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ABSTRACT
Extensive research has been done using machine learning
techniques for hand gesture recognition (HGR) using camera-
based devices; such as the Leap Motion Controller (LMC).
However, limited research has investigated machine learn-
ing techniques for HGR in virtual reality applications (VR).
This paper reports on the design, implementation, and eval-
uation of a static HGR system for VR applications using
the LMC. The gesture recognition system incorporated a
lightweight feature vector of five normalized tip-to-palm dis-
tances and a k-nearest neighbour (kNN) classifier. The sys-
tem was evaluated in terms of response time, accuracy and
usability using a case-study VR stellar data visualization
application created in the Unreal Engine 4. An average ges-
ture classification time of 0.057ms with an accuracy of 82.5%
was achieved on four distinct gestures, which is comparable
with previous results from Sign Language recognition sys-
tems. This shows the potential of HGR machine learning
techniques applied to VR, which were previously applied to
non-VR scenarios such as Sign Language recognition.

CCS Concepts
•Human-centered computing → Gestural input;
•Computing methodologies → Virtual reality;

Keywords
Virtual Reality; Hand Gesture Recognition; Machine Learn-
ing; Leap Motion Controller

1. INTRODUCTION
Virtual reality devices for the PC, such as the HTC Vive

and Oculus Rift, both employ the use of hand-held remote-
based devices to interact in a virtual world. These devices
accurately track positional hand data, but partly rely on
button presses instead of gestures for VR interaction. Future
VR systems are expected to evolve towards natural hand
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Figure 1: The Oculus Rift DK2 with the LMC and
its mount.

gestures as the primary input, thus there is a need to ex-
plore different methods of capturing hand data. One such
method is a camera-based method, where image recognition
techniques and classification methods are combined to rec-
ognize a hand gesture. Camera-based methods are able to
track the posture of individual fingers while not encumbering
users’ hands, thus possibly replacing cumbersome hand-held
remotes.
The LMC and Microsoft Kinect are two popular depth cam-
eras used in research for camera-based HGR. The Leap Mo-
tion Controller (LMC) is a lightweight and affordable com-
mercial stereo infrared camera that specializes in tracking
a user’s hands with a high degree of accuracy. The LMC
has its own infrared LEDs that illuminate the hand, mean-
ing that it can work under any lighting conditions and with
any skin colour. The device also comes with a VR mount,
allowing it to be attached to the front of the Oculus Rift, as
seen in figures 1 and 2.
The Microsoft Kinect is a depth camera that specializes in
tracking a user’s body, but not individual fingers. Users that
wish to perform HGR using the Kinect have to either access
the raw image data provided or only use the provided po-
sitions of the hands, whereas the LMC provides a level of
abstraction by giving users a skeleton model of the hands it
tracks.

Hand gestures can be either static or dynamic [6]. Static
gestures are simply the posture of the hand at a single point
in time while dynamic gestures can have the posture and po-
sition of the hand change over time. Classification of these
gestures usually involve deciding which data points or fea-



Figure 2: A user of the system wearing the Oculus
Rift with the LMC mounted on it.

tures accurately describe a gesture, followed by training a
machine learning system to recognize the gesture using these
features. The trained system should then be able to extract
the necessary features from the testing data and classify the
test gesture accordingly.
A review of current literature has revealed that many re-
searchers have used the LMC to classify Sign Language ges-
tures, but very few have applied it to VR. Those that used
the LMC in VR did not create a system to classify any arbi-
trary static gesture made using machine learning algorithms.
This system was created to explore the efficacy of machine
learning techniques for HGR in VR applications.
The objective of this system is to develop a static HGR sys-
tem that can be used in a VR case-study environment that
users can interact with using gestures only. The system
needs to be flexible enough to recognize any static gesture,
and thus must incorporate a machine learning algorithm.
The VR world is displayed on the Oculus Rift DK2 and
hand data is provided by the LMC, which is mounted onto
the Oculus Rift. The system is evaluated with regards to
recognition accuracy, recognition latency and extendability.
The latency and accuracy metrics are important factors in
3D gestural interaction [20], and the latency metric shall
also provide insight into the impact the system has on the
performance of the VR application. A high recognition la-
tency could cause the framerate of the application to stutter,
which in turn may cause users to experience cybersickness
[21].
In section 2, this paper will outline the state of the art in
HGR research, as well as identify the limitations in existing
systems. This is followed by section 3, an overview of the
architecture of the static HGR system for VR applications
and the evaluation of this system in a case study stellar data
visualization application. In section 4, the results obtained
from the application incorporating the system are stated,
followed by a discussion in section 5, and ended in the con-
clusion in section 6.

