
A WEB BROWSING WORKLOAD MODEL FOR
SIMULATION

a dissertation

submitted to the department of computer science,

faculty of science

at the university of cape town

in fulfillment of the requirements

for the degree of

master of science

By

Lourens O. Walters

May 2004

Supervised by

Prof. Pieter S. Kritzinger

c© Copyright 2004

by

Lourens O. Walters

ii

Abstract

The simulation of packet switched networks depends on accurate web workload models as input

for network models. We derived a workload model for traffic generated by an individual browsing

the web. We derived the workload model by studying packet traces of web traffic generated by

individuals browsing the web on a campus network.

We attempted to model aggregate traffic generated by many web users browsing the web on a

campus network, by decomposing the traffic into its constituent elements i.e. traffic generated by

individual users. We furthermore identified elements within the traffic generated by individual users

which contributed to the characteristics of the aggregate traffic stream. We identified parameters

which were not directly influenced by network specific characteristics such as latency and throughput,

in order to ensure that our model was as general as possible.

We found that web traffic was extremely complex. The dynamic behaviour of client and server

side scripts introduced dependencies in the data. Our model was more detailed than any existing web

workload model at the time the study was conducted, but did not take into account the behaviour

of web client and server scripts. There is room for improvement in our model here.

We tried to break down aggregate web traffic into parts which contain observations which were

independent from each other. An analysis of autocorrelation between observations within parameter

datasets showed that dependencies exist between observations in most of the parameter datasets.

The dynamic behaviour of scripts might explain some of the dependencies in the parameter datasets.

We implemented a measurement system which measured data on a campus network by extracting

selected information from IP, TCP and HTTP message headers. The system extracted parameter

datasets for our workload model from the captured data. The approach of capturing selected infor-

mation from TCP/IP packets transmitted between web clients and servers as opposed to capturing

all the data transmitted, avoided the problem of extremely large amounts of data accumulating over

small periods of time. Capturing all the data transmitted between web clients and servers required

large amounts of storage space and processing power which were not available to us. By using

our measurement system, we were able to record data for a 30 day period, capturing web traffic

generated by 6 692 hosts on a campus network.

The measurement system could extract parameter datasets in real-time, or write selected data

to secondary storage in order to extract parameter datasets off-line. The real-time version of the

measurement system could not extract parameter datasets during peak traffic hours. We used the

iii

off-line version of the measurement system to obtain parameter datasets for the study. We believe

that with certain optimisations the real-time system would be able to extract parameter datasets in

real-time.

We extracted parameter datasets from data recorded to secondary storage by the measurement

system. We used the packet trace method to record data to secondary storage. Because of the

nature of the packet trace method of measurement we did not have sufficient information in the

recorded data to extract parameter datasets.

We used a heuristic algorithm to extract parameter datasets from the incomplete data. The

heuristic algorithm was novel as it used information from TCP, IP and HTTP package headers to

recontruct a user’s browsing behaviour. This had not been done before. The algorithm used a list of

characteristics of web client requests which we compiled by studying packet traces of traffic generated

by web users. The algorithm inferred user behaviour from the list of web client request character-

istics. By using the algorithm we were able to extract parameter datasets from the incomplete

measured data.

We analysed the extracted parameter datasets by using visual techniques and goodness-of-fit

measures. We tested several families of mathematical functions in order to find a function which fits

the model parameter data well. The parameter datasets were very large. They typically contained

millions of entries. The commercial statistical analysis packages we had at our disposal could not

analyse datasets with millions of entries. We overcame the problem posed by the size of the datasets

by implementing our analysis routines in the R statistical analysis environment. The R statistical

analysis environment is a freely available open source software package. We implemented the An-

derson Darling and λ2 goodness-of-fit statistics in the R statistical analysis environment for eight

mathematical families of functions. We also implemented the Q-Q and P-P plots in order to visually

analyse the data.

We found that the Anderson Darling statistic could not be used to analyse large datasets. The

Anderson Darling statistic did not have p-value tables for datasets with more than 200 observations.

We used the λ2 statistic as an indicator of goodness-of-fit. The λ2 statistic indicated that there was

evidence against a perfect fit between parameter datasets and any of the eight mathematical function

families we tested for. At least one mathematical function did fit each dataset very well, albeit not

perfectly well. The visual evidence provided by Q-Q and P-P plots corroborated this finding. We

tabulated the data for each of the parameter datasets. Random values could be generated from the

tabulated values.

iv

Acknowledgements

I would like to express my thanks to:

• Betti, for loving me.

• My family: Christi, Laubi, Cristina, Fernando, Thys, Laubscher and Oumie, for putting up

with me.

• Prof. Pieter Kritzinger, for your help and support. Your incredible work ethic and pursuit

of excellence kept me on my toes. Thank you for supporting me on the long road to the

completion of this work.

• Dirk Staehle, Kenji Leibnitz and Prof. Tran-Gia, for receiving me so warmly in Würzburg and

for providing me with the idea that developed into this dissertation.

• Ridwaan, Rifaat, Michael, Daniel and Coenrad, for helping me set up the data measurement

system on the university’s backbone network.

• Ian, Elton, Mike, Farrel, Marc, Andy, Mwelwa, Simon, Nico, Ben, Oksana, Jesse, Andrew,

Justin and Jo, for the stimulating friendship that you provided me with during my time in the

DNA Group.

• Sam and Matthew, for keeping the computers and network running smoothly in the lab.

• Jeffrey September, for lending me a machine to use for the data measurements.

• Prof. Tim Dunne, Allan Clark and Dr Markus Siegle, for lending your ears and providing

advice on statistics.

• Prof. Paul Barford, for your friendly help via email on the implementation of the Anderson

Darling and λ2 statistics in the S-Plus language, and the usefulness of the Anderson Darling

statistic in general.

• Prof. Mark Crovella, for your friendly help via email and Perl code for the Hill estimator.

Thanks also for your help with the “scaling estimator” and the aest program.

v

• Prof. Sidney Resnick, for your friendly help via email on the analysis of heavy tailed tailed

distributions. Thanks also for the lecture notes and advice on how to use the Hill estimator

in the S-Plus environment.

• Dr Vern Paxson and Prof. Anja Feldmann, for your friendly help via email on the use of the

BLT tool for data measurements.

vi

Contents

1 Introduction 7

1.1 Motivation and Objectives . 9

1.2 Related Work . 10

1.2.1 Mah Workload Model . 10

1.2.2 Choi et al. Workload Model . 12

1.3 Concluding Remarks . 14

2 Web Browsing Workload Model 19

2.1 Introduction . 19

2.2 Purpose of Model . 19

2.3 Parameter Choice . 20

2.4 Web Traffic Packet Traces . 21

2.4.1 Inter-arrival Times . 21

2.4.2 Resource Sizes . 23

2.4.3 Number of Requests . 24

2.5 Ns Web Workload Model . 25

2.6 Model Definition . 27

2.7 Concluding Remarks . 29

3 Data Measurement 31

3.1 Introduction . 31

3.2 Previous HTTP Measurements . 31

3.3 Packet Traces . 33

3.4 Real-Time Processing of Packet Traces . 33

3.4.1 Parameter Dataset Extraction . 36

3.5 Off-line Processing of Packet Traces . 41

3.6 Measurement Strategy . 42

3.7 Information Extracted from HTTP, TCP and IP Packets 43

3.7.1 Measurement File Format . 45

3.8 Data Measurement . 49

vii

3.9 Concluding Remarks . 49

4 Data Processing 51

4.1 Introduction . 51

4.2 Splitting of Measurement File . 52

4.3 Extraction of Parameter Datasets . 53

4.3.1 Extraction Problems . 53

4.4 The HTTP Request/Response Matching Problem . 54

4.5 Web User vs. Web Client Request Differentiation Problem 56

4.5.1 Categorisation of HTTP Requests . 57

4.5.2 Web Client Request Characteristic List . 57

4.5.3 Characteristic Group No. 1 . 58

4.5.4 Characteristic Group No. 2 . 59

4.5.5 Characteristic Group No. 3 . 61

4.5.6 Characteristic Group No. 4 . 61

4.6 The Web Client Request Matching Problem . 62

4.7 Removal of Unrepresentative Data . 63

4.7.1 Removal of Unrepresentative Data from Host Datasets 63

4.7.2 Removal of Unrepresentative Host Datasets 64

4.8 Concluding Remarks . 65

5 Statistical Methodology 67

5.1 Introduction . 67

5.2 Analytic Distributions . 68

5.3 Correlation and Autocorrelation . 71

5.4 Visual Techniques . 72

5.5 Statistical Techniques . 73

5.5.1 Anderson Darling Statistic . 73

5.5.2 Lambda Discrepancy Statistic . 74

5.6 Heavy Tailed Distributions . 77

5.7 Concluding Remarks . 78

6 Workload Model Parameters 80

6.1 Introduction . 80

6.2 Independence of Observations . 80

6.3 Previous Work . 82

6.3.1 Distributions of Model Parameters . 83

6.4 Browsing Inter-Session Time . 86

6.5 Number of Web User Requests per Browsing Session 90

6.6 Number of Web Client Requests per Web User Request 94

viii

6.7 Web User Request Inter-arrival Time . 98

6.8 Web Client Request Inter-arrival Time . 102

6.9 Web User Request Size . 106

6.10 Web Client Request Size . 108

6.11 Web User Response Size . 113

6.12 Web Client Response Size . 118

6.13 Data Variability Analysis . 122

6.14 Results Summary . 123

6.15 Concluding Remarks . 127

7 Findings and Future Work 129

7.1 Findings . 129

7.2 Future Work . 131

7.2.1 Implementation of Traffic Model . 135

7.2.2 Extension of Real-time Measurement System 136

A Measurement File Extract 137

B Implementation of Heuristic Algorithm 140

C R Code 143

C.1 Visual Techniques . 143

C.1.1 Log Empirical Complementary Cumulative Distribution Function Plot 143

C.1.2 P-P and Q-Q Plots for Selected Distributions 144

C.2 Goodness-of-fit Techniques . 144

C.2.1 Lambda Discrepancy Measure . 144

C.2.2 Anderson Darling Test . 144

D Concepts 155

D.1 Stationarity . 155

D.2 Second-Order Stationarity . 155

D.3 Short Range Dependence . 156

D.4 Long Range Dependence . 156

E Analytic Traffic Models 158

E.1 Renewal Traffic Processes . 158

E.1.1 Poisson Process . 159

E.1.2 Bernoulli Process . 159

E.1.3 Phase-type Renewal Processes . 159

E.2 Markov and Semi-Markov Models . 159

E.2.1 Semi-Markov Models . 160

ix

E.2.2 Markov Modulated Models . 160

E.2.3 Markov Modulated Poisson Process . 160

E.2.4 Markov Modulated Bernoulli Process . 160

E.3 Fluid Traffic Models . 161

E.4 Autoregressive-Type Traffic Models . 161

E.4.1 Linear Autoregressive (AR) Processes . 161

E.4.2 Moving Average (MA) Processes . 161

E.4.3 Autoregressive Moving Average (ARMA) Processes 161

E.4.4 Autoregressive Integrated Moving Average (ARMA) processes 162

Bibliography 162

x

List of Figures

1 Web Workload Model Developed by Choi et al. 12

2 State Transition Diagram of Traffic Generation by Workload Model of Choi et al. . . 13

3 Inter-arrival Time Differences between Web User Requests and Web Client Requests 22

4 A Dumbbell Network Topology in a ns Simulation Environment 26

5 Traffic Generated by Web Workload Model in ns Network Simulator 27

6 Web Browsing Traffic Generated by the Bidirectional, Layered Workload Model De-

veloped by Us . 28

7 TCP/IP Packet Processing by the Linux Socket Filter 34

8 Real Time Processing of Captured Information by Measurement System 37

9 Overview of the Filtering, Parsing and Processing of HTTP Messages by the Mea-

surement Tool in Real-Time . 38

10 Multi-Dimensional Array used by Measurement Tool for Keeping Track of GET re-

quests on TCP ports . 40

11 Mapping used by Measurement Tool to Map a TCP Port to an Array Index 41

12 Deployment of Measurement Tool on Campus Network 43

13 Regular Expressions used by Measurement Tool to Parse HTTP Message Headers and

to Extract Selected Information . 44

14 Examples of the Three Different Types of Measurement File Entries Recorded in

Space Delimited Text Format . 46

15 Command Used to Sort Measurement Datafile . 52

16 Command line Parameters to Enable 64 bit File-pointers for gcc 52

17 Measurement Setup and Resultant Shortcomings of Measured Data 53

18 HTTP Request and Response Matching on a TCP Connection by Using a Queue

Data Structure . 55

19 HTTP Request File Extensions for HTML and GRAPHICS Categories 57

20 Content-Type field of an HTML response . 61

21 Advertising Content URLs or part thereof . 62

1

2 LIST OF FIGURES

22 File Extensions Associated with Web Download Requests 64

23 Blacklisted URLs or Parts of URLs . 64

24 Best-Fit Distributions Plotted against a Histogram of Browsing Inter-Session Time

Data . 88

25 Weibull and Lognormal Plots for Browsing Inter-Session Time Parameter 89

26 Best-Fit Distributions Plotted against a Histogram of Number of Web User Requests

per Browsing Session Data . 92

27 Pareto and Lognormal Plots for Number of Web User Requests per Browsing Session

Parameter . 93

28 Best-Fit Distributions Plotted against a Histogram of Number of Web Client Requests

per Web User Request Data . 96

29 Pareto and lognormal Plots for Number of Web Client Requests per Web User

Request Parameter . 97

30 Best-Fit Distributions Plotted against a Histogram of Web User Request Inter-arrival

Time Data . 100

31 Weibull and Gamma Plots for Web User Request Inter-arrival Time Parameter 101

32 Best-Fit Distributions Plotted against a Histogram of Web Client Request Inter-arrival

Time Data . 104

33 Weibull and lognormal Plots for Web Client Request Inter-arrival Time Param-

eter . 105

34 Best-Fit Distributions Plotted against a Histogram of Web User Request Size Data 108

35 Extreme and Lognormal Plots for Web User Request Size Parameter 109

36 Best-Fit Distributions Plotted against a Histogram of Web Client Request Size Data111

37 Extreme Value and Lognormal Plots for Web Client Request Size Parameter . . . 112

38 Histogram of Cached Web User Response Size Data 114

39 Best-Fit Distributions Plotted against a Histogram of Non-cached Web User Response

Size Data . 116

40 Weibull and Gamma Plots for Non-cached Web User Response Size Parameter . . 117

41 Histogram of Cached Web Client Response Size Data 118

42 Best-Fit Distributions Plotted against a Histogram of Non-cached Web Client Response

Size Data . 120

43 Lognormal Plots for Non-cached Web Client Response Size Parameter 121

44 Selected Fields Taken from Measurement File for a Web User Request and Subsequent

Web Client Requests - 1 . 137

45 Selected Fields Taken from Measurement File for Web User Request and Subsequent

Web Client Requests - 2 . 138

46 Selected Fields Taken from Measurement File for Web User Request and Subsequent

Web Client Requests - 3 . 139

LIST OF FIGURES 3

47 Implementation of Heuristic Algorithm - Group No. 1 Characteristics 140

48 Implementation of Heuristic Algorithm - Group No. 1 Characteristics 141

49 Implementation of Heuristic Algorithm - Group No. 2 Characteristics 141

50 Implementation of Heuristic Algorithm - Group No. 3 Characteristics 142

51 P-P and Q-Q Plot Code - 1 . 145

52 P-P and Q-Q Plot Code - 2 . 146

53 Lambda Discrepancy Measure - Code 1 . 147

54 Lambda Discrepancy Measure - Code 2 . 148

55 Lambda Discrepancy Measure - Code 3 . 149

56 Lambda Discrepancy Measure - Code 4 . 150

57 Lambda Discrepancy Measure - Code 5 . 151

58 Anderson Darling Test - Code 1 . 152

59 Anderson Darling Test - Code 2 . 153

60 Anderson Darling Test - Code 3 . 154

List of Tables

1 Parameters Modelled by Workload Model Developed by Mah 11

2 Parameters Modelled by Workload Model Developed by Choi et al. 13

3 Parameters Modelled by Web Browsing Workload Model Developed by Us 29

4 Data Extracted from IP, TCP and HTTP Headers by Measurement Tool 35

5 Fields Contained in an HTTP Request Message Entry 46

6 Fields Contained in an HTTP Response Message Entry 47

7 Fields Contained in a SYN, FIN and RST Message Entry 48

8 Details of Data Measurement on Campus Network 49

9 Web Client Request Characteristics - 1 . 58

10 Web Client Request Characteristics - 2 . 59

11 Web Client Request Characteristics - 3 . 61

12 Web Client Request Characteristics - 4 . 62

13 Distribution Parameters and General Density Function for Distribution Families Used

in the Study . 69

14 Cumulative Distribution Function and Mean for Distribution Families Used in the

Study . 69

15 Maximum Likelihood Estimator for Distribution Families Used in the Study 70

16 Autocorrelation function at lag 1 (γ(1)) for the 11 parameter datasets 81

17 Mathematical Functions Found for Model Parameters in Previous Studies - 1 83

18 Mathematical Functions Found for Model Parameters in Previous Studies - 2 84

19 Mathematical Functions Found for Model Parameters in Previous Studies - 3 84

20 Summary Statistics for Browsing Inter-Session Time Parameter Dataset 86

21 Lambda Discrepancy Test Results for Web Browsing Inter-Session Data over the

Interval of (1, 465) Minutes . 87

22 Regression Statistics for Weibull and Gamma Q-Q Plots 90

4

LIST OF TABLES 5

23 Summary Statistics for Number of Web User Requests per Browsing SessionPa-

rameter Dataset . 90

24 Lambda Discrepancy Test Results for Number for Web User Requests per Browsing

Session Data over the Interval of (1, 99) Minutes . 91

25 Regression Statistics for Pareto and Lognormal Q-Q Plots 92

26 Summary Statistics for Number of Web Client Requests per Web User Request

Parameter Dataset . 94

27 Lambda Discrepancy Test Results for Number of Web Client Requests per Web

User Request Data over the interval (1, 200) . 95

28 Regression Statistics for Lognormal and Pareto Q-Q Plots 96

29 Summary Statistics for Web User Request Inter-arrival Time Parameter Dataset 98

30 Lambda Discrepancy Test Results for Web User Request Inter-arrival Time Data

over the interval (1, 900) . 99

31 Regression Statistics for Weibull and Gamma Q-Q Plots 100

32 Summary Statistics for Web Client Request Inter-arrival Time Parameter Dataset102

33 Lambda Discrepancy Test Results for Web Client Request Inter-arrival Time

Data over the Interval (1, 299899922) . 103

34 Regression Statistics for Lognormal and Weibull Q-Q Plots 104

35 Summary Statistics for Web User Request Size Parameter Dataset 106

36 Lambda Discrepancy Test Results for Web User Request Size Data over the Interval

(1, 1410) . 107

37 Regression Statistics for Lognormal and Extreme Q-Q Plots 108

38 Summary Statistics for Web Client Request Size Parameter Dataset 110

39 Lambda Discrepancy Test Results for Web Client Request Size Data over the In-

terval (1, 1410) . 110

40 Regression Statistics for Extreme and Lognormal Q-Q Plots 113

41 Summary Statistics for Non-cached Web User Response Size Parameter Dataset . 114

42 Lambda Discrepancy Test Results for Non-cached Web User Response Size Data

over the Interval (1, 59818) . 115

43 Regression Statistics for Weibull and Gamma Q-Q Plots 116

44 Summary Statistics for Non-cached Web Client Response Size Parameter Dataset 119

45 Lambda Discrepancy Test Results for Non-cached Web Client Response Size Data

over the Interval (1, 999438) . 120

46 Regression Statistic for Lognormal Q-Q Plot . 122

47 Metrics of Variability Applied to the Nine Model Parameter Datasets 123

48 Best-fit Distributions and their Parameters for the Eleven Model Parameters - 1 . . 124

49 Best-fit Distributions and their Parameters for the Eleven Model Parameters - 2 . . 125

50 Mean and Standard Deviation of Nine Model Parameter Datasets 127

51 Summarised Empirical Distribution Function for Parameter Datasets - 1 132

6 LIST OF TABLES

52 Summarised Empirical Distribution Function for Parameter Datasets - 2 133

53 Summarised Empirical Distribution Function for Parameter Datasets - 3 134

Chapter 1

Introduction

Structural modelling is an approach to network traffic modelling which takes into account under-

lying characteristics of traffic streams. For example, using this approach Internet traffic can be sep-

arated according to source-destination, application or user specific traffic. Source-destination

specific traffic is traffic transmitted between pairs of hosts on a network, application traffic is traffic

generated by different applications used on a network, and user specific traffic is traffic generated

by different users on a network. The structural approach to network traffic modelling is based

on the principle that network traffic separated into component parts according to some criteria,

affords a more accurate traffic model than a model derived from the aggregate network traffic. This

approach contrasts the black box approach to modelling which analyses aggregate traffic as a mono-

lithic body of data. By modelling component traffic streams it is often possible to shed light

on characteristics of aggregate traffic streams e.g. Willinger et al. [WPT98] found a strong connec-

tion between self-similarity of aggregate network traffic and the occurrence of heavy-tailed, infinite

variance distributions within individual source-destination network connections.

An example of the structural modelling of application specific traffic is that of the work

by Paxson and Floyd [PF95, Pax94]. They modelled Internet traffic as generated by individual

Internet applications in order to ascertain whether the common model of teletraffic arrivals, the

Poisson process, was an appropriate model for data networks. The work was done during 1994 and

1995 and covered Internet applications that were predominantly used at the time: TELNET, NNTP,

FTP and SMTP. The results showed that many aspects of Internet application data e.g TELNET packet

inter-arrivals and FTP data connection arrivals were bursty over many time scales, and that the

assumption of Poisson arrivals for these processes was not appropriate.

We employed the structural approach to modelling data traffic to define a detailed characteri-

sation of web traffic generated by a single host on a campus network. Our characterisation of web

traffic can be described as detailed because it takes into account nuances in web traffic patterns

generated by users. An example of such a nuance is the difference in file size between textual HTML

files downloaded from a server, and the file sizes of a series of graphical files downloaded after an

HTML file has been downloaded and parsed by a web browser. Another example of such a nuance is

7

8 CHAPTER 1. INTRODUCTION

the difference in the size of inter-arrival times between requests for graphics files contained in a web

document, and the size of inter-arrival times between HTML files contained in a web document.

One might ask why a detailed web traffic model is necessary, or why modelling nuances in web

traffic patterns is important? Surely modelling numerous small request packets following closely

after one another is not important when by far the largest percentage of web traffic consists of

much larger response packets? One reason for modelling nuances in web traffic patterns is that the

resultant model is a more accurate characterisation of web traffic than one which ignores nuances in

the traffic patterns. It is a difficult task to accurately model a network channel with traffic generated

by many web users. If an accurate traffic model for a single web user can be constructed, aggregate

traffic can be generated by aggregating the traffic generated by many of these single traffic sources.

Another compelling reason for modelling nuances in web traffic patterns is that nuances in

web traffic patterns have a large impact on the behaviour of network protocols. For example the

interaction of the TCP and the HTTP, and in particular the slow start mechanism of the TCP, has a

considerable influence on the performance of the HTTP [HOT97]. The TCP is fundamentally a bulk

transfer protocol and is poorly suited to frequent, short, request-response-style traffic such as that

of HTTP traffic. Short connections, such as those required to transmit small HTTP request packets

interact poorly with the TCP’s slow start congestion avoidance algorithm which causes increased

latency for web users [HOT97]. A detailed web traffic model includes the transmission of small

HTTP request packets. Using a detailed model in simulations would account for the interaction

between the TCP and the HTTP.

Several recent simulation studies have taken these facts into consideration by using detailed web

traffic, TCP and radio interface models e.g. Staehle et al. [SLT01] used simulation to show that the

QoS of Internet Access with GPRS in its first phase is comparable to that of a modem with a speed

of 32kbps, for medium traffic loads. Using a bidirectional web traffic model Kalden et al. [KMM00]

showed that GPRS provides bandwidth-efficient support for bursty applications such as web access.

The detailed web traffic model we derived consists of eleven parameters. Each of the parame-

ters was modelled by a function of a specified mathematical family. The mathematical family and

model constants of the parameters were derived from empirical data by means of goodness-of-fit

and maximum likelihood techniques. The empirical data were obtained by means of measurements

taken on a campus network.

At this point we would like to clarify the usage of the terms parameter and model constant

in this dissertation. We refer to an observable (countable or measurable) feature of web traffic that

is used within our web traffic model as a parameter of the web traffic model. This is in keeping

with the usage of this term in the computer science and engineering fields. The term parameter is

however also used in the statistical science field to describe a numerical constant that is unknown

but whose estimation from data will in some sense characterise the data, given a particular class of

mathematical models for the data. We need to describe these numerical constants in this work, and

decided to refer to them as model constants instead of parameters, seeing as we already use the

term “parameter” in its computer science related sense.

1.1. MOTIVATION AND OBJECTIVES 9

1.1 Motivation and Objectives

The work by D. Staehle, K. Leibnitz and P. Tran-Gia [SLTG99], surveyed common models of web

traffic for simulation purposes. A web traffic model composed of parameters taken from various

studies was proposed in this work, and used in a simulation study [SLT01]. The model suffered from

the drawback that it was composed of parts taken from different studies conducted under different

conditions. The studies were conducted over a period ranging between 1997 and 2000, and used

different approaches to measuring and characterising web traffic.

It might be argued that web traffic models such as the one used by Staehle et al., which were

composed of various parameters taken from other studies, provide a reasonable approximation to

real web traffic. Without studies to validate these models, the accuracy of these web traffic models

is questionable.

In order for a web traffic model to be accurate, it has to be based on recent measurements taken

under conditions similar to those being simulated. The web traffic model should be validated against

data measured under the same conditions as those that the data the model was derived from was

captured.

The objectives of our research were the following:

• Identify parameters to be used in a detailed web workload traffic model.

• Obtain data to analyse.

– Implement a tool which captures web traffic generated by hosts i.e. individual ma-

chines, on a campus network.

– Implement a tool which processes data recorded during measurement, extracting datasets

for model parameters.

• Identify statistical distributions which best fit the data contained in parameter datasets.

– Develop a methodology for analysing parameter datasets, overcoming issues such as the

very large size of parameter datasets. Many of the datasets contained several million

observations.

– Implement statistical functions to be used in analysis in a suitable programming lan-

guage. We had to implement the statistical functions ourselves as many of the functions

we used in our analysis were not available in “off-the-shelf” statistical analysis packages

or “off-the-shelf” packages could not process datasets containing millions of observations.

– Analyse parameter datasets.

• Develop methodology for validating web traffic model. The actual validation of the web traffic

model will be part of a future project.

The ultimate goal of our work was to develop a parameterised web workload model for

simulation purposes.

10 CHAPTER 1. INTRODUCTION

1.2 Related Work

During the latter half of the 1990’s, World Wide Web traffic dominated the Internet and became the

main focus of traffic modelling. Work on traffic modelling started to take into consideration the self-

similar nature of network traffic soon after the publication of the seminal paper on the self-similarity

of Ethernet traffic by Leland et al. [LTWW93].

Crovella et al. [CB96] showed that web traffic is self-similar, and that the self-similarity is in

all likelihood attributable to the heavy-tailed distributions of transmission times of documents and

silent times between document requests.

The data traces used in the Crovella study were recorded by Cunha et al. [CBC95]. These traces

served as the basis of the workload generator SURGE developed by Barford et al. [BC98b]. The

objective of the SURGE workload generator was to generate traffic representative of that found on

the World Wide Web, in order to exercise web servers and networks. SURGE generated web traffic

equivalent to a set of real users accessing a web server.

Taqqu et al. [TWS97] proved that aggregate World Wide Web traffic as found on Internet links

can be modelled by super-positioning many ON/OFF traffic sources where the ON and OFF periods

were drawn from heavy tailed distributions. This method afforded the generation of traffic traces

for simulation in linear time. Traffic generated by one of the ON/OFF traffic sources in the above-

mentioned model was representative of a single web user [LTWW93].

Deng [Den96] proposed an ON/OFF traffic model to be used for the simulation of traffic generated

by an individual browsing the web. He derived distributions for the parameters of the model by

means of analysing datasets measured on a corporate network. He used probability plots to gauge

the goodness-of-fit of analytic distributions to the datasets. The model had the advantage of being

simple and of generating self-similar traffic due to the heavy tailed nature of the ON and OFF

distributions.

The work by Mah [Mah97] and Choi et al. [CL99] on web traffic models for simulation purposes

was of particular relevance to us as they proposed detailed web traffic models. Section 1.2.1 and

Section 1.2.2 discuss these models.

1.2.1 Mah Workload Model

Mah [Mah97] developed an empirical model of web traffic. The parameters modelled were repre-

sented by their empirical cumulative distribution functions (as opposed to distribution functions of a

specified mathematical family). The Inverse Transformation Method was applied to these functions

in order to generate the relevant random numbers. Traffic from the web client to the web server

(requests) as well as traffic in the opposite direction (responses) were modelled i.e. bidirectional

traffic.

Table 1 shows the parameters modelled by Mah. The parameters were listed in the order they

occurred within the model. We used the word user to refer to a web user (person) making requests

by using a web client (browser software).

1.2. RELATED WORK 11

User Request Size
Web Client Request Size

User Response Size
Web Client Response Size

Number of Web Client Requests
Think Time

Consecutive Document Retrievals per Server
Server Popularity

Table 1: Parameters Modelled by Workload Model Developed by Mah

During a simulation traffic is generated according to Mah’s model as follows:

1. A web server is selected according to the Server Popularity table (Table reporting relative

popularity of servers).

2. A period of length equal to the Think Time parameter elapses.

3. A user clicks on a web page generating a request of size equal to the User Request Size

parameter, which is sent to the web server.

4. The web server receives the request, and responds with a document of size equal to the User

Response Size parameter.

5. The web client receives the response, and responds by generating a number of requests equal

to the Number of Web Client Requests parameter, each of size equal to the Web Client

Request Size parameter.

6. The web server receives each of the requests, and responds with a document of size equal to

the Web Client Response Size parameter, for each request.

7. The process returns to Step 2 and repeats for a number of times equal to the Consecutive

Document Retrievals per Server parameter before a new server is chosen in Step 1.

The model does not use inter-arrival times. Measurement of inter-arrival times is affected by

factors specific to the network on which measurements are taken. For instance, inter-arrival times

are influenced by TCP flow control and congestion control algorithms. These algorithms behave

differently in networks with different latency and bandwidth. Different cache management algorithms

also affect inter-arrival times. Web proxy cache server/s on different networks commonly use different

algorithms to manage cache.

HTTP requests and responses transmitted between web client and server is the lowest level of

the Open Systems Interconnection (OSI) network model characterised by Mah’s model. One would

however expect a detailed model of web traffic to model TCP characteristics. The measurement

of TCP characteristics depend on network specific factors such as TCP flow control and congestion

12 CHAPTER 1. INTRODUCTION

control algorithms. TCP characteristics therefore were not modelled by Mah as measuring these

characteristics would have resulted in the loss of applicability of the workload model to different

types of networks.

Simulation of web traffic using Mah’s model must therefore include a simulation of TCP algo-

rithms as well as web proxy caching algorithms if an accurate model of web traffic at the TCP/IP

level is needed.

Mah’s model was derived from packet traces taken on a campus network. Mah used heuristics

to extract datasets for certain of the parameters from the measured data. It was necessary to use

heuristics, as the packet traces Mah used to extract datasets from, contained incomplete information

about a web user’s browsing behaviour. The lack of data about a web user’s browsing behaviour

was compensated for by using heuristic methods to extract datasets from measured data.

1.2.2 Choi et al. Workload Model

Choi et al. [CL99] developed an analytic “behavioural model of web traffic”. By analytic model

is meant a model for which the parameters of the model are represented by distribution functions

of a specified mathematical family. The distribution function for each model parameter was chosen

by means of applying the visual Quantile-Quantile plot technique to datasets.

The parameters of Choi’s model characterise the behaviour of web users and model unidirectional

traffic from a web server to a web client. The model is shown in Figure 1.

Inline Object

Inline Object

Main Object Inline Object

Web request time Viewing

HTTP OffHTTP On

Figure 1: Web Workload Model Developed by Choi et al.

Mah’s model assumed that a typical web page consisted of a single HTML document (main

object) followed by several graphics documents (in-line objects). The model was based on an

unit called a web request, which is a set of pages resulting from a user request i.e. a main object

and corresponding in-line objects as shown in Figure 1. A web request (HTTP On period) is followed

by a period of time equal to Viewing Time (HTTP Off period), after which another web request is

generated.

Table 2 reports parameters modelled by Choi et al. The parameters were listed in the order they

occurred within the model.

1.2. RELATED WORK 13

Request Size
Main Object Size
In-line Object Size

Parsing Time
Number of In-line Objects
In-line Inter-arrival Time

Viewing Time (HTTP OFF)
Number of Cached Web Requests

Number of Non-cached Web Requests

Table 2: Parameters Modelled by Workload Model Developed by Choi et al.

The Parsing Time parameter models the time it takes a browser to parse the HTML code con-

tained in a main object. The Number of Cached Web Requests parameter models how many con-

secutive requests are cached i.e. the requested page is locally cached, and the Number of Non-cached

Web Requests parameter models how many consecutive requests are not cached. The significance of

these two parameters is that web requests which are cached locally don’t result in network traffic

being generated, as the relevant main and in-line objects are retrieved from the local cache.

Traffic is generated as illustrated in Figure 2.

Yes

No

End

Start Main Object Parsing Time
Inline (n)

Number of

Viewing Time
At the end of
Inline objects

Inline Interarrival
Time (i)Inline Object (i) i=n

Figure 2: State Transition Diagram of Traffic Generation by Workload Model of Choi et al.

Generated traffic is unidirectional, from web server to web client. The Request Size parameter

in Table 2 is not used during traffic generation. A main object of size equal to the Main Object Size

parameter is generated, followed by a time period of length equal to the Parsing Time parameter

elapsing. A number of in-line objects equal to the Number of In-line Objects parameter, each

of size equal to the In-line Object Size parameter is then generated. The inter-arrival time

between in-line objects is of length equal to the In-line Inter-arrival Time parameter. After all

the in-line objects have been generated a time period of length equal to the Viewing Time parameter

14 CHAPTER 1. INTRODUCTION

elapses before the process repeats itself.

The caching parameters: Number of Cached Web Requests and Number of Non-cached Web

Requests supplement the model by adding local caching behaviour to the model. A two state

renewal process is used, representing cached and non-cached web requests. As long as the process is

in the cached state, network traffic for web requests is not generated i.e. web requests are retrieved

from local cache. Traffic is generated when the process is in the non-cached state.

Distributions for the model parameters were derived from data obtained by means of packet

traces measured on a campus network. TCP, IP and HTTP headers were captured and analysed.

Most of the parameter datasets were obtained by using heuristic methods.

1.3 Concluding Remarks

Mathematical models are often classified into two classes, white box and black box models.

The two classes differ in the amount of a priori information that is used to construct the model.

Practically all problems fall somewhere between these two classes. A distinction can however be

made based on these classes, between models which are constructed from more, or less a priori

information.

When detailed information about network traffic is not considered during the modelling process,

the resultant model can be classified as a black box model. Black box models commonly consider

traffic as a single body of opaque data transferred across a network. Detailed aspects of complicated

interactions between hosts on a network are not modelled. A black box traffic model characterises

salient characteristics of traffic, but detailed characteristics of traffic are lost. Black box models have

few model constants and random numbers can easily be generated from them. Appendix E lists

commonly used black box traffic models.

Traffic generated by black box models suffer from a loss of accuracy, which is a considerable

disadvantage of this approach. It is a known fact that using more detail in modelling a physical phe-

nomenon results in a more accurate model of the physical phenomenon. The white box modelling

approach to network traffic modelling incorporates detailed information about traffic in models. The

increased level of detail in these models results in more accurate traffic being generated by these

models. The structural approach to network modelling, which takes into consideration underlying

characteristics of traffic streams, is an example of the white box traffic modelling approach.

There is however a tradeoff between model detail and computational complexity. The more

parameters the model has the more complex it is to analyse or solve. The model we developed

is to be used in simulation studies. We decided on using a model with eleven parameters. By

employing the structural approach to traffic modelling it was possible to model characteristics

of traffic generated by web clients and servers in great detail. Simulation environments using a

structural model for web traffic can generate traffic patterns which are representative of the complex

ever-changing nature of real web traffic.

It is necessary to estimate model constants used in the structural model from the actual network

1.3. CONCLUDING REMARKS 15

that is being simulated. The model constants can be estimated by capturing some traffic from the

network being simulated, and calculating values for the model constants from the captured data.

This method ensures that the structural web traffic model generates traffic which is equivalent to

that found on the network being simulated. It is therefore possible to use the structural model

to generate traffic equivalent to web traffic found on different types of networks e.g. wireless, Local

Area Network or Wide Area Network.

The Internet is evolving rapidly. Technologies such as web servers providing dynamic content

to web clients by means of web services and server side scripting are widely used. Web-pages

often consist of multimedia content, relying on Java and Flash technologies. The creation of new

technologies constantly introduce new traffic patterns which cannot be accounted for by black box

traffic models. A structural web traffic model provides the means to accurately generate web

traffic which is equivalent to traffic generated by new web technologies. What is more, traffic can

be generated to be equivalent to that found on different types of carrier networks.

The model we derived is that of traffic generated by a single web user. It is possible to generate

traffic for many web users by aggregating the traffic streams generated by several single users. The

contributions of the dissertation are the following:

1. A survey of web traffic models used in simulation studies.

2. The development of a detailed structural workload model of web traffic generated by a

single host on a campus network. The model models HTTP messages exchanged between a web

client and web servers. The parameters of the model were carefully chosen to be as independent

as possible from network conditions such as available bandwidth, network congestion and

congestion control mechanisms. The reason why parameters were chosen to be independent

from network conditions was to ensure that network conditions during measurement of data

did not influence the outcome of analysis of the data. The parameters of a model such as

ours can never be completely independent from network conditions. Network conditions can

influence a web-user’s browsing behaviour indirectly e.g. by causing users to avoid certain slow

websites.

3. The implementation of a measurement system which captured web traffic on a campus

network. The system extracted selected information from TCP, IP and HTTP headers and

wrote it to secondary storage. The information captured was sufficient to reconstruct HTTP

dialogues between web clients and servers during the subsequent processing of data. The

volume of data written to secondary storage was considerably much less than that which

was actually transmitted between web clients and servers. The selective recording of data

transmitted between clients and servers allowed us to capture web browsing data for thousands

of users over a period of several weeks with small storage requirements (approximately 30GB

of disk space). The measurement of web traffic generated by thousands of users would not

have been possible if all the data transmitted by each user were recorded.

16 CHAPTER 1. INTRODUCTION

4. The implementation of processing tools which extracted datasets for each parameter of the

workload model from the data recorded by the measurement system. The tools reconstructed

HTTP dialogues between web clients and servers from fragmented, unordered and incomplete

information about HTTP dialogues stored in the data recorded by the measurement system.

The tools achieved the reconstruction by gracefully dealing with protocol errors and missing

information and by using a heuristic algorithm to deal with missing information.

5. The development of a statistical methodology to find best-fit distributions of a specified

mathematical family for very large datasets such as the datasets analysed in network traffic

studies. We applied the methodology to find distributions for each of the model parameter

datasets we extracted from data measured on a campus network. By distribution we mean a

distribution family e.g. the normal or exponential families as well as the parameters associated

with the family e.g. location, shape and scale.

The model parameter datasets we analysed typically contained millions of entries. Commer-

cially available statistical analysis software typically do not support the analysis of very large

datasets i.e. datasets which have millions of entries. Specialised goodness-of-fit statistics are

typically not implemented in commercially available software packages. We used the An-

derson Darling and λ2 discrepancy goodness-of-fit statistics as they were used in studies

similar to ours [Pax94, Fel98, BC98b]. During analysis we found the Anderson Darling Statis-

tic to be imprecise when used on very large datasets. We used the λ2 discrepancy statistic

for analysing very large datasets. The imprecise results obtained from the Anderson Darling

Statistic was not investigated further. We intend to follow up on our findings concerning the

Anderson Darling Statistic in future work.

The “R statistical environment” is a freely available environment for the implementation of

statistical functions. The environment supports the analysis of very large datasets. We im-

plemented the Anderson Darling and the λ2 discrepancy statistics in the R environment i.e.

we wrote the code for these statistics in the R programming language. We also implemented

several plots used to visually judge goodness-of-fit such as Q-Q and Probability Plots in the

environment. We implemented Perl scripts to format and manipulate parameter datasets

into files suitable for analysis by the R environment.

Our statistical methodology consists of formatting parameter datasets by using our Perl scripts,

and then plotting the data by using the Q-Q and Probability Plots functions we wrote in the

R environment. The λ2 discrepancy measure is then applied to the data. If a suitable fit

to a mathematical function is not found for a parameter dataset, we investigate whether it

is not possible to split the dataset by using ancillary information about the data e.g. some

observations might be affected in a certain way because of certain properties they have. If no

split in the data is possible, we investigate the possibility of using a hybrid model. A hybrid

model is a model which uses different mathematical functions for different ranges of model

parameter values. We do this by using censoring techniques.

1.3. CONCLUDING REMARKS 17

6. We suggested a methodology for validating our web workload model. We also suggested a

methodology for testing the relationship between the existence of heavy-tailed distributions for

characteristics of traffic generated by individual users browsing the web and the self-similarity

of the inter-arrival times generated by many users browsing the web. The methodology for

validating our web work workload model, as well as the methodology for testing the relationship

between the self-similarity of traffic generated by many users and the existence of heavy-tailed

distributions in traffic generated by a single users, is based on implementing our workload

model in the ns network simulator. Ns is a network simulator with a long history of use in

research. It is very well documented and has several traffic generation modules [UC 02]. We

provided suggestions for updating existing traffic generator classes in the ns simulator in order

for the simulator to generate workloads according to our workload model.

