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Abstract—The rapid development of smart-phone technology
in recent years has lead to many smart-phone owners owning
out-of-date devices, equipped with useful technologies, which
are no longer in use. These devices are valuable resources that
can be harnessed to improve users’ lives. This project aims at
leveraging these older, unused devices to help improve road safety,
specifically through the improved response time of emergency
services to accident locations. An Android application — Mobile
On-board Vehicle Event Recorder (MOVER) — was designed
and built for the purpose of detecting car accidents through
the use of acceleration thresholds. Driving data was gathered
and crash simulations were run. With this data, testing and
analysis were conducted in order to determine an acceleration
threshold that separates normal driving from accident situations
as accurately as possible. With this application, users can leverage
their previous or current mobile devices to improve road safety
- for themselves, and their area as a whole. A promising level of
accuracy was achieved, but significant improvements can be made
to the application. Large opportunity for future work exists in the
field, and hopefully through the development of this application,
other researchers may be more inclined to investigate and test
such future work.

Index Terms—Accident Detection, Event Recording, Incident
Detection, Mobile Computing, Mobile Sensors, Vehicle Safety.

I. INTRODUCTION

The total number of users owning a mobile device has
grown significantly in the past decade [1]. Market penetration
of mobile devices has increased, with particularly significant
gains in developing countries [2]. Due in part to this growth,
many functional Android devices are either discarded or left
unused at home once users have upgraded to newer smart-
phones [1]. These unused devices provide both processing
power and sensor hardware that goes to waste as long as
the devices remain unused. These unused resources can be
used every day to improve users’ lives, without incurring any
additional costs.

This project aims to harness the power of these unused
resources in such a way as to improve road safety. Users
can leverage their unused device’s power while driving (in
a manner such that focus is not taken away from driving) to
help improve road safety for themselves as well as their area in
general. Through the use of mobile phone sensors, specifically
the accelerometer, an appropriate acceleration threshold can
be set to detect collisions on the road in real-time, to an
acceptable degree of accuracy.

With the real time detection of car accidents on the road,
response times of emergency, traffic and police services to
accident scenes can be significantly decreased. This has been
shown to lead to greater road safety and better traffic man-
agement in areas [3]. Although there are numerous projects
aimed at addressing the problem of accident detection in cars,
most of these propose solutions that rely on and require newer
technologies that can be expensive or inaccessible for most
users. These solutions would also require a significant period
of time before they can be expected to be implemented in
a large portion of cars on the road. By developing a mobile
application to detect car accidents in real time, the technology
required to solve the problem of accident detection will be
immediately accessible to most users, thereby solving the
accessibility problem of other solutions that rely on newer
technologies. This solution can be implemented in any car,
and thus can theoretically be implemented by far more drivers
in a far shorter time space than other solutions.

An Android application, Mobile On-board Vehicle Event
Recorder (MOVER), was developed and tested for the pur-
poses of developing and testing an accurate and efficient
acceleration threshold that separates normal driving situations
from collisions and other accidents. Through the gathering
and analysis of driving data and crash simulations, appropriate
acceleration thresholds were set and tested. This paper defines
a vehicle crash as any driving activity resulting in an acceler-
ation value exceeding a specified acceleration threshold.

The rest of this paper is structured as follows. Section 2
discusses the various ways in which Android devices have
been used to improve road safety and traffic management,
with subsections that explore solutions to monitoring traffic,
and detecting when a car is being driven, has traversed a
pothole, or is involved in an accident. Section 3 describes the
development of the MOVER Android application. Section 4
details how testing was done on the application and how data
was gathered and analysed, followed by how the test data
was used to arrive at an accurate acceleration threshold to
detect collisions. Section 5 analyses the results obtained from
the testing of the final version of the application, Section 6
discusses these results, considers the shortfalls of the project,
and indicates how they could have been mitigated. Section
7 breaks down the conclusions made from the results, and
finally, Section 8 suggests what future work can be done to



improve the application, or build on top of it.

II. BACKGROUND

Research aimed at integrating smart-phone technology into
users’ cars fall into three categories, namely adding conve-
nience while driving, gathering and providing data on traffic
situations and improving road safety. There is also research
that looks at the same areas, but focuses on improving tech-
nology within cars or building external infrastructure instead of
using mobile phones [4], [5], [6], [7]. The approach of adding
technology to cars or building external technology specifically
aimed at addressing these areas will take considerably longer
and will bear considerably more cost to users than developing
mobile applications. Users can download and use a mobile ap-
plication without any considerable cost in time or money. This
makes the mobile application approach a far more accessible
one than the approach of developing external technology. It is
important to note that users should not be using their devices
while driving, as this has proven to cause a lack in focus
on driving and decreases overall road safety [8], [9]. Thus,
applications developed for the project’s purposes must run in
the background, without the requirement of user input during
driving. Distracting audio or visual outputs must be avoided
for the same reason.