2. RELATED WORK
This section discusses previous work done in the field of

static HGR. The review will start off with a discussion of

popular devices used for static HGR in literature. This is fol-
lowed by how static HGR has been applied in research, and
the remaining challenges in the more relevant applications
will be discussed. Finally, the popular machine learning al-
gorithms for static HGR will be discussed and compared,
and specific features used in literature will be mentioned.

2.1 Devices
A variety of input devices have been used in HGR re-

search, the more popular amongst those include gloves and
depth cameras. Popular depth camera-based devices for
HGR in research include the Microsoft Kinect and the LMC,
while glove-based research usually utilizes the CyberGlove
[33, 34]. Glove-based devices, such as the CyberGlove, are
cumbersome and not as easily available as cameras are, but
do not suffer from occlusion as cameras do. This subsec-
tion briefly describes the Oculus Rift head-mounted display,
then goes on to describe the use of the LMC and Kinect in
research, before substantiating the choice of using the LMC
over the Kinect.
The Oculus Rift is a head-mounted display (HMD) that
displays a 3D application’s graphics stereoscopically with
a wide field of view. The device is able to track changes in
users’ head position and orientation, causing the application
to update its camera’s position and orientation accordingly
to make the user feel as though they are physically looking
around.
The Kinect API does not provide data pertaining to individ-
ual fingers, but rather only the positions of the hands and
other parts of the body. Thus, the use of the Kinect in HGR
research usually involves processing the captured depth im-
age for gesture classification, or simply using the calculated
position of the hands. Kim et al. used the Kinect to manip-
ulate virtual objects using the positions of the hands from
the API [19], while Messaci et al. used the Nimble SDK to
detect hand joint positions from the Kinect depth image to
interact with virtual objects [24]. Trigueros et al. compared
various machine learning techniques for classification of ges-
tures using the Kinect, where a highest average accuracy of
96.99% was achieved using a neural network [31]. Various
researchers have used the Kinect for Sign Language recog-
nition, achieving accuracies of over 80%. [2, 23, 30]
The LMC specializes in hand detection. The Leap driver cal-
culates features such as palm and joint positions and makes
these features available through its API. The LMC has been
shown to have sub-millimeter accuracy [14], and Weichert
et al. state that the Kinect is not able to achieve such an
accuracy [32]. The LMC has been applied to Sign Language
recognition [7, 11, 23, 25] with success rates comparable to
the Kinect. Other research using the device include VR and
3D application interaction, which is discussed in the next
subsection.
The LMC has been deemed more suitable for this research
than the Kinect, due to its compatability with VR using a
HMD mount and the higher level of abstraction provided by
its API.

2.2 Applications of HGR in Literature
HGR has been applied to a wide array of fields, such as in

the control for the training simulation of a self-propelled gun
[34], Sign Language recognition [7, 11, 23, 25, 28], naviga-
tion through a VR world [18], control of a 3D visualization
application [29], the treatment of amblyopia [4], data visu-