It should be mentioned why we chose to characterise model parameters by means of mathematical

functions rather than empirical distribution functions i.e. tabulated values for model parameters. By

using mathematical functions we were able to generate random numbers for the model parameters by

means of their mathematical functions. It was however also possible to generate random numbers by

using empirical distribution functions. The advantage of using mathematical functions to describe

model parameters was that the functions described valuable information about the distribution of

model parameters.

A mathematical description of a parameter conveyed properties of the parameter which were of

importance to us. The shape of the distribution of data were indicated by means of the mathematical

family which characterised it. It was for instance possible to ascertain which model parameters had

heavy-tailed distributions by means of considering the mathematical function which characterised

it.

We found that the data were more complicated than we initially anticipated. The workload

model which we defined oversimplified the complicated nature of modern-day web traffic. The

findings of our analysis of the data showed that well-known mathematical functions could not be

fitted to datasets of the eleven parameter datasets. Although in some cases the fit between data and

mathematical function was good, in most cases the data showed that more complicated functions

were necessary to model the data. Or alternatively, the web browsing model should have been broken

down into more components to take into account the complexities of the data.

We found that in most cases the fit between the data and mathematical function was close enough

to accurately generate random numbers for web traffic generators used in simulation. Compared

to the traffic generators currently being used the model we derived was a vast improvement. The

implementation of the model in a traffic generator and the validation of traffic generated by such a

generator was left for future work.

We created an empirical representation of the eleven parameter datasets. Using the empirical

cumulative distribution of each of the eleven parameter datasets web traffic could be generated by

applying the inverse transformation method. We included the empirical representation of parameter

datasets in the study for completeness sake. Although empirical distributions were not as interesting

18 CHAPTER 1. INTRODUCTION

as their mathematical counterparts, they could be used to generate traffic which is nearly identical

to the original traffic. This is useful for people who are interested in generating web traffic of the

exact kind that was found on a typical campus network.

Chapter 2

Web Browsing Workload Model

2.1 Introduction

Developing a web workload model involves five steps: identifying important parameters, obtaining

traffic measurements, processing traffic measurements, analysing traffic measurements and validating

the resultant workload model.

This chapter deals with the first step, identifying important parameters. A workload model is

a collection of parameters that include key features of the workload it models. The purpose of a

workload model determines which parameters are included in the model. Once the purpose of a

model is identified, the parameters should be chosen to reflect the purpose, keeping in mind issues

such as level of detail, underlying system properties, and independence from other parameters.

Section 2.2 discusses the purpose of the workload model we derived. We discuss issues surround-

ing the choice of workload parameters in Section 2.3. Section 2.4 discusses which parameters we

chose to include in our workload model based on a study of measurements of web traffic we con-

ducted on the local area network in our laboratory. We discuss web traffic models used in open

source network simulators, paying particular attention to the web traffic model of the ns network

simulator, in Section 2.5. Section 2.6 defines our web traffic workload model.

2.2 Purpose of Model

We developed a web workload model for use in simulation studies of low bandwidth wireless networks.

The model generates traffic for an individual user browsing the web. We realised the need for such

a model after reading the simulation studies of Staehle et al. [SLT01] and Kalden et al. [KMM00].

They composed inaccurate web workload models from separate components taken from different

studies as input models for their simulations.

The model we developed characterises web “browsing” traffic. Web traffic which can be cate-

gorised as “bulk” traffic such as web-download traffic, and “interactive” traffic such as web-irc traffic

19

20 CHAPTER 2. WEB BROWSING WORKLOAD MODEL

were not included in the model. Traditionally “interactive” traffic such as TELNET traffic and “bulk”

traffic such as FTP traffic had been modelled separately from “request-response” traffic such as web

traffic. We observed that characteristics of these types of traffic are different from web browsing

traffic. With the web not being used solely for its traditional purpose of browsing web pages but also

for downloading multimedia files and interactive discussions on forums, we had to remove “bulk”

and “interactive” traffic from the files recorded by our measurement system. We discuss the process

of removing the unrepresentative data from measurements in Section 4.7.

We could not obtain traffic measurements of individual users browsing the web on a wireless

network. We therefore measured traffic of users browsing the web on a fixed network. A fixed

network typically has more bandwidth than a wireless network. The campus network we took

measurements on was however mostly congested during the period of measurement. There were

approximately 15000 registered students at the university at the time of measurement, most of

whom had Internet access rights. The Internet bandwidth at the time of measurement was 6Mbs.

The effective bandwidth as measured by the transfer rate of web transfers during the period of

measurement was between 3Kbps and 8Kbps on average, which is less than the total available

bandwidth on a GPRS channel which is usually between 9.6Kbps and 33.6Kbps. In terms of available

bandwidth the campus network at the time of measurement was comparable to that of a wireless

network using GPRS.

Although we intended to derive a workload model for a web user on a wireless network, the model

we derived is that of web traffic generated by a single host on a campus network. The measurements

used to derive the workload model were measurements of traffic generated by web users using hosts

on a campus network. By host is meant a machine connected to the campus network. We measured

traffic generated by single user hosts i.e. workstations used by a single user at a time. The similarity

between the available bandwidth on the campus network we took our measurements on and a GPRS

channel provides us with reason to believe that traffic generated by the web workload model we

derived is comparable to traffic generated by web users on a wireless GPRS network.

2.3 Parameter Choice

We chose model parameters with the objective of traffic generated by the workload model to have the

same properties as observed in measured web traffic. We observed web traffic to have the following

properties:

• Web traffic is bidirectional, the study by Caceres et.al [CDJ91] showed that it is important

to model bidirectional WAN traffic as a large percentage of WAN traffic is strongly bidirec-

tional. The percentage of traffic travelling in one direction differs from the percentage of traffic

travelling in the other.

• HTTP is a request-response protocol i.e. for every request by a client the server sends a

response. Requests can be pipelined and responses are received in the same order in which

2.4. WEB TRAFFIC PACKET TRACES 21

requests were sent.

• Characteristics of traffic travelling from a client to a server in terms of inter-arrival time and

size distribution are not the same as characteristics of traffic travelling from a server to a client.

• Web traffic is generated by processes which can be layered into user sessions and dialogue

sessions. User sessions describe the behaviour of web users browsing the web. Dialogue sessions

describe the interaction between web client and web server software.

• Aggregated web traffic streams generated by web users are bursty on many time scales i.e.

self-similar.

It is important that parameters chosen are not influenced by underlying network properties such

as latency, throughput or packet loss rate. It is not possible to decouple parameters completely from

underlying network properties. A slow connection will cause users to stay away from bandwidth

intensive web sites or might cause users to stop browsing altogether. In constructing the model

we used parameters which are least affected by network properties. We did not model inter-arrival

times of messages which are affected by network properties such as bandwidth and latency i.e. we

did not model inter-arrival times of packets which have been transmitted across the network.

To aid in the selection of model parameters we studied the following material:

• HTTP specifications as recorded in RFC’s 1945, 2068 and 2616 [BLFF95, BLFea97, BLFea99].

• Web workload models derived by other authors.

• Traffic traces of users browsing the web.

• Web workload model used in the ns simulation package.

We discussed workload models by other authors in Section 1.2. We summarised insights gained

into web traffic by means of studying web traffic traces in Section 2.4. Our findings of the study on

the web workload model used in the ns simulator is summarised in Section 2.5.

2.4 Web Traffic Packet Traces

We recorded packet traces of fellow students browsing the web on the LAN in our laboratory, using

the tcpdump tool. We studied the traces using the tcpshow tool to find relationships between

characteristics of traffic and the actions, both user and software initiated, which caused them.

2.4.1 Inter-arrival Times

We found that inter-arrival times of HTTP requests can be divided into three broad categories based

on the actions which caused them:

• Inter-arrival times > 15 minutes

22 CHAPTER 2. WEB BROWSING WORKLOAD MODEL

• 1 second < Inter-arrival times < 15 minutes

• Inter-arrival times < 1 second

We observed that request inter-arrival times greater than 15 minutes are commonly caused by

periods during which no traffic is transmitted due to users not browsing any longer. We observed

that users seldomly spend more than 15 minutes reading a single web page. An inter-arrival time

greater than 15 minutes typically indicates that the user is engaged in an activity other than web

browsing.

Inter-arrival times with a size between 1 second and 15 minutes are commonly caused by users

browsing the web i.e. users requesting main objects from web servers by clicking on hypertext links.

Inter-arrival times with size smaller than 1 second are commonly caused by web clients requesting

in-line objects from servers.

These observations do not always hold, it is possible for a user to request two web pages within

a second of one another and it is also possible for a web client to place requests for in-line objects

with inter-arrival times greater than a second. We however observed that users seldomly manage to

click on two successive links within a second of one another, whereas a web client, being a software

process, typically places requests for in-line objects in the order of hundreds of microseconds from

one another. Figure 3 illustrates a typical scenario during which web user and web client requests

are made during a browsing session.

Web Client Request

Web Client Request

Web Client Request

User clicks Web Client Requests

User Request

Web Client Request Interarrival TImes User Read Time

User Request Interarrival Time

Figure 3: Inter-arrival Time Differences between Web User Requests and Web Client Requests

Figure 3 shows a web user request followed by several web client requests for in-line objects.

The process repeats for new web user requests. Typically a web user request inter-arrival time

incorporates the time it takes to download and parse the web user response and all the subsequent

in-line objects, as well as the time it takes the user to read the web page. This browsing scenario

assumes that the user first reads a web page before requesting another which is not always the

case. We observed that when a user requests successive pages directly after one another he seldomly

manages to click on two successive links within a second of one another.i

As opposed to web user inter-arrival time which is dependent on factors such as the time it takes

to download and read a web page, web client request inter-arrival time depends only the speed at

2.4. WEB TRAFFIC PACKET TRACES 23

which the web client can parse an HTML file and place requests for embedded in-line objects. We

observed the process by the web client of placing requests to typically take in the order of hundreds

of microseconds.

Based on the observations of inter-arrival time characteristics we made by studying recorded

packet traces, we identified three different inter-arrival time parameters to be used in our model:

• Browsing Inter-Session Time

• Web User Request Inter-arrival Time

• Web Client Request Inter-arrival Time

The Browsing Inter-Session Time parameter models the time between sessions during which

users browse the web. Our approach of modelling the time between the end of one session and

the start of another is different to that of previous work in the area [RLGPC+99, AW95] which

model the time between the start of browsing sessions i.e. the inter-arrival time between sessions

as opposed to the inter-session time. Modelling the inter-arrival time between browsing sessions

results in a model which allows for two browsing sessions by the same user to occur at the same

time. The modelling of concurrent browsing sessions by the same user happens when the browsing

inter-arrival time between a particular session and the next is shorter than the duration of the session

as determined by other model parameters such as the number of requests during the session etc. A

new browsing session then starts before the previous one has ended. The occurrence of concurrent

browsing sessions by the same user is clearly not possible in practice. We avoid concurrent browsing

sessions by the same user from occurring by modelling the inter-session as opposed to inter-arrival

time of browsing sessions.

The Browsing Inter-Session Time, Web User Request Inter-arrival Time and Web Client

Request Inter-arrival Time are the only inter-arrival time parameters we used in our model. We

mentioned in Section 2.2 that it is not advisable to use inter-arrival time values as measured on a

network in workload models due to the influences of network characteristics on inter-arrival time

parameters. Models based on such data cannot be applicable to other network scenarios, a fact

which limits the utility of the models. The inter-arrival time parameters we used are not network

related. They model values related to user and web client software behaviour and are therefore not

directly affected by network characteristics.

Due to the nature of the environment in which we collected data for the derivation of our workload

model, the inter-arrival time parameters were indirectly affected by network characteristics. We will

show in Section 3.6 that the influence on the parameters was minimal.

2.4.2 Resource Sizes

We observed that web requests were on average much smaller than web responses. Web requests

consist of an HTTP header which contains a few fields used by the HTTP and which includes

the URL of the requested object. They do not have a message body and typically have a size of

24 CHAPTER 2. WEB BROWSING WORKLOAD MODEL

approximately 500 bytes. Web responses contain a message body which is either a main object in

the form of an HTML file or an in-line image.

HTML files were observed to be larger, on average, than image files. The fact that HTML files

are larger size than image files is difficult to believe as image files are commonly larger than text

files. Web-pages are however usually composed of many small images arranged to create a complete

picture. These small images are also typically optimised in size in order to reduce download times

and hence page-rendering times. We did however observe a significant number of image files which

were much larger than the average HTML file. These files are typically the larger images displayed

on some web-pages. We observed HTML files to have an average size of around 8KB and image files

to have average size of around 4KB.

It is clear that web requests are much smaller than web responses. It is also clear that web user

requests have different size characteristics from web client requests. We could however not determine

whether web user requests have different size characteristics from web client requests. Observations

based on the packet traces indicated that there is no difference in size between the two quantities.

Workload models derived in previous work model the parameters separately [Mah97]. We follow the

example of Mah [Mah97] and model the two parameters separately. We identified four resource size

parameters to be used in our model:

• Web User Request Size

• Web Client Request Size

• Web User Response Size

• Web Client Response Size

2.4.3 Number of Requests

We need two more parameters in order to complete our workload model:

• Number of Web User Requests per Browsing Session

• Number of Web Client Requests per Web User Request

Workload models derived in previous work do not model web traffic at the level of user browsing

sessions [Mah97, CL99]. The Number of Web User Requests per Browsing Session parameter

was chosen to model the behaviour of users in terms of the duration of browsing sessions. It measures

the number of times a user clicks on hypertext links during a browsing session.

The Number of Web Client Requests per Web User Request parameter was chosen to model

the number of in-line images downloaded after a request for a web page is made.

2.5. NS WEB WORKLOAD MODEL 25

2.5 Ns Web Workload Model

The purpose of the workload model we derived is to generate web traffic for simulation studies. We

constructed a generalised model which can be implemented in any network simulator or used in a

simulator developed from scratch. We studied several network simulation packages and libraries to

determine how web traffic is generated in these packages. We considered only open source software

because of the possibility of extending open source packages with our traffic model. We looked at

the OSSCAR, INSANE, REAL, Omnet++ and ns packages. We found all the packages except for

ns to have either inadequate or no web traffic models at all. Ns has a long history as a simulator

used in research. It is also very well documented and has several traffic generation modules [UC 02].

Network Simulator (ns) was developed as a collaboration between the University of California

at Berkeley, Lawrence Berkeley National Laboratory and the VINT project. Ns version 2 is a sim-

ulator targeted at networking research and provides substantial support for simulation of TCP/IP,

routing, and multi-cast protocols [Com]. It has substantial support for the simulation of wireless

networks [UC 02]. We summarise some aspects and shortcomings of the web traffic model used in ns

next. We discuss an implementation of our model as an extension to the current web traffic model

used in ns in Section 7.2.

Ns is an object oriented application and therefore the web workload model is described using

the object oriented paradigm. Traffic generation in ns is based on the following three application

classes:

1. Web client

2. Web server

3. Web proxy cache

Web traffic is modelled by connecting web clients to web servers, either directly or via a web proxy

cache. Figure 4 shows an arbitrary dumbbell network topology. Using the ns web workload model,

one can configure web clients, servers and caches into any arbitrary configuration. For example, we

can configure nodes 7-11 to be web clients and nodes 2-6 to be web servers. Nodes 0 and 1 can be

configured to be web proxy caches. We can just as easily configure all the nodes to be both web

clients and web servers, with no web cache proxies involved.

The ns web workload model can be used as as follows:

A web client generates requests. The inter-arrival times are generated by an Interval-Generator

object. The Interval-Generatoruses one of the following random variables to generate inter-arrival

times:

1. Uniform

2. Exponential

3. Pareto

26 CHAPTER 2. WEB BROWSING WORKLOAD MODEL

11

10

9

8

7

6

5

4

3

2

1 0

Figure 4: A Dumbbell Network Topology in a ns Simulation Environment

4. Constant

5. Hyper Exponential

The request sizes are generated by a Page-Generator object. The Page-Generator uses one of

four PagePool classes to generate the request sizes. The four PagePool classes are:

1. PagePool/Math - There is only one type of web object available for request. The size of the

object is generated by a random variable chosen from the list of random variables mentioned

above.

2. PagePool/CompMath - Improves on PagePool/Math by using a compound web page model

consisting of a main text page object followed by a number of in-line image objects. The sizes

of main and in-line objects are fixed. The number of in-line objects is also fixed.

3. PagePool/ProxyTrace - Uses an empirical web proxy cache traces to generate request sizes.

4. PagePool/Client - Used by caches to keep track of pages resident in cache. Not used for

generating request sizes.

Our workload model uses mathematical functions to characterise workload parameters. The

PagePool/ProxyTrace class is therefore not of interest to us as it uses empirical traces to characterise

workload parameters. The PagePool/Client does not generate request sizes and is therefore also

unsuitable for our purposes. Of the remaining two Math classes the PagePool/CompMath class allows

for main and in-line objects which is consistent with our model. We will therefore concentrate on

the PagePool/CompMath class.

Traffic generated by ns using the PagePool/CompMath class is visualised in Figure 5.

Figure 5 shows a stream of main and in-line objects generated by a web server in response to

requests by both a web user and a web client. There are a number of problems with the workload

model shown in Figure 5.

2.6. MODEL DEFINITION 27

Main Object

Inline Object

Inline Object

Inline Object

Main Object

Inline Object

Inline Object

Inline Object

Main Object

Inline Object

Inline Object

Inline Object

Figure 5: Traffic Generated by Web Workload Model in ns Network Simulator

1. The number of in-line objects is fixed.

2. The sizes of the main and in-line objects respectively are fixed.

3. The inter-arrival times between all objects are drawn from the same distribution.

The ns web workload model is bidirectional and allows for the flexible construction of web

client and web server processes. The traffic generated by the model does not reflect some of the

characteristics of web traffic which we observed in web traces studied, as discussed in Section 2.4.

Traffic generated by the ns web workload model will therefore not accurately characterise real web

traffic. The shortcomings of the ns web workload model were considered in the construction of our

web workload model.

2.6 Model Definition

The model we developed is layered and models bidirectional traffic from web client to web server

and vice versa. We included parameters which had been shown to contribute to the self-similar

nature of web traffic inter-arrival times [CB96]. Size distributions with heavy tails and ON/OFF

arrival processes with ON and OFF periods drawn from heavy tailed distributions had been shown

to contribute to self-similarity in network traffic. We included size and inter-arrival time parameters

which our analysis showed to have heavy-tailed distributions.

A Web User Request and Web Client Request were defined as follows:

A Web User Request is a request made by a web user clicking on a hypertext link or entering

an URL in a web client’s address text-box.

28 CHAPTER 2. WEB BROWSING WORKLOAD MODEL

A Web Client Request is a request made by a web client e.g. Mozilla, Galeon, Konqueror,

Netscape, Lynx or MS Explorer.

A Web User Response or Web Client Response is a response from a web server to either a Web

User Request or Web Client Request.

The model consists of two layers, the Browsing Session Layer and the Client Server Dialogue

Layer. The model is shown in Figure 6. The Browsing Session Layer characterises the behaviour

of web users by means of modelling the length of browsing sessions and number of requests per brows-

ing session. The Client Server Dialogue Layer characterises the interaction between web clients

and servers by modelling the number of requests for in-line objects and the size of and inter-arrival

time between messages exchanged between web client and server.

:

:

:

:

:

:

WCRQ

t

t

Client Server Dialogue

t

t

BS BS BS
Browsing Session

Layer

Layer

Server

Client

BS Browsing
Session

Web User
Request

WURQ

Web User
Response

WURP

Web Client
Request

WCRQ

Web Client
Response

WCRP

WURQ

WURP

WCRQ

WCRQ

WCRP

WCRP

WCRP

RequestR

R R R

Figure 6: Web Browsing Traffic Generated by the Bidirectional, Layered Workload Model Developed
by Us

A short description of each layer follows:

The Browsing Session Layer models the time during which a user browses the web i.e. the time

spent requesting and reading documents by using a web browser/ client.

The Client Server Dialogue Layer models interaction between a web client and server which is

initiated by a Web User Request. The arrows in Figure 6 indicate when a request or response

is sent, and the size of a box indicates the size of the file and hence the time it takes the file to

reach the other side. A response is sent immediately after a file is received by the web client

2.7. CONCLUDING REMARKS 29

or server. A typical scenario is for a user to request an HTML file. On arrival at the server

side, the server responds to the request by sending the requested file to the client. The client

responds by sending requests for graphical objects that need to be displayed along with text.

On arrival at the server side, the server responds to the requests by sending the requested files

to the client.

The scenario described above and illustrated in Figure 6 can be modelled by means of eleven

parameters. The parameters are shown in Table 3.

No. Name

1 Browsing Inter-Session Time
2 Number of Web User Requests per Browsing Session
3 Number of Web Client Requests per Web User Request
4 Web User Request Inter-arrival Time
5 Web Client Request Inter-arrival Time
6 Web User Request Size
7 Web Client Request Size
8 Cached Web User Response Size
9 Non-Cached Web User Response Size
10 Cached Web Client Response Size
11 Non-Cached Web Client Response Size

Table 3: Parameters Modelled by Web Browsing Workload Model Developed by Us

Parameter No. 1 models the time between the end of a Browsing Session and the start of the

next. Parameter No. 2 models the number of web pages requested during a Browsing Session.

Parameter No. 3 models the number of in-line objects (e.g. image and flash files) contained in a

web page. Parameter No. 4 models the time between requests for web pages. Parameter No. 5

models the time between requests for in-line objects. Parameters Nos 6 and 7 model the size of

requests generated by web users and web clients respectively. Parameters Nos 8-11 model the size

of responses to requests.

2.7 Concluding Remarks

We employed the structural approach to network workload modelling to derive a model of web

traffic as generated by a single user browsing the web on a campus network. Due to low Internet

bandwidth and severe network congestion on the campus network during the period of measurement

the available bandwidth on the network was comparable to that of a low bandwidth wireless network.

We modelled web traffic at the application level. HTTP messages exchanged between a web

client and web servers were modelled. We did not model traffic at the level of the TCP and the

IP. A network simulation which uses our traffic model along with these protocols would have to

implement the appropriate models for TCP and IP. The ns network simulator which we targeted as

30 CHAPTER 2. WEB BROWSING WORKLOAD MODEL

the simulation package for implementation of our model has an implementation of TCP and IP.

We attempted to avoid influences of network conditions such as available bandwidth, network con-

gestion and congestion control mechanisms on model parameters such as message inter-arrival

time and message size during data measurement. Influences of network conditions were avoided

by using model parameters in our model which were not directly influenced by underlying network

conditions. Model parameters which model the behaviour of web-users and web-browsers and the

sizes of web-pages were not directly influenced by network conditions. Underlying network factors

did however indirectly influence model parameters i.e. a congested network caused users to change

their browsing behaviour to adapt to the congestion e.g. users might have visited fewer web-sites

during periods of congestion, or might have avoided sites with longer downloading times. It was not

possible to avoid influences of underlying network conditions on network parameters completely, but

we tried to minimize the impact of these conditions on our model.

We chose the parameters for the model by studying packet traces of web traffic. The choice of

parameters was based on the observed characteristics of web traffic. By identifying defining charac-

teristics of web traffic as model parameters we were able to accurately model web traffic generated

by a single user. During the analysis of measured parameter datasets we matched mathematical

distributions to seven of the eleven model parameters. The reason for not being able to match dis-

tributions to all the parameters datasets was that our initial traffic model did not take into account

the effects of local caching. The original model had only nine parameters. The omission of the effects

of local caching resulted in us not being able to find matching distributions for two of the then nine

model parameters. After investigating the problem we realised that we did not take into account

the effects of local caching when defining the model. We altered the model by adding two more

parameters which remedied the problem. Section 6.11 and 6.12 discuss the changes we made to the

model. We found matching mathematical distributions for the eleven parameters in our final web

workload model.

Chapter 3

Data Measurement

3.1 Introduction

We extracted parameter datasets for the eleven parameters in our workload model from traffic

measurements. This chapter deals with the measurement of traffic on our campus network, the

next chapter deals with the extraction of parameter datasets from the measurements taken. The

activities of measurement (of traffic) and extraction (of parameter datasets), were closely related.

The two activities were initially performed in real-time, in a single step. Due to performance

reasons we split the measurement and extraction activities into two steps and extracted parameters

off-line.

We explain why and how measurements were taken in Sections 3.2 and 3.3. We discuss how

the data were measured in real-time in Section 3.4. The real-time approach failed. We processed

the measurements off-line. In section 3.5 we discuss which information was recorded to secondary

storage. We discuss the format of the measurement file that information was recorded to, and how

the information in this file was processed. We conclude the chapter with Section 3.9 by discussing

insights gained into the recording of packet traces and the processing of these traces.

3.2 Previous HTTP Measurements

We investigated the suitability of using publicly available network packet traces in our study. We

found two repositories of publicly available traffic traces on the Internet:

• Internet Traffic Archive (ITA) :

http://ita.ee.lbl.gov

• National Laboratory for Applied Network Research (NLANR) :

http://moat.nlanr.net

31

32 CHAPTER 3. DATA MEASUREMENT

An important requirement for traffic measurements we intended to use in our study was that they

should include application level (HTTP) information. We required that application level information

was included in traffic measurements to enable the accurate extraction of model parameter datasets

from traffic measurements. Due to user privacy concerns the publicly available packet traces at

the ITA and NLANR web sites did not include application level information. The packet traces

found at the ITA and NLANR sites did therefore not fulfil the requirements of our study. We took

traffic measurements ourselves.

The Information and Technology Services (ITS) department at the university gave us permission

to record traces of web user traffic for a period of 30 days. The permission was granted provided that

no information which encroached on the rights to privacy of web users would be stored to secondary

storage, for any length of time.

Three measurement techniques had typically been used in the past to obtain data for

the derivation of web workload traffic models. The techniques were server logs [AW96], client

logs [CBC95, CP95], and packet traces [Mah97, Den96, RLGPC+99]. We give a short description of

each of these methods:

Web server logs were used to record requests for documents on a web server. As the name indi-

cates, data were recorded on the server.

Client logs were recorded by customising web browser software to write measurement files of re-

quired data. As the name indicates, data were recorded on the client.

Packet traces were obtained by recording data from a shared medium such as an Ethernet LAN.

Data were recorded at a point between the web client and web server.

Web server logs were used to analyse the workload placed on a web server by web clients.

Information about the users placing the requests were not recorded. Our study required information

about user behaviour, such as when a user clicked on a hypertext link. The web server log approach

therefore did not provide some information we required for our study.

The client log approach provided information about web user behaviour, such as when a user

clicked on a hypertext link. This technique recorded all the information necessary for our study. It

was however an enormous task to customise the web browsers used on campus to record client logs.

The Microsoft Explorer browser was widely used around campus. The browser was proprietary

and could not be customised. Given our resources and time constraints we could not use this method.

The packet trace approach did not record information about user behaviour. Heuristic meth-

ods could however be used to infer user behaviour from data recorded in packet traces. A very

large sample of user datasets could easily be recorded by using packet traces. We chose the packet

trace method to obtain web traffic measurements.

Measuring web traffic by means of packet traces generally consisted of three main steps: recording

traffic at some point on a network, filtering and preprocessing the recorded data, and writing selected

data in a specified format to secondary storage. We discuss two different approaches to recording

packet traces next. We employed both of these approaches in our study.

3.3. PACKET TRACES 33

3.3 Packet Traces

We considered two different approaches to obtaining parameter datasets by means of recording

packet traces:

1. Processing data in real-time i.e. extracting parameter datasets from measurements at the

same time as recording more measurements.

2. Processing data off-line i.e. recording selected data to secondary storage and extracting

parameter datasets from the recorded data by processing the data off-line.

Approach No. 1 had the advantage of not recording personal user information to secondary

storage. Parameter datasets were extracted in real-time and written to secondary storage. Parameter

datasets did not contain personal user information. The ITS department preferred us to use the

real-time method as it guaranteed users’ privacy. We therefore implemented the real-time approach.

The real-time approach however failed due to performance problems arising from the con-

current processing and capturing of data. The real-time system used two processes, which ran on

the same machine, to process and capture data respectively. For the system to succeed in capturing

data, the processing process had to keep up with the capturing process. The processing process failed

to keep up with the capturing process, and the system as a whole therefore failed.

Approach No. 2 did not suffer from the performance problems of Approach No. 1. Measured data

were processed off-line. Approach No. 2 however recorded personal user information to secondary

storage. This was a breach of the agreement we had with the ITS department. The agreement

was that we would not record any personal user information to secondary storage. We reached a

compromise with the ITS department which allowed us to process the data off-line provided that

this was done on the measurement premises under the supervision of the ITS network administrator.

Measurement files containing personal user information were deleted from the measurement machines

before removing the equipment from the measurement premises.

We discuss our attempt to extract parameter datasets in real-time next, thereafter we discuss

how we extracted parameter datasets from recorded traces by processing recorded data off-line.

3.4 Real-Time Processing of Packet Traces

We investigated the tcpdump and Ethereal network monitoring tools for use as real-time measure-

ment tools in our study. The tools were very powerful and could perform specialised network packet

measurements and packet analyses. We however needed an application that could process data in

real-time by making use of a heuristic algorithm we developed. The heuristic algorithm enabled

us to extract parameter datasets in real-time from measured data. The tcpdump and Ethereal tools

could not be extended to implement the heuristic algorithm in real-time. We implemented our own

network real-time measurement tool.

34 CHAPTER 3. DATA MEASUREMENT

We implemented a real-time measurement tool in C using the Linux Socket Filter (LSF).

The LSF is a packet filter which optimises packet filtering by performing filtering in kernel space.

Figure 7 illustrates how the LSF filters selected packets in kernel space and passes these packets

to user space, avoiding processing by the TCP/IP stack. The performance gain of using kernel

space filtering enabled us to measure traffic on the 6Mbs campus network Internet link. The tool was

implemented for both Intel and SPARC architectures i.e. big-endian and small-endian architectures.

Kernel Space

TCP/IP Stack

Protocol family

Network card driver

IP processing

Socket Interface

TCP/UDP processing

User space

Linux Socket Filter
handling routines

Figure 7: TCP/IP Packet Processing by the Linux Socket Filter

The real-time tool was deployed to monitor traffic between the campus network at university

and the Internet. Web traffic between web users on campus and web servers on the Internet was

recorded and processed by the tool. Parameter datasets for each host on the campus network i.e.

for each machine which was used for browsing the Internet during the measurement period, were

extracted from the recorded data.

We used a heuristic algorithm to extract parameter datasets from data generated by each host on

campus. A heuristic algorithm was used because information necessary to extract parameter datasets

was missing from the recorded data. The heuristic algorithm is discussed in Section 4.5 (page 56)

The tool processed data for each host on the campus network in real-time whilst capturing more

data. The real-time processing and capturing was achieved by keeping track of TCP/IP connection

information for every host on campus browsing the Internet.

The real-time measurement tool is similar to the Bi-Layer Tracing Tool [Fel00]. The real-time

measurement tool extracted data from HTTP, TCP and IP packet headers, processed the data and

wrote parameter datasets to file for each host. Unlike the Bi-Layer Tracing Tool our real-time

measurement tool did not process every TCP/IP packet monitored. The tool extracted sufficient

3.4. REAL-TIME PROCESSING OF PACKET TRACES 35

information to enable the extraction of parameter datasets from recorded data.

The real-time measurement tool filtered out selected web traffic packets in kernel space, to be

used for further processing in user space. The following HTTP messages were filtered out:

• SYN, FIN or RST messages.

• GET requests.

• HTTP responses.

By considering these HTTP messages the tool was able to identify the start and end of TCP

connections. The tool also extracted selected information from HTTP requests and responses.

Table 4 shows which data were extracted from HTTP messages by the real-time measurement tool,

and which headers the data were extracted from.

Data Protocol Header Type of HTTP Message

IP address of browsing host IP
TCP port of browsing host TCP
Requested URL HTTP Request
Referrer URL HTTP Request
Content-Length of Request IP, TCP and HTTP Request
Content-Length of Response HTTP Response
Content-Type field HTTP Response
Arrival Time

Table 4: Data Extracted from IP, TCP and HTTP Headers by Measurement Tool

The Type of HTTP Message field in Table 4 shows which type of HTTP message the HTTP

header was taken from. There were two types of HTTP messages, requests from client to server and

responses from server to client. The Arrival Time data were measured by the system clock.

The advantages of extracting selected information from traffic transmitted between web clients

and web servers were twofold. Firstly, the complexity of processing every TCP/IP packet was

avoided. To process every TCP/IP packet would have amounted to implementing a system which

had approximately the same functionality as the TCP/IP and HTTP stacks combined. Given our

time and resource constraints this was not possible. Secondly, the storage requirements for storing

entire TCP/IP conversations to secondary storage was avoided. We had limited storage capacity

available, approximately 30GB. We recorded as little information as possible. Using the approach of

extracting selected information from web traffic enabled us to measure and process traffic generated

by the entire campus network over an extended period of time. We did not lose any data packets

due to performance or storage issues.

The disadvantage of extracting selected information from web traffic was that information nec-

essary to extract parameter datasets accurately was lost. In particular information about the size

36 CHAPTER 3. DATA MEASUREMENT

of web requests and responses and the relationship between requests and responses were lost. We

dealt with the lack of information by using a heuristic algorithm to extract parameter datasets.

In section 3.4.1 we explain how we extracted parameter datasets from data recorded by the

real-time measurement tool.

3.4.1 Parameter Dataset Extraction

The real-time measurement tool used the information reported in Table 4 to extract datasets for

the eleven model parameters listed in Table 3 (page 29) for each host on the campus network. As

mentioned before Table 4 did not include sufficient information for the real-time measurement tool

to extract parameter datasets for each host. We used a heuristic algorithm to extract parameter

datasets.

The Virtual Memory File

The heuristic algorithm was based on a stored history of HTTP messages exchanged between a

host on the campus network and web servers outside of the campus network. A history was recorded

for every host on the network. The information extracted for each host is reported in Table 4. The

histories recorded for hosts were written to a file in virtual memory.

The heuristic algorithm used to process the virtual memory file, accessed the data entries in

the file in sequential order. The sequential access of data entries ensured that virtual memory

management was optimal.

The operating system handled the virtual memory management for maintaining the memory

mapped file. The virtual memory was allocated by means of the mmap() system call. We recorded

the histories of all hosts on campus in a virtual memory area of 2GB.

Parameter datasets were extracted for each host by processing the history of browsing activity

for that host as stored in the memory mapped file. The history for each host was kept in a linked

list of data entries. When inserting a new entry into the mapped file, the previous entry for that

host was linked to the new entry by means of a pointer. The result was a linked list of data entries

for every host with a recorded history in the mapped file. The history of browsing activity for a

particular host was processed by traversing the linked list of data entries.

The memory mapped file was split into two halves. Extracted information was written to one

half while the other half was being processed by the real-time measurement tool i.e. parameter

datasets were extracted from the data by applying the heuristic algorithm to the data. Figure 8

illustrates how the real-time measurement tool processed data recorded in one half of the memory

mapped file whilst capturing new information to the other half of the file.

Figure 8 shows how the parent process captured, filtered and wrote data to the memory mapped

file. A child process was spawned by the parent after it had filled one half of the mapped file with

data. The child process then proceeded to process the recorded information, writing extracted

parameter datasets to secondary storage, and killed itself after processing was finished. The child

process processed data recorded in the memory mapped file by iterating through the linked list

3.4. REAL-TIME PROCESSING OF PACKET TRACES 37

Memory Mapped File

2nd Half

www.google.com/search www.google.com/search 1075374323
0118 1 1020698750.555345 GET 1204 6907 0 0000000565 0000000000

0118 1 1020698750.555345 GET 1204 6907 0 0000000565 0000000000

1st Half

0118 1 1020698750.555345 GET 1204 6907 0 0000000565 0000000000

www.google.com/search www.google.com/search 1075374323

www.google.com/search www.google.com/search 1075374323

0118 1 1020698750.555345 GET 1204 6907 0 0000000565 0000000000
www.google.com/search www.google.com/search 1075374323

www.google.com/search www.google.com/search 1075374323
0118 1 1020698750.555345 GET 1204 6907 0 0000000565 0000000000

www.google.com/search www.google.com/search 1075374323

0118 1 1020698750.555345 GET 1204 6907 0 0000000565 0000000000
www.google.com/search www.google.com/search 1075374323
0118 1 1020698750.555345 GET 1204 6907 0 0000000565 0000000000
www.google.com/search www.google.com/search 1075374323
0118 1 1020698750.555345 GET 1204 6907 0 0000000565 0000000000
www.google.com/search www.google.com/search 1075374323

Processing Process
(Child)

Capturing Process
(Parent)

0118 1 1020698750.555345 GET 1204 6907 0 0000000565 000000000

Processed half of mapped file that

parent had finished writing to

Wrote filtered and parsed information

to mapped file

Figure 8: Real Time Processing of Captured Information by Measurement System

of data entries for each host, processing the data for that host, and writing extracted parameter

datasets to file.

Architecture of Real-Time Measurement Tool

The real-time measurement tool could run for indefinite periods of time, extracting parameter

datasets whilst capturing data in real-time. The processing process had to finish processing its

half faster than the capturing process took to fill its half with data. In the case of processing taking

longer than capturing data, the program exited with an error status code. Figure 9 illustrates how

the real-time measurement tool captured and extracted parameter datasets in real-time.

The lowest layer illustrated in Figure 9 shows that the measurement tool used the LSF to filter

out HTTP traffic sent to or received from port 8080 from the traffic stream on the network wire.

The reason for extracting traffic sent to or received from port 8080 was that the two web cache proxy

servers on the campus network used port 8080 to connect to hosts on the campus network. All web

traffic between hosts on the campus network and web servers outside of the campus network went

through these two web cache proxy servers. The LSF therefore extracted all traffic between hosts on

campus and web servers on the Internet by filtering out traffic sent to or received from port 8080.

The extracted traffic was passed to user space by the LSF. Processing time was saved by avoiding

the processing of irrelevant packets by the TCP/IP stack.

Data passed to Layer 1 by the LSF was processed at Layer 1. Selected information was written

to memory mapped file. Selected data for a host were added to the linked list of data entries for that

host in the memory mapped file. A new data entry for a host was added to the end of the linked

38 CHAPTER 3. DATA MEASUREMENT

Network wire

Kernel Space Linux Socket Filter Traffic to and from port 8080 (HTTP cache proxy servers)

filtered out.

written to memory mapped file.

Selected information

User Space

Layer 1

Layer 2
heuristic algorithm and written to secondary storage.

Data in memory mapped file processed by means of

Figure 9: Overview of the Filtering, Parsing and Processing of HTTP Messages by the Measurement
Tool in Real-Time

list for that host. Pointers to the last node for the linked list of every host were stored in a table

indexed by the IP address of a host. The array had 65 536 entries as the university had a Class B

IP address space.

Data were processed at Layer 2 and parameter datasets extracted for each host. There were

several problems which had to be solved in order to extract parameter datasets for each host. The

most difficult problem we faced was to differentiate between web client and web user requests

i.e. requests that were generated by web users as opposed to requests that were generated by web

client software e.g. Microsoft Explorer. We used a heuristic algorithm to solve this problem. This

problem and our solution to it is discussed next. Another problem that had to be solved was

that of matching pairs of HTTP request and response messages to one another. The information

contained in data captured from the network wire did not include information which matched an

HTTP response message to its relevant request message. The problem of matching HTTP request

and response messages, and our solution to it, is discussed after the next section.

The Web User vs. Web Client Request Differentiation Problem

The web user vs. web client request differentiation problem can be stated as follows:

Was a request a web user or web client request? I.e. did a web user or web client generate a

request?

The answer to this question was very important. The successful extraction of parameter datasets

from the measured data depended on finding as accurate an answer as possible. It was not possible

to obtain a definite answer to the question. In order to answer the question definitively information

about a web user’s behaviour was required. Data obtained by monitoring a network link did not

contain information about a user’s behaviour.

We had to infer user behaviour by using the information at our disposal. By using the

information at our disposal we compiled a list of web client request characteristics e.g. we

3.4. REAL-TIME PROCESSING OF PACKET TRACES 39

observed that a web client request was usually a request for an image file.

We used the list of characteristics we compiled to categorise a new request as being either a web

client, or a web user request. We checked whether a new request’s characteristics matched any of

the characteristics in the list we compiled. If a match was found, the request was categorised as a

web client request, and if a match was not found it was categorised as a web user request.

We discuss this algorithm and its implementation in detail in Section 4.5 (page 56). We also

used the algorithm during the off-line processing of packet traces which is discussed in Section 4.5.

The HTTP Request/Response Matching Problem

The real-time measurement tool did not not record every TCP/IP packet transmitted between clients

and servers. The data captured by the tool did not contain information which associated HTTP

requests with their corresponding HTTP response messages.

The HTTP request/response matching problem can be stated as follows:

How did we match HTTP response messages to the HTTP request message which caused them?

We used our knowledge about how the HTTP placed requests on TCP connections to solve the

problem. HTTP requests were pipelined on a TCP connection i.e. multiple requests were made

without waiting for responses to return. Responses returned in the same order as requests were

made.

We were able to match responses to requests by keeping track of all requests made on all TCP

connections. Responses were matched to requests by matching returning responses to requests stored

in a queue for a specific TCP connections. A queue data structure was maintained for every TCP

connection. New requests were added to the tail of the queue, and requests were removed from the

head of the queue when an incoming response was received.

Queues storing requests could be implemented by using either static or dynamic memory allo-

cation. Static memory allocation required more space but was faster. The processing process had

to perform optimally. The processing of one half of the mapped file had to be completed faster

than the time it took to capture data to the other half of the mapped file. We used static memory

allocation in order to speed up the processing of the memory mapped file.

In order to statically allocate memory, we calculated the number of queues necessary to keep

track of information transmitted on TCP connections. In calculating the number of queues we

assumed the worst case scenario of a host having 10 browsers open each using 5 TCP connections at

once. The worst case scenario was very unlikely to occur in practice. Using the worst case scenario

formula we allocated memory for 50 queues. The maximum length of a queue was calculated as

the maximum number of consecutive requests that could be made without any responses returning.