A. Traffic monitoring

An Android application, DriveAssist [10] was developed
to provide a user interface for data collected from Vehicle-
to-X (V2X) services that come built into many modern cars.
This service, comprising of Vehicle-to-Vehicle and Vehicle-to-
Infrastructure systems, gathers information from all cars con-
nected through a wireless network to provide traffic knowledge
to users relevant to their current area. Users are able to — in
real time — view incidents on the road that are near them,
so as to avoid danger, as well as find alternate routes where
and when necessary for arriving at their destinations with less
delay [10]. This application is an inefficient solution to the
problem faced in this project because it relies on technology
outside of the user’s smart-phone. As the V2X framework was
only introduced in 2012 and first implemented in 2013, it is
only found in a small proportion of cars that are on the road.

B. Driving detection

One way in which smart-phones can aid in improving road
safety is to protect users from the smart-phones themselves.
Through driving detection, a device can be locked, essentially
preventing the driver from using their phone in a way that
impairs their driving ability.

Chu et al [11] developed a Driver Detection System (DDS)
which uses smart-phone sensors to detect when a user is
driving a car. The system is able to, with a success rate of
over 80%, recognise when a user is inside a moving vehicle,
as well as detect when a user is the actual driver of the
vehicle. This is done through the processing of various micro
patterns that separate passengers from driver. For example, a
driver will regularly move their right foot to manoeuvre the

driving pedals. The intended application of the system is to
prevent drivers from receiving notifications on their phones
while driving, for increased road safety. Another application
of the system is driving analytics for insurance companies,
who would be able to track their customers driving habits and
adjust premiums accordingly. Though the DDS system can be
implemented in any car, with the only requirement being that
the user has a smart-phone, the system does not achieve the
project’s aim in significantly increasing users’ road safety, or
make the activity of driving any more convenient for users.

C. Pothole detection

Mednis et al. [12] explored the concept of using smart-
phones to automatically detect potholes while driving. They
proposed a system in which road authorities would have
access to automatically generated statistical data related to
damaged areas on the road, allowing the fixing of damaged
areas to happen in a more efficient and organised manner.
Four different detection algorithms were tested, all using
the accelerometer sensor found on most Android devices. A
success rate of over 90% was achieved on a test track over
multiple runs, showing the effectiveness of the algorithms
tested as well as the developed software. This application of
Android devices in cars does not require any other technology,
making it widely available to all car and smart-phone owners.
This system is a solution for road maintenance, however,
it does not significantly improve users’ lives while they are
driving.

D. Accident detection

Accident detection can be vital with regard to preventing as
much harm as possible to those involved in accidents. Often,
the biggest problem in preventing permanent injuries is the
time taken for emergency services to be notified about an
accident, fetch whoever was injured and deliver them to the
nearest hospital. Through accident detection systems, this time
can be reduced considerably, which could result in far less
permanent injuries and deaths on the road. Another application
for accident detection is for insurance purposes. Being able
to track where and when customers were involved in road
accidents will be very useful to insurance companies.

Lahn et al [13] used Android smart-phones and their sensors
to detect car crashes using a software application that makes
use of a pipeline architecture to filter and combine sensor data
in order to recognise crashes. The application had a 100%
success rate of detecting test data crashes, but showed a high
false positive rate, detecting crashes where there hadn’t been
any. This solution to car collision detection is very relevant
to the project and was closely studied with the intention of
improving on their application and algorithm, specifically by
reducing or eliminating occurrences of false positives.