alization [9], and the playing of virtual instruments [15] and
3D games [27].
Multiple researchers have investigated the use of HGR in a
VR application: Donalek et al. used the LMC placed on a
table and the Oculus Rift for data visualization [9], while
Beattie et al. had a similar setup as Donalek et al., but
applied to Computer Aided Design programs [3]. Khattak
et al. presented a framework for immersive augmented VR
interaction with virtual objects with the LMC placed on a
table [17], and Khundam mounted the LMC on the Oculus
for gesture-controlled movement in a VR world [18]. All of
these researchers used the Oculus and LMC for interaction
in a VR application through HGR, however no information
is given about recognition mechanisms over and above the
data received directly from the LMC API. It is assumed
that these systems did not incorporate machine learning al-
gorithms for HGR.
Researchers have also investigated the use of HGR in 3D
non-VR applications. Investigations include the control of
a virtual scene camera using the LMC [13], the control of
a 3D molecular graphic system using the LMC and Kinect
as separate inputs [29] and virtual 3D object manipulation
[16, 19, 24]. As with VR HGR research, these papers do not
mention the use of machine learning for arbitrary static ges-
ture detection. However, there does exist machine learning-
based HGR research for 3D applications when it comes to
raw image processing, where Dardas and Alhaj implemented
a support vector machine to recognize static gestures cap-
tured with a webcam [8].
Another one of the predominant applications of HGR in lit-
erature is Sign Language recognition. Unlike VR interaction
gestures, the static gestures used in Sign Languages are often
complex and numerous, thus requiring the use of machine
learning algorithms to classify arbitrary static gestures. Ma-
chine learning approaches to classify Sign Language static
gestures have generally achieved over 80% accuracy rates.
Results such as these show the potential of using machine
learning algorithms to classify arbitrary static gestures to be
used in VR environments.

2.3 Algorithms and Feature Sets
Researchers in the field of Sign Language recognition often

employ machine learning algorithms for static gesture recog-
nition, and are met with usually favourable results. This
subsection encompasses the algorithms and features they
used, and motivates the choice for the feature extraction
and classification algorithms.
In terms of the Kinect, researchers have often utilized the
Support Vector Machine (SVM), k-nearest neighbour (kNN)
algorithm [10], Artificial Neural Networks (ANN), the Näıve
Bayes classifier, and Linear Discriminant Analysis (LDA) [2,
23, 30, 31]. When it comes to classification using the LMC,
Elons et al. achieved an 88% recognition rate using an ANN
[11], while Chuan et al. achieved a 72.78% and 79.83% using
the kNN algorithm and SVM respectively [7]. An accuracy
of 91.28% was observed when Marin et al. used both the
Kinect and LMC with an SVM as a classifier [23]. Mohandes
et al. attempted to limit the impact of occlusion by using
two LMCs for Sign Language recognition, and achieved a
success rate of 97.7% using LDA for classification [25].
From the above, it is clear that the ANN, kNN algorithm,
SVM and LDA are all popular machine learning techniques
for static HGR. Of these techniques, the kNN algorithm is

Figure 3: An abstracted view of the architecture.

quick to implement thanks to the value of k being the only
parameter. The algorithm also runs quickly with a small
enough dataset without much of an accuracy tradeoff. Note
that the accuracy rates found in Sign Language recognition
may not apply in the same manner to HGR in VR, primarily
due to the freedom of choosing one’s own gesture set that
separates the feature vectors well. Furthermore, when the
LMC is mounted onto the Oculus Rift, it is expected that
more inaccuracies will occur since the LMC is no longer sta-
tionary and it views the back of the hand, causing curled
fingers to be obscured.
In terms of features, it is important to choose a feature set
that both describes a gesture well, but is at the same time
hand size invariant and lightweight enough to reduce clas-
sification time. One of the features used by Marin et al.
involved the distance from the palm to each of the finger-
tips divided by the length of the middle finger [23]. A set of
5 float values corresponding to these normalized distances
should be able to describe a gesture well enough, and is
lightweight as well as hand orientation and size independent.
This feature set is described in detail in section 3.1.1.