We again used the worst case scenario of 50 requests being made without responses returning. The

worst case scenario was very unlikely to occur in practice.

We implemented a two-dimensional array which stored 50 queues each of length 50. Figure 10

illustrates the data structure.

Each queue started at position 0 in the array. Elements were added to the tail of the queue,

40 CHAPTER 3. DATA MEASUREMENT

10 2 50

GET Requests

0

1

2

50

TCP
Connections

Figure 10: Multi-Dimensional Array used by Measurement Tool for Keeping Track of GET requests
on TCP ports

and removed from the head of the queue. Data stored in the queue moved from left to right across

the data structure illustrated in Figure 10 eventually rolling over to the start of the structure again.

The structure had been implemented to roll over to optimise performance. The more intuitive

implementation of copying the whole queue one space across every-time an element was removed

would have imposed an unnecessary performance penalty on the tool.

We created a mapping from a TCP connection (i.e. TCP port number) to the index in the array

for that connection. The mapping was stored in a two-dimensional array. Figure 11 illustrates the

mapping stored in the two-dimensional array.

TCP port numbers were inserted in order into the mapping array. A binary search was performed

on the mapping array to find the index in the GET request array for a specific TCP port number.

The GET request array therefore needed to be sorted. The GET request array was compacted when

it became full. The compaction method removed all entries which did not have any pending GET

requests.

The queue data structures we implemented kept track of all GET requests placed on all TCP

connections used by a host. The information about GET requests stored in the queue data structures

enabled us to match HTTP requests to responses.

The real-time measurement tool succeeded in extracting parameter datasets in real-time for

hosts during off-peak traffic times i.e. during the evening. The tool however failed to extract

parameter datasets in real-time during the day. The process processing data could not keep up

with the process capturing data during peak traffic times. We therefore abandoned the real-time

approach and implemented programs to process recorded information off-line. We discuss the off-line

3.5. OFF-LINE PROCESSING OF PACKET TRACES 41

Number
TCP Port

Array
Index in

GET Requests

Connections

TCP

Figure 11: Mapping used by Measurement Tool to Map a TCP Port to an Array Index

processing programs next.

3.5 Off-line Processing of Packet Traces

We failed to extract parameter datasets in real-time. The hard time constraints on the real-time

processing of measured data were not met when the tool was used during peak traffic hours. Off-line

extraction of parameter datasets did however not impose any hard time constraints on the processing

of measured data. When extracting parameter datasets off-line, the extraction process did not have

to keep up with the flow of data on the network. The performance of the measurement tool was

no longer of crucial importance. We decided to extract parameter datasets off-line. In order to

achieve off-line processing of data, we had to record information to secondary storage. Personal user

information were recorded to secondary storage in the process.

Recording personal user information to secondary storage was a breach of our agreement with the

ITS department. After deliberation with the ITS department, they granted us permission to take

the measurements under the condition that parameter datasets were extracted from measured data

under the supervision of an ITS network administrator. The measured data containing personal

information were deleted from the measurement system before the system was removed from the

ITS department’s premises.

The off-line measurement tool was very similar to the real-time measurement tool. The difference

between the off-line measurement tool and the real-time measurement tool was that the real-time

measurement tool processed measured traffic, whereas the off-line measurement tool did not. The

off-line measurement tool wrote measured network data to a measurement file on secondary storage.

42 CHAPTER 3. DATA MEASUREMENT

The measurement file created by the off-line measurement tool was processed off-line by another

tool we will discuss in Section 4.3.

The data measured by the real-time measurement tool were the same as data measured by the

off-line measurement tool. The functionality of the two tools in terms of data measurement were

very similar. The difference between the tools was that the real-time tool wrote data to a memory

mapped file whereas the off-line tool wrote data to secondary storage.

The off-line measurement tool captured TCP/IP packets transmitted on the Ethernet segment

to which the university campus’ web cache proxy servers were attached. It intercepted traffic sent

to or sent by the proxy machines. As we previously discussed, the first level of data extraction

was performed by the LSF. The LSF extracted web traffic between the campus network and web

servers on the Internet. Extracted TCP/IP packets were passed to user space as illustrated in

Figure 7 (page 34). We next discuss how the off-line measurement tool was deployed on the campus

network in order to capture web traffic between hosts on campus and web servers on the Internet in

Section 3.6. We then discuss which information was extracted by the off-line measurement tool and

how the extracted information was written to measurement file in Section 3.7.

3.6 Measurement Strategy

We instrumented two machines with the data off-line measurement tool and placed them at the

trace collection points on the campus network as illustrated in Figure 12. The position of the

machines on the network ensured that all HTTP requests from and responses to university students

and staff browsing the web were captured. We captured traffic generated by 6 689 hosts over a 1

month long period.

The measurement machines were synchronised by means of the Network Time Protocol (NTP) [Mil92].

Synchronisation was necessary as data captured by the machines were merged into one dataset. The

resultant dataset was used for analysis. The analysis required accuracy of a hundred milliseconds.

The machines’ clocks were synchronised to within ten milliseconds of each another.

The Web Client Request Inter-arrival Time parameter as shown in Table 3 (page 29) was

measured in microseconds which would have been problematic during the merging of datasets as

data were not measured at microsecond accuracy. Fortunately Web Client Requests generated by

the same Web User Request were all sent to the same web proxy machine. The merging of datasets

was therefore not a problem as accuracy was not affected by merging datasets.

As mentioned in Section 2.6 (page 27), the Web User Request Inter-arrival Time and Web

Client Request Inter-arrival Time were the only inter-arrival time parameters we modelled.

These parameters model the time between web user clicks and web client initiated requests for

graphics files respectively. They were not intrinsically linked to network behaviour, and if in fact

we had been able to instrument all the web browsers at the university, we would have been able

to measure these parameters without any influence by network conditions. As Figure 12 however

shows, our measurement machines were placed on the network. This meant that the time it took for a

3.7. INFORMATION EXTRACTED FROM HTTP, TCP AND IP PACKETS 43

Point

Router
Gateway

Point

Campus

Network

HTTP Proxy

HTTP ProxyTrace Collection

Switch

Trace Collection

Internet

Figure 12: Deployment of Measurement Tool on Campus Network

packet to travel from a web user’s host on the university campus network to the measurement machine

would have influenced the measurement of these parameters. The university campus network had a

fibre optic backbone network with capacity of 100Mbs. The utilisation on this network was very low,

between 15% and 20% on average, and very seldomly higher than 25%, which resulted in low latency

and variability of latency between users on the campus network and the measurement machines. We

therefore measured data for these parameters at the trace collection points.

3.7 Information Extracted from HTTP, TCP and IP Packets

In order to solve the HTTP request/response matching problem we kept track of the start and end

of all TCP connections for each host. We accomplished this by recording information contained

in TCP/IP packets with their SYN, FIN or RST flags set. The fields shown in Table 7 (page 48)

were extracted from these packets and written to measurement file.

We captured all SYN packets sent from a host on campus to a web server and all FIN packets

sent from a web server to a host on campus. By capturing these packets the start and end of a

TCP connection as indicated by means of SYN and FIN flags were recorded. We were certain of

capturing the start of a TCP connection by recording SYN packets travelling in one direction only

as TCP’s three way handshake mechanism ensured that the SYN flag is set for the first two packets

transmitted in opposite directions when a new TCP connection is opened. Capturing either of the

packets was sufficient for us. When closing a TCP connection by setting the FIN flag of a TCP/IP

packet the last two packets transmitted in opposite directions on the TCP connection have their

44 CHAPTER 3. DATA MEASUREMENT

FIN flags set. We captured one of these.

We recorded RST packets sent by a host on campus to a web server as well as RST packets sent

by a web server to a host on campus. A single packet with its RST flag set can be sent to abort

a connection in either direction on a TCP connection. Recording all RST packets ensured that the

end of a TCP connection as indicated by an RST flag was recorded.

All other packets captured by the off-line measurement tool contained HTTP messages. The LSF

extracted HTTP messages and passed them to the off-line measurement tool in user space. We in-

spected the headers of these HTTP messages and extracted the information in Tables 5 and 6 (page 46).

We used regular expressions to parse and extract selected information from HTTP header

fields. The C regex library, which is compliant with the POSIX.2 interface for regular expres-

sions, was used to match HTTP header fields to regular expressions. Figure 13 shows the regular

expressions we used.

Request Field:

^GET http://([^/]+)/([^[:space:]]*) HTTP/[0-9]+.([0-9]+)[[:space:]]*$

Response Field:

^HTTP/[0-9]+.([0-9]+) ([0-9]*) .*$

If Modified Since Field:

^If-Modified-Since:.*length=([0-9]+)[[:space:]]*$

Content Length Field:

^Content-Length: ([0-9]+)[[:space:]]*$

Referrer Field:

^Referrer: http://([^/]+)/([^[:space:]]*)[[:space:]]*$

Content Type Field:

^Content-Type: ([^[:space:]]+)[[:space:]]*$

Transfer Encoding Field:

^Transfer-Encoding: ([^[:space:]]+)[[:space:]]*$

Figure 13: Regular Expressions used by Measurement Tool to Parse HTTP Message Headers and
to Extract Selected Information

The first two regular expressions shown in Figure 13 were used to parse request and response

fields contained in HTTP request and response messages respectively (request and response fields

are defined in RFC 2616 [BLFea99]). Round braces in the regular expressions indicate which parts

of a field were extracted. The host part of request URL, path part of request URL and HTTP

version fields were extracted from the request field and are shown in Figure 5 (page 46). The HTTP

version and status code fields were extracted from the response field and are shown in Figure 6

(page 47).

We measured the sizes of HTTP request and response messages in bytes. The size of an HTTP

message was taken to be the size of the HTTP header added to the size of the body of the HTTP

message. The sizes of messages were not always easy to calculate from information contained in

HTTP request, HTTP response, TCP and IP header fields. We calculated the size of HTTP request

and response messages as follows.

3.7. INFORMATION EXTRACTED FROM HTTP, TCP AND IP PACKETS 45

We assumed that HTTP request messages did not span more than one TCP/IP packet. Obser-

vation of HTTP traffic traces showed this to be the case for nearly all HTTP request messages we

captured. Under this assumption an HTTP request message was transmitted in a single TCP/IP

packet. The size of an HTTP request message was calculated as the size of the payload of a TCP/IP

packet that contained an HTTP request message. The size of the payload of a TCP/IP packet was

calculated by subtracting the size of the combined Ethernet, TCP and IP headers from the size of

the data message that was passed to the measurement tool by the LSF i.e. the size of the whole

packet as read from the network link. The sizes of the TCP and IP headers were extracted from the

relevant fields within TCP and IP headers.

The size of an HTTP response message was more complicated to calculate because response

messages typically spanned several packets. We calculated the size of an HTTP response message

by calculating the size of the message header and body separately and then adding the sizes together.

The control sequence "CRLFCRLF" designated the end of an HTTP message header contained in a

TCP packet’s payload [BLFF95, BLFea97, BLFea99]. We calculated the size of the HTTP response

message header by finding the control sequence in the payload data stream. The amount of bytes

contained in the data stream before the appearance of the control sequence was recorded as the size

of the HTTP response message header.

The size of the HTTP response message body was contained in the content-length field of the

HTTP message header. Some HTTP message headers did not contain the content-length field.

We had no means other than the content-length field to obtain the size of an HTTP message

body. We therefore could not record a size value for HTTP response messages which did not have a

content-length field, even though we knew what the size of the HTTP headers for these messages

were.

Some HTTP response messages did not have a message body, these were response messages with

the following status codes: 1xx (informational), 204 (no content) and 304 (not modified) [BLFF95,

BLFea97, BLFea99]. These messages were recorded to have message bodies of size zero bytes. The

size of a HTTP response message was calculated by adding the size of the HTTP header to the size

of the HTTP message body.

We next discuss how information extracted from HTTP, TCP and IP packets was recorded to

measurement file.

3.7.1 Measurement File Format

Information extracted from HTTP, TCP and IP packets was recorded to a measurement file. The

off-line measurement tool recorded data in space delimited text format. Three different types of

entries were used to record data.

1. HTTP request message entry.

2. HTTP response message entry.

3. SYN, FIN and RST message entry.

46 CHAPTER 3. DATA MEASUREMENT

Figure 14 shows examples of the three different types of measurement file entries. We show

separate examples for SYN, FIN and RST messages even though they belong to the same entry type.

SYN Message Entry:

1030643953.416477 SYN d56d 5806

HTTP Request Message Entry:

1030643954.003347 GET d56d 5806 0 0000000428 0000000000 www.mweb.co.za

home/images/welcome1.gif www.mweb.co.za home/default.asp

HTTP Response Message Entry:

1030643956.020927 200 d56d 5806 0 0000001296 image/gif

FIN Message Entry:

1030643957.630441 FIN d565 5806

RST Message Entry:

1030643957.630441 RST d565 5906

Figure 14: Examples of the Three Different Types of Measurement File Entries Recorded in Space
Delimited Text Format

The processing routines and heuristic algorithm described in Chapter 4 used the data contained

in the measurement file to extract datasets for the eleven model parameters.

We next discuss each of the three different types of measurement file entries in turn. We give a

short description for each field contained in a measurement file entry.

Table 5 shows the fields contained in an HTTP request message entry.

Field
No.

Name Sample Entry Field

1 Arrival Time 1030643954.003347
2 Request Type GET
3 Host Number (hexadecimal) d56d
4 Port Number (hexadecimal) 5806
5 HTTP Version 0
6 Message Size 0000000428
7 If-Modified-Since Size 0000000000
8 Host Part of Request URL www.mweb.co.za
9 Path Part of Request URL home/images/welcome1.gif
10 Host Part of Referrer URL www.mweb.co.za
11 Path Part of Referrer URL home/default.asp

Table 5: Fields Contained in an HTTP Request Message Entry

A short description for each of the HTTP request message entry fields follows:

No. 1: Arrival Time, was measured as the number of seconds since the beginning of the epoch

(1970), with microsecond accuracy.

No. 2: Request Type, could be one of the following: OPTIONS, GET, HEAD, POST, PUT,

3.7. INFORMATION EXTRACTED FROM HTTP, TCP AND IP PACKETS 47

DELETE, TRACE, CONNECT. The GET request type accounted for by far the most traffic.

We only considered GET request entries.

No. 3: Host Number, is a number which uniquely identifies the host which generated the request.

The number is the last 16 bits of the 32 bit IP address of a host, in hexadecimal. The university

had a Class B IP address space i.e. 16 bits was used to represent the host part of an IP address.

No. 4: Port Number, is the number of the communication port the request was generated from, in

hexadecimal.

No. 5: HTTP Version, is the version of HTTP used by the web client which placed the request. It

had a value of 0 or 1 representing either HTTP Version 1.0 or 1.1.

No. 6: Message Size, is the size of the request message in bytes.

No. 7: If-Modified-Since Size, was used to determine whether a file had been changed since

the last time the file was accessed. If a file had been changed, it was returned by the server to

the client, otherwise not.

No. 8: Host Part of Request URL, is the dot-delimited host-name part of the requested URL.

No. 9: Path Part of Request URL, is the path and filename part of the requested URL.

No. 10: Host Part of Referrer URL, is the dot-delimited host-name part of the referrer URL.

The referrer URL indicated which URL was responsible for the current request i.e. which

URL the current request was placed from.

No. 11: Path Part of Referrer URL, is the path and filename part of the referrer URL.

Table 6 shows the fields contained in a HTTP response message entry.

Field
No.

Name Sample Entry Field

1 Arrival Time 1030643954.020927
2 Status Code 200
3 Host Number (hexadecimal) d56d
4 Port Number (hexadecimal) 5806
5 HTTP Version 0
6 Message Size 0000001296
7 Content Type image/gif

Table 6: Fields Contained in an HTTP Response Message Entry

A short description for each of the HTTP response message entry fields follows:

No. 1: Arrival Time, is the time of arrival of a response.

48 CHAPTER 3. DATA MEASUREMENT

No. 2: Status Code, is a 3-digit integer code indicating the status of the response, in terms of

whether it had satisfied the request associated with it.

No. 3: Host Number, is a number which uniquely identified the host to which the response was

sent.

No. 4: Port Number, is the number of the communication port to which the response was sent.

No. 5: HTTP Version, indicates the version of HTTP used by the web client to which the response

was sent.

No. 6: Message Size, is the size of the response message in bytes.

No. 7: Content Type, indicates the type of media contained in the response.

Table 7 shows the fields contained in a SYN, FIN and RST message entry.

Field
No.

Name Sample Entry Field

1 Arrival Time 1030643953.416477
2 Message Type SYN
3 Host Number (hexadecimal) d56d
4 Port Number (hexadecimal) 5806

Table 7: Fields Contained in a SYN, FIN and RST Message Entry

A short description for each of the SYN, FIN and RST message entry fields follow:

No. 1: Arrival Time, is the time of arrival of a SYN, FIN or RST message.

No. 2: Message Type, had a value of either SYN, FIN or RST. We defined a message to be a SYN,

FIN or RST message type if the respective flag was set in the TCP header. SYN messages

indicated that a TCP connection was being opened, FIN messages that a TCP connection was

being closed, and RST messages that a TCP connection was being closed abnormally.

No. 3: Host Number, had different meanings depending on the Message Type:

• The host which sent a SYN message.

• The host which was to receive a FIN message.

• The host which either sent or received a RST message, depending on which one the web

client was.

No. 4: Port Number, is the number of the communication port to which the message was sent.

3.8. DATA MEASUREMENT 49

3.8 Data Measurement

We used the off-line measurement tool to capture data on the campus network for a period of 30 days.

We captured web traffic generated by 6 692 hosts during the measurement period. The data were

captured to measurement file in the format described in the previous section. Table 8 summarises

information about the data measurement.

Description Information

Measurement start date 2002-08-20 11:58:54 +0200
Measurement finish date 2002-09-19 21:01:18 +0200
Measurement duration 30 days
No. of hosts recorded 6 692

Table 8: Details of Data Measurement on Campus Network

The data were recorded in two measurement files because the measurement machines were placed

in two locations on the campus network as illustrated in Figure 12 (page 43). The two files had a

combined size of 25GB.

3.9 Concluding Remarks

The information obtained through the packet trace of web traffic was not sufficient for extracting data

about user behaviour. We used a complicated heuristic algorithm to infer user behaviour

from information recorded in the packet trace. The heuristic algorithm used information such as

the type of data requested by a user, or the time between successive requests to infer user

behaviour.

The heuristic algorithm was implemented in a measurement tool. The algorithm used a recorded

history of data transmitted between a web client and web servers. The measurement system failed

to extract data in real-time due to the complexity of the heuristic algorithm. Although the system

was able to extract data in real-time during off-peak web browsing time, it could not extract data

during peak web browsing time.

The real-time measurement tool consisted of two processes which were synchronised. The

tool was therefore well suited to being distributed over two or more processors. We believe that

the real-time measurement tool would succeed in extracting data during peak time if optimised by

distributing it over more than one processor. The distribution of processing over more than one

processor was left for future work.

We implemented an off-line measurement tool which extracted selected information from data

transferred between web clients and servers. The data recorded by the off-line measurement tool

contained sufficient information to extract datasets for the parameters of our web browsing traffic

model. We extracted user behaviour data off-line from the web traffic packet traces.

50 CHAPTER 3. DATA MEASUREMENT

The off-line measurement tool was novel as it did not record all data transferred during a

TCP/IP connection between two hosts. Similar studies to ours used measurement tools which

recorded all TCP/IP data transferred between hosts [Fel00]. Recording whole TCP/IP connections

required enormous storage space and/or processing power. We did not have either of these

resources and therefore implemented an off-line measurement tool which extracted only essential

information from data transmitted between web clients and servers. The data recorded by the off-

line measurement tool were used to extract datasets for the eleven parameter datasets of our web

workload model. We were able to record data for a 30 day period, capturing web traffic generated

by 6 692 hosts on a campus network. The resultant measurement file had a size of 25GB. A storage

requirement of 960GB of storage space would have been required if entire TCP/IP conversations

were recorded.

Chapter 4

Data Processing

4.1 Introduction

As discussed previously, we captured traffic to measurement file. The data captured was processed

off-line. The data measurement resulted in two measurement files with a combined size of 25GB. We

merged the two measurement files into a single file. The merged file was split into 6692 files, one

for each host whose traffic was recorded during measurement. We processed the host datafiles and

extracted parameter datasets from the host datafiles. Eleven parameter datasets were extracted

from each of the host datafiles. The data processing resulted in 73612 parameter datasets which we

analysed.

Our web workload model characterised user behaviour. Information contained in host datafiles

did not contain information about user behaviour. Extracting parameter datasets from host datafiles

was therefore a complicated process. We inferred user behaviour from information contained in host

datafiles. We differentiated between requests for web pages which were generated by web users, and

requests which were generated by web clients i.e. we differentiated between when users clicked on

hypertext links, and when web clients requested inline objects.

Differentiating between web user and web client requests was the main problem we solved dur-

ing the processing of data. The solution to the web user vs. web client differentiation problem

enabled us to extract parameter datasets from host datafiles. We used a heuristic algorithm to

differentiate between web user and web client requests.

The web workload model we defined in Chapter 2 was based on the traditional web browsing

model. The traditional web browsing model can be explained as follows: A web page is requested

by a web client. An HTML file is returned by a web server in reply to the request. The HTML file

is received and parsed by the web client. After parsing the HTML file the web client places requests

for inline objects which are returned to the web client by the web server.

The measurement file contained data which were not generated according to the traditional web

browsing model. For example, the file contained data generated by applications such as web-spiders

51

52 CHAPTER 4. DATA PROCESSING

and the Microsoft Windows web update tool. Web-spiders and the Microsoft Windows update

tool generated traffic which had different characteristics to that of traffic generated according to

the traditional web browsing model. We removed data that were not generated according to the

traditional web browsing model.

We discuss the problems we solved in Section 4.3.1, and the heuristic algorithm in Section 4.5.

We discuss the removal of this data in Section 4.7.

4.2 Splitting of Measurement File

As discussed previously, the measurement of web traffic resulted in two datafiles with a combined

size of 25GB. We combined the two datafiles by using the Linux cat utility. We sorted the file with

the Linux sort tool written by Mike Haertel and Paul Eggert. The tool used a combination of

the Quicksort and Mergesort algorithms. The datafile was sorted on the Host Number and Arrival

time fields as shown in Tables 5 - 7 (page 46). The command we used for sorting the data is shown in

Figure 15. The sort was performed in place i.e. the resultant sorted file was copied over the original,

and required an extra 25GB of secondary storage for swap space. The total amount of storage space

required by the sorting process was therefore 50GB. The sort took 9 hours to complete.

nohup sort -k 3,3d -k 1,1n -T /mnt/swapfile -o sorted file

Figure 15: Command Used to Sort Measurement Datafile

The sorted datafile was split into a separate datafile for each host. We implemented a tool which

split the sorted datafile into host datafiles. The tool processed datafile entries in O(N) time.

The largest addressable file size for a 32 bit file-pointer was approximately 2.1GB. The sorted

datafile had a size of 25GB. 32 bit file-pointers were not large enough to access the whole of the

sorted datafile. We enabled 64 bit file-pointers during the compilation of the tool to overcome this

problem. The special gcc command line parameters shown in Figure 16 was used to enable 64 bit

file-pointers.

-D FILE OFFSET BITS=64 -D LARGEFILE SOURCE

Figure 16: Command line Parameters to Enable 64 bit File-pointers for gcc

We extracted nine parameter datasets from each of the 6 692 host datafiles. We discuss this

process next.

4.3. EXTRACTION OF PARAMETER DATASETS 53

4.3 Extraction of Parameter Datasets

The methods used by the real-time measurement tool to extract parameter datasets, as discussed in

the previous chapter, was adapted to extract parameter datasets off-line. We discuss problems we

solved in order to extract parameter datasets off-line next.

4.3.1 Extraction Problems

As mentioned before, the main problem with extracting parameter datasets from data measured

by packet traces was that information related to user behaviour was not recorded. For example,

information about when a user clicked on a hypertext-link or entered an URL in the address text-box

of their web-browser were not recorded in the packet trace.

Figure 17 illustrates the measurement setup and resultant shortcomings of data captured to

packet traces.

C

C
C

C
C

U
U

C

C

C

C

U
C

U
C

U

C

C
C

C

C
C

U

C

C

C

U

C
C

C
C

C
C

C
C

C
C

U

C

C

C C
C C C

U
U C

C C
C

C C

U

C
C

C

U

Client Request/ Response

User Request/ Response

Host

Responses

Requests

Requests

Responses

Requests

Responses

Requests

Responses

Aggregated Traffic

Measurement System

Router

Hosts

�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����

	�	
�

Figure 17: Measurement Setup and Resultant Shortcomings of Measured Data

Data extracted by the measurement system as shown in Figure 17 are shown in Tables 5 -

7 (page 46).

In Figure 17 web user requests are indicated by red boxes and web client requests by green boxes.

The two types of requests were indistinguishable to the measurement system. The first problem we

solved was:

54 CHAPTER 4. DATA PROCESSING

The Web User vs. Web Client Request Differentiation Problem: Was a request a web user

or a web client request? I.e. did a person or a web client generate the request? This was the

most important and difficult problem we solved. The answer to this problem was used to

extract data for parameter datasets. For instance, in order to determine when a new web

browsing session started, it was necessary to know whether a request was generated by a web

user or a web client.

In Figure 17 a series of web client requests (green) always follow after a particular web user

request (red). A web user request is always responsible for a series of web client requests to be

placed by a web client. The measurement system did not record information which relates web user

requests to web client requests. The second problem we solved was:

The Web Client Request Matching Problem: Which web user request was responsible for a

series of web client requests to be placed? The extraction of the Web Client Request Inter

arrival Time and Number of Web Client Requests per Web User Request parameter datasets

depended on a solution to the web client request matching problem.

In Figure 17, every HTTP request message as indicated by a message on the request pipe of a

host, has a corresponding HTTP response message as indicated by a message on the response pipe

of that host. The measurement system did not record information which associated HTTP request

messages with their corresponding response messages. The reason for the measurement system not

recording this information was that whole TCP/IP conversations were not recorded, as we previously

discussed. The third problem we solved was:

The HTTP Request/Response Matching Problem: Which HTTP response message belonged

to which HTTP request message? We used the solution to this problem to extract parameter

datasets from host datafiles. The information also enabled us to dispose of data associated

with TCP connections which terminated abnormally.

We discuss our solution to the HTTP request/response matching problem in Section 4.4 and our

solution to the web user vs. web client request differentiation problem in Section 4.5.

4.4 The HTTP Request/Response Matching Problem

We discussed our solution to the HTTP request/response matching problem for the real-time mea-

surement tool in Section 3.4.1 (page 39). Our solution to the problem for the off-line processing tool

was very similar to the solution of the problem for the real-time measurement tool. The difference

between the two solutions was that the off-line processing tool was not optimised for performance,

whereas the real-time processing tool was optimised for performance. Because performance was not

a crucial issue, it was not necessary to use complex data structures for statically allocated queues

to store HTTP requests in the off-line processing tool.

4.4. THE HTTP REQUEST/RESPONSE MATCHING PROBLEM 55

Figure 18 illustrates how we kept track of HTTP requests and responses on a single TCP connec-

tion by using a queue data structure. We matched HTTP responses to HTTP requests by keeping

track of all HTTP requests made on all TCP connections, as we did for the real-time measurement

tool.

1 2 3 4 5

42 3

2 3

1 2 3

3 4

321 4 5

HTTP Request Messages

Queue
Development

Single TCP
Connection

Time

HTTP Response Messages

Figure 18: HTTP Request and Response Matching on a TCP Connection by Using a Queue Data
Structure

As Figure 18 shows, new requests were added to the tail of the queue, and a request was removed

from the head of the queue for every incoming response. We maintained a queue for every TCP

connection opened by a host.

The SYN, FIN and RST flags of a TCP packet indicated when a TCP connection was opened,

closed or terminated abnormally respectively. We opened a queue for a TCP connection when a

TCP packet’s SYN flag was set and closed the queue when the FIN or RST flags were set. Whilst

a TCP connection queue was open we added requests to it as we encountered the requests in the

host datafile. When we encountered a response in the host datafile, we matched it to the request

at the head of the queue, and removed the request from the queue. We implemented the queue

data structure using dynamic memory allocation. We used static memory allocation for the real-

time measurement system. Using dynamic memory allocation obviated the need to estimate queue

sizes before runtime. The use of dynamically sized queues resulted in a more flexible and accurate

processing tool.

Packets were sometimes lost during transmission. If a request or response message was lost,

subsequent responses were wrongly matched to requests. In order to correctly address this problem,

every TCP sequence number had to be checked to ensure that packets were not lost. We did not

capture the level of detail necessary to solve this problem.

56 CHAPTER 4. DATA PROCESSING

We approximated a solution to the problem by detecting when a request or response was lost

on a TCP connection. The behaviour of the queue associated with the connection was used as

an indicator of packet loss. During error-less transmissions, a TCP connection queue was opened,

messages were added to and removed from the queue, and the queue was closed when a FIN packet

was received. The queue was always empty at the time a FIN packet was received. If the queue

was not empty, we knew that a message had been lost. In this case we invalidated all requests and

responses on the connection. We found that the invalidation of TCP queues did not happen very

often.

4.5 Web User vs. Web Client Request Differentiation Prob-

lem

We discussed the web user vs. web client request differentiation problem in Section 3.4.1 (page 38)

when describing the real-time measurement system. We solved the problem by compiling a list of

characteristics for a web client request. We differentiated between web user and client requests by

testing whether a new request had any of the characteristics in the list. If a request did have a

characteristic that matched one of the characteristics in the list, it was categorised as a web client

request, and if not, it was categorised as a web user request.

We compiled the list of characteristics by studying measurement file data. The data fields

available in the measurement file data are shown in Tables 5 - 7 (page 46). We used some of the

fields shown in Tables 5 - 7 to compile the list of characteristics. The fields we used were the

following:

1. Host Part of Request URL

2. Path Part of Request URL

3. Host Part of Referrer URL

4. Path Part of Referrer URL

We used two more pieces for information which were not recorded in Tables 5 - 7. They were

the following:

1. Inter arrival Time Between Requests

2. Type of Request

The Inter arrival Time Between Requests was calculated from data in Tables 5 - 7, and the

Type of Request was calculated by studying the file extensions of HTTP request URLs.

4.5. WEB USER VS. WEB CLIENT REQUEST DIFFERENTIATION PROBLEM 57

4.5.1 Categorisation of HTTP Requests

We categorised requests according to the type of file requested. We distinguished between the

following categories:

HTML: Requests for files with HTML content.

GRAPHICS: Requests for image files.

OTHER: Requests for all other files.

We observed that HTTP requests had file extensions matching the extension categories shown

in Figure 19.

HTML: .html, .js, .cgi, .php, .asp, .pl, .cfm, .vbs, .css

GRAPHICS: .gif, .jpg, .png, .jpeg

Figure 19: HTTP Request File Extensions for HTML and GRAPHICS Categories

We wrote a function which categorised requests by comparing the various extensions listed in Fig-

ure 19 to the string contained in Path Part of Request URL field as recorded in Table 5 (page 46).

If a match was found the request was categorised as belonging to the category to which the extension

belonged.

The Path Part of Request URL string was typically very long, and we observed that the exten-

sion often occurred somewhere within a string as opposed to occurring at the end of a string. The

comparison between the extension and the Path Part of Request URL was done for every single

file extension in the list of extensions shown in Figure 19, until a match (or none) was found. As

many comparisons were performed, we needed a fast string comparison function.

We implemented the suffix array search method as described by Jon Bentley in Programming

Pearls in our program [Ben86]. The search function found matching substrings within a string. The

function did string comparisons in O(nlogn) time.

4.5.2 Web Client Request Characteristic List

The web user vs. web client request differentiation problem was solved by the use of a list of

web client request characteristics. The list was used to identify web client requests. Requests

which were not identified as web client requests according to the list of web client request

characteristics were classified as being web user requests.

The list of web client request characteristics was compiled by studying traces of web traffic. A

web traffic trace is shown in Figures 44-46 in Appendix A. The figures in Appendix A show selected

fields taken from the measurement file for a web user request and subsequent web client requests. By

58 CHAPTER 4. DATA PROCESSING

studying traces of web traffic such as the one in Appendix A, we were able to identify characteristics

of web client requests. The web client request characteristics list is reported in Tables 9 - 12.

The requests shown in the figures of Appendix A were generated by a single web user request

for the www.cnn.com URL. The web user request was followed by 82 web client requests for inline

images. It is interesting to note that one web user request generated a large number of web client

requests. The fact that there were many more web client requests than web user requests prompted

us to classify requests according to web client request characteristics.

We next discuss the web client request characteristics list as reported in Tables 9 - 12.

The characteristics are shown in descending order of importance i.e. tests based on characteristics

appearing earlier form a stronger basis for correct classification than tests based on characteristics

which appear later in the tables. The characteristics in Tables 9 - 12 are divided into four groups.

We indicate the group that characteristics belong to in the third column of each table. The web

client characteristic groups are discussed one by one.

4.5.3 Characteristic Group No. 1

Table 9 shows web client request characteristics belonging to Group No. 1.

No. Characteristic Characteristic
Group

1 A GRAPHICS request with a Referrer URL matching that of
any other request preceding it by less than 10 seconds is likely
to be a web client request

Group 1:

2 An HTML or OTHER request with a Referrer URL matching
that of any other request preceding it by less than 2 seconds
is likely to be a web client request

Web client request
following another web
client request

3 A GRAPHICS request with a Host Part of Request URL

matching that of any other request preceding it by less than 5
seconds is likely to be a web client request

4 An HTML or OTHER request with a Host Part of Request

URL matching that of any other request preceding it by less
than 2 seconds is likely to be a web client request

Table 9: Web Client Request Characteristics - 1

Group No. 1 characteristics were based on observations of a series of web client requests following

after one another. We observed that a sequence of web client requests caused by the same web user

request usually had the same Referrer URL. We also observed that the time between these successive

requests was usually very small. Characteristic No. 1 in Table 9 categorises a GRAPHICS request

following shortly after any other type of request with the same Referrer URL as being a web client

request. Characteristic No. 2 categorises HTML and OTHER requests in the same way, but requests

have to follow one another within a smaller time frame. The smaller time frame was due to the fact

that HTML or OTHER requests were likely not to be web client requests if they followed longer

4.5. WEB USER VS. WEB CLIENT REQUEST DIFFERENTIATION PROBLEM 59

than 2 seconds after other requests with the same Referrer URL i.e. they were then more likely to

be web user requests.

Characteristics No.s 3 and 4 state that the Host Part of Request URL was usually the same

for a sequence of web client requests caused by the same web user request. These characteristics

were less certain than the previously discussed Referrer URL characteristics, but were included in

Table 9 to categorise requests which did not have a Referrer URL recorded in the measurement file.

The Referrer URL was often missing from measurement file entries as some browsers did not use the

Referrer URL field, and sometimes software filters were used on networks to filter out the Referrer

URL for security reasons. The time frame for categorisation based on the comparison of GRAPHICS

requests to preceding requests was reduced to 5 seconds (as opposed to 10 seconds for the Referrer

URL) due to categorisation based on the Host Part of Request URL being less certain than that

based on the Referrer URL.

Group No. 1 characteristics were implemented in the parameter extraction tool by means of

comparing a request’s characteristics to previous requests’ characteristics. Previous requests were

stored in the all request queue. The all request queue stored previous requests for all types of

files i.e. HTML, GRAPHICS and OTHER files, as opposed to the html request queue which only stored

previous HTML requests. The html request queue is used for testing Group No. 2 characteristics

and is discussed in Section 4.5.4.

The implementation of Group No. 1 characteristics is shown in Appendix B.

4.5.4 Characteristic Group No. 2

Table 10 shows Group No. 2 web client request characteristics.

No. Characteristic Characteristic
Group

5 A GRAPHICS request with a Referrer URL matching that of
any HTML request whose response precedes it by less than 50
seconds is likely to be a web client request

Group 2:

6 A GRAPHICS request with a Referrer URL matching the
Request URL of any HTML request whose response precedes
it by less than 50 seconds is likely to be a web client request

Web client request fol-
lowing an HTML re-
quest

7 An HTML or OTHER request with a Referrer URL matching
that of any HTML request whose response precedes it by less
than 2 seconds is likely to be a web client request

8 An HTML or OTHER request with a Referrer URL matching
the Request URL of any HTML request whose response pre-
cedes it by less than 10 seconds is likely to be a web client
request

Table 10: Web Client Request Characteristics - 2

Group No. 2 characteristics were based on observations of web client requests following after

60 CHAPTER 4. DATA PROCESSING

HTML requests. Characteristic No. 5 categorises GRAPHICS requests which follow within 50 sec-

onds of the response to an HTML request, and have the same Referrer URL as the HTML request,

as web client requests.

We observed that HTML requests were often web client requests for content embedded in a web

page by means of frames or pop-up windows. These HTML requests generated more requests after

they had been parsed. The resultant requests had the same Referrer URL as the HTML request

which caused them. If the requests were GRAPHICS requests and occurred within 50 seconds of

the response to the relevant HTML request, there was a high likelihood for them being web client

requests. Characteristic No. 7 states that HTML and OTHER requests have to follow within 2

seconds of the response to the HTML request to be categorised as web client requests, as there is a

large possibility of these requests being new web user requests.

We observed that GRAPHICS requests with a Referrer URL matching the Request URL of the

response to an HTML request which preceded it by less than 50 seconds were likely to be web client

requests. This situation arose when the Referrer URL referred to the web user request which caused

the series of web client requests for GRAPHICS files. Characteristic No. 6 characterises web client

requests in this way. Characteristic No. 8 states the same for HTML and OTHER requests, but with

a time limit of 10 seconds between the response to an HTML request and the request in question,

because of the possibility of the HTML request being a new web user request.

The html request queue stored previous HTML requests, and was used for testing Group No. 2

characteristics.

The html request queue

The html request queue stored the arrival time of an HTML request as well as the arrival time of

the response to an HTML request. In comparison, the all request queue stored the arrival time

of requests only.

Observations No.s 5-8 in Table 10 were based on scenarios where an HTML response generates

more requests itself, after it had been parsed by a web client. The quantity of importance in these

scenarios was the amount of time between the arrival of an HTML response and the arrival of requests

generated by the HTML response after it had been parsed. In order to calculate this quantity we

needed a record of HTML response arrival times.

On arrival of an HTTP response we matched it to its respective HTTP request as discussed in

Section 4.4. After matching the HTTP response, we tested whether the response was an HTML

response by inspecting the Content-Type field. Figure 20 shows the different types of Content-Type

fields for HTML responses. If the response was an HTML response we inserted the relevant HTML

request and response information (including HTTP response arrival time) as a new element into the

html request queue.

The implementation of Group No. 2 characteristics is shown in Appendix B.

4.5. WEB USER VS. WEB CLIENT REQUEST DIFFERENTIATION PROBLEM 61

text/html, application/x-javascript, text/javascript, text/xml, text/css, text/plain

Figure 20: Content-Type field of an HTML response

4.5.5 Characteristic Group No. 3

Table 11 shows Group No. 3 web client request characteristics.

No. Characteristic Characteristic
Group

9 A GRAPHICS request with a Referrer URL matching that of
any other request preceding it by less than 60 seconds is likely
to be a web client request

Group 3:

10 A GRAPHICS request with a Host Part of Request URL

matching that of any other request preceding it by less than
60 seconds is likely to be a web client request

Web client request
following another web
client request

Table 11: Web Client Request Characteristics - 3

Group No. 3 characteristics were based on observations of web client requests following web client

requests. These characteristics were similar to Group No. 1 characteristics, but for relaxed inter-

arrival time constraints and the fact that we only considered GRAPHICS requests in Group No. 3

characteristics.

We observed that GRAPHICS requests with inter-arrival time constraints larger than those

specified for Group 1 characteristics were often web client requests. We therefore relaxed the inter-

arrival time constraints of characteristics No.s 1 and 2, ensuring that a web client request which was

generated later than usual, was correctly categorised.

The reason for not using the relaxed inter-arrival time constraints of observations No.s 9 and 10

from the outset, was that given the relaxed inter-arrival time constraints of characteristics No.s 9 and 10,

characteristics No.s 3-8 were more likely to categorise the request correctly than characteristics No.s 9 and 10.

The implementation of Group No. 3 characteristics is shown in Appendix B.

4.5.6 Characteristic Group No. 4

Table 12 shows Group No. 4 web client request characteristics.

Group No. 4 characteristics were based on the observation that requests for advertising content

were very likely to be generated by the last HTML request.

We observed that requests for advertising content usually had URLs containing at least one of

strings shown in Figure 21.

We used the string comparison routines discussed in Section 4.5.1 to test whether a request was a

request for advertising content. If the Host Part of Request URL or Path Part of Request URL

62 CHAPTER 4. DATA PROCESSING

No. Characteristic Characteristic
Group

11 A request for advertising content following an HTML Request
is likely to be a web client request generated by the HTML
Request

Group 4:

12 A request following within 2 seconds of a web user request is
likely to be a web client request

Advertisement re-
quests and requests
following web user
requests

Table 12: Web Client Request Characteristics - 4

doubleclick.com, doubleclick.net, akamai, atwola, realmedia.com, zedo.com,

advertising.com, fastclick.net, imrworldwide.com, peel.com, ads, img.co.za

Figure 21: Advertising Content URLs or part thereof

or a combination of both matched at least one of the strings in Figure 21, the request was classified

as a request for advertising content.

We observed that web user requests very seldomly followed directly upon one another within

a 2 second period. This type of traffic was generated by a user clicking twice within a 2 second

period, while no other traffic i.e. inline objects, were generated by the web browser. We categorised

a request following within 2 seconds of a web user request as being a web client request.

4.6 The Web Client Request Matching Problem

The problem was solved by the implementation of the solution to the Web User vs. Web Client

Request Differentiation Problem. By differentiating between web user and web client requests

we were able to also match web client requests to the correct web user requests. When a request

was categorised as being either a web user or a web client request, an index number was assigned

to the request. The index number assigned to a web client request associated that request to the

relevant web user request.

