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Abstract—Deep artificial neural networks require a large
corpus of training data in order to effectively learn, where
collection of such training data is often expensive and laborious.
Data augmentation overcomes this issue by artificially inflating the
training set with label preserving transformations. Recently there
has been extensive use of generic data augmentation to improve
Convolutional Neural Network (CNN) task performance. This
study benchmarks various popular data augmentation schemes
to allow researchers to make informed decisions as to which
training methods are most appropriate for their data sets. Various
geometric and photometric schemes are evaluated on a coarse-
grained data set using a relatively simple CNN. Experimental
results, run using 4-fold cross-validation and reported in terms
of Top-1 and Top-5 accuracy, indicate that cropping in geometric
augmentation significantly increases CNN task performance.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) [1], synonymous
with deep learning are a hierarchical model of learning with
multiple levels of representations, where higher levels capture
more abstract concepts. A CNNs connectivity pattern, inspired
by the animal visual cortex, enables the recognition and
learning of spatial data such as images [1], audio [2] and text
[3]. With recent developments of large data sets and increased
computing power, CNNs have managed to achieve state-of-
the-art results in various computer vision tasks including large
scale image and video classification [4]. However, an issue
is that most large data sets are not publicly available and
training a CNN on small data-sets makes it prone to over-
fitting, inhibiting the CNNs capability to generalize to unseen
invariant data.

A potential solution is to use Data Augmentation (DA) [5],
which is a regularization scheme that artificially inflates the
data-set by using label preserving transformations to add more
invariant examples. Generic DA is a set of computationally
inexpensive methods [6], previously used to reduce over-
fitting in training a CNN for the ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC) [7], and achieved state-of
the-art results at the time. This augmentation scheme consists
of Geometric and Photometric transformations [8], [9].

Geometric transformations alter the geometry of the image
with the aim of making the CNN invariant to change in position
and orientation. Example transformations include flipping,
cropping, scaling and rotating. Photometric transformations
amend the color channels with the objective of making the
CNN invariant to change in lighting and color. For example,

Fig. 1. Data Augmentation (DA) artificially inflates data-sets using label
preserving transformations.

color jittering and Fancy Principle Component Analysis (PCA)
[6], [10].

Complex DA is a scheme that artificially inflate the data
set by using domain specific synthesization to produce more
training data. This scheme has become increasingly popular
[11], [12] as it has the ability to generate richer training data
compared to the generic augmentation methods. For example,
Masi et al. [13] developed a facial recognition system using
synthesized faces with different poses and facial expressions
to increase appearance variability enabling comparable task
performance to state of the art facial recognition systems
using less training data. At the frontier of data synthesis are
Generative Adversarial Networks (GANs) [14] that have the
ability to generate new samples after being trained on samples
drawn from some distribution. For example, Zhang et al. [15]
used a stack construction of GANs to generate realistic images
of birds and flowers from text descriptions.

Thus, DA is a scheme to further boost CNN performance
and prevent over-fitting. The use of DA is especially well-
suited when the training data is limited or laborious to collect.
Complex DA, albeit being a powerful augmentation scheme, is
computationally expensive and time-consuming to implement.
A viable option is to apply generic DA as it is computationally
inexpensive and easy to implement.

Prevalent studies that comparatively evaluate various popu-
lar DA methods include those outlined in table I and described



Coarse- Geometric Photometric

Grained DA DA

Chatfield et al. X X
Mash et al. X

Our benchmark X X X

TABLE I. PROPERTIES OF STUDIES THAT INVESTIGATE DA.

in the following. Chatfield et al. [16] addressed how different
CNN architectures compared to each other by evaluating them
on a common data-set. This study was mainly focused on
rigorous evaluation of deep architectures and shallow encoding
methods, though an evaluation of three augmentation methods
was included. These consisted of flipping and combining
flipping and cropping on training images in the coarse grained
Caltech 1011 and Pascal VOC2 data-sets. In additional exper-
iments the authors trained a CNN using gray-scale images,
though lower task performance was observed. Overall results
indicated that combining flipping and cropping yielded an
increased task performance of 2 ∼ 3%. A shortcoming of this
study was the few DA methods evaluated.

Mash et al. [17] bench-marked a variety of geometric
augmentation methods for the task of aircraft classification,
using a fine-grained data-set of 10 classes. Augmentation
methods tested included cropping, rotating, re-scaling, polygon
occlusion and combinations of these methods. The cropping
scheme combined with occlusion yielded the most benefits,
achieving a 9% improvement over a benchmark task perfor-
mance. Although this study evaluated various DA methods,
photometric methods were not investigated and none were
bench-marked on a coarse-grained data-set.

In line with this work, further research [18] noted that
certain augmentation methods benefit from fine-grained data-
sets. For example, extensive use of rotating training images
to increase CNN task performance for galaxy morphology
classification using a fine-grained data-set [18].