3. PROPOSED SYSTEM AND APPLICATION
The architecture of the system and application follows the

illustration seen in figure 3. The LMC collects and data and
processes it into frame data consisting of positions and ori-
entations of fingers and palms amongst other information.
This data is sent to the Leap plugin in the Unreal Engine.
The static gesture recognition system, implemented in the
Unreal Engine, takes the frame data provided through the
plugin and applies machine learning algorithms for HGR to
the data to classify which gesture is being made. The clas-
sified gesture ID is then passed to the VR gesture handler,
which interprets the gesture to an action in the VR stellar
data visualization application according to the current state
of the application.
The case-study application for the static HGR system is a

stellar data visualization application developed in the Un-
real Engine 4 game engine. This was done to demonstrate
the use of this system in a real-world scenario, which may
affect accuracy and latency measures. Game engines, such
as the Unreal Engine 4 and Unity, have replaced VR-specific
rendering engines due to their flexibility and wide array of
tools for creating interactive applications quickly and eas-
ily [1]. The application places users in space, surrounded
by virtual stars. The user of the system is seated in front
of the PC monitor while wearing the Oculus Rift with the
LMC mounted in front of it. By using gestures only, they
are able to view more information about a particular star,



revolve all the stars around themselves and toggle the way
stars are represented spatially.

3.1 Static Gesture Recognition System
This system applies the kNN algorithm [10] to the data

received from the Leap plugin in the Unreal Engine 4 to de-
tect the gesture currently being made. Data received from
the plugin is first processed into a lightweight feature vector
before being classified into a gesture by the kNN algorithm.
Figure 4 illustrates the static recognition process. The fea-
ture extraction and normalization as well as the gesture clas-
sification processes are described in the subsections below.

Figure 4: The workflow of the static gesture recog-
nition system.

3.1.1 Feature Extraction
Machine learning algorithms usually require certain fea-

tures to be extracted from the input data to be classified.
The feature set used in this system was inspired by the re-
search of Marin et al. [23]. One of the features used in their
research was a set of 5 normalized distances from the tips of
each finger to the center of the palm. These distances will
be referred to as tip-to-palm (TTP) distances. The TTP
distances in the research of Marin et al. were normalized
by dividing each distance by the maximum TTP distance
of the middle finger, thus constraining the values between 0
and 1. The maximum middle finger distance is known as a
scaling factor, and is recorded at the start of the system.
In this study, the feature vector shall contain five normal-
ized TTP distances corresponding to each finger, where the
normalization process divides the TTP distance of each fin-
ger by the maximum distance of the same finger, instead of
the middle finger. The feature vector will thus describe the
proportion by which each finger is extended. During an in-
dividual user calibration step, the user is prompted to hold
their outstretched hand in front of the LMC. The length of
each outstretched finger is measured, and the system records
the TTP distance of each finger from this display. This mea-
surement vector is the user hand template, and every gesture
made thereafter will have its TTP distances divided by the

template. The user hand template is specific to a certain
user, and is recorded once for each session in the VR appli-
cation. The normalized TTP distance of finger i in feature
vector ~v is determined as follows:

vi =
1

ti
‖~fi − ~p‖ (1)

The vectors ~fi and ~p refer to the positions of the tip of fin-
ger i and the center of the palm with respect to the LMC
respectively, both of which are supplied through the Leap
API. The scalar ti refers to the user hand template’s TTP
distance of finger i, which has been stored since the start of
the system.
The use of these 5-dimensional feature vectors make the
gestures orientation-independent and are able to accurately
describe the hand posture. While more features could be
added to improve accuracy, keeping the feature vectors as
lightweight as possible will assist in speeding up the entire
classification process.
Calculating the magnitude of a vector requires a square root
operation, which can be computationally expensive, espe-
cially when performed during every update step of the appli-
cation. To alleviate this issue, the square of the magnitude
of the TTP distance is used to approximate the square root.
This also means that the user hand template will need to
have its magnitudes squared, thus resulting in the normal-
ized distances no longer being scaled linearly. However, by
avoiding a square root operation, the system’s performance
is improved. The following equation describes the amended
feature construction process:

vi =
1

Ti

(
(fix − px)

2 + (fiy − py)
2 + (fiz − pz)

2
)
(2)

Where Ti is the square TTP distance of finger i in the user
hand template. This square value is stored in memory to be
used in normalization. Figure 5 illustrates the normalization
process of feature extraction.