We achieved the correct matching by recording index numbers of requests which had already

been categorised in the all request queue and html request queue. Subsequent tests made use

of the information in the all request queue and html request queue to match web client requests

to web user requests.

4.7. REMOVAL OF UNREPRESENTATIVE DATA 63

4.7 Removal of Unrepresentative Data

We used the packet trace method to obtain data measurements. Due to the nature of the packet

trace method, some of the data we recorded were not relevant to our study. We identified and

removed data which were not relevant to our study. A considerable amount of data were removed.

The model we defined in Chapter 2 characterised web-browsing traffic generated by a single host

on a campus network. We have previously defined traffic generated by our model as traditional

web traffic. Any data which did not correspond to traditional web traffic were removed from the

study. TCP/IP and HTTP errors, HTTP data generated by applications other than web-browsers

such as web-download and web-irc traffic were removed. Data were removed from host datasets

during the processing of datasets, Section 4.7.1 documents the process of removing unrepresentative

data. We also removed complete host datafiles which had parameter datasets with too few entries

to be analysed, Section 4.7.2 documents the process of removing unrepresentative datasets.

4.7.1 Removal of Unrepresentative Data from Host Datasets

Data generated by TCP/IP and HTTP errors and data generated by applications other than web-

browsers such as web-download, web-irc traffic and Windows Messenger data were removed from

host datasets.

We removed all Windows Messenger traffic from measurements. The Windows Messenger appli-

cation used the HTTP. Windows Messenger HTTP traffic was asynchronous i.e. several messages

were sent in one direction without responses returning in the same order on a TCP connection. Web

HTTP traffic on the other hand was synchronous. Our tools processed HTTP data assuming that

the traffic was synchronous. Asynchronous traffic transmitted on the same TCP connection as web

HTTP traffic caused errors during the processing of data.

We used the string comparison routines discussed in Section 4.5.1 to identify Windows Messen-

ger HTTP response messages. The Content Type field of Windows Messenger response messages

matched the string: “messenger”. We discarded Messenger responses during processing. We dis-

carded all pending HTTP requests on the TCP connection queue associated with the TCP port on

which a Messenger response was found (the TCP connection queue was discussed in Section 4.4). We

discarded pending HTTP requests on the same TCP connection because the asynchronous nature

of Messenger messages could not be processed by our application.

We removed web-download requests from host datasets. We used the previously discussed

string comparison routine to identify web-download requests. We observed that the Path Part

of Request URL field of web-download requests typically matched the file extensions shown in Fig-

ure 22. We identified a request as being a web-download request by matching it to one of the strings

in Figure 22. We categorised requests for files larger than 1Mb as being web-download requests.

We created a blacklist category for all traffic other than traditional web traffic and web-download

traffic. We compiled a list of URLs which were associated with this traffic. Figure 23 shows URLs

or parts of URLs that were identified as being blacklisted. This was time consuming task, but was

64 CHAPTER 4. DATA PROCESSING

.cab, .zip, .exe, .dll, .gz, .gzip, .wmz, .gbdzip, .scr,

.jar, .pfr, .class, .mp3, .ra, .avi, .au, .mpeg, .mpg, .mid,

.mov, .pdf, .ps, .ppt, .doc, .bmp, .art, .ico, .psp, .tif,

.wmv, download, .rm and .iso

Figure 22: File Extensions Associated with Web Download Requests

the only way to identify and remove unrepresentative traffic from the datasets. We categorised an

HTTP request as being a blacklisted request if the request was a request for a blacklisted URL.

Blacklisted traffic was generated by applications such as: web-irc, streaming audio, streaming video,

peer-to-peer file transfer, automated photo-gallery applications etc.

icq.com, 205.188.250.25, mirabilis.com, africam.com, ads.win4win.com, pgq.yahoo.com,

toolbar.mweb.co.za, windowsupdate, toolbar.google.com, liveupdate.symantec,

catchthegroove.com, smgradio.com, gator.com, mail.com, outblaze.com, realmedia,

svcs.microsoft.com, WindowsMessenger, gnucleus.gnutelliums.com, update, flipside.com,

www.xingtong.dns2go.com, download, tiscali.co.za, wustat.windows.com, defsoul.com,

spencer.idjmg.com, calico.ac.za, kazaa.com, www.jade.za.net, cricket.org,

mailbits.com, ict.sportingodds.com, www.page3.com, hotmail, hotmail, ticker,

update.companion.yahoo, www.pku.edu.cn, defjam.com, link to database

Figure 23: Blacklisted URLs or Parts of URLs

A request of which either the Host Part of Request URL or Path Part of Request URL or

a combination of both matched any of the strings contained in Figure 23 was categorised as a

blacklisted request.

We observed that web client requests often fell in the blacklisted category, but passed the test for

blacklisting due to being redirected and hence having URLs different to the ones shown in Figure 23.

We implemented a blacklist queue which stored a list of blacklisted web user requests. Web client

requests were compared to the web user requests in the blacklist queue, and removed from the

relevant host dataset if they matched the blacklisted web user request.

We removed 10076332 requests and responses from the host datasets. We were left with 32575718

requests and responses in the host datasets.

4.7.2 Removal of Unrepresentative Host Datasets

We removed host datasets which were not generated by web users from the the study. We removed 2

host datasets that were generated by web cache proxy software and 1 host dataset that was generated

by web spider software.

We removed parameter datasets with less than 30 entries from the study. We removed 4519 host

datasets because the Browsing Inter-Session Time parameter datasets had less than 30 entries.

We removed host datasets which were unlikely to have been generated by users browsing the web.

4.8. CONCLUDING REMARKS 65

It was unlikely for a user to request more than 500 web pages per session. Host datasets with Number

of Web User Requests per Browsing Session parameter datasets which contained values larger

than 500 were unlikely to have been generated by web users. We removed 20 host datasets with

values larger than 500 for the Number of Web User Requests per Browsing Session parameter.

We removed 323 host datasets because they had entries larger than 1000 for the Number of Web

Client Requests per Web User Request parameter datasets. It was unlikely for a web page to

have more than a 1000 inline images.

A total of 4865 datasets were removed from the 6692 host datasets. We were left with 1827

datasets for analysis. We used 715 of the datasets for analysis and 1112 for validation purposes

(randomly split datasets into two groups). The reason for the uneven split in numbers between

analysis and validation datasets was the removal of datasets after we divided the datasets into two

groups. We removed datasets for reasons previously discussed. As previously discussed the validation

of our traffic model was left for future work.

4.8 Concluding Remarks

We developed a heuristic algorithm which differentiated between web user and web client

requests. The heuristic algorithm was based on a list of web client characteristics. We identified

web client characteristics by studying web traffic traces.

We used the heuristic algorithm to extract parameter datasets from captured data. The data

we extracted parameter datasets from were captured by taking traffic measurements on a campus

network. Using the heuristic algorithm, we were able to draw inferences about user behaviour based

on the limited information at our disposal. We had limited information at our disposal due to

the nature of the packet trace measurements technique. No information about user behaviour was

captured in the data.

We validated the heuristic algorithm by performing an experiment in our laboratory. We

generated a series of web user and web client requests and applied the data processing application

which implemented the heuristic algorithm to the data. Requests were categorised very accurately

by the algorithm. The quantification of the algorithm’s accuracy was left for future work.

The accuracy of the heuristic algorithm can be attributed to the use of detailed information

to categorise requests. We used information extracted from TCP, IP and HTTP packet head-

ers to categorise requests. Previous work used only TCP and IP information to categorise web

requests [SCJO01]. The use of HTTP information resulted in a more accurate approach to the

categorisation of web requests.

There was a tradeoff in performance for the accuracy which the heuristic algorithm had.

Algorithms which did not make use of HTTP information in categorising requests, were computa-

tionally more efficient than the heuristic algorithm. These algorithms were used to process data in

real-time. It was not possible for us to capture and process data in real-time. Captured data had to

be processed off-line by the heuristic algorithm. The off-line processing of data was not a problem

66 CHAPTER 4. DATA PROCESSING

as we had sufficient storage space to process captured data off-line.

We removed data which were not relevant to the study from the captured data. Data which

did not correspond to data generated according to the traditional web browsing model were

not relevant to the study. The traditional web browsing model was previously discussed. In essence

it was a model which modelled the common use of the web as a conveyer of information by means

of web pages. Web pages constituted text and images.

A large amount of measured data were removed. The reason we removed a large amount of data

was that a large amount of data were generated by web-irc or web-download applications. Web-irc

and web-download traffic did not correspond to the traditional web browsing model. We decided to

strictly define our workload model as a model of traditional web browsing traffic only. The reason for

this strict definition was that the model was defined for the purpose of simulating traffic generated

on wireless networks. We did not expect users to download large amounts of data or use web-irc

applications extensively on wireless networks. The quantification of the amount of traffic generated

by traffic other than traditional web browsing traffic on a campus network was left for future work.

The off-line processing tool was developed to be accurate rather than fast. We made the decision

to concentrate on accuracy rather than performance, as the Internet link which we measured was

relatively small (6Mbps). It was possible for us to capture 30 days worth of web traffic on 25GB

of secondary storage. The approach of accuracy rather than performance would however not have

worked on network links with much larger bandwidth. Many universities in the United States have

Internet bandwidth in the order of 100Gbps. The storage requirement for capturing traffic on these

networks with our measurement tool would have been very large. It would not have been possible

to use our measurement tool to capture data on networks with bandwidth in the order of 100Gbps.

Our measurement and processing tools could however be used to capture and process a subset of

the data transmitted on networks with very large bandwidth.

Chapter 5

Statistical Methodology

5.1 Introduction

We analysed the datasets for each of the eleven model parameters. We intended to find a function

of a specified mathematical family which fit each of the eleven workload model parameters well.

As previously discussed, the data were more complicated than we anticipated. We did not find a

perfect fit to a mathematical function for any of the model parameters. We however managed to

find mathematical functions which fit the data reasonably well.

By function of a specified mathematical family we mean a distribution family e.g. the normal

or exponential distribution families, as well as the model constants associated with the family e.g.

location, shape and scale. We started by considering four well known mathematical functions as

models for the data namely the exponential, Weibull, lognormal and Pareto distributions. We

implemented analysis routines for these distributions in the R statistical analysis environment.

We found that these distributions did not provide enough flexibility in terms of shape and size to

model the eleven model parameters. We added routines for the normal, beta, gamma and extreme

value distributions to our toolset of R programs. We found reasonable matches for the eleven

model parameter datasets by using these eight statistical distributions.

We used visual techniques to explore the data. We applied goodness-of-fit statistics to the data

to determine which of the eight distributions fit the data best. We used the histogram, Q-Q plot,

probability plot and empirical cumulative distribution function to visually explore the data. We

used the method of maximum likelihood estimation to obtain maximum likelihood estimates

for model constants. We used two goodness-of-fit statistics, the Anderson Darling statistic and

the λ2 discrepancy measure.

The λ2 discrepancy measure is a statistic which relied on the binning of data. The size chosen

for bin width affected the accuracy of the statistic. We used well known techniques to accurately

calculate bin widths. Bin widths for datasets with a skewed distribution had to be calculated

differently to those for datasets with symmetrical distributions. Most of the datasets we analysed

67

68 CHAPTER 5. STATISTICAL METHODOLOGY

were positively skewed. We used a technique suggested by Scott to calculate optimally sized bins

for these datasets [Sco92].

The very large size of most of the datasets we analysed was a major obstacle. Most of the

datasets had millions of entries. Statistical analysis packages typically were not able to analyse

datasets with more than a million entries. We had to implement our own analysis routines in the

R statistical analysis environment. Another problem we had was that statistical theory often did

not provide the necessary tools to analyse datasets with more than a million entries. The Anderson

Darling statistic in particular could not be used for the analysis of datasets with more than 200

entries.

Many of the datasets we analysed showed signs of heavy-tailed distributions. There were

many techniques available to analyse the tail of a distribution. We used the well known technique

of exploring the tail-end of a distribution’s complementary cumulative distribution function on a

log-log scale. We also used the well known Hill plot technique.

We describe the eight distributions we tested for, and some of their properties in Section 5.2.

Section 5.4 describes the visual techniques we used for data exploration. Section 5.5 describes the

goodness-of-fit metrics we used i.e. the Anderson Darling and λ2 statistics. Section 5.6 discusses

the techniques we used to identify heavy-tailed distributions.

5.2 Analytic Distributions

We tested eight well-known probability distribution families for goodness-of-fit against the eleven

parameter datasets. The distribution families we tested were the exponential, Weibull, lognormal,

normal, beta, gamma, extreme value, and Pareto probability distribution families. The eight distri-

bution families we tested have often been used in simulation studies as workload models. Together,

the chosen distribution families represent a wide variety of possible shapes.

We were specifically interested in distribution families which were able to match heavy tailed

empirical distributions. Heavy tailed distributions were commonly encountered in network traffic

modelling studies. Amongst the distribution families we selected there were several which could

model heavy tailed empirical distributions. Previous studies by Paxson, Feldmann, Barford and

Crovella [Pax94, Fel98, BC98b] used these eight distribution families to characterise Internet work-

load.

Tables 13 and 14 summarise functions associated with the probability distributions.

Table 15 lists the maximum likelihood estimators used to estimate model constants for the

different distributions.

1B(α, β) =
∫ 1

0
tα−1 (1 − t)β−1 dt

2Γ(γ) =
∫

∞

0
tγ−1e−1dt

3Solve for γ and α
4Solution exists only when a and b are known

5Ψ(x) =
Γ
′

(x)
Γ(x)

5.2. ANALYTIC DISTRIBUTIONS 69

Distribution
Family

Distribution
Parameters

General Density Function

Exponential µ, α 1
αe−

(x−µ)
α x > µ; α > 0

Weibull µ, γ, α γ
α

(

x−µ
α

)γ−1
e

(

−(x−µ)
α

)γ

x > µ; γ > 0; α > 0

Lognormal θ, ζ, σ e
−

(

(log(x−θ)−ζ)2

2σ2

)

(x−θ)σ
√

2π
x ≥ θ; ζ > 0; σ > 0

Normal µ, σ e
−

(

(x−µ)2

2σ2

)

σ
√

2π
σ > 0

Beta α, β, a, b 1 (x−a)α−1(b−x)β−1

B(α,β)(b−a)α+β−1 a < x < b; α > 0; β > 0

Gamma µ, γ, α 2 1
αΓ(γ)

(

x−µ
α

)γ−1
e(

x−µ
α) x > µ; α > 0; γ > 0

Extreme
Value Type 1

α, β 1
β e−

(x−α)
β e

(

−e
−

(x−α)
β

)

−∞ < x < ∞

Pareto α, β βαβx−β−1 β > 0 x ≥ α α > 0

Table 13: Distribution Parameters and General Density Function for Distribution Families Used in
the Study

Distribution
Family

Cumulative Distribution Function Mean

Exponential 1 − e−
(x−µ)

α x > µ; α > 0 α

Weibull 1 − e

(

−(x−µ)
α

)γ

x > µ; γ > 0; α > 0 µ + αΓ
(

γ+1
γ

)

Lognormal No closed form e(ζ+0.5σ2)

Normal No closed form µ

Beta
∫ x

a
(x−a)α−1(b−x)β−1

B(α,β)(b−a)α+β−1 a < x < b; α > 0; β > 0 a + b
(

α
α+β

)

Gamma Γx(γ)
Γ(γ) x > 0; γ > 0; µ = 0 αλ + µ

Extreme
Value Type 1

e−xe

(

−e
−

(x−α)
β

)

−∞ < x < ∞ α + 0.5772β

Pareto 1 − (α/x)β x ≥ α β > 1 : βα
β−1

β ≤ 1 : ∞

Table 14: Cumulative Distribution Function and Mean for Distribution Families Used in the Study

70 CHAPTER 5. STATISTICAL METHODOLOGY

Distribution
Family

Maximum Likelihood Estimator

Exponential α̂ = 1
n

∑n
i=1 xi = x̄

Weibull3 γ̂ =

[

(

∑n
i=1 xγ̂

i logxi

)(

∑n
i=1 xγ̂

i

)−1

− n−1
∑n

i=1 logxi

]−1

α̂ =
[

n−1
∑n

i=1 xγ̂
i

]1/γ̂

for fixed µ = 0

Lognormal For zi = log(xi − θ) :

ζ̂ = 1
n

∑n
i=1 zi = z̄

σ̂ =
[

(n − 1)−1
∑n

j=1(zj − z̄)2
]

1
2

Normal µ̂ = 1
n

∑n
i=1 xi = x̄

σ̂ =
[

(n − 1)−1
∑n

j=1(xj − x̄)2
]

1
2

Beta 4 5Ψ(α̂) − Ψ(α̂ + β̂) = 1
n

∑n
i=1 log

(

Yi−a
b−a

)

Ψ(β̂) − Ψ(α̂ + β̂) = 1
n

∑n
i=1 log

(

b−Yi

b−a

)

Gamma 1
n

∑n
i=1 xi = α̂λ̂

1
n

∑n
i=1 lnxi = lnα̂ + Γ

′

(x)
Γ(x) for fixed µ = 0

Extreme
Value Type 1

∑n
i=1 e

−
(

xi−α̂

β

)

= n
∑n

i=1(xi − α̂)

(

1 − e
−
(

xi−α̂

β̂

)

)

= nβ̂

Pareto α̂ = min(xi)

β̂ = n [
∑n

i=1 log(xi/α̂)]
−1

Table 15: Maximum Likelihood Estimator for Distribution Families Used in the Study

5.3. CORRELATION AND AUTOCORRELATION 71

We used general-purpose optimisation based on Nelder-Mead, quasi-Newton and conjugate-

gradient algorithms using numerical derivatives to optimise the log-likelihood of maximum likeli-

hood estimators. The functions for general-purpose optimisation were available in the R statistical

analysis environment.

5.3 Correlation and Autocorrelation

In order to associate parameter datasets with mathematical functions based on the frequency of

occurence of observations the observations have to be independent of one another.

The autocorrelation function can be used to test for independence between time instances

of a stochastic process. We used the autocorrelation function to test for independence between

observations in each the 11 parameter datasets. We explain the autocorrelation function and related

concepts next.

Correlation is a measure of linear dependence between jointly distributed random variables X

and Y . The correlation coefficient ρ(X, Y) measures the degree of linear correlation between the

two random variables X and Y. We define

ρ(X, Y) =
Cov(X, Y)

√

V ar(X)V ar(Y)
(1)

where both the variances and covariances of both X and Y exist and the variances are nonzero.

The covariance of X and Y is

Cov(X, Y) = E(XY) − E(X)E(Y) (2)

The following relationship holds

−1 ≤ ρ(X, Y) ≤ 1

It is said that X and Y are independent or uncorrelated if ρ(X, Y) = 0. It is said that X and Y

are negatively correlated if ρ(X, Y) < 0 i.e. X = −aY + b for a > 0 and all b. It is said that X and

Y are positively correlated if ρ(X, Y) > 0 i.e. X = aY + b for a > 0 and all b.

Correlation between instances of the same random variable is measured by the autocorrelation

function. The autocorrelation function is denoted by γX(`) where ` indicates the lag. The lag is

the distance between values tested for correlation.

The autocorrelation function γ of a stochastic process is the joint moment of random variables

X(t1) and X(t2). The autocorrelation function is

γ(t1, t2) = E[X(t1)X(t2)] (3)

As with the correlation coefficient for two random variables discussed earlier, the autocorrelation

function is a measure of the relationship between two time instances of a stochastic process. A

related quantity is the autocovariance

72 CHAPTER 5. STATISTICAL METHODOLOGY

C[t1, t2] = γ(t1, t2) − E[X(t1)]E[X(t2)]. (4)

For many random variables the value γ(1) is particularly significant. If a random variable is

correlated the correlation is often greatest at a lag of 1. We decided whether a parameter dataset

was correlated by considering the value of γ(1) for the parameter dataset. If |γ(1)| < 2/
√

n (where

n is the number of observations in the dataset) then the dataset was considered to be uncorellated.

This follows from the fact that |γ(1)| < 2/
√

n is true for uncorrelated datasets 5% of the time. We

therefore constructed a 95% confidence interval for γ(1).

5.4 Visual Techniques

We used the following exploratory data analysis techniques to analyse the data:

1. The Histogram.

2. The Empirical Cumulative Distribution Function.

3. The Log Empirical Complementary Cumulative Distribution Function.

4. The P-P Plot.

5. The Q-Q Plot.

Histograms were used to identify the shape, location and scale of the distribution of data. They

showed the presence of symmetry, peakedness, outliers and heavy tails. Histograms required us to

choose a size for bin width. A poor choice of size resulted in loss of information or over-sensitivity to

small changes in data distribution. There were three commonly used rules for bin width calculation:

the Sturges rule, the Friedman/ Diaconis rule and the Scott rule. The rules for bin width calcu-

lation relied on the assumption that the data were normal. Non-normal data required more bins

than normal data. The data we analysed were mostly non-normal. We addressed the problem by

implementing an adaptation of the Scott rule which results in optimally sized bins for non-normal

data [Sco92].

The empirical cumulative distribution function had the following advantages over the histogram:

1. It did not involve “binning”.

2. Its complexity was independent of the number of observations.

3. It supplied direct information about the shape of the underlying distribution.

4. It supplied robust information on location and dispersion.

5.5. STATISTICAL TECHNIQUES 73

The log empirical complementary cumulative distribution function was used to analyse the right

hand tail of a distribution. It was also used to indicate the goodness-of-fit of the exponential

distribution to the data.

P-P and Q-Q plots were used to judge the goodness-of-fit of a particular mathematical function

to a dataset. We estimated the model constants for a particular parameter dataset by using the

formulae reported in Table 15. The plots formed a straight line when the hypothesised distribution

was the true underlying distribution of the data. It afforded the opportunity to judge goodness-of-fit

by judging the linearity of the plot. We tested the goodness-of-fit of the Q-Q plot to the straight

line by using the measure

1 −∑n
i=1(xi − yi)

2

√

∑n
i=1 x2

i

∑n
i=1 y2

i

(5)

where xi are instances of the explanatory variable and yi are instances of the response variable.

The R code for the log empirical complementary cumulative distribution function plot, and P-P

and Q-Q plots for selected mathematical functions are given in Appendix C.

Measures of location and spread such as the quartiles of the data, the median, mean, variance,

skewness and kurtosis gave an indication of the distribution of data.

5.5 Statistical Techniques

Goodness-of-fit statistics quantified evidence suggested by visual analysis. We used the Anderson

Darling and λ2 statistics.

5.5.1 Anderson Darling Statistic

The Anderson Darling statistic was based on the empirical distribution function (EDF). We imple-

mented the statistic in R according to the description in the chapter “Tests Based on EDF Statistics”

in the monograph “Goodness-of-Fit Techniques” by R.B. D’ Agostino and M.A. Stephens [Ste86].

The R code for the test is listed in Appendix C.

EDF statistics were more accurate than statistics based on binning techniques such as the χ2

goodness-of-fit statistic. EDF statistics did not involve the binning of data, which would have

resulted in loss of information. The Anderson Darling statistic was particularly well suited for

detecting departures from the true distribution in the tail of the distribution. This property was of

particular significance to us as it had been shown that data collected from data network traces were

often heavy tailed [CTB98, Res97].

We used percentage point tables given by Stephens to calculate p-values [Ste86]. Model constants

were estimated from the sample data by means of optimising the log-likelihood of the estimators

given in Table 15 (page 70).

A considerable drawback of the Anderson Darling statistic was that it could not be used for tests

on large datasets [Pax94, BC98b]. The statistic had published tables for p-values for datasets with

74 CHAPTER 5. STATISTICAL METHODOLOGY

sizes up to 200 entries. The datasets we analysed usually had more than one million entries. The

Anderson Darling statistic could therefore not be used to analyse the datasets we had to analyse.

We investigated the lambda discrepancy statistic as an alternative test.

5.5.2 Lambda Discrepancy Statistic

The λ2 discrepancy statistic was defined by Pederson and Johnson in the paper “Estimating Model

Discrepancy”[PJ90] as

λ̂2 =
X2 − K − df

N − 1
(6)

where N is the sample size and df is defined as n-r-1, where n is the number of bins and r the

number of model constants estimated from data. Assume that Y = (Y1, Y2, . . . , Yn) is a multinomial

random variable with p = (p1, p2, . . . , pn) denoting a hypothesized probability vector for Y, then

K =
n
∑

i=1

(Yi − Npi)

Npi
(7)

and

X2 =

n
∑

i=1

(Yi − Npi)
2

Npi
(8)

In order to construct confidence intervals we used a consistent estimator of the variance of λ2

v̂(λ̂2) = [2df + 4Nλ̂2 + 4Nλ̂4 + 4T]/N2 (9)

where

T =
∑

[(Yi − Np̂i)
3 − 2(Yi − Np̂i)(Np̂i) + (5/2)(Yi − Np̂i)

2 + (3/2)Yi]/(Np̂i)
2 (10)

As can be seen from Equation 6, the λ2 statistic was based on the χ2 goodness-of-fit statistic.

The λ2 and χ2 statistics were based on binning techniques, and measured the magnitude of departure

of empirical data from a distributional model. It had been found that for smaller datasets the λ2

statistic was less biased and had smaller variance than the χ2 statistic [PJ90]. Of even greater

importance to us was the fact that unlike the Anderson Darling statistic, the λ2 statistic could be

used on large datasets.

Another advantage of the λ2 statistic was that it could be used to compare the goodness-of-fit of

tests performed on datasets with different sample sizes. It is not possible to compare tests performed

on datasets with different sizes when using Pearson’s χ2 or the Anderson Darling statistic. The λ2

statistic could be used to compare results from tests performed on datasets of different sizes because

the sample size and number of bins were taken into account in the calculation of the statistic.

5.5. STATISTICAL TECHNIQUES 75

Binning Methods

The λ2 statistic was based on a binning technique. The statistic suffered from the same weakness

as the histogram i.e. the user had to choose a bin size. A poor choice resulted in imprecision in the

statistic. A bin size chosen to be larger than necessary resulted in the statistic measuring differences

on a gross scale. Measuring differences on a gross scale missed small but important deviations in

the data. A bin size chosen to be smaller than necessary exaggerated small discrepancies between

dataset and model. Exaggerating small discrepancies resulted in falsely rejecting functions which fit

the data well. Studies on data network traffic by Paxson and Feldmann [Pax94, Fel98] approached

the problem of choosing bin sizes by using the strategy suggested by Scott [Sco79]. Bin sizes were

calculated by using the following formula

w = 3.49σ̂xn−1/3 (11)

where w was the bin width, σx was the estimated standard deviation and n the number of

elements in the dataset.

We observed that Equation 11 resulted in oversized bin sizes when small datasets, or datasets

with a skewed distribution were analysed. The oversized bins obscured features of the analysed

dataset which would have been visible if smaller bins were used. The reason for the miscalculation

in bin size was that Equation 11 assumed normally distributed data. The data we analysed were

mostly skewed and therefore using Equation 11 resulted in the calculation of inaccurate bin sizes.

In order to take into account the skewness of data Scott showed that for non-normal data a larger

number of bins and hence smaller bin size was necessary [Sco92]. Scott showed that Equation 11

should be multiplied by a “skewness factor” when bin width was calculated for data with a possible

log-normal distribution. A random variable Y with a possible log-normal distribution should be

multiplied by

21/3σ

e5σ2/4 (σ2 + 2)1/3 (eσ2 − 1
)1/2

(12)

where σ2 was the parameter of the normally distributed random variable X = logY . The strategy

of multiplying Equation 11 by the “skewness factor” in Equation 12 could be applied to distributions

which are skewed to the right, as the log-normal distribution is skewed to the right. We deem this

a plausible leap of faith.

We implemented both binning strategies, and used the adapted strategy for skewed distributions.

Most of the data we analysed had skewed distributions.

We followed Moore’s guidelines when calculating the number of observations per bin [Moo86].

We added adjacent bin counts for bins with less than 5 observations. Datasets which resulted in less

than 4 bins were removed from the analysis. The R code for our implementation of the λ2 statistic

is listed in Appendix C.

76 CHAPTER 5. STATISTICAL METHODOLOGY

Domain of Statistic

As previously discussed, we failed to find perfect matches between the mathematical functions and

data we were analysing. We did however manage to find reasonable matches for most of the data.

During the initial analysis of the data we however failed to find even reasonable matches for any of

the datasets. The problem we discovered was the implementation of the λ2 statistic that we were

using.

Our implementation of the λ2 statistic calculated the statistic over the entire domain which the

mathematical function tested for was defined. The empirical data however fell within a well defined

range of values, with set minimum and maximum values. The domain of the mathematical function

tested for extended beyond the minimum and maximum values of the empirical data. The fact that

the mathematical functions extended beyond the set minimum and maximum values of the empirical

data caused the λ2 statistic to falsely reject mathematical functions which actually fit the data well

over the range of values between the minimum and maximum values.

The set maximum and minimum values found in empirical data were the result of the heuristic

algorithm we used to process empirical data. The heuristic algorithm was based on observations

of maximum and minimum values for packet sizes and inter-arrival times in packet traces. The

heuristic algorithm synthetically introduced rigid maximum and minimum values in empirical data

because it used set minimum and maximum values when processing captured data.

We changed our implementation of the λ2 statistic to solve the problem of falsely rejecting

mathematical functions which fit the empirical data. Instead of calculating the value of the statistic

over the domain of the mathematical function tested for, we calculated the statistic over the range

of values contained in the empirical data. We found reasonably good fits to mathematical functions

for the empirical data by using this implementation of the statistic.

We were able to adopt the approach of calculating the value of the statistic over the range of

values in the empirical data because of the goal of our study. The goal of our study was to find

a mathematical representation which would allow us to generate random numbers for simulation

purposes. By fitting a subset of the domain of a mathematical function to empirical data we were

able to attain this goal. The mathematical functions found to fit the data could be used to generate

random numbers for simulation purposes over the range of values specified by the maximum and

minimum values of the empirical data. When generating random numbers for simulation, values

smaller than the minimum and larger than the maximum value were discarded.

We aligned empirical data to analytic distributions with origin at zero by subtracting a fixed

value from all empirical data values. Most of the analytic distributions we tested for had an origin

at zero. The value subtracted should be added back to random values generated for simulation. We

listed the value subtracted along with the maximum and minimum values for each mathematical

function we found to match the empirical data in Tables 48 and 49 (page 124).

5.6. HEAVY TAILED DISTRIBUTIONS 77

Implementation of Statistic

The code for our implementation of the λ2 statistic is listed in Appendix C. We implemented the

statistic by calculating expected values for the number of elements per bin by using the cumulative

distribution function of the distribution being tested for. Another approach was to calculate expected

values for the number of elements per bin by generating random variates from the distribution being

tested for, and to compare them to the empirical data. Results of the alternative approach to

implementing the test however vary between different runs of the test on the same data, because

the test is based on random variates.

The advantage of the approach we followed was that it produced consistent results between

different tests on the same data. Another advantage of the approach we followed to implement the

statistic was that we did not have to solve for the roots of a mathematical function with specified

model constants. We simply used the minimum and maximum values contained in the empirical

data. We would have had to solve for the roots of a mathematical function if we implemented the

test without using minimum and maximum values contained in the empirical data.

The λ2 statistic could take on any integer value. Positive numbers indicated that the data did

not fit the mathematical function tested for, and negative numbers indicated that the data did fit

the function. The smaller the result was, the better was the fit of the data to the function tested

for.

5.6 Heavy Tailed Distributions

A heavy tailed distribution is a distribution for which the upper part or “tail” of the distribution

declines according to a power rate rather than an exponential rate. Distributions commonly used

to model network characteristics such as the exponential and normal distributions have tails which

decline exponentially or faster. Heavy tailed distributions have tails that decline slower than these

distributions which result in a greater degree of variability in the size of observations. The probability

of larger observations occurring is not negligible. We say that a random variable X follows a heavy-

tailed distribution with tail index α if

P [X > x] ∼ cx−α, as x → ∞, 0 < α < 2, (13)

where c is a positive constant, and where ∼ means the ratio of the two sides tends to 1 as

x → ∞ [CTB98]. This distribution has infinite variance, and if α ≤ 1 it has infinite mean. Heavy

tailed behaviour can be detected in a dataset by inspecting the data set’s complementary cumulative

distribution function (ccdf) which is defined as

P [X > x] = F̄ (x) = 1 − F (x),

where F(x) is the cumulative distribution function F (x) = P [X ≤ x] [CTB98]. Datasets which

exhibit heavy tailed behaviour have the property that the tail-end of their ccdf plotted on a log-log

scale is linear. This property follows from Equation 13 from which we can derive

78 CHAPTER 5. STATISTICAL METHODOLOGY

lim
x→∞

d log F̄ (x)

d log x
= −α

so that for large x the ccdf should appear to be a straight line on log-log axes with slope −α.

The Hill Plot [DdHR00] is another method of estimating α. The Hill plot is a plot of the Hill

estimator for a range of values of k, which is defined as the number of upper order statistics used in

the calculation of the Hill estimator. The Hill estimator is defined as

Hk,n =
1

k

k
∑

i=1

log
X(i)

X(k+1)
(14)

where X is the order statistics X1, . . . , Xn of the observations in the dataset being tested, such

that

X(1) > X(2) > . . . > X(n)

and k is the number of these upper order statistics used in the estimation as mentioned be-

fore [DdHR00]. The Hill Plot is therefore the plot of

((k, H−1
k,n), 1 ≤ k < n)

The plot is interpreted by finding the value of the ordinate where the plot starts to “stabilise”

by turning into a line parallel to the x-axis. The value is used as an estimate for α.

5.7 Concluding Remarks

It was difficult to analyse the very large datasets we extracted from the measurement file. Most of

the parameter datasets had more than one million entries, some had as many as 15 million entries.

It was not possible to use many of the statistical techniques we intented to use to analyse the data

because of the large size of the datasets. For example Q-Q plots could not be used to plot datasets

with 15 million entries. It was not practical to plot datasets which contained 15 million points

as it took too long to plot these datasets. We used the R statistical analysis environment

to overcome problems with analysing very large datasets. The R statistical analysis environment

was fully extensible and allowed us to implement functions which allowed us to analyse very large

datasets. We implemented random sub-sampling and selectively removed data from datasets.

The Anderson Darling and λ2 goodness-of-fit statistics were used in several previous studies

involving network traffic data [Fel98, BC98b, Pax94, PF95, Pax93]. We decided at the outset of the

study to use these two statistics. We implemented them in the R statistical environment. During the

study we became aware of other goodness-of-fit metrics which apparently had some advantages over

the techniques we used e.g. the “Akaike information criterion” (AIC) and the “generalised lambda

distribution with the method of moments” method. We decided not to pursue these statistics as

5.7. CONCLUDING REMARKS 79

we already implemented the Anderson Darling and λ2 goodness-of-fit statistics and had a lot of

experience in using these metrics.

We found that the Anderson Darling statistic was not suitable for our purposes. The statistic

could not be used for analysing large datasets. We used the p-value tables published by D’Agostino

and Stephens [Ste86] in our tests. For most of the distributions we were testing for the tables

typically had p-values for up to 200 observations. The tables also included values for infinitely

many observations. The values for infinitely many observations were inaccurate. The values for

infinitely many observations were typically not much larger than the p-values for 200 observations.

The statistic however grew rapidly for datasets with more than 200 observations.

We performed a test to prove that the values for infinitely many observations were inaccurate. We

synthetically generated a large dataset of exponentially distributed values. We applied the Anderson

Darling test for exponentially distributed data to the very large dataset of exponentially distributed

values. The dataset of exponentially distributed values failed the test. The p-value for infinitely

many observations for the exponential distribution as given in the tables was much smaller than the

test statistic. We concluded that the Anderson Darling test should only be used for datasets of sizes

which have tabulated p-values (values other than the value for infinitely many observations).

In order to overcome the shortcoming of the Anderson Darling statistic, we attempted to use the

technique of applying the Anderson Darling test to random subsamples of 200 observations taken

from very large datasets. This technique would have enabled us to make use of tabulated p-values.

The technique worked for datasets with a few hundred or a few thousand observations, but was not

effective for datasets with hundreds of thousands or millions of observations. The subsamples were

not representative of the very large datasets and resulted in widely varying results between tests

performed on different subsamples taken from the same dataset.

We used the Anderson Darling statistic for analysing datasets with less than 200 observations.

We also used it to analyse censored data. Tables for p-values existed for Type I and II censoring for

most of the distributions we tested for [Ste86]. We used the same test for censored data that was

used by Barford and Crovella to locate the changeover point, in a hybrid distribution for file sizes

on a web-server, between a lognormal and Pareto distribution [BC98a].

We used the λ2 statistic to analyse very large datasets. It produced consistent results across

datasets with widely varying sizes. The statistic had the drawback of losing accuracy if bin sizes

were badly chosen. We used the guidelines given by Scott [Sco79, Sco92] to calculate optimal bin

sizes for tests. We used the “skewness factor” given by Scott [Sco92] to calculate bin sizes for tests

on datasets with skewed distributions.

We implemented the λ2 statistic by calculating the statistic over the range of values contained

in the empirical data. This approach is different from the typically used approach of calculating the

statistic over the domain of the mathematical function tested for. Our approach had the advantage

of disregarding values in the domain of the mathematical function which do not feature in empirical

datasets. Using our approach it was possible to find mathematical representations for empirical data

which could be used to generate random values for simulation purposes.

Chapter 6

Workload Model Parameters

6.1 Introduction

We found reasonable matches to mathematical functions for the eleven workload model parame-

ters we defined in Section 2.6 (page 27). As previously discussed, during the analysis of param-

eter datasets we found that two of the 9 original parameter datasets had to be split into two

separate datasets each. We therefore ended up with 11 instead of 9 parameter datasets. We dis-

cuss how we changed our workload model to take the extra two parameters into account in Sec-

tions 6.11 and 6.12 (pages 113 and 118).

In this chapter we discuss how the statistical methodologics of the previous chapter were applied

to each parameter dataset in order to obtain best-fit mathematical functions for each parameter

dataset. We start by discussing the issue of independence of observations contained in the parameter

datasets. We then discuss statistical distributions which were found to match workload model

parameters in previous work, and how this background related to our work. The rest of the chapter

is an analysis of the 11 parameter datasets of our web workload model.

6.2 Independence of Observations

As previously discussed in Section 5.3 (page 71), collections of elements can be fitted to a statistical

distribution only when the individual elements are independent from one another. We made the

assumption that the elements in the 11 parameter datasets were independent from one another.

We were confident in our assumption of independence, as we attempted to minimize interde-

pendence between elements in the same parameter dataset by carefully choosing parameters for our

workload model. We tried to choose parameters according to functional groupings which would

break up the interdependence between elements within the aggregate data.

We tested the assumption of independence between elements by calculating the autocorrelation

functions for the 11 parameter datasets. Table 16 lists the results of the test for independence.

80

6.2. INDEPENDENCE OF OBSERVATIONS 81

Model Parameter Autocorrelation
with Predecessor

95% Probability
Interval

Browsing Inter-Session Time 0.0721 (-0.0096, 0.0096)
Number of Web User Requests per Browsing
Session

0.0832 (-0.0086, 0.0086)

Number of Web Client Requests per Web User
Request

0.1473 (-0.0024, 0.0024)

Web User Request Inter-arrival Time 0.1429 (-0.0024, 0.0024)
Web Client Request Inter-arrival Time 0.1674 (-0.0005, 0.0005)
Web User Request Size 0.401 (-0.0024, 0.0024)
Web Client Request Size 0.735 (-0.0005, 0.0005)
Cached Web User Response Size 0.3774 (-0.0063, 0.0063)
Non-Cached Web User Response Size 0.2285 (-0.0035, 0.0035)
Cached Web Client Response Size 0.7614 (-0.0009, 0.0009)
Non-Cached Web Client Response Size 0.254 (-0.0007, 0.0007)

Table 16: Autocorrelation function at lag 1 (γ(1)) for the 11 parameter datasets

We calculated the autocorrelation at lag 1 to lag 40. The autocorrelation of a random variable is

typically greatest at lag 1. All the parameters showed correlation across the range of different lags.

Table 16 reports the autocorrelation at lag 1 for all the parameter datasets. The autocorrelation

at lag 1 was weak for most of the parameters. The Web User and Web Client Request Size pa-

rameters, and the Cached Web User and Cached Web Client Response Size parameters showed

strong correlation. The strong autocorrelation of the Request Size parameters could be ascribed

to the fact that request message sizes did not vary much. A request message consisted of a packet

header without a message body. Request headers had a fairly standard size. The strong autocorrela-

tion of the Cached Response Size parameters can also be ascribed to the fact that cached response

messages had a standard size. Cached response messages consisted of a packet header containing a

304 Not Modified response code indicating that the object in the cache should be used. Replies of

this type consisted of an HTTP header with no message body. Response messages were small and

of standard size.

None of the parameters had autocorrelation function values at lag 1 within the 95% confidence

interval which signified no correlation in the data. Apart from the parameters discussed in the

previous paragraph, the parameters were all weakly correlated. We concluded that more investigation

should be done to reduce interdependence between elements in the same datasets. We attempted

to reduce the interdependence between parameters by choosing parameters carefully. We did not

manage reduce interdependence enough. We found that automated web scripts (client and server

side) were the principal source for the interdependence in the data. A refinement of our model is

necessary to take these factors into account. Our model is sufficiently descriptive to ensure that

correlations are weak for most of the model parameter.

Parameters which displayed very high correlation consisted of datasets which had values of similar

82 CHAPTER 6. WORKLOAD MODEL PARAMETERS

sizes and could be modelled by constant values.

6.3 Previous Work

We gained insight into what we might expect to find in our analysis by studying results of previous

work done in the field. Work done by other authors provided us with an invaluable source of

information. We used their results as a “sanity check” for the results we found. Our results were

different to those of previous studies in many cases. Prompted by these differences we investigated

data further, and often found interesting reasons for the differences in results.