However, to date, there has been no comprehensive studies
that comparatively evaluate various popular DA methods on
large coarse-grained data-sets in order to ascertain the most
appropriate DA method for any given data-set. Hence, this
study’s objective is to evaluate a variety of popular geometric
and photometric augmentation schemes on the coarse grained
Caltech101 data-set. Using a relatively simple CNN based on
that used by Zeiler and Fergus [19], the goal is to contribute
to empirical data in the field of deep-learning to enable
researchers to select the most appropriate generic augmentation
scheme for a given data-set.

II. DATA AUGMENTATION (DA) METHODS

DA refers to any method that artificially inflates the original
training set with label preserving transformations and can be
represented as the mapping:

ϕ : S 7→ T

1www.vision.caltech.edu/ImageDatasets/Caltech101/
2host.robots.ox.ac.uk/pascal/V OC/

Where, S is the original training set and T is the augmented
set of S. The artificially inflated training set is thus represented
as:

S ′ = S ∪ T

Where, S ′ contains the original training set and the respective
transformations defined by ϕ. Note the term label preserving
transformations refers to the fact that if image x is an element
of class y then ϕ(x) is also an element of class y.

As there is an endless array of mappings ϕ(x) that satisfy
the constraint of being label preserving, this paper evaluates
popular augmentation methods used in recent literature [16],
[17] as well as a new augmentation method (section II-B).
Specifically, seven augmentation methods were evaluated (fig-
ure 2), where one was a No-Augmentation method which acted
as the task performance benchmark for all the experiments
given three geometric and three photometric methods.

A. Geometric Methods

These are transformations that alter the geometry of the
image by mapping the individual pixel values to new desti-
nations. The underlying shape of the class represented within
the image is preserved but altered to some new position and
orientation. Given their success in related work [6], [18], [20]
we investigated the flipping, rotation and cropping schemes.

Flipping mirrors the image across its vertical axis. It is one
of the most used augmentation schemes after being popularized
by Krizhevsky et al. [6]. It is computationally efficient and easy
to implement due to only requiring rows of image matrices to
be reversed.

The rotation scheme rotates the image around its center
via mapping each pixel (x, y) of an image to (x′, y′) with the
following transformation [18], [20]:(

x′

y′

)
=

(
cosθ −sinθ
sinθ cosθ

)(
x
y

)
Where, exploratory experiments indicated that setting Θ as

−30 degrees and +30 degrees establishes rotations that are
large enough to generate new invariant samples.

Cropping is another augmentation scheme popularized by
Krizhevsky et al. [6]. We used the same procedure as in related
work [16], which consisted of extracting 224×224 crops from
the four corners and the center of the 256× 256 image.

B. Photometric Methods

These are transformations that alter the RGB channels
by shifting each pixel value (r, g, b) to new pixel values
(r′, g′, b′) according to pre-defined heuristics. This adjusts
image lighting and color and leaves the geometry unchanged.
We investigated the color jittering, edge enhancement and
fancy PCA photometric methods.

Color jittering is a method that either uses random color
manipulation [21] or set color adjustment [20]. We selected
the latter due to its accessible implementation using a Hue,
Saturation, Brightness (HSB) filter3.

3www.jhlabs.com/ip/filters/HSBAdjustFilter.html



Fig. 2. Overview of the Data Augmentation (DA) methods evaluated.

Edge enhancement is a new augmentation scheme that
enhances the contours of the class represented within the
image. As the learned kernels in the CNN identify shapes it
was hypothesized that CNN performance could be boosted
by providing training images with intensified contours. This
augmentation scheme was implemented as presented in
Algorithm 1. Edge filtering was accomplished using the Sobel
edge detector [22] where edges were identified by computing
the local gradient ∇S(i, j) at each pixel in the image S.

ALGORITHM 1

Require: Source image: I

T ← edge filter I
T ← grayscale T
T ← inverse T
I ′ ← composite T over I

return I ′

ALGORITHM 2

Require: Source image: I

M← Create a 2552×3 matrix where the columns represent
the RGB channels and all entries are the RGB values of I.
PCA is performed on M.

for all Pixels I(x, y) in I do

[IRxy, IGxy, IBxy]T ← Add
1

sp
P[α1λ1, α2λ2, α3λ3]

T

• P is a 3 × 3 matrix where the columns are the
eigenvectors
• λi is the ith eigenvalue corresponding to the eigenvector
[pi,1, pi,1, pi,1]

T

• αi is a random variable which is drawn from a Gaussian
with 0 mean and standard deviation 0.1
• sp is the scaling parameter which was initialised to
5 · 106 by trial and error.

end for
return I

Fancy PCA is a scheme that performs PCA on sets of
RGB pixels throughout the training set by adding multiples
of principles components to the training images (Algorithm
2). In related work [6] it is unclear as to whether the authors
performed PCA on individual images or on the entire training
set. However, due to computation and memory constraints we
adopted the former approach.