WreckWatch is an Android application developed in 2011
by White et al. [14] which proved to be very successful in
the detection of car accidents. It was developed as a means of
increasing road safety, motivated by the idea that a decrease
in emergency services response time to accidents and an



increase in the situational awareness related to an accident
would decrease road injuries and deaths [3]. The application
makes use of a well-tested algorithm, with inputs from multi-
ple sensors on a user’s smart-phone, which determines if a
given circumstance is indeed a car accident or not. When
a user’s phone detects an accident, it automatically sends
data related to the accident to emergency services, including
geographic location and user’s medical information, who are
then dispatched to the scene of the accident. WreckWatch also
allows for bystanders of accidents to report on an incident.
Witnesses to an accident can provide additional information
to emergency services, or notify them of the accident in the
case where the driver’s phone has been destroyed, or the
driver doesn’t have the application installed on their device.
Through information sent to emergency services via victims’
and bystanders’ devices, a higher situational awareness is
given to the emergency services dispatched to the scene of the
accident. This higher situational awareness allows for more
efficiency in dealing with the problems associated with the
accident [15]. This solution to accident detection is low cost
to users, who only need a smart-phone to take full advantage
of the application’s features. However, the application requires
very high device sensor accuracy and processing power which
cannot be expected of older devices.

Zaldivar et al [16] developed a similar system to Wreck-
Watch, the key difference being that instead of relying on
Android sensors to detect accidents, an On Board Diagnostics
II (OBD II) interface is used to detect faults and accidents. This
system is built into the vehicle and includes various sensors.
The OBD interface then communicates through wireless tech-
nology with a user’s smart-phone so that it can alert emergency
services of an accident. Although OBD technology has been
required in all cars manufactured since 2001, it is not found
in older cars, making this solution not applicable to as wide
an audience as that which WreckWatch is applicable to, with
the only requirement being that a user has a smart-phone.

III. PROTOTYPE

The MOVER application was developed as a prototype to
illustrate a concept, with focus being kept on time-efficiency,
rather than robustness of the application. Thus allowing a
larger portion of available time for testing and data gather-
ing. Basic functionality was implemented: a log-in and sign-
up view, and a main activity view, which displays current
accelerometer values and GPS position. Accompanying the
values in the main activity is a Google map fragment showing
current GPS position.

The application communicates with a server through HTTP
requests, allowing for secure log-in and sign-up, as well as the
posting of accident data. All requests are translated into SQL
database queries for communication with a database located on
the server. The final prototype was released as a Beta version
to the Google Play store, and can be found at the following
link: http://goo.gl/WJzG48.

Logging functionality was implemented, where acceleration
data is written to a local file stored on the mobile device run-

ning the application. Acceleration values for logging are taken
with a time resolution of 0.3 seconds, recording the maximum
acceleration value achieved every 0.3 second window.

Fig. 1. Screenshot of Mover application

IV. TESTING METHODS AND THRESHOLD

A. Approach

Testing of the MOVER application was done through
gathering drive data from car trips driven with an Android
phone running the application, as well as crash simulations
performed with shopping trolleys. With these tests, normal
driving acceleration patterns were recognised and categorised
as well as various crash situations. Through the analysis of
the test data, threshold acceleration values were reached that
separated normal driving from certain collisions. All normal
driving and crash simulation data can be found in a shared
Google Drive folder at the following link: http://goo.gl/0IfrBX.

While the application runs, acceleration values are logged
to a local file on the device. Every 300 milliseconds, the
maximum acceleration value measured for that window is
written to the log file. These log files were used for the analysis
of acceleration data gathered during testing.



B. Gravity and Filters

Android accelerometer data comes as a 3-dimensional vec-
tor. Using each dimension of this vector individually was not
a viable option for accident detection, because the orientation
of the recording device in a car could not be ensured. Thus,
only the magnitude of the acceleration vector was used for
testing and analysis.

Raw accelerometer data captured from Android phones is
only 0 when the phone is free falling. While the phone is
at rest, the accelerometer will read at approximately 9.8m/s,
because of the force of gravity. To normalise acceleration data,
gravity was accounted for by subtracting 9.8m/s from every
acceleration value received followed by taking the absolute
value of the subtracted result, ensuring only positive values
were recorded.

A low pass filter was also used to test if such a filter could
allow for more efficient identification and classification of
acceleration spikes. Since collisions will result in a spike in
acceleration, this would be very useful for collision detection.
The filter, however, instead caused these spikes to become less
efficient to identify. Hence, only the raw acceleration values
— with gravity accounted for — were used for analysis.

Fig. 2. Example of acceleration data with raw values, values with gravity
accounted for, and filtered values

C. Crash Simulation Environment

Unfortunately, real car crash data could not be used for
analysis in the search for accurate threshold values to use
for collision detection. Crash simulation data was gathered
by crashing shopping trolleys in numerous different crash
situations. It was decided that trolleys were the closest thing
to cars that were available to crash. Although real car accident
speeds could not be achieved with trolleys, data from trolley
crashes could be extrapolated reliably to mimic the data that
would be generated from a high speed crash. For the tests,
a mobile device was fixed to a trolley, by means of cable
ties, and the application was run on the device, recording all

acceleration values, while the trolley was put through various
different crash situations.