Several authors used the structural approach to network traffic modelling to find distribu-

tions for web workload model parameters. In order to find distributions for their model param-

eters they used statistical techniques similar to the ones we used. Choi et. al. [CL99] created a

“behavioural model” of web traffic by finding mathematical functions for their model parameters.

Mah [Mah97] created an “empirical model” of web traffic by finding empirical distribution func-

tions for his model parameters. Barford et. al. [BC98b] created a web workload generator which

exercised web servers and test-bed networks by finding mathematical functions for their model pa-

rameters. Reyes-Lecuona et. al. [RLGPC+99] and Arlitt et. al. [AW95] created web traffic models

for simulation purposes by finding mathematical functions for their model parameters.

Choi et. al.’s [CL99] web traffic model comprised seven parameters which corresponded to param-

eters in our model. Apart from the similarities, there were several differences between their model and

ours. For instance, their model did not have Browsing Inter-Session Times or Web User Request

Inter-arrival Times parameters, which our model did. Their model did not differentiate between

Web User and Web Client Request Size parameters, which our model did. Their work however

made an important differentiation between cached and non-cached Web User Requests which our

model did not make. We updated our model after realising that it was important to take caching

into account. We discuss how we updated our model in Sections 6.11 and 6.12 (pages 113 and 118).

The model by Mah [Mah97] also comprised several parameters which corresponded to parameters

in our workload model. Mah’s model was however empirical and we could therefore not compare his

model to ours as our model was based on mathematical functions. The advantage of the empirical

approach that Mah adopted was that traffic could be reproduced accurately, closely matching original

traffic. The empirical method however required more storage and was slower at generating random

values than using analytic distributions were. We decided to use the approach of using mathematical

functions to represent parameters. Mathematical functions provided a precise way of describing

traffic characteristics, and could be used to compare our results to results found in other studies.

The mathematical modelling of parameters also enabled us to investigate important mathematical

properties of parameters, such as the occurence of heavy-tailed distributions.

The traffic model by Barford et. al. [BC98b] had a different purpose to our model. The model by

Barford et. al. was used to exercise web servers and test-bed networks by generating web requests.

Our model had only three parameters in common with the model of Barford et. al.

6.3. PREVIOUS WORK 83

The models by Reyes-Lecuona et. al. [RLGPC+99] and Arlitt et. al. [AW95] did not have much in

common with our model. The models by Reyes-Lecuona et. al. and Arlitt et. al. modelled traffic as

traffic flows at the TCP/IP packet level. Parameters derived at the network level were influenced

by underlying network conditions such as bandwidth and latency. We therefore did not model traffic

at the network level.

Our model was very different to all the models created in previous work. The models by

Choi et. al. and Barford et. al. were the closest to ours in terms of the number of similar workload

model parameters. The model by Choi et. al. had seven parameters which matched parameters of

our workload model. We next discuss the mathematical functions which were found to match model

parameters of the workload models created in previously discussed studies.

6.3.1 Distributions of Model Parameters

Tables 17-19 list the mathematical functions and model constants found for workload model param-

eters in previous studies. We listed only the parameters that corresponded to parameters in our

workload model in the tables.

Author Browsing Inter-
Session Time

Number of Web
User Requests per
Browsing Session

Number of Web
Client Requests
per Web User
Request

Choi et. al. [CL99] — Non-cached
Lognormal:
mean = 12.6
std.dev. = 21.6
median = 5
Cached
Gamma:
mean = 1.7
std.dev. = 1.7
median = 1

Gamma:
mean = 5.55
std.dev. = 11.4
median = 2

Barford et.
al. [BC98b]

— — Pareto:
α = 1
β = 2.43

Reyes-Lecuona et.
al. [RLGPC+99]

— Lognormal:
mean = 22.975
std.dev. = 166.16

—

Arlitt et.
al. [AW95]

— Geometric:
mean = 50

—

Table 17: Mathematical Functions Found for Model Parameters in Previous Studies - 1

Tables 17-19 show that few of the parameters used in previous studies corresponded to parameters

in our workload model. The work of Choi et. al. contained more parameters, that were the same as

our workload model parameters, than any of the other previous studies. The parameters of Mah’s

84 CHAPTER 6. WORKLOAD MODEL PARAMETERS

Author Web User Request
Inter-arrival Time

Web Client Re-
quest Inter-arrival
Time

Web User Request
Size

Choi et. al. [CL99] — Gamma:
(measured in seconds)
mean = 0.86
std.dev. = 2.15
median = 0.17

Lognormal:
(measured in bytes)
mean = 360.4
std.dev. = 106.5
median = 344

Arlitt et.
al. [AW95]

Exponential:
no parameters mea-
sured

— —

Table 18: Mathematical Functions Found for Model Parameters in Previous Studies - 2

Author Web Client Re-
quest Size

Web User Re-
sponse Size

Web Client Re-
sponse Size

Choi et. al. [CL99] Lognormal:
(measured in bytes)
mean = 360.4
std.dev. = 106.5
median = 344

Lognormal:
(measured in bytes)
mean = 10 710
std.dev. = 25 032
median = 6 094

Lognormal:
(measured in bytes)
mean = 7 758
std.dev. = 126 168
median = 1 931

Barford et.
al. [BC98b]

— Pareto:
(measured in bytes)
α = 1
β = 1 000

Pareto:
(measured in bytes)
α = 1
β = 1 000

Table 19: Mathematical Functions Found for Model Parameters in Previous Studies - 3

workload model were not reported in the tables as Mah’s model used empirical distribution functions

instead of mathematical functions.

The Browsing Inter-Session Time parameter was not modelled in previous work. Choi et. al.

and Reyes-Lecuona et. al. modelled the Number of Web User Requests per Browsing Session

parameter. Choi et. al. found that the lognormal distribution with a standard deviation of 22 fitted

the parameter best. Choi et. al. also found that on average, approximately 13 web user requests

were placed per browsing session. Reyes-Lecuona et. al. found that the lognormal distribution with

a standard deviation of 165 fitted the parameter best. Reyes-Lecuona et. al. found that on average,

approximately 23 web user requests were placed per browsing session. The mean value of 23 found

by Reyes-Lecuona et. al. was much larger than the average value of 13 found by Choi et. al. The

larger value found by Reyes-Lecuona et. al. seemed to confirm our initial observation that people

typically browsed the web for extended periods of time. We however found this not to be the case.

The average number of requests per browsing session turned out to be 12 according to our study.

The value found by Choi et. al. reflected current browsing behaviour of users better than that of

Reyes-Lecuona et. al.

6.3. PREVIOUS WORK 85

Choi et. al. and Barford et. al. modelled the Number of Web Client Requests per Web User

Request parameter. Choi et. al. found that the gamma distribution with a standard deviation of

11 fitted the parameter best. Choi et. al. found that on average, 6 web client requests were placed

for every web user request. Web-pages typically contained a great deal of graphical content. It was

therefore surprising that Choi et. al. found such a small number of in-line objects per web page. We

found the parameter to have an average value of 20 web client requests per web user request. 20

Web client requests per web user request seems to be in keeping with the large numbers of graphical

images per web-page we observed during the study. Barford et. al. found the parameter to have the

Pareto distribution.

Arlitt et. al. were the only ones to model the Web User Request Inter-arrival Time param-

eter. They found the parameter to have an exponential distribution, but did not find any values for

the model constants.

Choi et. al. modelled the Web Client Request Inter-arrival Time parameter. They found

the inter-arrival times between web-client requests to have an average value of 0.86 seconds with

standard deviation 2.15 seconds and a gamma distribution. The small average value of 0.86 seconds

was attributed to a web client typically placing consecutive requests very rapidly. The average value

of the parameter was quite surprising, as we expected the value to be smaller. Observations we

made of inter-arrival times suggested that the average value was in the order of microseconds, rather

than milliseconds. The final results of our study however surprised us. The average value of the

parameter as found in our study was 1.5 seconds. Further investigation into the large average value

showed that the reason for value being large was the severe skew in the distribution of inter-arrival

time values. Our study showed that the Web Client Request Inter-arrival Time parameter was

severely skewed. It was categorised as a heavy-tailed distribution.

Choi et. al. modelled the Web User Request Size and Web Client Request Size parameters.

They found that the two parameters had the same characteristics, and therefore modelled both

parameters with the lognormal distribution. Choi et. al. found that both web user and web client

request sizes had an average value of 360 bytes with standard deviation of 107 bytes. We also found

that the two parameters were very similar. We however modelled the two parameters separately, as

we found model constants for the two parameters to be different.

The reason why web user and web client request sizes were small relative to response sizes, was

that requests did not contain message bodies, whereas responses did. Requests consisted out of an

HTTP header which contained the requested URL.

Choi et. al. found web user response sizes to have an average size of 10710 bytes with a standard

deviation of 25032 bytes. Web user responses were usually HTML text files.

Choi et. al. found web client response sizes to be smaller than web user response sizes. Web

client response sizes were found to have an average size of 7758 bytes. Web client response sizes

however had a larger standard deviation than web user response sizes - 126168 bytes. Web client

responses were usually image files. Choi et. al. found both the Web User Response Size and Web

Client Response Size parameters to have a lognormal distribution.

86 CHAPTER 6. WORKLOAD MODEL PARAMETERS

It was interesting to note that Choi et. al. found request sizes to be larger on average than

response sizes. They however found response sizes to sometimes be much larger than requests sizes,

as indicated by the much larger standard deviation of response sizes.

We next discuss the analysis of the Browsing Inter-Session Time parameter. Thereafter we

discuss the analyses of the remaining 10 parameters.

6.4 Browsing Inter-Session Time

Section 2.6 (page 27) defined a browsing session as the period during which a user browsed the web.

The Browsing Inter-Session Time parameter modelled the time between browsing sessions.

We measured the parameter at minute resolution. We found that second resolution was too

small and hour resolution too large. The parameter had values larger than 15 minutes as a browsing

session was terminated when a 15 minute period of inactivity i.e. no user clicks, was detected. The

parameter had a maximum value of 480 minutes because we modelled traffic during office hours only.

We aggregated the 715 parameter datasets, under the assumption that user behaviour in terms

of the time between browsing sessions was the same for all hosts.

Table 20 shows summary statistics for the aggregated parameter dataset.

Sample Size 43336
Five Number Summary (15, 24.7, 45.89, 100.5, 479.7)

Sample Mean 81.04
Sample Variance 7586.723

Standard Deviation 87.1018
Coefficient of Variation 1.075

Skewness 2.16
Kurtosis 4.766

Upper Outlier 373

Table 20: Summary Statistics for Browsing Inter-Session Time Parameter Dataset

The five number summary shows values for the smallest number, the first quartile, the median,

the upper quartile and the largest number. The range between the smallest value and the median was

30.89 minutes while the range between the median and the largest value was 433.81 minutes. The

difference in size between these ranges indicated a skew to the right in the data. The skewness and

kurtosis values confirmed this. The skewness was 2.16 (positive values indicated skew to the right)

and the kurtosis was 4.766 which indicated a skew to the right in the data as well as indicating that

the data were centred closely around the mean. The coefficient of variation was the ratio between

the standard deviation and the mean and was a metric of variability in the data. The value of the

coefficient of variation was 1.075 which indicated that there was a great deal of variability in the

data e.g. the exponential distribution had a coefficient of variation of 1.

The summary statistics showed that the distribution was skewed to the right and that the

6.4. BROWSING INTER-SESSION TIME 87

exponential distribution might have been a good fit to the data. The statistics also showed that

users working at hosts took significant breaks between browsing sessions. The average time between

two sessions was nearly one and a half hours. It was more likely that a break would be smaller than

one and half hours, but larger breaks did occur regularly. Approximately 25% of breaks were smaller

than half an hour and approximately 25% were in the interval of 2-8 hours, indicating that there

was a significant chance of users taking breaks much larger than the average sized break of one and

a half hours.

We aligned the data to zero by subtracting 14 minutes from all observations as explained in

Section 5.5.2 (page 74).

Table 21 shows the results of applying the λ2 discrepancy measure to the data. We only show

results for distributions which passed the λ2 statistic test i.e. tests which resulted in negative values,

as explained in Section 5.5.2. All distributions not shown in the table failed the test and therefore

did not provide a good fit to the data.

Distribution Parameters λ2 Number
of Bins

Lognormal ζ = 3.242876
σ = 1.637514

0.042
(0.038, 0.046)

459

Exponential α = 66.041138 0.295
(0.277, 0.314)

366

Weibull γ = 0.7437
α = 54.902209

0.026
(0.022, 0.03)

425

Gamma γ = 0.645296
α = 102.342467

0.05
(0.044, 0.055)

414

Pareto α = 9.6e− 05
β = 0.08005

5.054
(4.929, 5.178)

330

Beta α = 0.51966
β = 2.762956

0.284
(0.244, 0.323)

401

Extreme Value α = 32.933427
β = 46.746046

1.579
(1.491, 1.666)

312

Normal µ = 66.041137
σ = 87.101794

3.581
(3.384, 3.778)

324

Table 21: Lambda Discrepancy Test Results for Web Browsing Inter-Session Data over the Interval
of (1, 465) Minutes

We fitted the data to analytic distributions over the interval of (0, 465) minutes. We obtained

maximum likelihood estimates of distribution parameters by maximising the likelihood function (on

logarithmic scale) of the data using techniques explained in Section 5.2.

The gamma, Weibull and lognormal distributions provided the best fit to the data in that order.

The most bins were used in the calculation of the lognormal, Weibull and gamma λ2 values. A

smaller number of bins used in the calculation of λ2 was attributed to adjacent bins being grouped

together for bins containing less than 5 entries, which in our case happened when the analytic

88 CHAPTER 6. WORKLOAD MODEL PARAMETERS

distribution did not model the upper tail of a positively skewed distribution well. The lognormal,

Weibull and gamma distributions modelled the upper tail of the empirical distribution better than

the other distributions.

Figure 24 is a plot of the gamma, Weibull and lognormal distributions fitted to a histogram of

the data.

D
en

si
ty

0 100 200 300 400

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

0 100 200 300 400

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

0 100 200 300 400

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

0 100 200 300 400

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

Browsing Inter−Session Time

Lognormal
Weibull
Gamma

Figure 24: Best-Fit Distributions Plotted against a Histogram of Browsing Inter-Session Time

Data

The distributions provided a very good fit to the data. The Weibull and gamma distributions

modelled the body of the data very well. The Weibull distribution underestimated the upper tail of

the distribution i.e. values between three and six hours. The lognormal distribution modelled the

upper tail of the empirical distribution containing values larger three hours well.

Figure 25 shows Q-Q and P-P plots for the Weibull and lognormal distributions. Straight lines

were fitted to the plots. The regression statistics are shown in Table 22.

The straight lines fit the empirical data very well. The regression statistics shown in Table 22

showed a very good fit to the data (a value close to zero indicated a good fit). 75% Of the data

fell in the interval (0, 260). The lower end of the straight line fitted the data very well for both the

Weibull and lognormal distributions. The Weibull distribution underestimated the upper tail of the

distribution according to the Q-Q plot.

The Weibull and lognormal distributions were good candidates for random number generation

for the Web Browsing Inter-Session Time parameter.

6.4. BROWSING INTER-SESSION TIME 89

Figure 25: Weibull and Lognormal Plots for Browsing Inter-Session Time Parameter

90 CHAPTER 6. WORKLOAD MODEL PARAMETERS

Distribution Regression Statistics

Weibull -0.0148
Lognormal -0.014

Table 22: Regression Statistics for Weibull and Gamma Q-Q Plots

6.5 Number of Web User Requests per Browsing Session

Section 2.6 defined the Number of Web Requests per Session as the number of times a user

clicked on a hypertext link or entered an URL in a web browser’s address text box during a Browsing

Session.

The minimum and maximum values the parameter could have were 2 and 100 requests. We

found that 1 request per session usually meant that the request was generated by an automatic

updating mechanism such as a news-ticker or web photo-gallery update. We found that more than

a 100 requests per session usually indicated that the requests were automatically generated by a

web-download. These limits were implemented as such in the heuristic algorithm used to categorise

data during the processing stage.

Table 23 shows summary statistics for the aggregated parameter dataset.

Sample Size 53 621
Five Number Summary (2, 3, 7, 15, 100)

Sample Mean 12.22
Sample Variance 192.4179

Standard Deviation 13.8715
Coefficient of Variation 1.132

Skewness 2.542
Kurtosis 7.973

Upper Outlier 55

Table 23: Summary Statistics for Number of Web User Requests per Browsing Session Param-
eter Dataset

The five number summary again indicated a skew to the right in the data. The range between

the smallest value and the median was 5 requests and the range between the median and the largest

value was 73 requests. The values for skewness and kurtosis again confirmed the skew to the right

in the data. The value of the kurtosis was larger than that for the Browsing Inter-Session Time

parameter, indicating that the data were distributed closer around the mean. The coefficient of

variation again indicated a great deal of variability in the data.

75% of browsing sessions consisted out of less than 15 requests. 25% of browsing sessions consisted

out of less than 3 requests. The average user on campus usually read a small number of web pages.

(25%) of users visited between 15 and 100 web pages. A small proportion of users however read a

large number of pages.

6.5. NUMBER OF WEB USER REQUESTS PER BROWSING SESSION 91

Our findings corroborated the findings of Choi et. al. [CL99] whom also found that the average

user visited a small number of web pages during a browsing session. They found the mean number

of requests per session to be approximately 13 which was similar to the value we found.

The high amount of variability in the data and severe skew to the right suggested that the data

were heavy tailed.

We aligned the data to zero by subtracting 1 request from all observations. Table 24 shows the

results of applying the λ2 discrepancy measure test to the data.

Distribution Parameters λ2 Number
of Bins

Lognormal ζ = 1.792736
σ = 1.147842

0.209
(0.199, 0.219)

98

Exponential α = 11.222189 0.48
(0.461, 0.499)

83

Weibull γ = 0.912485
α = 10.681936

0.36
(0.345, 0.375)

90

Gamma γ = 0.931245
α = 12.050697

0.428
(0.411, 0.446)

86

Pareto α = 1
β = 0.557807

0.204
(0.196, 0.213)

98

Beta α = 0.777341
β = 5.164118

0.445
(0.411, 0.479)

77

Extreme Value α = 6.087854
β = 7.282397

2.109
(1.999, 2.219)

64

Normal µ = 11.222189
σ = 13.871479

4.898
(4.637, 5.16)

60

Table 24: Lambda Discrepancy Test Results for Number for Web User Requests per Browsing Session
Data over the Interval of (1, 99) Minutes

The data were fitted to mathematical functions over the interval of (1, 99) minutes.

The Extreme Value and Normal distributions did not fit the data well. All other distributions fit

the empirical data reasonably well. The Pareto, lognormal, Weibull and beta distributions provided

the best fit in that order. The Pareto, lognormal and Weibull distributions provided the best fit to

the tail of the distribution according to the number of bins used in calculating λ2.

Figure 26 is a plot of the Pareto, beta and Weibull distributions fitted to a histogram of the data.

Small numbers of requests, less than 3, were modelled well by the Pareto distribution. The beta

distribution also modelled these values well, but the Weibull distribution underestimated them. The

Weibull and gamma distribution modelled the body of the data in the interval (2, 20) requests well.

The Pareto distribution underestimated these values. The upper tail of the data was modelled well

by the Pareto, lognormal and Weibull distributions. Figure 26 suggested that the upper tail of the

distribution decays at a sub-exponential rate.

Figure 27 shows Q-Q and P-P Plots for the Pareto and lognormal distributions.

92 CHAPTER 6. WORKLOAD MODEL PARAMETERS

D
en

si
ty

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Number of Web User Requests per Browsing Session

Weibull
Pareto
Beta

Figure 26: Best-Fit Distributions Plotted against a Histogram of Number of Web User Requests

per Browsing Session Data

The data were heavily concentrated around smaller values of the parameter. The lower 15% of the

range of the data contained 75% of the observations. The interval (0, 40) contained 95% of the data.

The lognormal distribution modelled the data very well. The Pareto distribution underestimated

the empirical data over the interval (5, 22), and overestimated the data over the interval (45, 100).

The regression statistics in Table 25 indicated that the mathematical functions model the data

reasonably well. The S trend in the Pareto distribution plots were caused by the large number of

small values combined with the heavy upper tail of the empirical distribution.

Distribution Regression Statistics

Pareto -0.066
Lognormal -0.006

Table 25: Regression Statistics for Pareto and Lognormal Q-Q Plots

The Pareto and lognormal distributions were good candidates for random number generation for

the Number of Web User Requests per Browsing Session parameter.

6.5. NUMBER OF WEB USER REQUESTS PER BROWSING SESSION 93

Figure 27: Pareto and Lognormal Plots for Number of Web User Requests per Browsing

Session Parameter

94 CHAPTER 6. WORKLOAD MODEL PARAMETERS

6.6 Number of Web Client Requests per Web User Request

Section 2.6 defined the Number of Web Client Requests per Web User Request as the number

of inline objects contained in a web-page.

We observed that web pages seldomly had more than 200 inline objects. A web page which

generated requests for more than 200 inline objects was likely to be a web-download. The heuristic

algorithm categorised web pages with more than 200 inline objects as being web downloads and

discarded these requests along with their responses.

We did not align the data with zero as the smallest value in the aggregated dataset was one.

Table 26 shows summary statistics for the aggregated parameter dataset.

Sample Size 703084
Five Number Summary (1, 3, 9, 26, 200)

Sample Mean 19.687
Sample Variance 704.936

Standard Deviation 26.551
Coefficient of Variation 1.349

Skewness 2.68
Kurtosis 9.286

Upper Outlier 111

Table 26: Summary Statistics for Number of Web Client Requests per Web User Request Pa-
rameter Dataset

The five number summary again indicated a skew to the right. The range between the smallest

value and the median was 8 requests and the range between the median and the maximum value

was 191 requests. The values for skewness and kurtosis confirmed the skew to the right in the data.

The very high value for kurtosis indicated that the data were distributed closely around the mean.

The coefficient of variation indicated high variability in the data.

We observed many web pages with more than 50 inline objects during the processing of the data.

The web request shown in Appendix A shows a typical request for a web page (www.cnn.com), it

had 82 inline objects. The value of the median and mean were unexpectedly low.

A large percentage of web pages had a small number of inline objects. 50% of web pages had

between 1 and 9 inline objects. There were however a significant number of web pages that had a

much larger number of inline objects. 50% of web pages had between 9 and 200 inline objects. The

skew to the right in the distribution of data suggested that the distribution had a heavy tail.

Our findings were different to those of Choi et. al. [CL99]. They found the mean number of

inline objects per web page to be approximately 6. A possible reason for the different findings

might have been the simple heuristic they used to distinguish between web user and web client

requests. The heuristic they used did not take into account the fact that a request for a file with

HTML content might have been a web client request. Consequently web client requests might have

been wrongly categorised as being web user requests. If this error occurred, subsequent web client

6.6. NUMBER OF WEB CLIENT REQUESTS PER WEB USER REQUEST 95

requests for inline objects would also have been wrongly associated with the wrongly classified web

user request. The number of inline objects per web page would therefore have been underestimated

as a consequence.

Table 27 shows the results of applying the λ2 discrepancy measure test to the data.

Distribution Parameters λ2 Number
of Bins

Lognormal ζ = 2.154982
σ = 1.377062

0.294
(0.29, 0.297)

199

Exponential α = 19.686967 0.893
(0.883, 0.903)

184

Weibull γ = 0.793412
α = 17.067434

0.417
(0.413, 0.422)

199

Gamma γ = 0.728499
α = 27.024945

0.5
(0.494, 0.505)

199

Pareto α = 1
β = 0.464041

0.325
(0.322, 0.329)

199

Beta α = 0.68239
β = 5.113663

0.901
(0.854, 0.948)

171

Extreme Value α = 9.937799
β = 13.784351

3.83
(3.757, 3.903)

146

Normal µ = 19.686938
σ = 26.569469

12.816
(12.507, 13.126)

127

Table 27: Lambda Discrepancy Test Results for Number of Web Client Requests per Web User

Request Data over the interval (1, 200)

The data were fitted to analytic distributions over the interval (1, 200).

The λ2 discrepancy test combined bins with less than 5 entries as discussed in Section 5.5.2. Too

many combined bins indicated a poor fit to the analytic distribution. We did not include the results

of the extreme value distribution in Table 27 as too many bins were combined in the test.

All the distributions except for the normal and extreme value distributions fitted the data. The

lognormal, Pareto and Weibull distributions modelled the empirical data best. All three distributions

modelled the tail of the distribution well according to the number of bins used to calculate λ2.

Figure 28 is a plot of the lognormal, Pareto and Weibull distributions fitted to a histogram of

the data.

Small numbers of requests for inline objects, less than 3 inline objects, were modelled well by

the Pareto distribution. Neither the Weibull nor the lognormal distribution modelled the small

values of the parameter well. The Pareto distribution underestimated the value in the body of the

distribution, between 3 and 40 inline objects. The lognormal and Weibull distributions modelled

these values well. All three distributions modelled the upper tail, 40 inline objects and more, well.

The heavy upper tail contributed to the high degree of variation in the data, as indicated by the

coefficient of variation.

96 CHAPTER 6. WORKLOAD MODEL PARAMETERS

D
en

si
ty

0 50 100 150 200

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0 50 100 150 200

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0 50 100 150 200

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0 50 100 150 200

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Number of Web Client Requests

Lognormal
Weibull
Pareto

Figure 28: Best-Fit Distributions Plotted against a Histogram of Number of Web Client Requests

per Web User Request Data

Figure 29 shows a Q-Q plot for the lognormal and a Probability Plot for the Pareto distribution.

The straight line fitted the lognormal Q-Q plot very well over the whole range of data. The

straight line for the Pareto Q-Q Plot showed deviation from the empirical data for values in the

body of the data i.e. values in the interval (4, 40). The Pareto distribution underestimated values

in the interval (4, 40) and overestimated values in the interval (75, 200). The Pareto distribution

however modelled the large number of very small values well.

The regression statistics are shown in Table 28. The lognormal distribution provided a very good

fit to the data. The Pareto distribution modelled the data reasonably well.

Distribution Regression Statistics

lognormal -0.008
Pareto -0.107

Table 28: Regression Statistics for Lognormal and Pareto Q-Q Plots

The lognormal and Pareto distributions were good candidates for random number generation for

the Number of Web Client Requests per Web User Request parameter.

6.6. NUMBER OF WEB CLIENT REQUESTS PER WEB USER REQUEST 97

Figure 29: Pareto and lognormal Plots for Number of Web Client Requests per Web User

Request Parameter

98 CHAPTER 6. WORKLOAD MODEL PARAMETERS

6.7 Web User Request Inter-arrival Time

Section 2.6 defined web user request inter-arrival time as being the time between requests for web-

pages. The Web User Request Inter-arrival Time parameter models this quantity.

The model parameter was measured in seconds, and could take on a value in the interval (1, 900)

seconds. We observed that inter-arrival times greater than 15 minutes (900 seconds) were usually

caused by the start of a new browsing session. The heuristic algorithm categorised inter-arrival times

greater than 15 minutes as such.

We did not align the data with zero as the smallest value in the aggregated dataset was 1.

Table 29 shows summary statistics for the aggregated parameter dataset.

Sample Size 653466
Five Number Summary (1, 26, 73, 141, 900)

Sample Mean 115.427
Sample Variance 19780.099

Standard Deviation 140.642
Coefficient of Variation 1.218

Skewness 2.571
Kurtosis 7.875

Upper Outlier 484

Table 29: Summary Statistics for Web User Request Inter-arrival Time Parameter Dataset

The five number summary indicated a skew to the right. The range between the smallest value

and the median was 72 seconds, and range between the median and the maximum value was 827.

The values for skewness and kurtosis confirmed the skew to the right in the data.

The mean value indicated the value for the average time between two user requests to be a little

less than 2 minutes. This meant that users spent on average less than 2 minutes reading a web page

before moving on to another web page. We observed that users usually spent little time on a single

web-page. Web-pages were designed to keep the user’s attention and usually did not contain a great

deal of information on a single page. They presented the user with small amounts of information at

a time, with hyper-links to more information.

There were a significant number of inter-arrival times which were much larger than 2 minutes.

25% of inter-arrival times fell in the interval (141, 900) seconds, indicating a large likelihood of an

inter-arrival time having a value of up to 15 minutes. The large value for the coefficient of variation

confirmed the large likelihood of an inter-arrival time varying substantially from the mean.

Table 30 shows the results of applying the λ2 discrepancy measure test to the data.

The Pareto, beta, extreme and normal distributions did not model the data well. All the other

mathematical functions modelled the data well over the interval (1, 900) seconds. The Weibull,

gamma and exponential distributions modelled the data best. The Weibull, gamma and exponential

distributions modelled the tail of the distribution well according to the number of bins used to

calculate λ2.

6.7. WEB USER REQUEST INTER-ARRIVAL TIME 99

Distribution Parameters λ2 Number
of Bins

Lognormal ζ = 4.001863
σ = 1.478699

0.155
(0.152, 0.157)

900

Exponential α = 115.426519 0.153
(0.15, 0.157)

854

Weibull γ = 0.85689
α = 106.420313

0.065
(0.063, 0.066)

900

Gamma γ = 0.795353
α = 145.127336

0.078
(0.076, 0.08)

900

Pareto α = 0.000174
β = 0.078999

6.98
(6.934, 7.026)

900

Beta α = 0.644358
β = 3.95013

1.382
(1.298, 1.466)

789

Extreme Value α = 63.486574
β = 75.045753

1.775
(1.724, 1.826)

680

Normal µ = 115.426513
σ = 140.645402

11.676
(11.3, 12.052)

628

Table 30: Lambda Discrepancy Test Results for Web User Request Inter-arrival Time Data
over the interval (1, 900)

Several studies had shown that the exponential distribution was a poor model for inter-arrival

times of TCP connections and HTTP requests. The exponential distribution however often provided

a good model for parameters involving human behaviour. The Web User Request Inter-arrival

Time parameter modelled the behaviour web users by measuring the time between users click-

ing on hyper-links. The exponential distribution provided a good fit to the Web User Request

Inter-arrival Time parameter data. This was consistent with past results.

Figure 30 is a plot of the Weibull, gamma and exponential distributions fitted to a histogram of

the data.

The three mathematical functions modelled the data well according to the histogram. The

Weibull and gamma distributions modelled the large number of inter-arrival times with value less

than 3 seconds more accurately than the exponential distribution.

Figure 31 shows Q-Q plots for the Weibull and gamma distributions.

The Q-Q plots looked similar to the ones for the Browsing Inter-session Time parameter, the

lower parts of the plots fitted the straight lines very well and the upper parts deviated from the lines.

The Weibull and gamma distributions underestimate the upper tail of the empirical distribution.

95% Of the data is very well modelled by the two mathematical functions. The straight lines

lines fitted the Q-Q plots well for inter-arrival time values in the interval (0, 400) seconds which

accounted for approximately 95% of the data. The regression statistics in Table 31 confirmed that

both mathematical functions modelled the data well.

The Weibull and gamma distributions were good candidates for random number generation for

100 CHAPTER 6. WORKLOAD MODEL PARAMETERS

D
en

si
ty

0 200 400 600 800

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0 200 400 600 800

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0 200 400 600 800

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0 200 400 600 800

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Web User Request Interarrival Time

Exponential
Weibull
Gamma

Figure 30: Best-Fit Distributions Plotted against a Histogram of Web User Request

Inter-arrival Time Data

Distribution Regression Statistics

Weibull -0.014
Gamma -0.02

Table 31: Regression Statistics for Weibull and Gamma Q-Q Plots

6.7. WEB USER REQUEST INTER-ARRIVAL TIME 101

Figure 31: Weibull and Gamma Plots for Web User Request Inter-arrival Time Parameter

102 CHAPTER 6. WORKLOAD MODEL PARAMETERS

the Web User Request Inter-arrival Time parameter.

6.8 Web Client Request Inter-arrival Time

Section 2.6 defines the web client request inter-arrival time as the time between requests for inline

objects. The Web Client Request Inter-arrival Time parameter models this quantity.

The model parameter was measured in microseconds and took on values in the interval (79, 299900000)

microseconds. As the interval shows, the parameter data were spread over an extremely large range

spanning 8 orders of magnitude. The large range of values was attributed to the fact that some web-

pages took a few minutes to download during times of network congestion. We observed that during

times of severe network congestion a web-page could take up to five minutes to download completely.

We used 5 minutes as the cutoff value for a request to be categorised as a web client request by

the heuristic algorithm. Requests which followed 5 minutes or more after preceding requests were

categorised as being requests generated by scripts implementing news-tickers or photo-galleries and

were removed from the dataset for reasons explained in Section 4.7.

Table 32 shows summary statistics for the aggregated parameter dataset.

Sample Size 14563669
Five Number Summary (79, 11 000, 65 300, 691 400, 299 900 000)

Sample Mean 1 546 451
Sample Variance 3.248178e+13

Standard Deviation 5 699 279
Coefficient of Variation 3.685

Skewness 10.347
Kurtosis 218.341

Table 32: Summary Statistics for Web Client Request Inter-arrival Time Parameter Dataset

The five number summary indicated a severe skew to the right in the distribution of the data.

The range between the minimum value and the median was 65221 microseconds and the median

and the maximum value was 299834700 microseconds. The very large values for skewness, kurtosis

and coefficient of variation confirmed the large skew to the right. The distribution had a heavy tail.

More than 75% of inline object inter-arrival times were smaller than a second. We observed that

web browsers usually placed requests for inline objects within a few hundred microseconds of one

another. The mean value was severely affected by the skewness in the data. The average inter-arrival

time value according to the median was 65300 microseconds or approximately 65 milliseconds. The

data were however very variable with a standard deviation of 5.7 seconds and coefficient of variation

of 3.7 seconds. The average value for inline object inter-arrival times was larger than we expected

but a large number of inter-arrival time values had much smaller, or larger values due to the very

large coefficient of variation. A possible reason for the larger inter-arrival time values was the

large number of advertising content displayed on web pages. Advertising content usually resided on

6.8. WEB CLIENT REQUEST INTER-ARRIVAL TIME 103

different servers to the ones main web pages resided on. Requests for advertising content were often

delayed until all requests for other inline objects had been made.

The tail of the distribution was very long with 25% of inline object inter-arrival time having a

value between 700 milliseconds and 3 minutes.

Our findings were different to those of Choi et. al. [CL99] who found the average web client

inter-arrival time to be approximately 900 milliseconds, with a standard deviation of 2.2 seconds.

We observed the mean and standard deviation values to be much larger - 1500 milliseconds and

5.7 seconds. A possible reason for the difference was the simple heuristic they used to differentiate

between web user and web client requests. The larger variability and upper tail of the distribution

of our data suggested that the heuristic they used did not record larger inter-arrival time values.

78 microseconds were subtracted from every observation in the dataset in order to align the data

with zero.

Table 33 shows the results of applying the λ2 discrepancy measure test to the data.

Distribution Parameters λ2 Number
of Bins

Lognormal ζ = 11.171529
σ = 2.928586

0.032
(0.032, 0.033)

3682

Exponential α = 1546375.237283 396.152
(393.44, 398.864)

241

Weibull γ = 0.370912
α = 315778.506166

0.046
(0.046, 0.046)

1712

Gamma γ = 0.233279
α = 6623382.113855

0.97
(0.949, 0.991)

675

Pareto α = 1
β = 0.089513

0.879
(0.878, 0.881)

3682

Beta α = 0.230429
β = 43.087639

1.402
(1.37, 1.434)

657

Extreme Value α = −1018535.977396
β = 4443709.770717

45.172
(45.08, 45.263)

624

Normal µ = 1546373.302262
σ = 5699279.211721

226.203
(224.62, 227.785)

339

Table 33: Lambda Discrepancy Test Results for Web Client Request Inter-arrival Time Data
over the Interval (1, 299899922)

The Weibull, lognormal, gamma and Pareto distributions provided the best fit to the data in

that order. The tail of the distribution was modelled well by the Pareto and lognormal distributions

according to the number of bins used to calculate λ2.

Figure 32 is a plot of the lognormal, Weibull and gamma distributions fitted to a histogram of

the data.

We shortened the range of the plot by plotting values in the range 1 to 1000000 microseconds

instead of 1 to 300000000 microseconds. We shortened the range of the plot plot because the very

104 CHAPTER 6. WORKLOAD MODEL PARAMETERS

D
en

si
ty

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0e
+

00
1e

−
05

2e
−

05
3e

−
05

4e
−

05

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0e
+

00
1e

−
05

2e
−

05
3e

−
05

4e
−

05

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0e
+

00
1e

−
05

2e
−

05
3e

−
05

4e
−

05

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0e
+

00
1e

−
05

2e
−

05
3e

−
05

4e
−

05

Web Client Request Interarrival Time

Lognormal
Weibull
Gamma

Figure 32: Best-Fit Distributions Plotted against a Histogram of Web Client Request

Inter-arrival Time Data

long upper tail of the empirical distribution hid characteristics of smaller inter-arrival time values.

The heavy tail was still obvious in the shortened plot. Another prominent feature of the empirical

distribution was the very large number of small inter-arrival time values. The histogram showed

that the three mathematical functions modelled the data well.

Figure 33 shows Q-Q plots for the lognormal and Weibull distributions.

Most of the data were concentrated around a very small part of the plot. 95% of the data

were smaller than 10e8. The lines indicating the spread of 50%, 75% and 95% of the data did not

feature on the Q-Q plot, because 95% of the data were concentrated around the lower tip of the Q-Q

plot. The lognormal distribution severely overestimated the upper tail of the empirical distribution.

The Weibull distribution underestimated the upper tail of the empirical distribution. The regression

statistics in Table 34 confirmed that lognormal distribution modelled the tail of the distribution very

poorly. The bulk of the data is however reasonably well modelled by the lognormal distribution.

Distribution Regression Statistics

Lognormal -0.869
Weibull -0.061

Table 34: Regression Statistics for Lognormal and Weibull Q-Q Plots

The lognormal and Weibull distributions were good candidates for random number generation

6.8. WEB CLIENT REQUEST INTER-ARRIVAL TIME 105

Figure 33: Weibull and lognormal Plots for Web Client Request Inter-arrival Time Parameter

106 CHAPTER 6. WORKLOAD MODEL PARAMETERS

for the Web Client Request Inter-arrival Time parameter.

6.9 Web User Request Size

Section 2.6 defined a web user request size as being the size of requests generated by web users. The

Web User Request Size parameter modelled this quantity.

The parameter was measured in bytes and could take on values in the interval (37, 1446) bytes.

The minimum value was the result of the smallest HTTP header we measured and the maximum

value a result of the maximum number of HTTP data that could be transmitted in an Ethernet

protocol data unit (PDU). The smallest HTTP header measured in the data had a size of 37 bytes.

The maximum size of an Ethernet PDU was 15000 bytes, of which 54 bytes belonged to the TCP,

IP and Ethernet headers (20 bytes each for TCP and IP and 14 bytes for Ethernet headers). The

maximum size that HTTP data could occupy in a single TCP/IP packet was 1446 bytes. Web user

requests could span more than one TCP/IP packet in which case the size of the request could be

larger than 1446 bytes. We did not observe many requests spanning more than one TCP/IP packet.

We found that only 0.6% of requests spanned more than one TCP/IP packet. We used 1446 bytes

as the maximum possible size of an HTTP request.

Table 35 shows summary statistics for the aggregated parameter dataset.

Sample Size 715232
Five Number Summary (37, 336, 419, 508, 1446)

Sample Mean 458.4
Sample Variance 39915.23

Standard Deviation 199.79
Coefficient of Variation 0.44

Skewness 2.166
Kurtosis 6.195

Table 35: Summary Statistics for Web User Request Size Parameter Dataset

The five number summary indicated a skew to the right. The range between the smallest value

and the mean was 382 and the range between the mean and maximum value was 1027. The values of

skewness and kurtosis confirmed the skew to the right. The coefficient of variation was much smaller

than that of previous datasets, indicating that the data were distributed more closely around the

mean.

Web user requests were small. The mean size of a request was 458 bytes, and 75% of requests

were smaller than 508 bytes. Web user requests were small because they consisted of an HTTP

header with no message body.

Choi et. al. [CL99] found the average web user request size to be approximately 360 bytes, with

a standard deviation of 107 bytes. There was a 100 byte difference between their finding and ours.

We observed that the requested URL field was usually the largest field in a web user request. Some

6.9. WEB USER REQUEST SIZE 107

URLs were often very long, containing lengthy parameters to be passed to scripts running on web

servers. The move to more dynamic web content and server side scripting and the resultant larger

URL fields might have been the reason for the results of the study by Choi et. al. which showed a

smaller mean web user request size. Their measurements were taken in 1998 and web content had

become a great deal more dynamic since then.

36 bytes were subtracted from every observation in the dataset in order to align the data with

zero.

Table 36 shows the results of applying the λ2 discrepancy measure test to the data.

Distribution Parameters λ2 Number
of Bins

Lognormal ζ = 5.958304
σ = 0.408075

0.433
(0.412, 0.453)

227

Exponential α = 422.43439 1.33
(1.322, 1.339)

237

Weibull γ = 2.201577
α = 477.762279

1.251
(1.215, 1.288)

227

Gamma γ = 5.86105
α = 72.074916

0.643
(0.626, 0.66)

229

Pareto α = 1
β = 0.167833

12.259
(12.185, 12.332)

237

Beta α = 2.893784
β = 6.460851

8.832
(8.517, 9.147)

210

Extreme Value α = 342.757047
β = 129.85828

0.393
(0.381, 0.404)

233

Normal µ = 422.434385
σ = 199.787971

10.761
(10.393, 11.129)

205

Table 36: Lambda Discrepancy Test Results for Web User Request Size Data over the Interval
(1, 1410)

The extreme value, lognormal and gamma distributions provided the best fit in that order. All

the distributions modelled the tail of the distribution well according to the number of bins used to

calculate λ2.

Figure 34 is a plot of the extreme value, lognormal and gamma distributions fitted to a histogram

of the data.