III. CNN ARCHITECTURE

A CNN architecture was developed with the objective of
obtaining a favorable tradeoff between task performance and
training speed. Training speed was crucial as the CNN had to
be trained seven times on data-sets ranging from ∼ 8.5 to ∼
42.5 thousand images using 4−fold cross validation. Also, the
CNN had to be deep enough (containing enough parameters)
so as the network would fit the training data.

We used an architecture (figure 3) similar to that described
by [19], where exploratory experiments indicated a reasonable
tradeoff between topology size and training speed. The archi-
tecture consisted of 5 trainable layers: 3 convolutional layers,
1 fully connected layer and 1 softmax layer. The CNN took a
3 channel (representing the RGB channels) 255 × 225 image
as input, 30 filters of size 6×6 with a stride of 2 and a padding
of 1 were convolved over the image producing a feature map
of size 30× 110× 110. This layer was compressed by a max-
pooling filter of size 3 × 3 with stride of 2 which reduced it
to a new feature map of dimensions 30× 55× 55.

A set of 40 filters followed with the same size and stride
as before which were convolved over the layer producing a
new feature map of size 40 × 27 × 27. Again a max pooling
function of the same size and stride was applied which further
reduced the feature map to 40× 13× 13. This was fed into a
last CNN layer using a set of 60 filters of size 3×3 of stride 1
producing a layer of 60×11×11 parameters. Finally this was
fed into a fully connected layer of size 140 which connected
to a soft-max layer of size 101.

Overlapping pooling was deployed which increased CNN
performance by reducing over-fitting [6]. This yielded sums of
overlapping neighboring groups of neurons in the same feature
map. A fully connected layer of 140 neurons was chosen as
increased sizes did not generate greater improvements in per-
formance [16]. Exploratory experiments indicated that smaller
layer sizes resulted in richer encodings of the distinct classes



Fig. 3. The Convolutional Neural Network (CNN) architecture.

Hyper-parameter Type

Activation Function ReLu

Weight Initialisation Xavier

Learning Rate 0.01

Optimisation Algorithm SGD

Updater Nesterov

Regularization L2 Gradient Normalization

Minibatch 16

Epochs 30

TABLE II. HYPER-PARAMETERS USED BY THE CNN IN THIS STUDY.

yielding better generalization. The depth sizes of individual
convolutional layers were determined by trial and error. Further
convolutional layers did not increase performance considerably
and were thus omitted to reduce computational time. It was
also found that a second fully connected layer did not improve
task performance.

All neurons used a Rectified Linear Unit [23] with the
weights initially being initialised from a Gaussian distribution
with a 0 mean and a standard deviation of 0.01. An initial-
isation scheme known as Xavier [24] was deployed which
mitigated slow convergence to local minima. All weights
were updated using back-propagation and stochastic gradient
descent with a learning rate of 0.01. A variety of update
functions were tested including Adam [25] and Adagard [26],
however we selected Nesterov [27] with a momentum of 0.90
which we found to converge relatively fast and not suffer from
from numerical instability and stagnating convergence.

Additionally, regularization was deployed in the form of
gradient normalization with a L2 of 5 · 10−4 to reduce over-
fitting. Hyper-parameters for activation function, learning rate,
optimisation algorithm and updater were based on those used
in related work [6] and all other parameter values were
determined by exploratory experiments. All CNN parameters
used in this study are presented in table II.

IV. EXPERIMENTS

This study evaluated various DA methods on the Cal-
tech101 data-set, which is a coarse-grained data-set consisting
of 102 categories containing a total of 9144 images. The
Caltech101 data-set was chosen as it is a well established

data-set for training CNNs containing a large amount of
varying classes [16], [19]. For CNN training most images
in the Caltech101 data-set were used. That is, 725 images,
including the background category in the Caltech101 data-
set as it contained many uncorrelated images, were omitted.
Also, further trimming was applied such that the cardinality
of every class was divisible by 4 for cross-validation, which
further increased the number images excluded, meaning that
8424 images in total were evaluated.

We elected to use cross-validation which maximized the
use of selected images and better estimated how the CNNs
performance would scale to other unknown data-sets. Specif-
ically 4-fold4 cross-validation was used which partitioned the
data-set into 4 equal sized subsets, where 3 subsets were used
for training and the other for validation purposes.

All images within the data-set were transformed to a size
of 256×256, where every image was downsized such that the
largest dimension was equal to 256. This downsized image
was then centrally drawn on top of a 256× 256 black image5.
This enabled all augmentation schemes to have access to the
full image in a fixed resolution of 256 × 256. Finally the
transformed images underwent normalization by scaling all
pixel values from [0, 255]→ [0, 1].