V. RESULTS

A. Driving Data

Non-crash driving data was collected by running a number
of tests where the application recorded acceleration values
while driving certain distances in a car. Driving tests ranged in
distance from 10km to 500km. All data was logged to a local
file, and for analysis, the data was then graphed, as shown in
Figure 3. This example graph visualises acceleration data from
a long-distance driving trip of approximately 3 hours. The
x-axis represents each 0.3 second window that acceleration
data was recorded at, and the y-axis measures magnitude of
acceleration (in m/s).

A total of 10 test drives were performed. This number was
limited to the availability of a car. However, aggressive driving
techniques were implemented in order to achieve higher-than-
normal acceleration values during drives. Aggressive driv-
ing techniques included both accelerating from stand-still as
quickly as possible (pushing the accelerator to the floor), as
well as hard breaking to stop.

Fig. 3. Example of driving test with approximately 500km covered

The maximum acceleration value recorded during the driv-
ing tests was 14.84m/s, which likely happened during a sharp
braking action.

To consider boundary cases, where acceleration values while
driving may be similar to those of a crash, extreme cases
were looked at. The fastest 0-100 km/h acceleration in a car
on record took 1.513 seconds [17]. The equation of motion
below can be used to calculate the acceleration achieved in
this record.

V elocityfinal = V elocityinitial+Acceleration∗Time (1)

100km/h equates to 27.77m/s

27.77 = 0 +Acceleration ∗ 1.513 (2)



Acceleration (and appropriate threshold) = 27.77/1.513

= 18.36m/s (3)

Although there is no world record for braking acceleration,
the Bloodhound Super Sonic Car (SSC) was used as an
extreme braking case. The Bloodhound SSC was designed
to break land speed records, and can travel at speeds above
1600km/h. At full braking force, the car’s velocity decreases
by approximately 105.6km/h [18]. Using the same equation
as above, this translates to an acceleration magnitude of
approximately 29m/s.

Clearly these extreme values are well above what can be
achieved in normal driving conditions. They serve as outlier
cases that mark acceleration points below which all normal
driving data falls.

B. Crash Simulation Data

Tests for crash situations were conducted by attaching a mo-
bile device to a shopping trolley and acting out various crash
situations. Two main crash situations were tested: collisions
with a wall, and collisions with another trolley. Two separate
crash tests were performed, with a total of 13 collisions. The
speed at which collisions were tested ranged from 5km/h to
15km/h (fast walking to moderate running speeds). All data
was logged — similarly to normal driving data — to a local
file, and subsequently graphed. Figure 4 shows an example
of a crash test graph, containing acceleration spikes from two
separate collisions.

In this example crash graph, there are two clear acceleration
spikes which both correspond to crashes against a wall. The
first spike is considerably larger than the second, due to the
different speeds at which collisions took place across the
different crashes. The first collision was tested at running
speed (approximately 15km/h), while the second crash only
happened at slow jogging speed (approximately 10km/h).
This accounts for the different acceleration spikes shown on
the graph.

Fig. 4. Example crash simulation with two collisions

Wall crashes were either head on, where the trolley was run
straight into the wall, or side on, where the trolley was crashed
into the wall at an approximately 45 degree angle, as shown in
Figure 5 below. Crashes with other trolleys were either head
on with the other trolley standing still, or head on with the
other trolley moving towards the crash trolley.

Fig. 5. Sketch showing different crash test scenarios

Different crash situations all show different spike patterns
and magnitudes. For example, direct collisions with the wall,
as shown in the top right of Figure 5, produced acceleration
spikes considerably higher than side on collisions, shown in
the top left of Figure 5. Figure 6 is a graph representing four
crashes, the first was a direct wall collision, and the next
three were side on. All collisions were tested at similar speed,
but the direct crash has a considerably higher acceleration
spike than the side on crashes. This is because a direct crash
causes the vehicle to come to a complete halt during the
collision, blocking its entire path. In a side on collision,
however, the wall is only blocking part of the vehicle’s
motion, and the vehicle will continue to move (in a slightly
different direction) after the collision, therefore not feeling
the same force (and acceleration change) that would occur
in a direct collision. Similarly, collisions with one stationary
trolley produced smaller acceleration spikes than collisions
with trolleys moving towards each other.