The histogram shows a positive skew in the distribution of the data. The bulk of the data fell

in the (350, 500) byte interval. The distribution of the data was very symmetric. The coefficient of

variation was much lower than that of any of the previously analysed parameter datasets. The three

mathematical functions plotted in Figure 34 seemed to fit the data well according to the histogram.

Figure 35 shows Q-Q plots for the extreme and lognormal distributions.

The Q-Q plots fitted the straight lines well for values up to approximately 800 bytes. The upper

tail of the distribution was underestimated by both the mathematical functions. As before, the bulk

108 CHAPTER 6. WORKLOAD MODEL PARAMETERS

D
en

si
ty

0 500 1000 1500

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6

0 500 1000 1500

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6

0 500 1000 1500

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6

Web User Request Interarrival Time

0 500 1000 1500

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6

Lognormal
Gamma
Extreme

Figure 34: Best-Fit Distributions Plotted against a Histogram of Web User Request Size Data

of the data were reasonably well modelled by the distributions. 75% Of the data fell in the interval

(0, 510) bytes. Both mathematical functions modelled the (0, 510) byte interval well. Judging by

the Q-Q plot, the lognormal distribution modelled the empirical distribution slightly better than

the extreme value distribution. The regression results reported in Table 37 indicated that both

mathematical functions fitted the data reasonably well.

Distribution Regression Statistics

Extreme -0.015
Lognormal -0.011

Table 37: Regression Statistics for Lognormal and Extreme Q-Q Plots

The extreme and lognormal distributions were good candidates for random number generation

for the Web User Request Size parameter.

6.10 Web Client Request Size

Section 2.6 defined a web client request size as being the size of requests generated by web clients.

The Web Client Request Size parameter modelled this quantity.

The parameter was measured in bytes and took on values in the interval (37, 1446) bytes. The

interval was the same as for the Web User Request Size parameter for the same reasons.

6.10. WEB CLIENT REQUEST SIZE 109

Figure 35: Extreme and Lognormal Plots for Web User Request Size Parameter

110 CHAPTER 6. WORKLOAD MODEL PARAMETERS

Table 38 shows summary statistics for the aggregated parameter dataset.

Sample Size 15 284 603
Five Number Summary (37, 325, 384, 455, 1446)

Sample Mean 417.6
Sample Variance 24132.15

Standard Deviation 155.345
Coefficient of Variation 0.372

Skewness 2.628
Kurtosis 10.003

Table 38: Summary Statistics for Web Client Request Size Parameter Dataset

The parameter had similar statistics to the Web User Request Size parameter. The values for

the sample mean, standard deviation and coefficient of variation were slightly smaller, the skewness

had a very similar value. The kurtosis value was larger than that of the Web User Request Size

parameter indicating heavier tails and the data being more centred around the mean. The five

number summary indicated a skew to the right. The dataset had more than 15 million entries.

36 bytes were subtracted from every observation in the dataset in order to align the data with

zero.

Table 39 shows the results of applying the λ2 discrepancy measure test to the data.

Distribution Parameters λ2 Number
of Bins

Lognormal ζ = 5.883715
σ = 0.330966

0.766
(0.753, 0.778)

672

Exponential α = 381.648588 1.722
(1.72, 1.725)

709

Weibull γ = 2.446442
α = 428.976329

18.125
(17.894, 18.356)

605

Gamma γ = 8.386872
α = 45.506516

4.304
(4.251, 4.357)

616

Pareto α = 1
β = 0.169961

14.357
(14.338, 14.375)

709

Beta α = 4.125228
β = 11.242457

67.26
(66.57, 67.949)

570

Extreme Value α = 311.736848
β = 121.12221

0.257
(0.255, 0.258)

709

Normal µ = 381.648588
σ = 155.34527

151.612
(150.161, 153.062)

545

Table 39: Lambda Discrepancy Test Results for Web Client Request Size Data over the Interval
(1, 1410)

6.10. WEB CLIENT REQUEST SIZE 111

The extreme value and lognormal distributions provided the best fit in that order. Both distri-

butions modelled the tail of the distribution well according to the number of bins used to calculate

λ2.

Figure 36 is a plot of the extreme value and lognormal distributions fitted to a histogram of the

data.

D
en

si
ty

0 200 400 600 800 1000 1200 1400

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6
0.

00
7

0 200 400 600 800 1000 1200 1400

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6
0.

00
7

0 200 400 600 800 1000 1200 1400

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6
0.

00
7

Web Client Request Size

Lognormal
Extreme

Figure 36: Best-Fit Distributions Plotted against a Histogram of Web Client Request Size Data

The two mathematical functions fitted the data reasonably well according to the histogram. The

histogram of the Web Client Request Size had a similar shape to that of the Web User Request

Size parameter’s histogram. It was not surprising to find that the two parameters were well modelled

by the same mathematical functions, with very similar model constants.

Figure 37 shows Q-Q plots for the extreme value and lognormal distributions.

The plots looked very similar to the Q-Q plots of the Web User Request Size parameter. The

mathematical functions provided a good fit to the data for requests up to a size of approximately

600 bytes. 75% Of the data fall in the interval (0, 455) bytes. The mathematical functions modelled

the bulk of the data very well. The mathematical functions however underestimate the upper tail

of the distribution.

The regression statistics shown in Table 40 indicate that both the distributions fit the data

reasonably well.

The extreme value and lognormal distributions were good candidates for random number gener-

ation for the Web Client Request Size parameter.

112 CHAPTER 6. WORKLOAD MODEL PARAMETERS

Figure 37: Extreme Value and Lognormal Plots for Web Client Request Size Parameter

6.11. WEB USER RESPONSE SIZE 113

Distribution Regression Statistics

Extreme -0.011
Lognormal -0.015

Table 40: Regression Statistics for Extreme and Lognormal Q-Q Plots

6.11 Web User Response Size

Section 2.6 defined web user response size as the size of responses to requests by web users. The

Web User Response Size parameter modelled this quantity.

As mentioned in Section 6.3 Choi et. al. [CL99] made the important distinction between cached

and non-cached Web User Requests. If a requested object in a host machine’s local cache had not

expired yet i.e. if the object had not been modified at the server, the web server replied to a web

user request with a 304 Not Modified response code indicating that the object in the cache should

be used. Replies of this type consisted of an HTTP header with no message body and therefore had

a small size.

A cached web-page was loaded from local cache instead of being downloaded from a web-server.

These requests therefore resulted in less data being transmitted across a network. The Expires

entity-header in an HTTP message indicated the time of expiry of a page. The page could be safely

used from the cache until the time indicated in the Expires entity-header. The If-Modified-Since

request modifier allowed for conditional GET requests. These requests resulted in 304 Not Modified

responses from a server if the cached object was still fresh. As mentioned before these responses had

no message body.

It was important for us to treat 304 Not Modified responses separately from others as they

were smaller than regular responses and occurred very regularly. They contaminated Web Client

and Web User Response Size distributions if not analysed separately.

We modelled cached web client and user responses separately from non-cached web user and client

responses as they could be seen to constitute a subclass of responses with different characteristics

to non-cached responses.

We next discuss cached web client responses, and then analyse non-cached web client responses.

16% of web user responses were cached. Cached responses had sizes in the interval of (250, 300)

bytes. Figure 38 shows a histogram of the sizes of cached responses.

There were two spikes in the histogram for values 262-266 and 276-280. There was not much

variation in the data as web server replies with response code 304 Not Modified were fairly stan-

dard, they consisted of an HTTP header with the 304 Not Modified code as one of its fields. 65%

of values had a value smaller than 70 and 35% a value larger than 70. As most of the values in these

two groups fell either in the range 262-266 or 276-280 we modelled the parameter as a Bernoulli

Variable as follows:

114 CHAPTER 6. WORKLOAD MODEL PARAMETERS

Cached Web User Response Size

F
re

qu
en

cy

250 260 270 280 290

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

Figure 38: Histogram of Cached Web User Response Size Data

p(265) = p

p(280) = 1 − p

p(x) = 0, if x 6= 265 and x 6= 280

for p = 0.65.

Table 41 shows summary statistics for the aggregated parameter dataset of non-cached web user

responses.

Sample Size 328684
Five Number Summary (182, 817, 4671, 16140, 60000)

Sample Mean 10652.96
Sample Variance 169492 452

Standard Deviation 13018.93
Coefficient of Variation 1.222

Skewness 1.498
Kurtosis 1.552

Table 41: Summary Statistics for Non-cached Web User Response Size Parameter Dataset

The parameter was measured in bytes and took on values in the interval (182, 60 000) bytes. The

interval was not influenced by the heuristic algorithm. The largest value in the dataset was 60 KB.

6.11. WEB USER RESPONSE SIZE 115

The limit imposed by the heuristic algorithm was 1 MB, but no values of this size were recorded

for the Non-cached Web User Response Size parameter. Web user responses were usually HTML

files, which were relatively small. The minimum value recorded for the parameter was 182 bytes

which was the size of a small HTTP response header without a message body. HTTP responses

with response codes 1xx Informational or 204 No Content did not have message bodies.

The average web user response size according to the mean value was approximately 10.5 KB, the

standard deviation was approximately 13 KB. The values for skewness and kurtosis indicated that

the data were skewed to the right. The large range of values between the median and maximum

value confirmed the skew in the data.

Choi et. al. [CL99] found the average web user response size to be approximately 10.7 KB, with

a standard deviation of 25 KB. The mean value was very similar to which we had observed, but the

standard deviation was larger.

We aligned the data to zero by subtracting 181 bytes from every observation. Table 42 shows

the results of applying the λ2 discrepancy measure test to the data.

Distribution Parameters λ2 Number
of Bins

Lognormal ζ = 8.16926
σ = 1.714619

0.338
(0.332, 0.344)

91

Exponential α = 10471.964185 0.897
(0.885, 0.908)

91

Weibull γ = 0.684073
α = 8204.07327

0.218
(0.213, 0.222)

91

Gamma γ = 0.572347
α = 18312.318592

0.193
(0.189, 0.197)

91

Pareto α = 1
β = 0.12241

2.614
(2.584, 2.644)

91

Beta α = 0.473018
β = 2.076103

0.147
(0.143, 0.152)

91

Extreme Value α = 5089.125834
β = 7875.764979

2.71
(2.677, 2.742)

91

Normal µ = 10471.956831
σ = 13018.926685

4.81
(4.753, 4.867)

91

Table 42: Lambda Discrepancy Test Results for Non-cached Web User Response Size Data over
the Interval (1, 59818)

The beta, gamma and Weibull distributions provided the best fit in that order. All the distri-

butions modelled the tail of the distribution well according to the number of bins used to calculate

λ2.

Figure 39 is a plot of the beta, gamma and Weibull distributions fitted to a histogram of the

data.

There was a large number of web user responses with small sizes in the range 180 to 200 bytes.

116 CHAPTER 6. WORKLOAD MODEL PARAMETERS

D
en

si
ty

0 10000 20000 30000 40000 50000 60000

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04

0 10000 20000 30000 40000 50000 60000

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04

0 10000 20000 30000 40000 50000 60000

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04

0 10000 20000 30000 40000 50000 60000

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04

Web User Response Size

Weibull
Gamma
Beta

Figure 39: Best-Fit Distributions Plotted against a Histogram of Non-cached Web User Response

Size Data

The distribution had a long upper tail which contained a significant number of requests. The three

distributions fitted the data well over the whole range of values.

Figure 40 shows Q-Q plots for the Weibull and gamma distributions.

The Q-Q plots for both distribution functions fit the straight lines reasonably well. 75% Of

the data fell in the interval (0, 16140). The straight lines fit the Q-Q plots reasonably well over

the interval (0, 16140). For values larger than 16410 the empirical data had larger values than

the mathematical functions. The regression statistics shown in Table 43 showed that both the

mathematical functions modelled the data reasonably well.

Distribution Regression Statistics

Weibull -0.029
Gamma -0.019

Table 43: Regression Statistics for Weibull and Gamma Q-Q Plots

The gamma and Weibull distributions were good candidates for random number generation for

the Non-cached Web User Response Size parameter.

6.11. WEB USER RESPONSE SIZE 117

Figure 40: Weibull and Gamma Plots for Non-cached Web User Response Size Parameter

118 CHAPTER 6. WORKLOAD MODEL PARAMETERS

6.12 Web Client Response Size

Section 2.6 defined a web client response size as the size of responses to requests by web clients. The

Web Client Response Size parameter modelled this quantity.

As for the Web User Response Size, the Web Client Response Size parameter was influenced

by 304 Not Modified responses. 55% of web client responses were cached. This value was much

larger than we expected compared to the 16% of cached web user response objects. The result

indicated that HTML main pages were updated more regularly than graphical inline images, causing

main pages to be invalidated by the server more regularly than inline images. Inline images were

downloaded once during a browsing session and were subsequently loaded from local cache when

other web pages on the same site were visited.

Cached responses had sizes in the interval of (250, 300) bytes. Figure 41 shows a histogram of

the sizes of cached responses.

Cached Web Client Response Size

F
re

qu
en

cy

250 260 270 280 290 300

0
20

00
00

40
00

00
60

00
00

80
00

00
10

00
00

0
12

00
00

0

Figure 41: Histogram of Cached Web Client Response Size Data

Most of the data fell in the interval 260-270. We modelled the parameter as having a fixed value

of 265.

Table 44 shows summary statistics for the aggregated parameter dataset of non-cached web client

responses.

The parameter was measured in bytes and took on values in the interval (163, 999600) bytes.

The heuristic algorithm removed values greater than 1MB as we observed that inline objects very

seldomly had values greater than 1MB. Inline objects were generally small graphical images, reduced

6.12. WEB CLIENT RESPONSE SIZE 119

Sample Size 8681843
Five Number Summary (163, 681, 1511, 4546, 999600)

Sample Mean 5222.176
Sample Variance 255822373

Standard Deviation 15994.45
Coefficient of Variation 3.063

Skewness 21.826
Kurtosis 836.066

Table 44: Summary Statistics for Non-cached Web Client Response Size Parameter Dataset

in size as much as possible to reduce download and display time of web pages.

The average size of an inline object was approximately 5 KB with a standard deviation of

approximately 16 KB. It was interesting to note that the average size of an inline object was smaller

than that of a main object. A main object was had an average size of 11 KB. The fact that the

average inline object was smaller than the main object meant that graphical images displayed on

web pages were smaller in size than files containing the text displayed on web pages. The standard

deviation was however very large as indicated by the coefficient of variation. The probability of

encountering a very large inline object, relative to an average sized one, was very large.

The data were severely skewed to the right. The large range of values between the median

and maximum value, the skewness and kurtosis confirm this. There was strong evidence that the

distribution had a heavy tail.

We aligned the data to zero by subtracting 162 from every observation. Table 45 shows the

results of applying the λ2 discrepancy measure test to the normalised data.

The lognormal distribution was the only distribution that provided a reasonable fit to the data.

The Pareto distribution provided a good fit to the tail of the distribution.

Figure 42 is a plot of the lognormal distribution fitted to a histogram of the data.

The histogram showed that a large number of client responses had a size in the range of 160

to 200 bytes. The very long upper tail of the distribution contained a significant number of client

responses. The lognormal distribution appeared to provide a good fit to the data.

Figure 43 shows a Q-Q plot for the lognormal distribution. The regression statistic for the fit of

the data to the straight line in Figure 43 is shown in Table 46.

The lines indicating values of the quantiles which bound 50%, 75%, and 95% of the data did not

show on the Q-Q plot in Figure 43. The reason for this was that most of the data had very small

values. 75% Of the data fell in the interval (0, 4546) bytes, which is represented by the lower tip of

the Q-Q plot. The straight line fit the Q-Q plot well over the (0, 4546) interval. The very long upper

tail of the empirical distribution was not well modelled by the lognormal distribution. The regression

statistic shown in Table 46 indicated that the lognormal distribution provided a reasonably good fit

to the the data.

The lognormal distribution was a good candidate for random number generation for the Non-cached

120 CHAPTER 6. WORKLOAD MODEL PARAMETERS

Distribution Parameters λ2 Number
of Bins

Lognormal ζ = 7.400775
σ = 1.405093

0.104
(0.104, 0.105)

1152

Exponential α = 5060.176166 38.723
(38.185, 39.26)

227

Weibull γ = 0.663302
α = 3398.539724

1.383
(1.348, 1.417)

465

Gamma γ = 0.554266
α = 9126.253815

7.909
(7.744, 8.075)

340

Pareto α = 1
β = 0.135121

2.759
(2.754, 2.764)

3675

Beta α = 0.094602
β = 18.595562

2.057
(2.051, 2.063)

1063

Extreme Value α = −2137.981187
β = 12470.820084

9.066
(9.014, 9.118)

511

Normal µ = 5060.176166
σ = 15994.448181

31.23
(30.867, 31.593)

283

Table 45: Lambda Discrepancy Test Results for Non-cached Web Client Response Size Data
over the Interval (1, 999438)

D
en

si
ty

0 10000 20000 30000 40000 50000 60000

0e
+

00
2e

−
04

4e
−

04
6e

−
04

8e
−

04

0 10000 20000 30000 40000 50000 60000

0e
+

00
2e

−
04

4e
−

04
6e

−
04

8e
−

04

Web Client Response Size

Lognormal

Figure 42: Best-Fit Distributions Plotted against a Histogram of Non-cached Web Client

Response Size Data

6.12. WEB CLIENT RESPONSE SIZE 121

Figure 43: Lognormal Plots for Non-cached Web Client Response Size Parameter

122 CHAPTER 6. WORKLOAD MODEL PARAMETERS

Distribution Regression Statistic

Lognormal -0.18

Table 46: Regression Statistic for Lognormal Q-Q Plot

Web Client Response Size parameter.

6.13 Data Variability Analysis

Highly variable inter-arrival time and size distributions have a negative impact on network perfor-

mance. Computer servers and network components react poorly to highly variable traffic. Computer

and network equipment have to be equipped with extra storage capacity and processing power to

handle highly variable traffic loads.

The phenomenon of self-similarity in network traffic has a severely negative impact on network

performance. Self-similarity occurs when network traffic inter-arrival times are highly variable on a

variety of different time scales from microseconds to several minutes. Appendix D discusses concepts

related to self-similarity.

It is important to identify components of traffic which are highly variable. By understanding the

cause of high variability in traffic it is possible to take preventative steps or to prepare strategies

to deal with its results. We quantified variability in the nine model parameters and identified

parameters which had the most variability.

The lognormal, Weibull and Pareto distributions model high variability in data well. The Pareto

distribution is known to model very high variability in data well. Previous studies had shown that the

lognormal, Weibull and Pareto distributions modelled datasets resulting from data network traffic

measurements well. Data measured from computer networks were typically highly variable [Fel98,

BC98b, CL99]. Six of the nine model parameters we analysed had a lognormal or Weibull distribution

and three of the parameters had a Pareto distribution. The parameter datasets we analysed were

typically highly variable.

Table 47 shows the result of applying several metrics for variability to the nine model parameter

datasets we analysed.

The coefficient of variation (CoV) was previously discussed for each model parameter. A co-

efficient of variation greater than one indicated high variability. Table 47 shows that all the pa-

rameters were highly variable except for the Web User Request Size and Web Client Request

Size parameters. The Web Client Request Inter-arrival Time and Non-cached Web Client

Response Size parameters were very highly variable as indicated by their CoV values which were

greater than 3.

The second indicator of variability was the γ parameter of the Weibull distribution. A value

smaller than 1 indicated high variability and a value smaller than 0.5 indicated very high variability.

Model parameters which did not fit the Weibull distribution did not have this metric. Results based

6.14. RESULTS SUMMARY 123

Name CoV γ β

Browsing Inter-Session Time 1.075 0.65 —
Number of Web User Requests per Browsing Session 1.132 0.93 0.78

Number of Web Client Requests per Web User Request 1.349 0.79 0.46
Web User Request Inter-arrival Time 1.218 0.86 —

Web Client Request Inter-arrival Time 3.685 0.37 0.09
Web User Request Size 0.44 — —
Web Client Request Size 0.372 — —

Non-cached Web User Response Size 1.222 0.68 —
Non-cached Web Client Response Size 3.063 — —

Table 47: Metrics of Variability Applied to the Nine Model Parameter Datasets

on the γ parameter have the same interpretation as those for the CoV.

The Pareto distribution modelled very highly variable data. A Pareto distribution with β pa-

rameter between 0 and 2 was a heavy tailed distribution. Heavy tailed distributions were discussed

in Section 5.6 and model very highly variable data. The β parameter of the Pareto distribution was

the third metric of variability. The lower the value β the higher the variability in the data. (Results

based on the β parameter corresponded to results obtained from the preceding two metrics but only

applied to three parameters as the Pareto distribution provided a good fit to three parameters only).

The Web Client Request Inter-arrival Time parameter had β value of 0.09 indicating very high

variability.

The Non-cached Web Client Response Size parameter had a very high coefficient of variation

but surprisingly neither of the two distributions which modelled very high variability i.e. the Pareto

and the Weibull distributions, fitted the parameter dataset. We suspected that the underlying

distribution was contaminated by the long upper tail, and that the tail was well modelled by the

Pareto distribution. Barford and Crovella found this to be the case for web resource sizes where

the body of the distribution was well modelled by the lognormal distribution and the tail of the

distribution was modelled by the Pareto distribution [BC98b]. It was possible to construct such a

hybrid model composed of both the lognormal and Pareto distributions. We did not pursue this

avenue as the lognormal distribution provided a good fit to the whole parameter dataset.

We concluded that all the parameters except for the Web User Request Size and Web Client

Request Size parameters had highly variable data and that the Number of Web User Requests

per Browsing Session, Number of Web Client Requests per Web User Request, Web Client

Request Inter-arrival Time and the Non-cached Web Client Response Size parameters had

very highly variable distributions with heavy tails.

6.14 Results Summary

Tables 48 and 49 list the distributions that were found to fit each of the model parameters.

124 CHAPTER 6. WORKLOAD MODEL PARAMETERS

Model Parameter Distributions Distribution
Parameters

Offset Range

Browsing Inter-Session
Time

Gamma γ = 0.645296
α = 102.342465

14 (1, 465)

Weibull γ = 0.7437
α = 54.902209

Lognormal ζ = 3.242876
σ = 1.637514

Number of Web User
Requests per Browsing
Session

Pareto α = 1
β = 0.557807

1 (1, 99)

Beta α = 0.777341
β = 5.164118

Weibull γ = 0.912485
α = 10.681936

Number of Web Client
Requests per Web User
Request

Lognormal ζ = 2.154982
σ = 1.377062

0 (1, 200)

Pareto α = 1
β = 0.464041

Weibull γ = 0.793412
α = 17.067434

Web User Request
Inter-arrival Time

Weibull γ = 0.85689
α = 106.420313

0 (1, 900)

Gamma γ = 0.795353
α = 145.127336

Exponential α = 115.426513
Web Client Request
Inter-arrival Time

Weibull γ = 0.370912
α = 315778.506

78 (1, 299899922)

Lognormal ζ = 11.171529
σ = 2.928586

Pareto α = 1
β = 0.089513

Table 48: Best-fit Distributions and their Parameters for the Eleven Model Parameters - 1

6.14. RESULTS SUMMARY 125

Model Parameter Distributions Distribution
Parameters

Offset Range

Web User Request Size Extreme Value α = 342.757047
β = 129.85828

36 (1, 1410)

Lognormal ζ = 5.958304
σ = 0.408075

Gamma γ = 5.86105
α = 72.074916

Web Client Request
Size

Extreme Value α = 311.736848
β = 121.12221

36 (1, 1410)

Lognormal ζ = 5.883715
σ = 0.330966

Cached Web User Re-
sponse Size

Bernoulli
Variable

p = 0.65 0 fixed value:
265 or 280

Non-cached Web User
Response Size

beta α = 0.473018
β = 2.076103

181 (1, 59818)

Gamma γ = 0.572347
α = 18312.318592

Weibull γ = 0.684073
α = 8204.07327

Cached Web Client Re-
sponse Size

Fixed value — 0 fixed value:
265

Non-cached Web Client
Response Size

Lognormal ζ = 7.400775
σ = 1.405093

162 (1, 999438)

Table 49: Best-fit Distributions and their Parameters for the Eleven Model Parameters - 2

126 CHAPTER 6. WORKLOAD MODEL PARAMETERS

In most cases more than one distribution fitted the data well. The distributions listed for each

parameter in Tables 48 and 49 were listed in order of how well they fitted the data i.e. best fitting

distributions first. The distributions were fitted to the data over the range of values in the data.

The distribution parameters and the range of values over which the distributions were fitted are

shown. The offset value in the table is the value which was subtracted from each observation in the

dataset in order to align the data with zero.

We failed to find analytic distributions for the Web User Response Size and Web Client Response

Size parameters. We found that by splitting each of these parameters in two and modelling the re-

sultant four distributions as cached and non-cached versions of the original parameters we were able

to fit analytic distributions to all four parameters. The extra two parameters and their distributions

are shown in Table 49.

Table 50 shows the mean and standard deviation for parameter datasets. The average time

between two browsing sessions was approximately one and a half hours and there was a significant

chance that a break between browsing sessions might be as long as 8 hours. The average number of

web pages visited during a browsing session was approximately 12 which is smaller than we expected.

The parameter had a heavy tailed distribution and therefore there was a large likelihood that the

number of pages visited was much larger, up to a maximum of 100 pages per session. On average a

web page contained 20 inline objects. The variability in the data were very high as this parameter

also had a heavy tailed distribution. The likelihood that up to 200 inline objects were contained in

a web page was very large.

The average time between two requests for a web page by a user was a little less than 2 minutes.

The Web User Request Inter-arrival Time parameter was the only parameter which could be

modelled by an exponential distribution. The time between requests placed by a web client was

measured in microseconds. The average time between two such requests was one and a half seconds

according to the mean. The data were very skewed with a heavy tailed distribution and therefore

the median of approximately 65 milliseconds was a better indicator of the average time between two

web client requests. The likelihood of a value having a value larger than 65 milliseconds was very

large. The parameter had a maximum value of 3 minutes.

The average sizes of web user and client requests were very similar. They were also well mod-

elled by the same distributions with very similar distribution parameters. We concluded that both

parameters could be accurately modelled by a single distribution. The average size of these requests

was approximately 450 bytes. There was not much variability in the data for these two parameters.

The average size of the main object of a web page was approximately 10.5KB. The largest

recorded size of a main object was 60KB. The data were not highly variable. The average size of

an inline object was approximately 5KB but the data were highly variable with a heavy tail. The

average size of an inline image was smaller than that of a main object. There was a large likelihood

that images as large as 1MB were requested.

6.15. CONCLUDING REMARKS 127

Model Parameter Mean Standard
Deviation

Unit of Measurement

Browsing Inter-Session Time 81.04 87.102 minute
Number of Web User Re-
quests per Browsing Session

12.22 13.872 count

Number of Web Client Re-
quests per Web User Request

19.687 26.551 count

Web User Request Inter-
arrival Time

115.427 140.642 second

Web Client Request Inter-
arrival Time

1 546 451 5 699 279 microsecond

Web User Request Size 464.495 213.731 byte
Web Client Request Size 420.2 163.398 byte
Non-cached Web User Re-
sponse Size

10 652.96 13 018.93 byte

Non-cached Web Client Re-
sponse Size

5222.176 15994.45 byte

Table 50: Mean and Standard Deviation of Nine Model Parameter Datasets

6.15 Concluding Remarks

It was a very difficult and time consuming task to find analytic distributions for each of the nine

workload model parameters. The first challenge which we overcame was to find ways in which to

analyse the very large parameter datasets. We have already discussed how we solved this problem

in the previous chapter. The second challenge was the implementation of the Anderson Darling

test and λ2 discrepancy measure in the R statistical analysis environment. The Anderson Darling

test proved to be inadequate for our purposes, as it could not be used to analyse datasets with

more than 200 observations. We therefore used the λ2 measure in combination with Q-Q Plots to

analyse the data. We discussed the implementation of the λ2 statistic in the previous chapter. The

third challenge was to remove all data which were not generated by users browsing the web from

parameter datasets. We have discussed this problem in Section 4.7 (page 63), but will elaborate on

it here.

Due to the nature of the measurements we were not able to isolate web browsing traffic during

the initial measurements. Measured traffic included traffic not generated by web clients but rather

by applications which also used the HTTP for purposes other than browsing the web. The traffic

also included traffic which was generated by web browsers, but did not constitute “traditional” web

browsing i.e. the browsing of web sites which displayed information using HTML or some other web

technology such as Flash. This second “untraditional” type of web traffic was traffic such as web-

downloads, web-irc, streaming-audio etc. Both of the above-mentioned types of traffic were not part

of the workload model and were very difficult to remove from the measurement data. Some of this

“unwanted data” could be removed during the initial processing of the measurement data but a large

128 CHAPTER 6. WORKLOAD MODEL PARAMETERS

part of it was removed during the analysis of parameter datasets. By analysing parameter datasets

we were able to identify host datasets which contained unwanted data. Parameter datasets which

included values which were unlikely to have been caused by users browsing the web were identified,

and the relevant host datafiles were removed from the study. The removal of unrepresentative data

was a very time consuming process. We removed 4865 datasets from the study. We were left with

1827 datasets for analysis. We discussed how we removed host datasets from the data in Section 4.7.2

(page 64).

Chapter 7

Findings and Future Work

7.1 Findings

We employed the structural approach to network modelling to derive a model for web workload.

We researched models used in simulation studies as well as models implemented in simulation pack-

ages and found that important web workload characteristics are not included in these models. In

particular bidirectional traffic and heavy tailed distributions for inter-arrival time and size work-

load parameters were not included in many models. The presence of heavy tailed distributions in

workload models was particularly important as it contributed to the self-similar nature of web traffic.

We implemented a web traffic measurement system which measured and extracted parameter

datasets for our workload model in real-time. The system used low-end hardware and did not

store any private user information to secondary storage. The measurement system overcame the

problem of processing and storing very large volumes of traffic by selectively extracting information

from HTTP, TCP and IP packets. Other web traffic measurement systems commonly captured,

processed and stored every TCP/IP packet transmitted between web clients and servers in order to

reconstruct HTTP dialogues between clients and servers. The processing and storage requirements

of such system were enormous.

We showed that it was possible to reconstruct HTTP dialogues between web clients and servers by

processing the incomplete data captured by our measurement system. The system we implemented

extracted parameter datasets for our nine workload model parameters. The tool reconstructed

dialogues between web clients and servers based on the incomplete information extracted from

packets. The most difficult problem the tool solved was to decide whether a request was generated

by a web user or a web client. It used a novel heuristic algorithm which categorised a request based

on characteristics of the request obtained from the measurement data. The algorithm was novel as

it was based on a list of characteristics of web client requests which we compiled by studying packet

traces of web traffic. Using the heuristic algorithm it was possible to accurately extract datasets

for our workload model parameters from the incomplete information captured by the measurement

129

130 CHAPTER 7. FINDINGS AND FUTURE WORK

system.

The real-time tool failed to extract parameter datasets during peak traffic times on the campus

network. We implemented a similar system to the real-time measurement system which processed

data off-line after measurements were completed. The off-line system captured packet traces of

selected information contained in TCP, IP and HTTP headers. We used the measured data to

reconstruct HTTP dialogues between web clients and servers off-line. From these reconstructed

dialogues we extracted datasets for our nine model parameters.

We addressed privacy concerns raised by the off-line measurement system recording sensitive

personal information of web users to file as follows: We extracted parameter datasets from measured

data and deleted the measured data which contained sensitive material under the supervision of the

network system administrator. The parameter datasets did not contain sensitive information.

The off-line measurement system gracefully dealt with protocol errors and missing information.

In both cases error codes were recorded and appropriate actions taken to assure the completion of

processing. The main challenges we overcame in implementing the measurement system were:

• Managing very large volumes of traffic.

• Handling protocol errors.

• Dealing with missing information.

• Synchronising measurement machines.

• Ensuring privacy of network users.

The distinguishing factor of our measurement system was that it recorded limited information

but was able to extract the data necessary for our analysis. The storage requirements of recording

all the information transmitted between web clients and servers were enormous. In our case the

measured network link ran at approximately 6Mbps (full capacity) during the day. A storage re-

quirement of approximately 32GB was needed to record one day’s traffic measurement data. Our

traffic measurement system recorded 30 days of traffic data using only 25GB. The measurement

system enabled us to study web traffic generated by thousands of hosts on a campus network.

We implemented several statistical analysis techniques in the R statistical analysis environment.

The package was well suited for the analysis of large datasets and enabled us to perform complicated

analysis routines on datasets with up to 15 million entries. Several of the routines ran for several

hours on these datasets. We completed the analysis on a machine with 512MB of memory by using

strict memory management.

We implemented the Anderson Darling and λ2 statistics in the R statistical analysis environment.

The λ2 statistic was implemented by calculating the expected number of observations per bin from

the cumulative distribution function of the distribution being tested for. The expected number of

observations were calculated over the range of values contained in the empirical data. Values outside

this range were not included in the calculation of the statistic. We found that it was necessary to

7.2. FUTURE WORK 131

adjust the bin size of skewed distributions when using the λ2 statistic. We used the “skewness

factor” given by Scott [Sco92] to adjust bin sizes for positively skewed distributions. Using the λ2

statistic we found analytic distributions which fit the workload model parameters.

We found that the Anderson Darling test was not suitable for analysing datasets with more

than 200 observations. We used the λ2 statistic instead to analyse datasets with more than 200

observations. The Q-Q plot was an invaluable tool to visually assess the goodness-of-fit of data to

analytic distributions. We used the λ2 goodness-of-fit statistic in combination with the Q-Q plot to

determine whether a distribution fitted the data.

The effect of local caching on the size of response messages was not taken into account in our

original workload model. In order to take this factor into account we split two of the nine workload

model parameters into two separate parameters each. The Web User and Web Client Response

Size parameters were each split into a cached and non-cached parameter. Our model was extended

to have eleven instead of nine parameters.

The ultimate goal of the work was to derive a workload model of traffic generated by an individual

browsing the web. We succeeded in this goal. We derived such a model by studying traffic traces,

and found analytic distributions for the parameters of the model. These distributions were listed in

Tables 48 and 49 (pages 124 and 125). Random numbers could be generated for simulation studies

by using the information in these tables.

We extracted parameter datasets from measured data for the eleven model parameters. These

datasets could be used to generate random numbers for simulation purposes. Tables 51-53 report

values, extracted from the parameter datasets, which could be used to generate random values for

each of the eleven parameter datasets. The tables contain 40 values for each parameter. Interpolation

could be used to generate values which fall in between the values reported in the tables. Tables

containing 100, 1000, and 10000 values are available on request from the author if greater accuracy

is required.

We constructed both an analytic and empirical workload model for an individual browsing the

web.

7.2 Future Work

It is possible to implement our traffic model in the ns network simulator. The ns simulation package

is a good choice for implementation for several reasons:

1. Ns is reputable simulation package widely used by the academic community.

2. Ns is well documented.

3. Ns already has several traffic generation modules implemented.

4. Ns is easily update-able by means of C++ or OTcl.

132 CHAPTER 7. FINDINGS AND FUTURE WORK

Browsing
Inter-Session
Time

Number of
Web User
Requests per
Browsing
Session

Number of
Web Client
Requests per
Web User
Request

Web User Re-
quest Inter-
arrival Time

0.626759 1 1 1.863191
1.354413 1 1 3.396194
2.103947 1 1 5.280148
2.965647 1 1 7.257439
3.860197 1 1 9.513114
4.811255 2 2 12.028773
5.865073 2 2 14.841443
7.007023 2 2 18.016951
8.29422 2 2 21.628552
9.694515 2 3 25.816017
11.092213 3 3 30.513289
12.690919 3 4 35.210284
14.418169 3 4 40.168931
16.188715 4 5 44.876923
17.981162 4 5 49.315781
20.042928 4 6 53.887337
22.425237 5 7 58.639622
25.015031 5 7 63.05912
27.781746 6 8 67.719171
30.892287 6 9 72.588324
34.30906 7 11 77.856788
38.183285 7 12 83.415949
42.235154 8 13 89.332347
46.19823 8 15 94.118665
51.077654 9 16 100.662844
56.60192 10 18 108.000762
62.686798 11 19 116.165112
69.632072 12 21 122.239872
77.265855 13 23 130.610564
85.448615 14 26 141.162933
95.48949 16 28 153.39539
105.6352 17 32 168.037119
118.799054 19 35 184.204097
135.163426 22 40 205.549641
156.083167 24 45 233.639875
181.12738 28 51 270.467887
214.897044 33 60 322.027239
264.493583 40 72 405.934174
339.5119 53 97 568.68335
464.671213 99 200 899.956976

Table 51: Summarised Empirical Distribution Function for Parameter Datasets - 1

7.2. FUTURE WORK 133

Web Client
Request
Inter-arrival
Time

Web User Re-
quest Size

Web Client
Request Size

Non-Cached
Web User
Response Size

245 176 214 192
363 208 227 253
635 229 237 297
1094 249 246 354
1754 264 255 399
2899 276 263 415
4472 284 270 476
6384 289 277 530
8596 294 284 572
10924 300 289 636
13483 309 295 756
16357 317 301 930
19550 324 307 1087
23108 332 313 1343
27290 342 319 1753
32121 350 326 2191
38197 358 331 2767
45253 366 337 3374
54253 374 343 4100
65217 383 348 4490
80455 391 354 5321
101230 399 360 6328
127808 407 366 7328
164380 414 372 8119
211207 420 378 8803
273926 428 385 9983
354110 436 392 11319
458595 446 400 12455
574213 458 409 14104
691295 472 419 15956
848057 488 431 17572
1082458 502 445 20070
1338620 524 462 23097
1651231 549 482 26150
2171443 582 507 27175
3083356 632 540 30464
4520071 709 589 34335
7357366 818 661 38835
15068176 1066 826 46253
299898439 1419 1419 59817

Table 52: Summarised Empirical Distribution Function for Parameter Datasets - 2

134 CHAPTER 7. FINDINGS AND FUTURE WORK

Cached Web
User Re-
sponse Size

Non-Cached
Web Client
Response Size

Cached Web
Client Re-
sponse Size

243 366 242
257 402 257
258 433 261
260 468 263
262 499 263
263 534 263
263 567 263
263 594 263
263 634 264
263 681 264
263 722 264
264 766 264
264 810 264
264 870 264
264 943 265
264 1036 265
264 1144 265
265 1248 265
265 1369 265
265 1511 265
265 1713 265
266 1932 265
266 2158 265
266 2388 266
266 2652 266
278 2968 266
278 3309 266
278 3671 266
279 4146 266
279 4546 266
279 5197 266
280 5953 266
280 6975 270
281 8256 279
297 9885 280
300 11964 286
300 14604 300
300 19704 300
300 31587 300
300 999613 300

Table 53: Summarised Empirical Distribution Function for Parameter Datasets - 3

7.2. FUTURE WORK 135

Implementing our traffic model in ns provides a means of validating the traffic model. This

can be done by generating traffic with the resultant traffic generator and comparing it to traffic

characteristics of measured data.

The traffic generator can also be used to test the hypothesis that heavy tailed distributions of

data generated by individual users browsing the web contribute to the self-similarity of aggregate

web traffic. Crovella et al. [CB96] showed that web traffic is self-similar and that the self-similarity

is in all likelihood attributable to the heavy-tailed distributions of transmission times of documents

and silent times between document requests. Taqqu et al. [TWS97] proved that aggregate World

Wide Web traffic as found on Internet links can be modelled by super-positioning many ON/OFF

traffic sources where the ON and OFF periods are drawn from heavy tailed distributions. The

existence of a relationship between heavy tailed distributions and self-similarity for aggregate web

traffic has been confirmed by this research but the relationship between heavy tailed distributions

and self-similarity has not been tested for traffic generated by individual users. An implementation

of the traffic model we developed in the ns network simulator will provide a platform for investigating

such a relationship.

7.2.1 Implementation of Traffic Model

Ns is implemented in the C++ and OTcl languages. C++ is used for the clarity of design which

object-orientation affords as well as the speed associated with natively compiled code. OTcl is used

for its functionality as scripting language. Network simulation scenarios are easily configured and

updated through the OTcl interface. The class tree of the whole package is implemented in both

C++ and OTcl. Traffic generation modules can be implemented in either C++ or OTcl.

In order to obtain traffic traces generated by our workload model the ns Tracing and Monitoring

components have to be modified.

In order to generate traffic using our workload model the web-cache application class has to be

updated to conform to our traffic model. The web-cache application has several similarities to our

model:

1. Data can be transmitted from one component to another.

2. A traffic model consisting of main and inline objects is used.

3. Probabilistic functions needed to generate random numbers for inter-arrival times and sizes

exist in the web-cache application.

The following alterations have to be made to the web-cache application:

1. A Browsing Session layer as illustrated in Figure 6 has to be added to the web-cache application.

2. The HTTP/Client class has to be updated to generate inter-arrival times according to different

distributions for main and inline objects.

136 CHAPTER 7. FINDINGS AND FUTURE WORK

3. The Http/Client class has to be updated to wait for a main object before it generates inline

object requests.

4. The PagePool/CompMath class has to be updated to generate the sizes of main and inline

objects according to different distributions.

5. The PagePool/CompMath class has to be updated to generate the number of inline objects

according to an appropriate distribution.

A simulation environment which aggregates traffic streams from many individual web users into

a single traffic stream can be constructed in ns using the altered web-cache application class. Traffic

generated by the simulation environment can be saved to output files via the adapted Tracing and

Monitoring components.

In order to validate our traffic model, traffic generated by the simulation environment should

be compared to measured traffic. The traffic model will be validated if characteristics of generated

traffic correspond to characteristics of measured traffic.

In order to accept or reject the thesis that individual user web traffic generated by distribu-

tions with heavy tails cause self-similarity in aggregate web traffic streams, traffic generated by the

simulation environment should be tested for self-similarity.

7.2.2 Extension of Real-time Measurement System

The real-time measurement system failed to extract parameter datasets during peak traffic hours.

We believe that with some optimisation the program will succeed in extracting parameter datasets

during peak time. The program is well suited to being distributed over two or more processors as

it consists of two processes which are synchronised. It will be an interesting experiment to test the

system on a dual-processor computer. The program is written with debugging statements which can

be enabled to provide timing information. It is therefore easy to see where the system fails during

processing.