Every CNN was trained using 30 epochs. This value
was determined by exploratory experiments that evaluated
validation and test scores every epoch. All implementation was
completed in Java 8 using DL4j6 with the experiments being
conducted on a NVIDIA Tesla K80 GPU using CUDA. All
source code and experiment details can be found online7.

V. RESULTS AND DISCUSSION

Table III presents experimental results, where Top-1 and
Top-5 scores were evaluated as percentages as done in the
Imagenet competition [7], though we report accuracies rather
than error rates. The CNN’s output is a multinomial distribu-
tion over all classes: ∑

pclass = 1

4Higher fold cross validation would have taken too long to train.
5Numeric value of 0 for all channels thus acting as zero padding.
6deeplearning4j.org
7github.com/webstorms/AugmentedDatasets



Top-1 Accuracy Top-5 Accuracy

Baseline 48.13 ± 0.42% 64.50 ± 0.65%

Flipping 49.73 ± 1.13% 67.36 ± 1.38%

Rotating 50.80 ± 0.63% 69.41 ± 0.48%

Cropping 61.95 ± 1.01% 79.10 ± 0.80%

Color Jittering 49.57 ± 0.53% 67.18 ± 0.42%

Edge Enhancement 49.29 ± 1.16% 66.49 ± 0.84%

Fancy PCA 49.41 ± 0.84% 67.54 ± 1.01%

TABLE III. CNN TRAINING RESULTS FOR EACH DA METHOD.

The Top-1 score is the number of times the highest
probability is associated with the correct target over all
testing images. The Top-5 score is the number of times the
correct label is contained within the 5 highest probabilities.
As the CNN’s accuracy was evaluated using cross-validation
a standard deviation was associated with every result, thus
indicating how variable the result is over different testing
folds. In table III, Top-1 and Top-5 scores in the geometric
and photometric DA category are represented in bold.

Results indicate that in all cases of applying DA, CNN
classification task performance increased. Notably, the geo-
metric augmentation schemes outperformed the photometric
schemes in terms of Top-1 and Top-5 scores. The exception
was the flipping scheme Top-5 score being inferior to the fancy
PCA Top-5 score. For all schemes, a standard deviation of
0.5% ∼ 1% indicated similar results over all folds with the
cross-validation.

The cropping scheme yielded the greatest improvement
in Top-1 score with an improvement of 13.82% in classifi-
cation accuracy. Results also indicated that Top-5 classifica-
tion yielded a similar task improvement which corroborated
related work [16], [17]. We theorize that the cropping scheme
outperforms the other methods as it generates more sample
images than the other augmentation schemes. This increase in
training data reduces the likelihood of over-fitting, improving
generalization and thus increasing overall classification task
performance. Also, cropping represents specific translations
allowing the CNN exposure to a greater receptive view of
training images which the other augmentation schemes do not
take advantage of [16].

However, the photometric augmentation methods yielded
modest improvements in performance compared to the ge-
ometric schemes, indicating the CNN yields increased task
performance when trained on images containing invariance in
geometry rather than lighting and color. The most appropriate
photometric schemes were found to be color jittering with
a top-1 classification improvement of 1.44% and fancy PCA
which improved top-5 classification by 3.04%. Fancy PCA
increased top-1 performance by 1.28% which supported the
findings of previous work [6].

We also hypothesize that color jittering outperformed
the other photometric schemes in top-1 classification as this
scheme generated augmented images containing more variation
compared to the other methods (figure 2). Also, edge enhance-
ment augmentation did not yield comparable task performance,

likely due to the overlay of the transformed image onto the
source image (as described in section II-B) did not enhance
the contours enough but rather lightened the entire image.
However, the exact mechanisms responsible for the variability
of CNN classification task performance given geometric versus
photometric augmentation methods for coarse-grained data-
sets remains the topic of ongoing research.

VI. CONCLUSIONS

This study’s results demonstrate that an effective method of
increasing CNN classification task performance is to make use
of Data Augmentation (DA). Specifically, having evaluated a
range of DA schemes using a relatively simple CNN architec-
ture we were able to demonstrate that geometric augmentation
methods outperform photometric methods when training on
a coarse-grained data-set (that is, the Caltech101 data-set).
The greatest task performance improvement was yielded by
specific translations generated by the cropping method with a
Top-1 score increase of 13.82%. These results indicate the
importance of augmenting coarse-grained training data-sets
using transformations that alter the geometry of the images
rather than just lighting and color.

Future work will experiment with different coarse-grained
data-sets to establish whether results obtained using the Cal-
tech101 are transferable to other data-sets. Additionally dif-
ferent CNN architectures as well as other DA methods and
combinations of DA methods will be investigated in compre-
hensive studies to ascertain the impact of applying a broad
range of generic DA methods on coarse-grained data-sets.
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