3.1.2 Classification Algorithm
The kNN algorithm [10] is used to classify gestures due

to its low complexity, high accuracy, and its speed with a
small dataset. A suitably low value of k = 3 was chosen,
due to the small dataset size and simplicity of the gestures
in the application. The algorithm is also quick to implement,
meaning that more time could be allocated to creating a re-
alistic case-study application.
The kNN algorithm never rejects an input for being too dif-
ferent from the dataset entries, and always returns a classi-
fied input. Thus, gestures that are not in the dataset will be
classified incorrectly, instead of being rejected completely.
When it comes to VR it is not appropriate for the appli-
cation to respond incorrectly to a gesture that should have
been classified as unknown. To this end, the kNN algorithm
was adapted to reject certain input gestures should they be
too different from the training gestures. This was imple-
mented through a simple threshold function, where if the
Manhattan distance to the test gesture’s k nearest neigh-
bours all exceed the threshold (found empirically), then the
test gesture is classified as unknown and the system does
not respond to it.
In order for gesture types in the dataset to persist between
sessions, a dataset file is stored on disk. Whenever the ap-



Figure 5: The normalization process of TTP distances. Note that the LMC does not provide the distances
illustrated on the left, but rather square distances are directly calculated from the palm and fingertip vectors
provided (See equation 2).

plication starts up, this file is read into working memory for
the kNN algorithm to use. The dataset in working memory
can be written back to the file on request if a new gesture
type is introduced. Figure 4 illustrates the flow of data in
the static gesture recognition system.

3.2 VR Gesture Handler
The gesture handler is a component embedded in the ap-

plication that receives a classified gesture and performs the
appropriate action on the VR environment. While the static
gesture recognition system and the stellar VR application
could both exist as stand-alone systems, this component
links the two into a cohesive VR HGR application. Four
distinct static gestures were selected for control for the case-
study application. These gestures are seen in figure 6. These
gestures were chosen as they are easily distinguishable from
each other when using the feature set mentioned in section
3.1.1. Some actions require a series of static gestures, while
others require a single static gesture.

Below are the actions that users can perform in the case-
study application:

1. Revolve Stars: Since the user is seated, it is difficult
to turn around and interact with stars placed behind.
To combat this problem, the user can use the point
gesture to revolve the stars until a desired star is in
their field of view. Pointing to the left revolves them
to the left, and vise-versa when pointing right. Deter-
mining whether the user was pointing left or right was
done by computing the dot product of the vector from

Figure 6: The recognizable static gestures in the
system. From left to right are the Fist, Point, Open
Hand and OK gestures.

the user’s palm to their index finger with their cam-
era’s right vector. A value above zero indicates they
are pointing right. The stars only revolve while the
pointing gesture is being made, and immediately stops
when the user stops pointing.

2. Toggle Arrangement of Stars: To demonstrate
the use of data visualization, a mechanism was intro-
duced to rearrange the stars in such a way that their
spatial positions mean something else entirely. When-
ever the OK gesture is made, the stars toggle between
spatial representation and HR representation. HR rep-
resentation refers to a Hertzsprung-Russell diagram,
which is a 2-dimensional plot where a high y-value in-
dicates high luminosity, and a low x-value indicates
high temperature. Figure 7 illustrates an HR diagram.
From the diagram, it is easy to separate stars that are
of different sizes, such as dwarf stars from supergiants.



Figure 7: An HR diagram.1

3. View Star Details: The main action the user can
perform is one in which they view more details about
a star. While simply looking at a star only displays
its name, performing this action will allow the user to
view its temperature and other attributes. This action
was broken up into the following steps:

• The user keeps the open hand gesture while reach-
ing out past a certain threshold towards the star.

• The user makes the fist gesture while the hand
still reaches.

• The user brings their fist in close behind the thresh-
old.

• The user opens their hand again.

Together, this series of static gestures form a grasping
motion, where the user reaches out, grabs a star and
pulls it close. Upon releasing, an enlarged version of
the star is shown along with its detailed attributes.
To stop viewing these extra details, the user does the
following:

• The user performs the open hand gesture behind
the threshold distance.

• The user then moves their open hand past the
threshold distance. This completes a ”pushing
away” motion.