The measurement system captured data generated by users browsing the web, as well as other

HTTP data generated by applications which use the HTTP but not for web browsing purposes.

Traffic generated by web clients such as web-download and web-irc traffic were also captured. This

made the extraction of parameter datasets and subsequent analysis of these datasets very difficult.

The measurement system can be extended to differentiate between these types of traffic, and to take

the appropriate action for each type of traffic.

The measurement system also did not record any data generated by HTTPS which uses the

secure sockets layer (SSL). Although it is not possible to inspect the content of data transferred

using this protocol, the measurement system can record information about these connections for

statistical purposes.

Appendix A

Measurement File Extract

Figures 44-46 show selected fields from measurement file entries for traffic generated by a single

web user request. The measurement file was created by our data measurement tool. The web user

request recorded in the measurement file shown in Figures 44-46 was generated by entering the URL

for CNN into the web client’s URL textbox. The request resulted in 82 web client requests for inline

objects.

Figures 44-46 show the following fields:

• Arrival Time

• Host Part of Request URL

• Path Part of Request URL

• Host Part of Referer URL

• Path Part of Referer URL

These fields are used to solve the Web User vs. Web Client Request Differentiation Problem

as discussed in Section 4.5.

1055766928.275495 www.cnn.com / no-ref no-path

1055766929.845104 ar.atwola.com file/adsWrapper.js www.cnn.com /

1055766930.100174 ar.atwola.com file/adsWrapper.js www.cnn.com /

1055766931.076519 ar.atwola.com file/adsPopup2.js www.cnn.com /

1055766931.163398 i.cnn.net cnn/images/1.gif www.cnn.com /

1055766931.167530 i.a.cnn.net cnn/.element/img/1.0/logo/cnn.gif www.cnn.com /

1055766931.179070 ar.atwola.com html/93103300/276280765/aol?SNM=HID&width=468&height=60

&target=_top&TZ=-120&TVAR=class%3Dintl&CT=I www.cnn.com /

Figure 44: Selected Fields Taken from Measurement File for a Web User Request and Subsequent
Web Client Requests - 1

137

138 APPENDIX A. MEASUREMENT FILE EXTRACT

1055766931.208776 i.a.cnn.net cnn/.element/img/1.0/searchbar/bar.search.gif www.cnn.com /

1055766931.211891 i.a.cnn.net cnn/.element/img/1.0/searchbar/bar.top.bevel.gif www.cnn.com /

1055766931.767854 i.a.cnn.net cnn/.element/img/1.0/searchbar/bar.right.bevel.gif www.cnn.com /

1055766932.052149 i.a.cnn.net cnn/.element/img/1.0/searchbar/bar.google.gif www.cnn.com /

1055766932.056512 i.a.cnn.net cnn/.element/img/1.0/searchbar/bar.bottom.bevel.gif www.cnn.com /

1055766932.648050 i.a.cnn.net cnn/.element/img/1.0/main/nav_at_money.gif www.cnn.com /

1055766932.657479 i.a.cnn.net cnn/.element/img/1.0/main/nav_at_si.gif www.cnn.com /

1055766932.663193 ar.atwola.com html/93170132/276280765/aol?SNM=HID&width=120&height=90&target=_top

&TZ=-120&TVAR=class%3Dintl&CT=I www.cnn.com /

1055766932.777874 i.a.cnn.net cnn/.element/img/1.0/sect/SEARCH/nav.search.gif www.cnn.com /

1055766933.288994 i.cnn.net cnn/.element/img/1.0/misc/premium.gif www.cnn.com /

1055766933.289349 i.cnn.net cnn/2003/LAW/06/15/tulia.suspects/top.main.tulia.jpg www.cnn.com /

1055766933.292323 i.a.cnn.net cnn/.element/img/1.0/main/px_c00.gif www.cnn.com /

1055766933.328260 i.a.cnn.net cnn/.element/img/1.0/main/userpicks.gif www.cnn.com /

1055766933.401499 i.a.cnn.net cnn/.element/img/1.0/main/px_ccc.gif www.cnn.com /

1055766934.009960 i.a.cnn.net cnn/.element/img/1.0/misc/audio.gif www.cnn.com /

1055766934.068426 i.a.cnn.net cnn/images/1.gif www.cnn.com /

1055766934.788522 i.a.cnn.net cnn/.element/img/1.0/main/more.video.blue.gif www.cnn.com /

1055766934.918460 i.a.cnn.net cnn/images/icons/premium.gif www.cnn.com /

1055766935.408524 i.a.cnn.net cnn/video/law/2003/06/15/bf.scotus.sodomy.vs.cnn.jpg www.cnn.com /

1055766935.638216 i.cnn.net cnn/.element/img/1.0/main/px_c00.gif www.cnn.com /

1055766935.670040 i.a.cnn.net cnn/.element/img/1.0/main/superlinks/sports.gif www.cnn.com /

1055766935.680084 i.cnn.net cnn/2003/images/06/16/tz.spurs.ap.jpg www.cnn.com /

1055766936.033816 i.a.cnn.net cnn/.element/img/1.0/main/at_cnnmoney.gif www.cnn.com /

1055766936.285528 i.a.cnn.net cnn/.element/img/1.0/main/business.news.blue.gif www.cnn.com /

1055766936.303105 ar.atwola.com image/93103306/aol www.cnn.com /

1055766936.589929 i.cnn.net cnn/.element/img/1.0/main/arrow_down.gif www.cnn.com /

1055766936.592977 i.a.cnn.net cnn/.element/img/1.0/main/ftn.280x32.ny.times.gif www.cnn.com /

1055766936.878700 i.a.cnn.net cnn/.element/img/1.0/main/ftn.345x32.breaking.news.gif www.cnn.com /

1055766936.949734 ar.atwola.com content/B0/0/H7pTL2Luf0_kw3xmlj8W1sns8a9RRNke8_SAqLzKBa609jmULHVa8jg

FKtiL69KX71YyF9xayBuNZf_HnE4-913BJZKLmiPO6hUDYJ_O4lk$/aol ar.atwola.com html/9310

3300/276280765/aol?SNM=HID&width=468&height=60&target=_top&TZ=-120&TVAR=class%3Dint

l&CT=I

1055766937.360944 i.cnn.net cnn/.element/img/1.0/main/superlinks/cnn_presents.gif www.cnn.com /

1055766937.364218 i.a.cnn.net cnn/CNN/Programs/presents/shows/seeds.of.terror/images/tz.seeds.of.

terror.jpg www.cnn.com /

1055766937.720672 i.a.cnn.net cnn/.element/img/1.0/main/superlinks/business.gif www.cnn.com /

1055766937.748008 i.a.cnn.net cnn/2003/SHOWBIZ/Movies/05/30/sprj.cas03.review.nemo/tz.finding.nemo

.jpg www.cnn.com /

1055766938.202319 i.a.cnn.net cnn/.element/img/1.0/main/us.gif www.cnn.com /

1055766938.243148 i.a.cnn.net cnn/.element/img/1.0/main/world.gif www.cnn.com /

1055766938.246930 i.cnn.net cnn/.element/img/1.0/misc/icon.external.links.gif www.cnn.com /

1055766938.252206 i.a.cnn.net cnn/.element/img/1.0/main/technology.gif www.cnn.com /

1055766938.256196 i.a.cnn.net cnn/.element/img/1.0/main/entertainment.gif www.cnn.com /

1055766939.029355 i.a.cnn.net cnn/.element/img/1.0/main/politics.gif www.cnn.com /

1055766939.089859 i.a.cnn.net cnn/.element/img/1.0/main/law.gif www.cnn.com /

1055766939.498793 i.a.cnn.net cnn/.element/img/1.0/main/health.gif www.cnn.com /

1055766939.591628 i.a.cnn.net cnn/.element/img/1.0/main/space.gif www.cnn.com /

1055766939.619819 i.a.cnn.net cnn/.element/img/1.0/main/travel.gif www.cnn.com /

1055766940.050311 i.a.cnn.net cnn/.element/img/1.0/main/education.gif www.cnn.com /

1055766940.190434 i.a.cnn.net cnn/.element/img/1.0/main/sports.gif www.cnn.com /

1055766940.210413 i.a.cnn.net cnn/.element/img/1.0/main/business.gif www.cnn.com /

1055766941.000732 i.a.cnn.net cnn/.element/img/1.0/misc/diagonal.gif www.cnn.com /

1055766941.003855 i.a.cnn.net cnn/.element/img/1.0/main/tv.schedule.gif www.cnn.com /

1055766941.020428 i.cnn.net cnn/CNN/Programs/american.morning/images/2003/06/tz.iraq.ap.jpg

www.cnn.com /

1055766941.026831 i.a.cnn.net cnn/.element/img/1.0/main/superlinks/us.gif www.cnn.com /

1055766941.674866 i.a.cnn.net cnn/2003/US/06/16/nyt.safire/tz.fcc.jpg www.cnn.com /

1055766941.791149 i.a.cnn.net cnn/.element/img/1.0/main/superlinks/offbeat.gif www.cnn.com /

1055766941.794580 i.a.cnn.net cnn/2003/WORLD/asiapcf/south/06/15/offbeat.wedding.reut/tz.wedding.

gradient.jpg www.cnn.com /

1055766941.831598 i.a.cnn.net cnn/.element/img/1.0/main/quickvote.gif www.cnn.com /

1055766941.998885 ar.atwola.com image/93101912/aol www.cnn.com /

Figure 45: Selected Fields Taken from Measurement File for Web User Request and Subsequent
Web Client Requests - 2

139

1055766942.391177 i.a.cnn.net cnn/.element/img/1.0/main/icon_external.gif www.cnn.com /

1055766942.630637 i.a.cnn.net cnn/.element/img/1.0/main/partner_time.gif www.cnn.com /

1055766942.881244 i.a.cnn.net cnn/.element/img/1.0/main/partner_si.gif www.cnn.com /

1055766943.070420 i.a.cnn.net cnn/.element/img/1.0/main/partners_nyt.gif www.cnn.com /

1055766943.334770 i.a.cnn.net cnn/.element/img/1.0/sect/SEARCH/dotted.line.gif www.cnn.com /

1055766943.529759 i.a.cnn.net cnn/.element/img/1.0/misc/icon.external.links.gif www.cnn.com /

1055766943.532789 ar.atwola.com html/93103308/276280765/aol?SNM=HID&width=88&height=31&target=_top&

TZ=-120&TVAR=class%3Dintl&CT=I www.cnn.com /

1055766943.611058 i.a.cnn.net cnn/.element/img/1.0/main/icon_premium.gif www.cnn.com /

1055766943.614448 ar.atwola.com html/93162673/276280765/aol?SNM=HID&height=300&width=720&target=_

blank&CT=J&TZ=-120&htmlpre=adsObj0%3d%27&xlnl=%5cn&xltick=%5c%27&ctype=application

/x-javascript&htmlsuf=%27%3badsPopup%280%29&TVAR=class%3Dintl www.cnn.com /

1055766943.761865 i.cnn.net cnn/.element/img/1.0/main/tab_gradient_bg.gif www.cnn.com /

1055766943.765055 i.cnn.net cnn/.element/img/1.0/main/market_bg.jpg www.cnn.com /

1055766943.768561 ar.atwola.com content/B0/0/H7pTL2Luf0_kw3xmlj8W1sns8a9RRNke8_SAqLzKBa609jmULHVa8j

gFKtiL69KX71YyF9xayBsGJJ19jhX9-1GwpwGSE_3Fdi_LakYKyQ4$/aol ar.atwola.com html/931

70132/i276280765/aol?SNM=HID&width=120&height=90&target=_top&TZ=-120&TVAR=class%3D

intl&CT=I

1055766944.240712 ar.atwola.com content/B0/0/H7pTL2Luf0_kw3xmlj8W1sns8a9RRNke8_SAqLzKBa609jmULHVa8j

gFKtiL69KXTPCmjMkYOvM5C_xF3lKNjRbUvMSjKyxE7A6B3LIHANk$/aol www.cnn.com /

1055766944.244819 ar.atwola.com content/B0/0/H7pTL2Luf0_kw3xmlj8W1sns8a9RRNke8_SAqLzKBa609jmULHVa8j

gFKtiL69KXD5cML0fB7YPtL4GXa6aV7CmZ3HS-849cbJbLDQoJB_k$/aol www.cnn.com /

1055766944.256720 ar.atwola.com content/B0/0/H7pTL2Luf0_kw3xmlj8W1sns8a9RRNke8_SAqLzKBa609jmULHVa8j

gFKtiL69KXxTQ8xGluxHcJ2ou_yHWqQUTLN-mqmkAVnojDlh4zLpw$/aol ar.atwola.com html/93

103308/276280765/aol?SNM=HID&width=88&height=31&target=_top&TZ=-120&TVAR=class%3Di

ntl&CT=I

1055766944.516772 www.cnn.com cnn_adspaces/adsPopup2.html?0 www.cnn.com /

1055766944.554569 ar.atwola.com html/93137910/276280765/aol?SNM=HID&width=101&height=1&target=_top&

TZ=-120&TVAR=class%3Dintl&CT=J&hw=docw www.cnn.com /

1055766945.739029 ar.atwola.com file/adsEnd.js www.cnn.com /

1055766945.756202 www.cnn.com cookie.crumb www.cnn.com /

1055766945.862627 ar.atwola.com content/B0/0/H7pTL2Luf0_kw3xmlj8W1sns8a9RRNke8_SAqLzKBa609jmULHVa8j

gFKtiL69KXkmxkNXzSYZcMpAhGY0hIdLwaLt1RyxQlfaaMvo09EHk$/aol www.cnn.com cnn_adspa

ces/ adsPopup2.html?0

1055766968.511389 i.cnn.net cnn/.element/img/1.0/main/weather_bg.jpg www.cnn.com /

Figure 46: Selected Fields Taken from Measurement File for Web User Request and Subsequent
Web Client Requests - 3

Appendix B

Implementation of Heuristic

Algorithm

Figures 47 and 48 show the implementation of Group No. 1 characteristics.

if(this filetype == GRAPHICS) /* Characteristic No. 1 */

for(all previous requests in all request queue)

if(arrival time difference >= 10)

break

else if(this referer url == prev referer url){
this category = Web Client Request

break

}
else /* Characteristic No. 2 */

for(all previous requests in all request queue)

if(arrival time difference >= 2)

break

else if(this referer url == prev referer url){
this category = Web Client Request

break

}
if(file not classified && (this filetype == GRAPHICS)) /* Characteristic No. 3 */

for(all previous requests in all request queue)

if(arrival time difference >= 5)

break

else if(this host part request url == prev host part request url){
this category = Web Client Request

break

}

Figure 47: Implementation of Heuristic Algorithm - Group No. 1 Characteristics

Figure 49 shows the implementation of Group No. 2 characteristics.

Figure 50 shows the implementation of Group No. 3 characteristics.

140

141

else if(file not classified) /* Characteristic No. 4 */

for(all previous requests in all request queue)

if(arrival time difference >= 2)

break

else if(this host part request url == prev host part request url){
this category = Web Client Request

break

}

Figure 48: Implementation of Heuristic Algorithm - Group No. 1 Characteristics

if(file not classified)

if(this filetype == GRAPHICS)

for(all previous requests in html request queue) /* Characteristic No. 5 */

if(arrival time difference >= 50)

break

if(this referer url == prev referer url){
this category = Web Client Request

break

}
if(file not classified)

for(all previous document requests in html request queue) /* Characteristic No. 6 */

if(arrival time difference >= 50)

break

if(this referer url == prev request url){
this category = Web Client Request

break

}
else

for(all previous requests in html request queue) /* Characteristic No. 7 */

if(arrival time difference >= 2)

break

if(this referer url == prev referer url){
this category = Web Client Request

break

}
if(file not classified)

for(all previous requests in html request queue) /* Characteristic No. 8 */

if(arrival time difference >= 10)

break

if(this referer url == prev request url){
this category = Web Client Request

break

}

Figure 49: Implementation of Heuristic Algorithm - Group No. 2 Characteristics

142 APPENDIX B. IMPLEMENTATION OF HEURISTIC ALGORITHM

if(file not classified && (this filetype == GRAPHICS))

for(all previous requests in all request queue) /* Characteristic No. 9 */

if(arrival time difference >= 60)

break

if(this referer url == prev referer url){
this category = Web Client Request

break

}
if(file not classified)

for(all previous requests in all request queue) /* Characteristic No. 10 */

if(arrival time difference >= 60)

break

if(this request host url == prev request host url){
this category = Web Client Request

break

}

Figure 50: Implementation of Heuristic Algorithm - Group No. 3 Characteristics

Appendix C

R Code

R code referenced in the text is listed here. We implemented several “Exploratory Data Analysis”

routines which plot different aspects of the data. These routines are listed in Section C.1. We

implemented two “goodness-of-fit” statistics, the λ2 and Anderson Darling statistics. The code for

the goodness-of-fit statistics are listed in Section C.2.

C.1 Visual Techniques

C.1.1 Log Empirical Complementary Cumulative Distribution Function

Plot

last <- function(x) {

max(x)

}

leccdf <- function(data) {

sorted <- sort(data)

sample.size <- length(sorted)

count <- 1

accumulator <- 1/sample.size

ccdf <- numeric()

for(j in sorted){

ccdf[count] <- accumulator

accumulator <- accumulator + 1/sample.size

count <- count +1

}

sorted.factor <- factor(sorted)

ccdf.agg <- tapply(ccdf, sorted.factor,

last, simplify = TRUE)

ccdf.final <- ccdf.agg[1:length(ccdf.agg)-1]

ccdf.final.inverted <- 1.0-ccdf.final

ccdf.final.inverted.log <- log(ccdf.final.inverted)

143

144 APPENDIX C. R CODE

sorted.uniq <- unique(sorted)

sorted.uniq <- sorted.uniq[1:length(sorted.uniq)-1]

plot(sorted.uniq, ccdf.final.inverted.log, main="", xlab="Interarrival

Times", ylab="Log(1-Fn(x))", type="l")

}

C.1.2 P-P and Q-Q Plots for Selected Distributions

The R Code for the P-P and Q-Q Plots are shown in Figures 51 - 52

C.2 Goodness-of-fit Techniques

C.2.1 Lambda Discrepancy Measure

The R Code for the Lambda Discrepancy Measure is shown in Figures 53 - 57

C.2.2 Anderson Darling Test

The R Code for the Anderson Darling Test is shown in Figures 58 - 60.

C
.2

.
G

O
O

D
N

E
S
S
-O

F
-F

IT
T

E
C

H
N

IQ
U

E
S

1
4
5

P−P and Q−Q Plot routines
Lourens Walters − Cape Town University
15/04/2003

library(stepfun)
n ← 43336
gamma ← 0.7437
alpha ← 54.902209
zeta ← 3.242876
sigma ← 1.637514
meanlog ← zeta
sdlog ← sigma
data ← scan(" ../all_hosts_moved", n)
data ← sort(data)

hist(data, xlim=c(0.0, 465.0), xlab=" Browsing Inter−Session Time", ylab=" Bin Count", main
=paste(" Histogram"))
hist(data, xlim=c(0.0, 465.0), xlab=" Browsing Inter−Session Time", ylab=" Bin Count", main
=paste(" Histogram"))
cutoff.percentile ← pweibull(465, shape=gamma, scale=alpha)
num.weibull.points ← ceiling((1−cutoff.percentile)*n)+n
weibull.percentage.points ← ppoints(num.weibull.points)
weibull.percentage.points ← weibull.percentage.points[1:n]
weibull.quantiles ← qweibull(weibull.percentage.points, shape=gamma, scale=alph
a)
plot(data, weibull.quantiles, xlab = " Sample Quantiles", ylab = " Theoretical Quantiles", t
ype=" p", col=" blue", main=paste(" Weibull Q−Q Plot"))
abline(a=0, b=1, col=" red")
x.coord ← data[ceiling(50/100*n)]
y.coord ← qweibull(weibull.percentage.points[ceiling(50/100*n)], shape=gamma, s
cale=alpha)
text(x.coord, y.coord, " 50th", pos=1, offset=1)
lines(c(x.coord, x.coord), c(0, y.coord), lty=" dashed")
lines(c(0, x.coord), c(y.coord, y.coord), lty=" dashed")
x.coord ← data[ceiling(75/100*n)]
y.coord ← qweibull(weibull.percentage.points[ceiling(75/100*n)], shape=gamma, s
cale=alpha)
text(x.coord, y.coord, " 75th", pos=1, offset=1)
lines(c(x.coord, x.coord), c(0, y.coord), lty=" dashed")
lines(c(0, x.coord), c(y.coord, y.coord), lty=" dashed")
x.coord ← data[ceiling(90/100*n)]
y.coord ← qweibull(weibull.percentage.points[ceiling(90/100*n)], shape=gamma, s
cale=alpha)
text(x.coord, y.coord, " 90th", pos=1, offset=1)
lines(c(x.coord, x.coord), c(0, y.coord), lty=" dashed")
lines(c(0, x.coord), c(y.coord, y.coord), lty=" dashed")
x.coord ← data[ceiling(95/100*n)]
y.coord ← qweibull(weibull.percentage.points[ceiling(95/100*n)], shape=gamma, s
cale=alpha)
text(x.coord, y.coord, " 95th", pos=1, offset=1)
lines(c(x.coord, x.coord), c(0, y.coord), lty=" dashed")
lines(c(0, x.coord), c(y.coord, y.coord), lty=" dashed")
linear.fit ← (1−sum((data−weibull.quantiles)^2))/sqrt(sum(data^2)*sum(weibull.q
uantiles^2))
write(print(paste(linear.fit)), file=" linear_fit.txt", append=F)

cutoff.percentile ← plnorm(465, meanlog=meanlog, sdlog=sdlog)
num.lognorm.points ← ceiling((1−cutoff.percentile)*n)+n
lognormal.percentage.points ← ppoints(num.lognorm.points)
lognormal.percentage.points ← lognormal.percentage.points[1:n]
lognorm.quantiles ← qlnorm(lognormal.percentage.points, meanlog=meanlog, sdlog=
sdlog)
plot(data, lognorm.quantiles, xlab = " Sample Quantiles", ylab = " Theoretical Quantiles",
type=" p", col=" blue", main=paste(" Lognormal Q−Q Plot"))
abline(a=0, b=1, col=" red")
x.coord ← data[ceiling(50/100*n)]
y.coord ← qlnorm(lognormal.percentage.points[ceiling(50/100*n)], meanlog=meanlo

g, sdlog=sdlog)
text(x.coord, y.coord, " 50th", pos=1, offset=1)
lines(c(x.coord, x.coord), c(0, y.coord), lty=" dashed")
lines(c(0, x.coord), c(y.coord, y.coord), lty=" dashed")
x.coord ← data[ceiling(75/100*n)]
y.coord ← qlnorm(lognormal.percentage.points[ceiling(75/100*n)], meanlog=meanlo
g, sdlog=sdlog)
text(x.coord, y.coord, " 75th", pos=1, offset=1)
lines(c(x.coord, x.coord), c(0, y.coord), lty=" dashed")
lines(c(0, x.coord), c(y.coord, y.coord), lty=" dashed")
x.coord ← data[ceiling(90/100*n)]
y.coord ← qlnorm(lognormal.percentage.points[ceiling(90/100*n)], meanlog=meanlo
g, sdlog=sdlog)
text(x.coord, y.coord, " 90th", pos=1, offset=1)
lines(c(x.coord, x.coord), c(0, y.coord), lty=" dashed")
lines(c(0, x.coord), c(y.coord, y.coord), lty=" dashed")
x.coord ← data[ceiling(95/100*n)]
y.coord ← qlnorm(lognormal.percentage.points[ceiling(95/100*n)], meanlog=meanlo
g, sdlog=sdlog)
text(x.coord, y.coord, " 95th", pos=1, offset=1)
lines(c(x.coord, x.coord), c(0, y.coord), lty=" dashed")
lines(c(0, x.coord), c(y.coord, y.coord), lty=" dashed")
linear.fit ← (1−sum((data−lognorm.quantiles)^2))/sqrt(sum(data^2)*sum(lognorm.q
uantiles^2))
write(print(paste(linear.fit)), file=" linear_fit.txt", append=T)

weibull.percentages ← pweibull(data, shape=gamma, scale=alpha)
plot(weibull.percentage.points, weibull.percentages, xlab = " Sample Percentages", yl
ab = " Theoretical Percentages", type=" p", col=" blue", main=paste(" Weibull P−P Plot"))
abline(a=0, b=1, col=" red")
x.coord ← weibull.percentage.points[ceiling(50/100*n)]
y.coord ← pweibull(data[ceiling(50/100*n)], shape=gamma, scale=alpha)
text(x.coord, y.coord, " 50th", pos=1, offset=1)
lines(c(x.coord, x.coord), c(0, y.coord), lty=" dashed")
lines(c(0, x.coord), c(y.coord, y.coord), lty=" dashed")
x.coord ← weibull.percentage.points[ceiling(75/100*n)]
y.coord ← pweibull(data[ceiling(75/100*n)], shape=gamma, scale=alpha)
text(x.coord, y.coord, " 75th", pos=1, offset=1)
lines(c(x.coord, x.coord), c(0, y.coord), lty=" dashed")
lines(c(0, x.coord), c(y.coord, y.coord), lty=" dashed")
x.coord ← weibull.percentage.points[ceiling(90/100*n)]
y.coord ← pweibull(data[ceiling(90/100*n)], shape=gamma, scale=alpha)
text(x.coord, y.coord, " 90th", pos=1, offset=1)
lines(c(x.coord, x.coord), c(0, y.coord), lty=" dashed")
lines(c(0, x.coord), c(y.coord, y.coord), lty=" dashed")
x.coord ← weibull.percentage.points[ceiling(95/100*n)]
y.coord ← pweibull(data[ceiling(95/100*n)], shape=gamma, scale=alpha)
text(x.coord, y.coord, " 95th", pos=1, offset=1)
lines(c(x.coord, x.coord), c(0, y.coord), lty=" dashed")
lines(c(0, x.coord), c(y.coord, y.coord), lty=" dashed")

lognorm.percentages ← plnorm(data, meanlog=meanlog, sdlog=sdlog)
plot(lognormal.percentage.points, lognorm.percentages, xlab = " Sample Percentages",
ylab = " Theoretical Percentages", type=" p", col=" blue", main=paste(" Lognormal P−P Plot"))
abline(a=0, b=1, col=" red")
x.coord ← lognormal.percentage.points[ceiling(50/100*n)]
y.coord ← plnorm(data[ceiling(50/100*n)], meanlog=meanlog, sdlog=sdlog)
text(x.coord, y.coord, " 50th", pos=1, offset=1)
lines(c(x.coord, x.coord), c(0, y.coord), lty=" dashed")
lines(c(0, x.coord), c(y.coord, y.coord), lty=" dashed")
x.coord ← lognormal.percentage.points[ceiling(75/100*n)]
y.coord ← plnorm(data[ceiling(75/100*n)], meanlog=meanlog, sdlog=sdlog)
text(x.coord, y.coord, " 75th", pos=1, offset=1)
lines(c(x.coord, x.coord), c(0, y.coord), lty=" dashed")
lines(c(0, x.coord), c(y.coord, y.coord), lty=" dashed")
x.coord ← lognormal.percentage.points[ceiling(90/100*n)]
y.coord ← plnorm(data[ceiling(90/100*n)], meanlog=meanlog, sdlog=sdlog)

F
ig

u
re

5
1
:

P
-P

a
n
d

Q
-Q

P
lo

t
C

o
d
e

-
1

1
4
6

A
P

P
E

N
D

IX
C

.
R

C
O

D
E

text(x.coord, y.coord, "90th", pos=1, offset=1)
lines(c(x.coord, x.coord), c(0, y.coord), lty="dashed")
lines(c(0, x.coord), c(y.coord, y.coord), lty="dashed")
x.coord ← lognormal.percentage.points[ceiling(95/100*n)]
y.coord ← plnorm(data[ceiling(95/100*n)], meanlog=meanlog, sdlog=sdlog)
text(x.coord, y.coord, "95th", pos=1, offset=1)
lines(c(x.coord, x.coord), c(0, y.coord), lty="dashed")
lines(c(0, x.coord), c(y.coord, y.coord), lty="dashed")

F
ig

u
re

5
2
:

P
-P

a
n
d

Q
-Q

P
lo

t
C

o
d
e

-
2

C
.2

.
G

O
O

D
N

E
S
S
-O

F
-F

IT
T

E
C

H
N

IQ
U

E
S

1
4
7

Lambda Squared Test Routines
Lourens O. Walters − Cape Town University
16/05/2004

library(evd)
library(MASS)

Extra distributions not defined in R

beta.distr ← function(x, alpha, beta, a, b, log= FALSE){
range ← b − a
start ← a
standardized.x ← (x−start)/range
if(length(standardized.x[standardized.x ≤0]) ≠0){

print(paste(" x:", x, " standardized.x:", standardized.x))
stop(" Error, negative value in Beta quantiles")

}
probability ← pbeta(standardized.x, shape1=alpha, shape2=beta)
if(log)
return(log(probability))

else
return(probability)

}

beta.density ← function(x, alpha, beta, a, b, log= FALSE){
range ← b − a
start ← a
standardized.x ← (x−start)/range
if(length(standardized.x[standardized.x<!0]) ≠0)
stop(" Error, negative value in Beta quantiles")

standard.density ← dbeta(standardized.x, shape1=alpha, shape2=beta)
density ← standard.density/range
if(log)
return(log(density))

else
return(density)

}

beta.variates ← function(n, alpha, beta, a, b){
range ← b − a
start ← a
standard.variates ← rbeta(n, shape1=alpha, shape2=beta)
variates ← (standard.variates*range) + start
return(variates)

}

pareto.distr ← function(x, alpha, beta, log= FALSE){
Pareto distribution not defined for x < alpha
Test for values x < alpha, taking into account floating point error
min.val ← min(x)
error.val ← min.val − alpha
if (error.val < 0){
warning(" \nx < alpha in pareto.distr(x, alpha, beta, log=FALSE)")

}
probability ← 1−(alpha/x)^beta
if(log)
return(log(probability))

else
return(probability)

}

pareto.density ← function(x, alpha, beta, log= FALSE){
Pareto distribution not defined for x < alpha
Test for values x < alpha, taking into account floating point error
min.val ← min(x)
error.val ← min.val − alpha
if (error.val < 0)

warning(" \nx < alpha in pareto.density(x, alpha, beta, log=FALSE)")
density ← beta * (alpha^beta) * (x^(−beta−1))
if(log)
return(log(density))

else
return(density)

}

pareto.variates ← function(alpha, beta, cnt=1000){
u ← runif(cnt)
variates ← (alpha/((u^(1/beta))))
return(variates)

}

Bin data using formulae defined by Scott. Adapted formula based on
assumption that data have lognormal distribution.

bin.actual ← function(data, bin.method){
length ← length(data)
std.dev ← sqrt(var(data))
min.val ← floor(min(data))
max.val ← ceiling(max(data))
if (bin.method ≡ " scott"){

bin.width ← 3.49 * std.dev * length^(−1/3)
if (bin.width < 1){

bin.width ← 1
}
else{

bin.width ← round(bin.width, digits=0)
}

}
else if(bin.method ≡ " scott−adapted"){

std.dev ← sd(data)
normal.data ← log(data)
n.std.dev ← sd(normal.data)
n.var ← n.std.dev^2
numerator ← 2^(1/3)*n.std.dev
denominator ← exp(5*n.var/4)*(n.var+2)^(1/3)*(exp(n.var)−1)^(1/2)
skew.factor ← numerator/denominator
bin.width ← skew.factor * 3.49 * std.dev * length^(−1/3)
if (bin.width < 1){

bin.width ← 1
}
else{

bin.width ← round(bin.width, digits=0)
}

}
else{
stop(" \nERROR: invalid bin.method specified − choose one of the

following: \n1. scott\n 2. scott−adapted\n")
}
num.bins ← ceiling((max.val−min.val)/bin.width)
max.val ← min.val+(bin.width*num.bins)
cut.data ← cut(data, seq(min.val, max.val, bin.width), include.lowest =
TRUE)

actual ← tabulate(cut.data, nbins=length(levels(cut.data)))
return(list(min.val=min.val, max.val=max.val, bin.width=bin.width,

num.bins=num.bins, actual=actual))
}

Calculate expected values for bins, based on distribution being tested for.
bin.expected ← function(data.list){

expected ← numeric()
if(data.list$distribution ≡ " lognormal"){
if(is.na(data.list$param1) || is.na(data.list$param2)){

zeta ← mean(log(data.list$observed))
sigma ← sd(log(data.list$observed))

F
ig

u
re

5
3
:

L
a
m

b
d
a

D
iscrep

a
n
cy

M
ea

su
re

-
C

o
d
e

1

1
4
8

A
P

P
E

N
D

IX
C

.
R

C
O

D
E

result.list ← fitdistr(data.list$observed, " lognormal",
start=list(meanlog=zeta, sdlog=sigma))

zeta ← result.list$estimate[[1]]
sigma ← result.list$estimate[[2]]

} else {
zeta ← data.list$param1
sigma ← data.list$param2

}
length ← length(data.list$observed)
df ← length−1−2
breaks ← seq(data.list$min.val, data.list$max.val,

by=data.list$bin.width)

for(i in 2:length(breaks)){
expected[i−1] ← plnorm(breaks[i], meanlog=zeta,

sdlog=sigma)−plnorm(breaks[i−1], meanlog=zeta, sdlog=sigma)
expected[i−1] ← expected[i−1]*length

}
parameters ← list(zeta=zeta, sigma=sigma)
returnlist ← list(expected=expected, parameters=parameters, df=df)

}
else if(data.list$dist ≡ " weibull"){
if(is.na(data.list$param1) || is.na(data.list$param2)){

result.list ← fitdistr(data.list$observed, " weibull")
gamma ← result.list$estimate[1]
alpha ← result.list$estimate[2]

} else {
gamma ← data.list$param1
alpha ← data.list$param2

}
length ← length(data.list$observed)
df ← length−1−2
breaks ← seq(data.list$min.val, data.list$max.val, data.list$bin.width)
for(i in 2:length(breaks)){

expected[i−1] ← pweibull(breaks[i], shape=gamma,
scale=alpha)−pweibull(breaks[i−1], shape=gamma, scale=alpha)

expected[i−1] ← expected[i−1]*length
}
parameters ← list(gamma=gamma, alpha=alpha)
returnlist ← list(expected=expected, parameters=parameters, df=df)

}
else if(data.list$dist ≡ " exponential"){
if(is.na(data.list$param1)){

beta ← mean(data.list$observed)
rate ← 1/beta
log.rate ← log(rate)
expLoglik ← function(params, negative= TRUE){
 lglk ← sum(dexp(data.list$observed, rate=exp(params[1]), log= TRUE))
 if(negative)

 return(−lglk)
 else

 return(lglk)
}
optim.list ← optim(c(log.rate), expLoglik, method=" BFGS")
if(optim.list$convergence ≡0){

rate ← exp(optim.list$par[1])
beta ← 1/rate

} else{
warning(" optim didn’t converge in bin.expected − exponential")

}
} else {

rate ← data.list$param1
beta ← 1/rate

}
length ← length(data.list$observed)
df ← length−1−1
breaks ← seq(data.list$min.val, data.list$max.val, data.list$bin.width)

for(i in 2:length(breaks)){
expected[i−1] ← pexp(breaks[i], rate=rate)−pexp(breaks[i−1], rate=rate)
expected[i−1] ← expected[i−1]*length

}
parameters ← list(beta=beta)
returnlist ← list(expected=expected, parameters=parameters, df=df)

}
else if(data.list$dist ≡ " gamma"){
if(is.na(data.list$param1) || is.na(data.list$param2)){

mean.data ← mean(data.list$observed)
var.data ← var(data.list$observed)
shape ← mean.data^2/var.data
scale ← var.data/mean.data
log.shape ← log(shape)
log.scale ← log(scale)
gammaLoglik ← function(params, negative= TRUE){

lglk ← sum(dgamma(data.list$observed, shape=exp(params[1]),
scale=exp(params[2]), log= TRUE))

if(negative)
return(−lglk)

else
return(lglk)

}
optim.list ← optim(c(log.shape, log.scale), gammaLoglik)
if(optim.list$convergence ≡0){

gamma ← exp(optim.list$par[1])
alpha ← 1/exp(optim.list$par[2])

} else{
warning(" optim didn’t converge in bin.expected − gamma")
gamma ← shape
alpha ← 1/scale

}
} else{

gamma ← data.list$param1
scale ← data.list$param2
alpha ← 1/scale

}
length ← length(data.list$observed)
df ← length−1−2
breaks ← seq(data.list$min.val, data.list$max.val, data.list$bin.width)
for(i in 2:length(breaks)){

expected[i−1] ← pgamma(breaks[i], shape=gamma,
rate=alpha)−pgamma(breaks[i−1], shape=gamma, rate=alpha)

expected[i−1] ← expected[i−1]*length
}
parameters ← list(shape=gamma, rate=alpha)
returnlist ← list(expected=expected, parameters=parameters, df=df)

}
else if(data.list$dist ≡ " pareto"){

length ← length(data.list$observed)
if(is.na(data.list$param1) || is.na(data.list$param2)){

alpha ← data.list$observed[1]
beta ← 1/((1/length) * sum(log(data.list$observed/alpha)))
log.alpha ← log(alpha)
log.beta ← log(beta)
paretoLoglik ← function(params, negative= TRUE){
 lglk ← sum(pareto.density(data.list$observed,

 alpha=exp(params[1]), beta=exp(params[2]), log= TRUE))
 if(negative)

 return(−lglk)
 else

 return(lglk)
}
optim.list ← optim(c(log.alpha, log.beta), paretoLoglik)
if(optim.list$convergence ≡0){

alpha ← exp(optim.list$par[1])
beta ← exp(optim.list$par[2])

F
ig

u
re

5
4
:

L
a
m

b
d
a

D
iscrep

a
n
cy

M
ea

su
re

-
C

o
d
e

2

C
.2

.
G

O
O

D
N

E
S
S
-O

F
-F

IT
T

E
C

H
N

IQ
U

E
S

1
4
9

} else{
warning(" optim didn’t converge in bin.expected − pareto")

}
} else {

alpha ← data.list$param1
beta ← data.list$param2

}
df ← length−1−2
breaks ← seq(data.list$min.val, data.list$max.val,

data.list$bin.width)
breaks[1]=alpha
for(i in 2:length(breaks)){

expected[i−1] ← pareto.distr(breaks[i], alpha,
beta)−pareto.distr(breaks[i−1], alpha, beta)

expected[i−1] ← expected[i−1]*length
}
parameters ← list(alpha=alpha, beta=beta)
returnlist ← list(expected=expected, parameters=parameters, df=df)

}
else if(data.list$dist ≡ " beta"){
if(is.na(data.list$param1) || is.na(data.list$param2) ||

is.na(data.list$param3) || is.na(data.list$param4)){
min.val ← data.list$min.val
max.val ← data.list$max.val
a.val ← max.val − min.val
b.val ← min.val
transformed.data ← (data.list$observed−b.val)/a.val
transformed.data ← transformed.data[transformed.data>0]
transformed.data ← transformed.data[transformed.data ≠1]
mean.transformed.data ← mean(transformed.data)
var.transformed.data ← var(transformed.data)
alpha.transformed ←

mean.transformed.data*((mean.transformed.data*(1−mean.transformed.data)/
var.transformed.data)−1)

beta.transformed ←
(1−mean.transformed.data)*((mean.transformed.data*(1−mean.transformed.da

ta)/var.transformed.data)−1)
log.alpha.transformed ← log(alpha.transformed)
log.beta.transformed ← log(beta.transformed)
betaLoglik ← function(params, negative= TRUE){

lglk ← sum(dbeta(transformed.data, shape1=exp(params[1]),
shape2=exp(params[2]), log= TRUE))

if(negative)
return(−lglk)

else
return(lglk)

}
optim.list ← optim(c(log.alpha.transformed, log.beta.transformed),

betaLoglik, method=" BFGS")
if(optim.list$convergence ≡0){

alpha.transformed ← exp(optim.list$par[1])
beta.transformed ← exp(optim.list$par[2])

} else{
warning(" optim didn’t converge in bin.expected − beta")

}
} else {

alpha.transformed ← data.list$param1
beta.transformed ← data.list$param2
min.val ← data.list$param3
max.val ← data.list$param4

}
length ← length(data.list$observed)
df ← length−1−2
breaks ← seq(data.list$min.val, data.list$max.val, data.list$bin.width)
breaks[1] ← min.val
for(i in 2:length(breaks)){
if(i ≡2){

expected[i−1] ← beta.distr(x=breaks[i], alpha=alpha.transformed,
beta=beta.transformed, a=min.val, b=max.val)−0

}
else{

expected[i−1] ← beta.distr(x=breaks[i], alpha=alpha.transformed,
beta=beta.transformed, a=min.val,
b=max.val)−beta.distr(x=breaks[i−1], alpha=alpha.transformed,
beta=beta.transformed, a=min.val, b=max.val)

}
expected[i−1] ← expected[i−1]*length

}
parameters ← list(shape1=alpha.transformed, shape2=beta.transformed)
returnlist ← list(expected=expected, parameters=parameters, df=df)

}
else if(data.list$dist ≡ " extreme"){
if(is.na(data.list$param1) || is.na(data.list$param2)){

beta ← (sqrt(var.data) * sqrt(6)) / pi
alpha ← mean.data−0.5772*beta
log.alpha ← log(alpha)
log.beta ← log(beta)
extremeLoglik ← function(params, negative= TRUE){
 lglk ← sum(dgev(data, loc=exp(params[1]), scale=exp(params[2]),

 shape=0, log= TRUE))
 if(negative)

 return(−lglk)
 else

 return(lglk)
}
optim.list ← optim(c(log.alpha, log.beta), extremeLoglik)
if(optim.list$convergence ≡0){
 alpha ← exp(optim.list$par[1])
 beta ← exp(optim.list$par[2])
} else{
 warning(" optim didn’t converge in bin.expected − extreme")
}