The maximum acceleration spike from a test crash was
23.82m/s, while the minimum was 10.55m/s. Although these
values can be argued to be similar to values achieved with
normal driving — especially for the minimum spike value —
the tests were performed at very low speeds, and the results
can be extrapolated to give an estimate of acceleration values
achieved from similar crashes that occur at higher speeds.

C. Threshold

20m/s was the final threshold value used to separate normal
driving and collisions. This value — which is substantially
higher than any acceleration value achieved through normal
driving tests — is conservatively high. False positives —
detecting collisions without there being any collision — should
be completely avoided through this high threshold value.



Fig. 6. Crash graph showing 1 direct collision and 3 side on collisions

Avoidance of false positives means that no resources will be
wasted or alarm raised for situations that aren’t accidents on
the road. While some very low speed collisions (Car travelling
at less than 20km/h) may not go above the threshold, any se-
rious collision will cause acceleration to surpass the threshold,
thus resulting in successful detection through the application.

After the final threshold was finalised, the data from the
already completed driving tests were run trough the application
manually, confirming that no false positive collision was
detected. Another aggressive driving test was carried out as
well, also resulting in no false positive detections.

A final trolley crash test was also conducted. Crash test
speeds were higher than in previous trolley tests — at least
12km/h — and this ensured that collisions were detected
in every crash. There were no false negatives, where no
collision was detected despite there being an actual collision
that occurred. All collisions were detected successfully.

Fig. 7. Final Trolley Crash Test

VI. DISCUSSION

Due to the limited time and resources available for the
completion of this project, compromises had to be made
regarding the development and testing of the application. For
example, far more can be implemented in terms of features
within the application, allowing users to view and interact
with their driving data from within the application itself. Ap-
plication design was not given major consideration and many
improvements could be made relating to the application’s user
interface. For example, allowing for automatic authentication
by remembering user’s credentials. Although several applica-
tions exist in the same field as MOVER with promising levels
of accuracy and efficiency, none were able to detect accidents
at a high level of accuracy using minimal processing power
and device hardware. The MOVER application eliminated
the false positive rate that occurred in other applications
and was able to detect collisions accurately requiring only
the resources available in older smart-phone devices, thus
separating MOVER from the field of other vehicle accident
detection applications.

Testing of the application was also done in a limited capac-
ity. Far more driving data could be captured. Crowd sourcing
could be used to gather data pertaining to different cars in
different areas, and through the gathering of substantially more
driving data, more accurate results could be achieved. Crash
simulations, although useful, could also be improved by using
real cars in real accidents. This could be done through crowd
sourcing as well, or by using crash test operations that already
crash cars on a regular basis. In addition to improving the
quality of crash tests, the quantity of tests could also be
increased to gather more crash data for analysis and possibly
improve the accuracy of collision detection.

VII. CONCLUSIONS

Final tests of the application with the threshold in place
show that success was achieved in implementing a collision
detection tool using Android mobile devices. Normal driving
is highly unlikely to trigger a false positive collision detection
due to the high-valued threshold. Collisions that occur at low
speeds, however, may go by undetected due to acceleration
not exceeding the threshold. False negatives, where a collision
occurs but goes by undetected, could only happen at speeds
below 15km/h, or for very minor collisions, for example
knocking a side mirror into a street light.

Although a promising level of accuracy was achieved in
collision detection with this project’s outcome, there is much
room for improvement. Using only a basic threshold can be
improved by means of other analytical techniques, for example
processing the data around periods of spiked acceleration to
confirm or deny a collision. Another possible improvement
could be the inclusion of machine learning to analyse all
crash and normal data [19]. Using gathered data from users
of the application, an algorithm could continuously learn
how to better differentiate between the patterns found in the
data related to different situations in order to be able to
detect collision more accurately. A deeper investigation with



more time and resources would improve upon the impact and
usefulness of this study.

The application lends itself to solutions in traffic monitoring
and management areas, and functionality could be built in to
show users’ data regarding their surrounding area and traffic.
Insurance companies may be interested in the application
as they could track their clients driving habits, adjusting
premiums depending on the client’s driving history. Although
there are already solutions available that insurance companies
use, most of them rely of technology that can be expensive.
Using users’ mobile phones as sensors instead would be far
cheaper and easier to implement across a company’s client
base. Emergency services could also use the application to
help lower their response times, possibly using the application
to send them alerts whenever a collision is detected. All these
applications require additional features and functionality to be
built on top of the application.
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