To control this series of static gestures, a finite state
machine was implemented to divide each step into a
state. Figure 8 depicts the structure of this state ma-
chine. The user starts in the idle state and transitions
to the star details state upon ”pulling” a star in. The
”close” and ”far” suffixes indicate whether the hand is
behind or past the threshold value.

When it comes to performing these actions, there is a need
for the system to know when a gesture detect operation has
to be performed without the user manually requesting for
one. Since actions such as revolving the stars and view-
ing star details require constant checking whether the hand

1From www.le.ac.uk/ph/faulkes/web/images/hrcolour.jpg

Figure 8: The state machine that controls the
pulling in and pushing away gestures.

is still in the correct pose, it was decided that a gesture
detect has to occur at regular intervals. More specifically,
every update of the game loop in the Unreal Engine 4 calls
a gesture detect operation on the user’s closest hand, and
appropriate actions are performed depending on what state
the application is in and what gesture was detected. Every
classified gesture is handled by both the state machine for
the View Star Details action and the static gesture handler,
that deals with the Revolve Stars and Toggle Arrangement
actions. Figure 9 depicts this process within the full archi-
tecture of the system.

3.3 VR Stellar Data Visualization Application
The user is in a fixed position and given a first person

view of the world. They are represented by an avatar, where
the avatar’s hands mimic the data that the LMC receives,
creating the illusion that the user is present in this world.
These virtual hands and the algorithms controlling them are
provided by a LMC plugin for the Unreal Engine 4. Figure
10 shows the user’s perspective and avatar in the world.
One of the many uses of VR technology is for advanced
data visualization, and the case-study application depicts a
simplified version of such a case. Each entry of data in the
application is 7-dimensional, and represents the data of a
single star. Each star or data entry has:

• x, y and z co-ordinate (position).

• Name

• Temperature

• Luminosity

• Radius

All stars are represented as glowing spheres at their respec-
tive positions. Hotter stars are blue while colder stars are
red. More luminous stars glow brighter and larger stars are
represented as larger spheres. A star is automatically se-
lected whenever a user looks at it. A selected star displays
its name on a 3D user interface, indicating to the user that
they may perform a manipulation task on it.

4. TESTING AND RESULTS
The system and application were tested with respect to

latency, accuracy, extendability, ease of use and comfort.
Each of the gestures seen in Figure 6 are made twenty times
each by the researcher, with some variation between each,
and are placed into the kNN dataset. All tests took place



Figure 9: Detailed architecture of the system.

Figure 10: The user avatar. Left: The world from
the user’s perspective when their hand reaches out.
Right: The same user action but from outside the
avatar.

on a Windows 8.1 PC with an Intel Core i5-3570K 3.4GHz
CPU, an AMD Radeon HD 7970 GHz Edition GPU and
16GB of DDR3 RAM.

4.1 Latency Test
The latency for the classification of a static gesture is the

time from when classification is requested to the time the
classified gesture is returned. It is assumed the classification
for a static gesture is the same regardless of hand pose, since
the kNN algorithm has to run through every dataset entry
regardless. The fist gesture was made and classified 1000
times over for this test. This test was performed in the
VR application to properly measure latencies in a practical
scenario. The maximum and minimum measured latencies
were 0.227ms and 0.037ms respectively, while the average
latency was 0.057ms.

4.2 Accuracy Test
Each of the 4 gestures seen in figure 6 were made ten times

each with a rest period in between. The testing user would
raise their hand in the correct pose in the VR application,
regardless of whether their avatar’s hand was in the correct
pose, before the gesture is classified. The user then lowers
their hand before raising it again for the next classification.
The fist, point, open hand and OK gestures were correctly
classified 100%, 60%, 80% and 90% of the time respectively,
resulting in an average accuracy of 82.5% across all gesture

Table 1: Number of Attempts with no Practice
Participant Task 1 Task 2 Task 3 Task 4 Task 5
1 1 1 3 2 1
2 3 1 7 6 2
3 2 2 1 3 1

Table 2: Number of Attempts after Practice
Paricipant Task 1 Task 2 Task 3 Task 4 Task 5
1 2 1 2 2 2
2 2 1 3 5 1
3 1 1 2 3 1

types. The incorrect classifications were all classified as the
”unknown” gesture, which performs no action in the appli-
cation.