} else {
alpha ← data.list$param1
beta ← data.list$param2

}
length ← length(data.list$observed)
df ← length−1−2
breaks ← seq(data.list$min.val, data.list$max.val, data.list$bin.width)
for(i in 2:length(breaks)){

expected[i−1] ← pgumbel(breaks[i], loc=alpha,
scale=beta)−pgumbel(breaks[i−1], loc=alpha, scale=beta)

expected[i−1] ← expected[i−1]*length
}
parameters ← list(alpha=alpha, beta=beta)
returnlist ← list(expected=expected, parameters=parameters, df=df)

}
else if(data.list$dist ≡ " normal"){
if(is.na(data.list$param1) || is.na(data.list$param2)){

norm.mean ← mean(data.list$observed)
norm.sd ← sd(data.list$observed)
result.list ← fitdistr(data.list$observed, " normal",

start=list(mean=norm.mean, sd=norm.sd))
norm.mean ← result.list$estimate[[1]]
norm.sd ← result.list$estimate[[2]]

} else {
norm.mean ← data.list$param1
norm.sd ← data.list$param2

}
length ← length(data.list$observed)
df ← length−1−2
breaks ← seq(data.list$min.val, data.list$max.val, data.list$bin.width)
for(i in 2:length(breaks)){

expected[i−1] ← pnorm(breaks[i], mean=norm.mean,

F
ig

u
re

5
5
:

L
a
m

b
d
a

D
iscrep

a
n
cy

M
ea

su
re

-
C

o
d
e

3

1
5
0

A
P

P
E

N
D

IX
C

.
R

C
O

D
E

sd=norm.sd)−pnorm(breaks[i−1], mean=norm.mean, sd=norm.sd)
expected[i−1] ← expected[i−1]*length

}
parameters ← list(mean=norm.mean, sd=norm.sd)
returnlist ← list(expected=expected, parameters=parameters, df=df)

}
else{
stop(" \nERROR: invalid distribution specified − choose one of the

following: \n1. exponential\n 2. weibull\n 3. lognormal\n 4. gamma\n 5.
pareto\n 6. beta\n 7. extreme\n 8. normal")

}
return(returnlist)

}

Combine bins containing less than a predefined number of observations.

combine.bins ← function(expected, actual, bin.threshold){
length ← length(expected)
flag ← TRUE
Less than 3 bins not allowed for lambda squared
if(length < 3){
stop(" \nERROR: invalid number of bins − number of bins < 3")

}
i ← 1
while(i ≤length){
if(expected[i] < bin.threshold){

Combine last bin with second last bin
if(i ≡ length){

expected[i−1] ← expected[i−1] + expected[i]
actual[i−1] ← actual[i−1] + actual[i]
length = length−1
expected ← expected[1:length]
actual ← actual[1:length]

}
Combine bin in body of array with next bin − move array one
position to left
else{

flag ← FALSE
Add value of next bin to this bin
expected[i] ← expected[i] + expected[i+1]
actual[i] ← actual[i] + actual[i+1]
Move array elements up
If second last element
if(i ≡ length−1){

length = length−1
expected ← expected[1:length]
actual ← actual[1:length]

}
Any other element
else{
for(j in (i+1):(length−1)){

expected[j] ← expected[j+1]
actual[j] ← actual[j+1]

}
length = length−1
expected ← expected[1:length]
actual ← actual[1:length]

}
}

}
if (flag ≡ TRUE){

i ← i+1
}
flag ← TRUE

}
return(list(expected=expected, actual=actual))

}

Calculate the lambda squared statistic for a dataset

lambda.squared ← function(observed, distribution, bin.threshold=5,
bin.method=" scott", param1= NA, param2= NA, param3= NA, param4= NA){
observed ← sort(observed)
length ← length(observed)
Bin actual data
actual.list ← bin.actual(observed, bin.method)
actual ← actual.list$actual
min.val ← actual.list$min.val
max.val ← actual.list$max.val
Bin expected data
data.list ← list(distribution=distribution, observed=observed,

min.val=actual.list$min.val, max.val=actual.list$max.val,
bin.width=actual.list$bin.width, param1=param1, param2=param2,
param3=param3, param4=param4)

expected.list ← bin.expected(data.list)
parameterlist ← expected.list$parameters
expected ← expected.list$expected
Housecleaning − without this we usually run out of memory
rm(observed, actual.list, expected.list)
Combine bins with values < bin.threshold, bin.threshold must be integer > 0
if(length(actual) ≠ length(expected)){
stop(" \nERROR: unequal actual and expected arrays")

}
if(bin.threshold < 1){
stop(" \nERROR: bin.threshold must be integer >= 1")

}
combined.list ← combine.bins(expected, actual, bin.threshold)
expected ← combined.list$expected
actual ← combined.list$actual
num.bins ← length(actual)
Calculate lambda square
Less than 3 bins not allowed for lambda squared
if(num.bins < 4){

lambda ← NA
variance ← NA
warning(" \nWARNING: invalid number of bins (number of bins < 3) − lambda

set to NA")
}
else{

difference ← numeric()
for (i in 1:num.bins) {
if(expected[i] ≡ 0) {
stop(" \nERROR: illegal expected value (expected value = 0)")

}
}
lambda square
num.params ← length(parameterlist)
df ← num.bins−num.params−1
difference ← actual−expected
k ← sum(difference/expected)
x2 ← sum((difference)^2/expected)
lambda ← (x2−k−df)/(length−1)
variance of lambda square
T ← sum((difference^3−2*difference*expected+5/2*difference^2+3/2*(differenc

e+expected))/expected^2)
variance ← (2*df+4*length*lambda+4*length*lambda^2+4*T)/length^2
90% confidence intervals for lambda square
upper.limit ← lambda + 1.64*sqrt(variance)
lower.limit ← lambda − 1.64*sqrt(variance)
confidence.interval ← list(upper.limit=upper.limit, lower.limit=lower.limit

)
}
Return list
return(list(lambda=lambda, chi.square=x2, k=k, variance=variance,

F
ig

u
re

5
6
:

L
a
m

b
d
a

D
iscrep

a
n
cy

M
ea

su
re

-
C

o
d
e

4

C
.2

.
G

O
O

D
N

E
S
S
-O

F
-F

IT
T

E
C

H
N

IQ
U

E
S

1
5
1

confidence.interval=confidence.interval, parameters=parameterlist,
num.observations=length, num.bins=num.bins, df=df, min.val=min.val,
max.val=max.val))

}

F
ig

u
re

5
7
:

L
a
m

b
d
a

D
iscrep

a
n
cy

M
ea

su
re

-
C

o
d
e

5

1
5
2

A
P

P
E

N
D

IX
C

.
R

C
O

D
E

Anderson Darling Goodness of Fit Routines
Lourens Walters − Cape Town University
04/10/2003

library(MASS)
library(evd)

pareto.andtest ← function(x, alpha= NA, beta= NA)
{

x ← sort(x)
length ← length(x)
if(is.na(alpha) || is.na(beta)){
alpha ← x[1]
beta ← 1/((1/length) * sum(log(x/alpha)))
}
x ← beta * log(x/alpha)
x ← x[2:length]
log.alpha ← log(alpha)
log.beta ← log(beta)
paretoLoglik ← function(params, negative= TRUE){
 lglk ← sum(pareto.density(x, alpha=exp(params[1]), beta=exp(params[2]),
 log= TRUE))
 if(negative)

 return(−lglk)
 else

 return(lglk)
}
optim.list ← optim(c(log.alpha, log.beta), paretoLoglik)
if(optim.list$convergence ≡0){

alpha ← exp(optim.list$par[1])
beta ← exp(optim.list$par[2])

} else{
warning(" optim didn’t converge in bin.expected − pareto")

}
result.list ← exponential.case2(x)
return(list(sig.level = result.list$sig.level, and.stat.val = result.list$and

.stat.val, par.param1 = alpha, par.param2 = beta, data.num = length))
}

gamma.case3 ← function(x, shape= NA, scale= NA) {

Cannot use fitdistr for gamma, maximum likelihood optimisation passes
negative values for parameters to optimisation function.
Do maximum likelihood optimisation ourselves by using "optim"
if(is.na(shape) || is.na(scale)){

shape ← mean(x)^2/var(x)
scale ← var(x)/mean(x)
log.shape ← log(shape)
log.scale ← log(scale)
gammaLoglik ← function(params, negative= TRUE){
 lglk ← sum(dgamma(x, shape=exp(params[1]), scale=exp(params[2]),
 log= TRUE))
 if(negative)

 return(−lglk)
 else

 return(lglk)
}
optim.list ← optim(c(log.shape, log.scale), gammaLoglik, method=" BFGS")
if(optim.list$convergence ≡0){

shape ← exp(optim.list$par[1])
scale ← exp(optim.list$par[2])

} else{
warning(" optim didn’t converge in bin.expected − gamma")

}
}
rate ← 1/scale
x ← sort(x)

z ← pgamma(x, shape=shape, rate=rate)
n ← length(z)
astat ← A2(z)
sig ← gamma.significance.5percent(astat, shape)
return(list(sig.level = sig, and.stat.val = astat, gam.param1 = shape, gam.pa

ram2 = scale, gam.param3 = rate, data.num = n))
}

normal.case3 ← function(x, mean.val= NA, sd.val= NA){
x ← sort(x)
length.val ← length(x)
if(is.na(mean.val) || is.na(sd.val)){

mean.val ← mean(x)
sd.val ← sd(x)
result.list ← fitdistr(x, " normal", start=list(mean=mean.val, sd=sd.val))

mean.val ← result.list$estimate[[1]]
sd.val ← result.list$estimate[[2]]

}
z.vals ← pnorm(x, mean=mean.val, sd=sd.val)
astat ← A2(z.vals)
astat ← astat*(1 + 0.75/length.val + 2.25/length.val^2)
sig ← normal.significance(astat)
return(list(sig.level = sig, and.stat.val = astat, normal.param1 = mean.val,

no.param2 = sd.val, data.num = length.val))
}

lognormal.case3 ← function(x, zeta= NA, sigma= NA) {
log.x ← log(x)
length.val ← length(log.x)
if(is.na(zeta) || is.na(sigma)){

zeta ← mean(log.x)
sigma ← sd(log.x)
result.list ← fitdistr(x, " lognormal", start=list(meanlog=zeta, sdlog=sigma

))
zeta ← result.list$estimate[[1]]
sigma ← result.list$estimate[[2]]

}
w ← (log.x−zeta)/sigma
z.vals ← pnorm(w, 0, 1)
z.vals ← sort(z.vals)
astat ← A2(z.vals)
astat ← astat*(1+(0.75/length(z.vals))+(2.25/((length(z.vals))^2)))
sig ← lognormal.significance(astat)
return(list(sig.level = sig, and.stat.val = astat, log.param1 = zeta, log.par

am2 = sigma, log.param3 = 0, data.num = length.val))
}

lognormal.case3.censored ← function(x, n) {
x ← log(x)
x ← sort(x)
norm.ppoints ← ppoints(n)
r ← length(x)
m.i ← qnorm(norm.ppoints)
m.i.subset ← m.i[1:r]
m.mean ← sum(m.i.subset)/r
b.i ← 1/r − ((m.mean*(m.i.subset − m.mean))/sum((m.i.subset−m.mean)^2))
c.i ← ((m.i.subset − m.mean)/sum((m.i.subset−m.mean)^2))
mu ← sum((b.i * x))
sigma ← sum((c.i * x))
w ← (x−mu)/sigma
z ← pnorm(w, 0, 1)
t ← max(x)
p ← max(z)
z ← sort(z)
astat ← A2.censored(z, n)
sig ← lognormal.significance.censored.5percent(astat, p)

F
ig

u
re

5
8
:

A
n
d
erso

n
D

a
rlin

g
T
est

-
C

o
d
e

1

C
.2

.
G

O
O

D
N

E
S
S
-O

F
-F

IT
T

E
C

H
N

IQ
U

E
S

1
5
3

return(list(and.stat.val = astat, sig.level = sig, log.param1 = mu, log.param
2 = sigma, log.param3 = 0, data.num.censored = r, data.num.uncensored = n, p.val
 = p))
}

weibull.case3 ← function(x, gamma= NA, alpha= NA) {
x ← −log(x)
x ← sort(x)
length ← length(x)
if(is.na(gamma) || is.na(alpha)){

parameters ← fgev(x, shape=0, std.err= FALSE)
psi ← fitted(parameters)[1]
theta ← fitted(parameters)[2]
gamma ← 1/theta
alpha ← exp(−psi)

} else{
psi ← −log(alpha)
theta ← 1/gamma

}
z ← exp(−exp(−((x−psi)/theta)))
astat ← A2(z)
astat ← astat*(1+(0.2/sqrt(length)))
sig ← extreme.significance(astat)
return(list(sig.level = sig, and.stat.val = astat, wei.param1 = gamma, wei.pa

ram2 = alpha, wei.param3 = 0, data.num = length))
}

extreme.case3 ← function(x, alpha= NA, beta= NA) {
x ← sort(x)
length ← length(x)
mean.data ← mean(x)
var.data ← var(x)
if(is.na(alpha) || is.na(beta)){

beta ← (sqrt(var.data) * sqrt(6)) / pi
alpha ← mean.data−0.5772*beta
log.alpha ← log(alpha)
log.beta ← log(beta)
extremeLoglik ← function(params, negative= TRUE){
 lglk ← sum(dgev(data, loc=exp(params[1]), scale=exp(params[2]), shape=0

, log= TRUE))
 if(negative)

 return(−lglk)
 else

 return(lglk)
}
optim.list ← optim(c(log.alpha, log.beta), extremeLoglik)
if(optim.list$convergence ≡0){
 alpha ← exp(optim.list$par[1])
 beta ← exp(optim.list$par[2])
} else{
 warning(" optim didn’t converge in bin.expected − extreme")
}

}
z ← pgumbel(x, loc=alpha, scale=beta)
astat ← A2(z)
astat ← astat*(1+(0.2/sqrt(length)))
sig ← extreme.significance(astat)
return(list(sig.level=sig, and.stat.val=astat, alpha=alpha, beta=beta, data.n

um=length))
}

exponential.case2 ← function(x, rate= NA) {
x ← sort(x)
if(is.na(rate)){

exp.mean ← mean(x)
exp.rate ← 1/exp.mean
log.rate ← log(exp.rate)

expLoglik ← function(params, negative= TRUE){
 lglk ← sum(dexp(x, rate=exp(params[1]), log= TRUE))
 if(negative)

 return(−lglk)
 else

 return(lglk)
}
optim.list ← optim(c(log.rate), expLoglik, method=" BFGS")
if(optim.list$convergence ≡0){

exp.rate ← exp(optim.list$par[1])
} else{

warning(" optim didn’t converge in bin.expected − exponential")
}

} else{
exp.rate ← rate

}
exp.param ← 1/exp.rate
length ← length(x)
z ← 1−exp(−x/exp.param)
astat ← A2(z)
astat ← astat*(1.0+0.6/length)
sig ← exponential.significance(astat)
return(list(sig.level = sig, and.stat.val = astat, exp.param1 = exp.param, ex

p.param2 = 0, data.num = length(x)))
}

exponential.case2.censored ← function(censored, n) {
censored ← sort(censored)
t ← max(censored)
r ← length(censored)
beta ← (sum(censored) + ((n−r) * t))/r
z ← 1−exp(−censored/beta)
astat ← A2.censored(z, n)
p ← max(z)
sig ← exponential.significance.censored.5percent(astat, p)
return(list(and.stat.val = astat, sig.level = sig, exp.param1 = beta, exp.par

am2 = 0, data.num = r, p.val = p))
}

normal.significance ← function(astat){
levels ← c(0.341, 0.47, 0.561, 0.631, 0.752, 0.873, 1.035)
sig ← max(c(0.5, 0.25, 0.15, 0.1, 0.05, 0.025, 0.01)[astat ≤ levels])
if(is.na(sig) || sig ≡ Inf || sig ≡ − Inf)

sig ← 0
sig * 100

}

lognormal.significance ← function(astat){
levels ← c(0.341, 0.470, 0.561, 0.631, 0.752, 0.873, 1.035)
sig ← max(c(0.5, 0.25, 0.15, 0.1, 0.05, 0.025, 0.01)[astat ≤ levels])
if(is.na(sig) || sig ≡ Inf || sig ≡ − Inf)

sig ← 0
sig * 100

}

extreme.significance ← function(astat){
levels ← c(0.474, 0.637, 0.757, 0.877, 1.038)
sig ← max(c(0.25, 0.1, 0.05, 0.025, 0.01)[astat ≤ levels])
if(is.na(sig) || sig ≡ Inf || sig ≡ − Inf)

sig ← 0
sig * 100

}

exponential.significance.censored.5percent ← function(astat, p){
p.val ← c(0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 1.0)
levels ← c(0.274, 0.501, 0.746, 1.003, 1.149, 1.232, 1.321)
p ← max(p.val[p ≤ p.val])

F
ig

u
re

5
9
:

A
n
d
erso

n
D

a
rlin

g
T
est

-
C

o
d
e

2

1
5
4

A
P

P
E

N
D

IX
C

.
R

C
O

D
E

if(is.na(p) || p ≡ Inf || p ≡ − Inf){
return.val ← 0

}
else{

and.dar ← levels[p ≡ p.val]
if(and.dar ≥ astat){

return.val ← 5.0
}
else{

return.val ← 0.0
}

}
return.val

}

lognormal.significance.censored.5percent ← function(astat, p){
p.val ← c(0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 1.0)
levels ← c(0.133, 0.250, 0.359, 0.528, 0.623, 0.686, 0.752)
p ← max(p.val[p ≤ p.val])
if(is.na(p) || p ≡ Inf || p ≡ − Inf){

return.val ← 0
}
else{

and.dar ← levels[p ≡ p.val]
if(and.dar ≥ astat){

return.val ← 5.0
}
else{

return.val ← 0.0
}

}
return.val

}

gamma.significance.5percent ← function(astat, shape){
shape.param ← c(1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 1000000000)
levels ← c(0.786, 0.768, 0.762, 0.759, 0.758, 0.757, 0.755, 0.754, 0.754, 0.

754, 0.753, 0.752)
shape ← max(shape.param[shape ≤ shape.param])
if(is.na(shape) || shape ≡ Inf || shape ≡ − Inf){

return.val ← 0
}
else{

and.dar ← levels[shape ≡ shape.param]
if(and.dar ≥ astat){

return.val ← 5.0
}
else{

return.val ← 0.0
}

}
return.val

}

exponential.significance ← function(astat){
levels ← c(0.736, 0.816, 0.916, 1.062, 1.321, 1.591, 1.959)
sig ← max(c(0.25, 0.2, 0.15, 0.1, 0.05, 0.025, 0.01)[astat ≤ levels])
if(is.na(sig) || sig ≡ Inf || sig ≡ − Inf)

sig ← 0
sig * 100

}

A2 ← function(z){
n ← length(z)
i ← seq(z)
−n − (1/n) * sum((2 * i − 1) * log(z) + (2 * n + 1 − 2 * i) * log(1 − z))

}

A2.censored ← function(z, n){
r ← length(z)
z.max ← max(z)
i ← seq(z)
−(1/n) * sum((2 * i − 1) * (log(z) − log(1−z))) − 2 * sum(log(1−z)) − (1/n) *

 ((r − n)^2 * log(1 − z.max) − r^2 * log(z.max) + n^2 * z.max)
}

DStat ← function(x) {
z ← ZStatisticExp(x)
dplus ← DPlus(z)
dmin ← DMin(z)
max(dplus, dmin)

}

VStat ← function(x) {
z ← ZStatisticExp(x)
dplus ← DPlus(z)
dmin ← DMin(z)
dplus+dmin

}

UStat ← function(x){
z ← ZStatisticExp(x)
w ← WStat(x)
w^2−(n*((mean(z)−0.5)^2))

}

WStat ← function(x) {
z ← ZStatisticExp(x)
IValues ← 1:length(z)
Temp ← z−((2*IValues−1)/(2*length(x)))
TempSquare ← Temp^2
sum(TempSquare)+(1/(12*length(x)))

}

DPlus ← function(z) {
IValues ← 1:length(z)
max(IValues/length(z)−z)

}

DMin ← function(z) {
IValues ← 1:length(z)
max(z−(IValues−1)/length(z))

}

F
ig

u
re

6
0
:

A
n
d
erso

n
D

a
rlin

g
T
est

-
C

o
d
e

3

Appendix D

Concepts

Traffic processes can be characterised as being: bursty, short-range dependent, long-range

dependent and self-similar. The probability distribution of a traffic process can be heavy-tailed.

Definitions of these as well as supporting concepts are given in this section.

D.1 Stationarity

A stochastic process {X(t)} is stationary in the strict sense if for n ≥ 1, its nth order joint distribution

satisfies the condition:

F (x; t) = F (x; t + `) (15)

for all vectors x ∈ <n and t ∈ T n, and all scalars ` such that ti + ` ∈ T . The notation t + `

implies that the scalar ` is added to all components of vector t.

A strict sense stationary stochastic process {X(t)} has the property that E[X(t)] is

the same for all t ∈ T . We say that E[X(t)] is independent of t. This independence can be seen

when applying the definition of strict sense stationarity to the first order distribution of {X(t)}:

F (x; t) = F (x; t + `) or FX(t) = FXt+`
for all `.

The autocorrelation function of a stationary process depends only on the time difference, and is

therefore a one-dimensional function written as γ(`).

Imposing strict stationarity on a process is often too restrictive. A weaker form of stationarity

called second-order stationarity (also called wide sense or covariance stationarity) is often used.

D.2 Second-Order Stationarity

A second-order stationary stochastic process is defined as a stochastic process X(t) for

which:

155

156 APPENDIX D. CONCEPTS

1. E[X(t)] is independent of t,

2. γ(t1, t2) = γ(0, t2 − t1) = γ(`), t2 ≥ t1 ≥ 0,

3. γ(0) = E[X2(t)] < ∞ (finite second moment).

It can be seen that a second-order stationary process has an autocorrelation function γ that

depends on the time difference ` only, and is therefore a one-dimensional function written as γ(`).

More specifically, the autocorrelation function is:

γ(`) =
E[(X(t) − µ)(X(t + `) − µ)]

E[(X(t) − µ)2]

for µ = E[X(t)]. The value ` is referred to as the lag of the autocorrelation function.

D.3 Short Range Dependence

A traffic process {Xn} is said to be short-range dependent if non-trivial autocorrelations exist for

small values of ` and the autocorrelation function .

A short-range dependent process is a second-order stationary stochastic process for which

the autocorrelation function γ(`) decays exponentially for increasing values of `:

γ(`) ∼ r` as ` → ∞, (16)

for some 0 < r < 1.

A summable autocorrelation function is the result of (16):

∞
∑

k=−∞

γ(`) < ∞, (17)

D.4 Long Range Dependence

A process is said to long-range dependent if non-trivial autocorrelations exist for large values of `.

The decision whether ` is large or small is subjective and depends on the situation.

A long-range dependent process is a second-order stationary stochastic process for which the

autocorrelation function γ(`) decays slowly i.e. hyperbolically instead of exponentially for increasing

values of `. A non-summable autocorrelation function:

∞
∑

k=−∞

γ(`) = ∞, (18)

implies a slowly decaying autocorrelation function and hence long-range dependence.

Another characteristic of a long-range dependent process is that its autocorrelation function

takes on the form:

D.4. LONG RANGE DEPENDENCE 157

γ(`) ∼ c`−β as ` → ∞, (19)

where 0 < β < 1 and c > 0 is a constant.

It can be seen that (19) implies (18).

Appendix E

Analytic Traffic Models

As mentioned before traffic models are mathematical models based on probability theory which

capture the behaviour of network traffic. Stochastic theory deals with phenomena that have prob-

abilistic behaviour which changes with time i.e. the distribution of probabilities for an event is not

always the same at different moments in time. The behaviour of network traffic changes with time

e.g. there is more traffic during midday on weekdays than there is during midnight on weekends.

Stochastic theory is therefore used to model network traffic.

A stochastic process X(t)is a family of random variables {x(t), t ∈ T} indexed by a parameter t

over some index set T . The index set is usually the time dimension, and x(t) therefore a function

of time. A stochastic process is therefore a random variable that is a function of time.

Network traffic consist of the arrival of packets at a point in a network. The traffic can be

characterised by two stochastic processes, one describing the time of arrival and the other the size

of packets. The time of arrival of packets are represented by the inter-arrival time process denoted

by An. {An, n ≥ 1} is a non-negative stochastic process where An is the length of the time interval

separating the nth arrival from the previous one. The size of packets are represented by the packet size

process denoted by {Sn}. {Sn, n ≥ 1} is also a non-negative stochastic process and is independent

of An.

Some stochastic traffic models have been selected and are defined in this section. The models

have been selected for their utility and analytic tractability. They have been categorised into classes

according to their definitions.

E.1 Renewal Traffic Processes

A renewal process is a counting process {N(t), t > 0} with interoccurence times X1, X2, . . . , Xn

being random variables that are independently and identically distributed. The distribution of the

variables is allowed to be general.

158

E.2. MARKOV AND SEMI-MARKOV MODELS 159

E.1.1 Poisson Process

A Poisson process is a renewal process with exponentially distributed interoccurence times and with

rate parameter λ,

F (t) = 1 − eλt, t ≥ 0

The counting process associated with the Poisson process has a Poisson distribution with mean

λt,

P{N(t) = k} = e−λt (λt)k

k!
, k = 0, 1, . . .

The Poisson process is memoryless. The time between two arrivals has the same distribution,

irrelevant of the position between the two arrivals from which the probability of the next arrival is

measured. The memoryless property makes the Poisson process mathematically tractable. It has

been used successfully for nearly a century to analyse voice-telephony. The super-positioning of

independent Poisson processes result in a new Poisson process with rate equal to the sum of the

component rates.

E.1.2 Bernoulli Process

The Bernoulli process is the discrete time analog of the Poisson process. The interoccurence times

are geometrically distributed with parameter p indicating the probability of an arrival in any time

slot,

P{An = j} = p(1 − p)j

The counting process associated with the Bernoulli process has a binomial distribution,

P{Nk = n} =

(

k

n

)

pn(1 − p)k−n, 0 ≤ n ≤ k

E.1.3 Phase-type Renewal Processes

Inter-arrival times are modelled as the time to absorption in a continuous-time Markov process with

discrete, finite state space. State 0 is absorbing, all other states are transient and absorption is

guaranteed in a finite time. The process is started with the same initial distribution π each time.

E.2 Markov and Semi-Markov Models

Unlike renewal traffic processes, Markov models introduce dependence into {An}. A simple contin-

uous time Markov chain model M is defined as follows: inter-arrival times are determined by the

times spent in states of M . Each jump from state i to state j (∀i, j) signals an arrival. Inter-arrival

times are therefore exponentially distributed.

160 APPENDIX E. ANALYTIC TRAFFIC MODELS

A discrete time Markov chain model M defines inter-arrival times to be the number of slots

separating successive arrivals. The different states of M represent different inter-arrival times. The

probability of a j slot separation following an i slot separation is therefore given by the one step

probability pi,j .

Compound Markov traffic models are created by defining {Bn}. Workload {Wn} can also be

modelled by Markov models.

E.2.1 Semi-Markov Models

A semi-Markov process is obtained by allowing the time between state transitions to follow an

arbitrary probability distribution.

The Markovian Arrival Process (MAP) is a broad class of semi-Markov processes that is analyti-

cally tractable. The inter-arrival distribution is that of the phase-type renewal process. The process

is however not restarted with the same initial distribution π. The restart distribution depends on

the previous state from which absorption was reached. The super-positioning of independent MAP

traffic processes results in a process whose state space is the cross-product of the component state

spaces.

E.2.2 Markov Modulated Models

A Markov modulated or doubly stochastic process process uses an auxiliary Markov process in

which the current state of the Markov process controls the probability distribution of the traffic.

The auxiliary process is usually a continuous time Markov chain which keeps the model analytically

tractable. Semi-Markov processes can however be used i.e. holding times are not restricted to the

exponential distribution.

E.2.3 Markov Modulated Poisson Process

The modulated process is a Poisson process with rate λk. As the modulating process changes

from state sk to state sj so does the rate from λk to λj . The Markov modulated Poisson process

(MMPP) allows the modelling of variable rate sources while keeping the analytical solution of related

queueing performance tractable. Parameters of the MMPP can be estimated easily from empirical

data. Super-positioning of traffic streams can take advantage of the Poisson process’ property of the

aggregate rate being equal to the sum of the rates of component processes.

E.2.4 Markov Modulated Bernoulli Process

The modulated process is a Bernoulli process with pk indicating the probability of an arrival in any

time slot. As with the MMPP pk changes as the state sj changes.

E.3. FLUID TRAFFIC MODELS 161

E.3 Fluid Traffic Models

Fluid models characterise traffic by means of flow rate as a volume (e.g. bits per second) as opposed

to packet counts. Typical fluid models make use of the alternating state renewal process. These

models can be analysed as Markov-modulated constant rate traffic. The superposition of identical

independent alternating state renewal processes has a binomial distribution.

E.4 Autoregressive-Type Traffic Models

Autoregressive models define a variate in terms of previous variates.

E.4.1 Linear Autoregressive (AR) Processes

An AR(p) process of order p is defined as,

Xn = a0 +

p
∑

r=1

arXn−r + εn, n > 0,

where (X−p+1, . . . , X0) is a prescribed random vector, the ar, 0 ≤ r ≤ p, are real constants,

and the εn are zero-mean uncorrelated random variables (white noise) called residuals which are

independent of Xn−r. Residuals are used to get a closer fit to empirical data.

E.4.2 Moving Average (MA) Processes

An MA(q) process of order q is defined as:

Xn =

q
∑

r=0

brεn−r, n > 0,

where the br, 0 ≤ r ≤ q are real constants and the εn are zero-mean uncorrelated random

variables. MA models are autocorrelated time series, since successive variates are defined in terms

of common subsets of εn − r.

E.4.3 Autoregressive Moving Average (ARMA) Processes

An ARMA(p,q) process of order (p,q) is defined as:

Xn = a0 +

p
∑

r=1

arXn−r +

q
∑

r=0

brεn−r,

it can be seen that this process is a combination of AR and MA models.

162 APPENDIX E. ANALYTIC TRAFFIC MODELS

E.4.4 Autoregressive Integrated Moving Average (ARMA) processes

ARIMA processes are obtained by replacing Xn in:

Xn = a0 +

p
∑

r=1

arXn−r +

q
∑

r=0

brεn−r,

by the dth differences of the process {Xn}. An ARMA model is therefore “integrated” (summed)

to yield an ARIMA model. ARIMA processes are stochastic models whose parameter estimation,

model identification and selection are well understood. Both ARMA and ARIMA models have

autocorrelation functions that decay geometrically and are therefore not suited for modelling long-

range dependent traffic.

Bibliography

[Ada97] A. Adas. Traffic Models in Broadband Networks. IEEE Communications Magazine,

pages 82–89, July 1997.

[AEV97] J. Aracil, R. Edell, and P. Varaiya. An empirical Internet traffic study. In 35th

Allerton Conference, Urbana Il, October 1997.

[AW95] M. Arlitt and C. L. Williamson. A synthetic workload model for internet mosaic traffic.

In Summer Computer Simulation Conference, pages 24–26, Ottawa, July 1995.

[AW96] M. F. Arlitt and C. L. Williamson. Web Server Workload Characterization: The

Search for Invariants. In Measurement and Modeling of Computer Systems, pages

126–137, 1996.

[AZN98] R.G. Addie, M. Zukerman, and T.D. Neame. Broadband Traffic Modeling: Simple

Solutions to Hard Problems. IEEE Communications Magazine, pages 88–95, August

1998.

[BC98a] P. Barford and M. Crovella. An Architecture for a WWW Workload Generator. 1998.

[BC98b] P. Barford and M. Crovella. Generating Representative Web Workloads for Network

and Server Performance Evaluation. In Performance 1998/ACM SIGMETRICS 1998,

pages 151–160, 1998.

[Ben86] Jon Bentley. Programming pearls. ACM Press, 1986.

[BLFea97] T. Berners-Lee, R. Fielding, and H. Frystyk et. al. RFC 2068: Hypertext Transfer

Protocol (HTTP/1.1), January 1997. Internet Standard.

[BLFea99] T. Berners-Lee, R. Fielding, and H. Frystyk et. al. RFC 2616: Hypertext Transfer

Protocol (HTTP/1.1), June 1999. Internet Standard.

[BLFF95] T. Berners-Lee, R. Fielding, and H. Frystyk. RFC 1945: Hypertext Transfer Protocol

(HTTP/1.0), October 1995. Informational Track.

[CB96] M. E. Crovella and A. Bestavros. Self-Similarity in World Wide Web Traffic: Ev-

idence and Possible Causes. In Proceedings ACM SIGMETRICS 1996: The ACM

163

164 BIBLIOGRAPHY

International Conference on Measurement and Modeling of Computer Systems, pages

151–160, Philadelphia, Pennsylvania, May 1996. Also, in Performance evaluation

review, May 1996, 24(1):160-169.

[CBC95] C. Cunha, A. Bestavros, and M. E. Crovella. Characteristics of World Wide Web

Client-based Traces. Technical Report BUCS-TR-1995-010, Boston University, CS

Dept, Boston, MA 02215, April 1995.

[CDJ91] R. Caceres, P. Danzig, and S. Jamin. Characteristics of Widearea TCP/IP Conver-

sations. In Proceedings of ACM SIGCOMM ’91. ACM PRESS, November 1991.

[CKO99] E. Cohen, H. Kaplan, and J. Oldham. Policies for managing tcp connections under

persistent http, 1999.

[CL99] H. Choi and J. Limb. A Behavioural Model of Web Traffic. In 7th International

Conference on Network Protocols (ICNP 1999), Toronto, Canada, October 1999.

[Com] Combined Research Effort - See Internet Site. The network simulator - ns. Internet -

http://www.isi.edu/nsnam/ns/. Last accessed: 9/10/2001.

[CP95] L. D. Catledge and J. E. Pitkow. Characterizing browsing strategies in the World-

Wide Web. Computer Networks and ISDN Systems, 27(6):1065–1073, 1995.

[CT99] M.E. Crovella and M.S. Taqqu. Estimating the Heavy Tail Index from Scaling Prop-

erties. Methodology and Computing in Applied Probability, 1(1), 1999.

[CTB98] M. Crovella, M. Taqqu, and A. Bestavros. Heavy-Tailed Probability Distributions in

the World Wide Web. In A Practical Guide To Heavy Tails, pages 3–26. Chapman &

Hall, 1998.

[DdHR00] H. Drees, L. de Haan, and S. Resnick. How to make a Hill plot. Annals of Statistics,

28(25):254–274, 2000.

[Den96] S. Deng. Empirical Model of WWW Document Arrivals at Access Link. In IEEE

International Conference on Communication, June 1996.

[DJC+92] P. Danzig, S. Jamin, R. Caceres, D. Mitzel, and D. Estrin. An Empirical Work-

load Model for Driving Wide-Area TCP/IP Network Simulations. Internetworking:

Research and Experience, 3(1):1–26, March 1992.

[ENW96] A. Erramilli, O. Narayan, and W. Willinger. Experimental Queueing Analysis with

Long-Range Dependent Packet Traffic. IEEE/ACM Transactions on Networking,

pages 209–223, April 1996.

[Fel98] A. Feldmann. Characteristics of TCP Connection Arrivals. Technical report, AT&T

Labs Research, 180 Park Av., A175, Florham Park, NJ 07932, December 1998.

BIBLIOGRAPHY 165

[Fel00] Anja Feldmann. BLT: Bi-layer tracing of HTTP and TCP/IP. WWW9 / Computer

Networks, 33(1-6):321–335, 2000.

[FM94] V.S. Frost and B. Melamed. Traffic Modeling for Telecommunications Networks. IEEE

Communications Magazine, pages 70–81, March 1994.

[HOT97] J. Heidemann, K. Obraczka, and J. Touch. Modeling the performance of HTTP over

several transport protocols. IEEE/ACM Transactions on Networking, 5(5):616–630,

October 1997.

[KMM00] R. Kalden, I. Meirick, and M. Meyer. Wireless Internet Access Based on GPRS. IEEE

Personal Communications, 7(2):8–18, April 2000.

[LCW97] D. Lam, D. C. Cox, and J. Widom. Teletraffic modeling for personal communications

services. IEEE Communications Magazine, pages 79–87, February 1997.

[LTWW93] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the Self-Similar

Nature of Ethernet Traffic. In D. P. Sidhu, editor, ACM SIGCOMM, pages 183–193,

San Francisco, California, 1993.

[LWDW97] M. T. Lucas, D. E. Wrege, Bert J. Dempsey, and A. C. Weaver. Statistical charac-

terization of wide-area IP traffic. In Proceedings of Sixth International Conference on

Computer Communications and Networks (IC3N’97), 1997.

[Mah97] B. A. Mah. An Empirical Model of HTTP Network Traffic. In Proc. InfoComm ’97,

April 1997.

[Mil92] D.L. Mills. RFC 1305: Network Time Protocol, March 1992. Draft Standard.

[Mil94] D.L. Mills. Precision synchronization of computer network clocks. ACM Computer

Communication Review, 24(2):28–43, April 1994.

[MJ93] Steven McCanne and Van Jacobson. The BSD packet filter: A new architecture for

user-level packet capture. In USENIX Winter, pages 259–270, 1993.

[Moo86] D. S. Moore. Tests of Chi-squared Type. STATISTICS: textbooks and monographs,

68:63–95, 1986.

[Nor99] Norbert Vicari and Stefan Köhler. Measuring Internet User Traffic Behavior De-

pendent on Access Speed. Technical Report TR 238, University of Würzburg, Am

Hubland, D-97074 Würzburg, Germany, 1999.

[Pax93] V. Paxson. Empirically-Derived Analytic Models of Wide-Area TCP Connections:

Extended Report. Technical Report LBL-34086, Lawrence Berkeley Laboratory and

EECS Division, 1 Cyclotron Road, Berkeley, CA 94720, June 1993.

166 BIBLIOGRAPHY

[Pax94] V. Paxson. Empirically-Derived Analytic Models of Wide-Area TCP Connections.

IEEE/ACM Transactions on Networking, pages 316–336, August 1994.

[Pax97] V. Paxson. Why We Don’t Know How to Simulate the Internet. In Proceedings of

1997 Winter Simulation Conference, Atlanta GA, U.S.A., December 1997.

[PF95] V. Paxson and S. Floyd. Wide-area Traffic: The Failure of Poisson Modeling.

IEEE/ACM Transactions on Networking, pages 226–244, June 1995.

[PJ90] S. P. Pederson and M. E. Johnson. Estimating Model Discrepancy. TECHNOMET-

RICS, 32:305–314, 1990.

[Pos82] J. Postel. RFC 821: Simple Mail Transfer Protocol (SMTP), August 1982. Internet

Standard.

[PR85] J. Postel and J. Reynolds. RFC 959: File Transfer Protocol (FTP), October 1985.

Internet Standard.

[Res97] S. Resnick. Heavy Tail Modeling and Teletraffic Data. Annals of Statistics, 25:1805–

1869, 1997.

[RLGPC+99] A. Reyes-Lecuona, E. Gonzalez-Parada, E. Casilari, J. C. Casasola, and A. Diaz-

Estrella. A page-oriented WWW traffic model for wireless system simulations. In

D. Smith and P. Key, editors, 16th International Teletraffic Congress(ITC16), volume

3.b, pages 1271–1280, Edinburgh (UK), June 1999.

[SCJO01] F. Donelson Smith, Felix Hernandez Campos, Kevin Jeffay, and David Ott. What

TCP/IP Protocol Headers Can Tell Us About the Web. In ACM SIGMETRICS,

pages 245–256, Cambridge, MA, June 2001.

[Sco79] D. W. Scott. On Optimal and Data-Based Histograms. Biometrica, 66:605–610, 1979.

[Sco92] D. W. Scott. Multivariate Density Estimation. John Wiley and Sons, Inc, 1992.

[SLT01] D. Staehle, K. Leibnitz, and K. Tsipotis. QoS of internet access with GPRS. In Pro-

ceedings of the 4th ACM international workshop on Modeling, analysis and simulation

of wireless and mobile systems, pages 57–64, Rome, Italy, 2001. ACM Press.

[SLTG99] D. Staehle, K. Leibnitz, and P. Tran-Gia. Source Traffic Modeling of Wireless Appli-

cations. Technical Report TR 261, University of Würzburg, Am Hubland, D-97074

Würzburg, Germany, 1999.

[Sta00] W. Stallings. Data and Computer Communications. Prentice Hall, Sixth edition,

2000.

[Ste86] M. A. Stephens. Tests Based on EDF Statistics. STATISTICS: textbooks and mono-

graphs, 68:97–185, 1986.

BIBLIOGRAPHY 167

[TWS97] M. S. Taqqu, W. Willinger, and R. Sherman. Proof of a Fundamental Result in Self-

Similar Traffic Modeling. ACMCCR: Computer Communication Review, 27, 1997.

[UC 02] UC Berkeley, LBL, USC/ISI and Xerox PARC. The ns Manual, April 2002.

[UD96] R. Ulrich and W. Dulz. OSSCAR — object oriented simulation of slotted communi-

cation architectures. Lecture Notes in Computer Science, 1067:858–??, 1996.

[WPT98] W. Willinger, V. Paxson, and M. S. Taqqu. Self-similarity and Heavy Tails: Structural

Modeling of Network Traffic. In R. J. Adler, R. E. Feldman, and M. S. Taqqu, editors,

A Practical Guide to Heavy Tails: Statistical Techniques and Applications. Birkhauser,

Boston, 1998.

[WTSW95] W. Willinger, M.S. Taqqu, R. Sherman, and D.V. Wilson. Self-Similarity Through

High-Variability: Statistical Analysis of Ethernet LAN Traffic at the Source Level.

Proceedings ACM SIGCOMM 1995, pages 100–113, 1995.

