000), 33–47. 2

[Int03] INTEL: Intel developer network
for pci express architecture, 2003.
www.intel.com/technology/pciexpress/devnet. 6

[KCCO01] KOLTUN V., CHRYSANTHOU Y., COHEN-OR D.:
Hardware-accelerated from-region visibility using a
dual ray space. In Rendering Techniques 2001: 12th
Eurographics Workshop on Rendering (June 2001),
Eurographics, pp. 205–216. 2

[KS99] KLOSOWSKI J. T., SILVA C. T.: Rendering on a bud-
get: A framework for time-critical rendering. IEEE
Visualization ’99 (October 1999), 115–122. 5

[LSCO03] LEYVAND T., SORKINE O., COHEN-OR D.: Ray
space factorization for from-region visibility. ACM
Transactions on Graphics 22, 3 (2003), 595–604. 2

[NBG02] NIRENSTEIN S., BLAKE E., GAIN J.: Exact from-
region visibility culling. In Proceedings of the 13th
workshop on Rendering (June 2002), Eurographics
Association, pp. 191–202. 1, 2, 6, 7

[Nir03] NIRENSTEIN S.: Fast and Accurate Visibility Prepro-
cessing. PhD thesis, University of Cape Town, Octo-
ber 2003. 2

[Pla92] PLANTINGA H.: An algorithm for finding the wealky
visible faces from a polygon in 3d. In Fourth Cana-
dian Conference on Computational Geometry (1992),
pp. 45–51. 3

[SDDS00] SCHAUFLER G., DORSEY J., DECORET X., SIL-
LION F. X.: Conservative volumetric visibility with
occluder fusion. Proceedings of SIGGRAPH 2000
(July 2000), 229–238. 2

[SLCO∗04] SAYER E., LERNER A., COHEN-OR D., CHRYSAN-
THOU Y., DEUSSEN O.: Aggressive visibility for
rendering extremely complex plant ecosystems, 2004.
http://www.cs.tau.ac.il/˜ alan/aggressive.htm. 2

[SVNB99] SAONA-VÁSQUEZ C., NAVAZO I., BRUNET P.: The
visibility octree: a data structure for 3d navigation.
Computers & Graphics 23, 5 (October 1999), 635–
643. 2, 5

[TS91] TELLER S. J., SÉQUIN C. H.: Visibility preprocess-
ing for interactive walkthroughs. Computer Graphics
(Proceedings of SIGGRAPH 91) 25, 4 (1991), 61–69.
2

[vdPS99] VAN DE PANNE M., STEWART J.: Efficient com-
pression techniques for precomputed visibility. Eu-
rographics Rendering Workshop 1999 (June 1999).
Granada, Spain. 2, 5

[WM03] WILSON A., MANOCHA D.: Simplifying com-
plex environments using incremental textured depth
meshes. ACM Trans. Graph. 22, 3 (2003), 678–688.
2

[WWS00] WONKA P., WIMMER M., SCHMALSTIEG D.: Vis-
ibility preprocessing with occluder fusion for urban
walkthroughs. 11th Eurographics Workshop on Ren-
dering (June 2000), 71–82. 2, 6

[Zha98] ZHANG H.: Effective Occlusion Culling for the Inter-
active Display of Arbitrary Models. PhD thesis, UNC
at Chapel Hill, 1998. 3

[ZMHI97] ZHANG H., MANOCHA D., HUDSON T., III K.
E. H.: Visibility culling using hierarchical occlusion
maps. Proceedings of SIGGRAPH 97 (August 1997),
77–88. 6

c© The Eurographics Association 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