4.3 Extendability Test
To identify how well the small dataset performs when a

new gesture type is added, the ”L” gesture was introduced.
This is made by extending the thumb and index fingers only
in the shape of an L. Five of the L gestures were added to
the dataset, and the gesture was tested ten times over to
measure classification accuracy, where a 70% accuracy was
achieved.

4.4 Preliminary User Study
Three new users, two men and a woman of varying hand

sizes, were included in the study to measure the ease of use
and comfort of the system. They were given the following
tasks:

• Revolve the stars to the left, then right.

• Perform the Toggle Arrangement of Stars action to
view the HR representation.

• Perform the View Star Details action on the hottest
star.

• Stop viewing the star details by pushing that star away.

• Perform the Toggle Arrangement of Stars action to
return to spatial representation.

The number of attempts taken to perform each task was
recorded. Afterwards, users may practice the tasks in their
own time for a while before going onto a second round of
the same tasks. Tables 1 and 2 show the recorded number
of attempts from the first and second round respectively.
The users were also asked a series of questions relating to
comfort and ease of use. These questions are as follows:

• Did you feel the gesture recognition occurred in real
time or was there a noticeable delay?

• Do you feel the gestures were easy enough to perform
to complete each task? If not, do you feel you could
perform better with practice?

• Did you feel motion sick or claustrophobic at all dur-
ing the test?

Below are the findings of this preliminary study:



1. Participants showed a general decrease, albeit with
some slight increases, in the number of attempts re-
quired to get a task right after having at most 2 min-
utes of practice.

2. Plasters on the fingers as well as rings and bracelets
have a negative impact on the LMC’s accuracy. After
removing these objects, an improvement was observed.

3. None of the participants observed noticeable delays in
gesture recognition, and did not feel any symptoms of
cybersickness or claustrophobia.

5. DISCUSSION
Since little research has been done in the field of applying

the LMC for HGR in VR, the results obtained are com-
pared to HGR for Sign Language instead. Chuan et al. [7]
achieved a 72.78% accuracy using the LMC and kNN classi-
fier [10] for American Sign Language recognition. While the
results obtained in the case-study application show an aver-
age accuracy of 82.5%, it is important to note that American
Sign Language contains multiple gestures that are similar,
and could cause incorrect classifications. At the same time,
the gesture set used in this VR application are very dis-
tinct, and are easily separable using the TTP feature set.
The point gesture had the lowest accuracy of 60%, which
occurred whenever the LMC represented the hand incor-
rectly. This is likely due to the LMC software struggling
to ascertain which finger is being raised, since there are no
other fingers raised to provide a point of reference.
It is important to note that good classification techniques
applied to Sign Language may not be applied just as effec-
tively to VR. While the general goal in both cases is to max-
imize accuracy, there is also an increased need for resource-
light classifiers in VR. Additionally, gesture recognition in
VR using the LMC involves the camera being mounted on
the front of the HMD, thus allowing the camera to only view
the back of the user’s hand. This causes issues when the fin-
gers are bent down and are obscured by the palm. Sign Lan-
guage recognition on the other hand usually has the camera
facing the palm-side of the hand, which removes the issue
of palm occlusion. Finally, in Sign Language recognition, a
fixed set of signs are available for researchers to recognize,
and they must adapt their algorithms to suit the signs in the
language. However, HGR in VR allows more flexibility in
the sense that one may adapt the gestures to suit the algo-
rithms and feature sets. By doing this, one can dramatically
increase the accuracy.
If one were to attempt to create a HGR system to classify
a pre-defined set of gestures instead, the system presented
in this paper may not be well-suited. The feature set used
in this research is relatively simple and may not be able to
separate more complex gestures. For example, the feature
set will easily distinguish an extended finger from a curled
finger, but won’t be able to distinguish different hand orien-
tations, such as a thumbs-up versus a thumbs-down gesture.
A more generic HGR system is expected to use more com-
plex feature sets that separate the chosen gestures well.
The average latency of 0.057ms from a request for a gesture
detect to the completion of the classification shows that the
system is fast enough to run in a VR application. To put
this in perspective, it takes more than a 100ms delay for
users to notice a delay in computer interaction [5]. The

minimal impact on performance of the classification pro-
cess allows for gesture detection to occur every application
update step without dropping the framerate below the rec-
ommended value of 75 frames per second [12], which would
cause user discomfort. Furthermore, users of the system in a
preliminary user study all stated that they felt no noticeable
delay during their interactions.
The speed of the kNN algorithm used for classification can
be attributed to the lightweight feature vectors and small
size of the dataset, which consisted of 80 entries. This al-
gorithm has to iterate over each entry in the dataset, and
therefore there could be a drop in classification speed with
very large datasets. However, adding a small amount of en-
tries should not affect classification speed drastically. The
extendability test demonstrated that just by entering the
”L” gesture five times over, the system was still able to clas-
sify the new gesture correctly most of the time. Machine
learning algorithms used in literature that do not have their
classification speed dependent on the dataset size, such as
an ANN or SVM, can be explored for VR HGR.
The feature vectors, while being lightweight, are unable to
represent hand orientation. While this may be good in some
cases where orientation independence is important, other
cases where gestures are orientation dependent will have is-
sues. One such case is differentiating the thumbs-up and
thumbs-down gesture; they can both be described by the
same feature vector used in this investigation, even though
they should be classified as different gesture types.
While these results show a high accuracy, it is uncertain
whether cameras will replace remote controls as the means
for VR interaction. A remote-based approach is always ac-
curate as it does not suffer from occlusion, however cameras
do not encumber the user with hand-held devices and allow
for a freer range of movement. It is possible that a combi-
nation of multiple cameras (such as a dual-LMC setup [25])
or other devices would improve the accuracy to the point
that they become more viable than remote-based devices.
However, the cost and lack of mobility when using multiple
cameras may prove to be prohibitive.

6. CONCLUSION AND FUTURE WORK
This paper describes the creation of a system for machine

learning-based HGR in a VR world, as there is a need to
analyze how well the kNN classifier, which is widely used
for static HGR in non-VR scenarios, performs in VR appli-
cations. The Oculus Rift DK2 was used to render the case-
study VR world built using the Unreal Engine 4, while the
Oculus-mounted LMC was used to detect the user’s hands.
The system was applied to a 3D stellar data visualization
application controlled entirely by hand gestures. The sys-
tem needed to be able to learn and classify any static ges-
ture made in real-time as well as classify two predefined
application-specific dynamic gestures in real-time. The sys-
tem was found to be extendable enough to accurately rec-
ognize any newly learned static gesture, and the static ges-
ture recognition algorithm took 0.057ms on average to run.
This demonstrates the fact that the system is lightweight
enough to allow the program to run at a high framerate,
which is an important consideration to take when develop-
ing for VR. A preliminary user study was taken out on three
new users, all of whom observed no latency or discomfort.
Static gestures used in the application had an 82.5% accu-



racy rate, with a minimum of 60% accuracy with the point
gesture and a maximum of 100% accuracy with the fist ges-
ture. Gestures with low accuracy ratings primarily suffered
from occlusion issues. The sample size of three users in the
preliminary study cannot prove that the system is effective
for all users. It does show some potential of the system, but
further testing will be required. Leap Motion have released
a beta software update for the LMC called Orion, which is
built specifically for hand detection in VR [22]. Using Orion
in future work may reduce occlusion complications and im-
prove accuracy. Other means of improving accuracy could
include augmenting the LMC input with other data, such as
that captured by a webcam, the MYO [26], or using an addi-
tional LMC placed on a different axis. The use of ANNs and
SVMs could be analyzed with respect to classification speed
and accuracy in VR. The low computation time also sug-
gests that more complex features could be used for a higher
recognition accuracy with an acceptable latency.
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8. APPLICATION DEMONSTRATION
A short demonstration of the application can be seen at

https://www.youtube.com/watch?v=gA7nc1TTM2k.
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