
Implementation, Validation and Profiling of a Genetic
Algorithm for Molecular Conformational Optimization

Victor Gueorguiev
Department of Computer Science,

University of Cape Town,
Private Bag X3, Rondebosch, 7701,

South Africa
GRGVIC001@myuct.ac.za

 Michelle Kuttel
Department of Computer Science,

University of Cape Town,
Private Bag X3, Rondebosch, 7701,

South Africa
mkuttel@cs.uct.ac.za

ABSTRACT

Prediction of the lowest energy conformation of a protein chain is
a challenging optimization problem in computational chemistry
and biology. Simple lattice-based protein models have been
shown to be effective representations of the characteristics of
proteins important in protein folding. An effective genetic
algorithm for conformational optimization of proteins represented
by the hydrophobic-hydrophillic lattice model was recently
published. In this work, we create a publically available
implementation of this genetic optimization algorithm. Tests of
our implementation show equivalent performance to that reported
for the original, in terms of both optimal conformation and
number of function evaluations. In addition, we test our
implementation across a range of data set sizes to characterize the
performance of the algorithm as chain length increases:
benchmarking that is necessary for future optimization and
parallelization of the algorithm.

CCS Concepts
• Computing methodologies→Molecular simulation

Keywords
Genetic algorithm; HP Lattice; conformational search; energy
optimization; hydrophobic-hydrophilic model.

1. INTRODUCTION
Determination of the three dimensional structure of an arbitrary
protein from the sequence of its constituent amino acids has been
identified as one of the ten most sought after solutions in protein
bioinformatics [1]. Most proteins fold rapidly into a well-defined
single low-energy conformation under physiological conditions.
The conformation of a given protein is of interest because it
largely determines the protein’s biological function. Thus,
knowledge of the three-dimensional structure of a protein can

assist in understanding disease mechanisms and hence inform
drug design strategies.

The theoretical prediction of the structure of a specific protein
chain requires both an effective model of the protein structure as
well as an efficient optimization algorithm. The most accurate
atom models are quantum-mechanical. However, although the
interactions between atoms are governed by quantum mechanics,
currently it is not feasible to perform a precise quantum-
mechanical conformational optimization for large molecules such
as proteins. Therefore, theoretical models commonly used for
conformational modeling instead use classical mechanical
approximations. These molecular mechanical models range from
complex all-atom representations with a force expression
representing interactions between atoms, to coarse-grained (but
effective) lattice models where each amino acid monomer is
represented as a single unit.

Lattice models simplify the molecular representation by both
removing atomic detail and discretizing space as a lattice. The
simplest model, the hydrophobic-hydrophilic (HP) lattice model,
represents a protein as a series of connected amino acid monomers
on a 3D lattice. All constituent amino acids are classified as
either hydrophobic (H) or hydrophyllic/polar (P) monomers.
Despite their simplicity, lattice-based protein models have been
shown to exhibit key features of the protein-folding mechanism
[2] and are an effective simplification for studying this process
[3].

However, even with the simplest models, the conformational
space available to a protein is enormous. As a result, an exact
solution to the conformational optimization problem rapidly
becomes infeasible as the length of the input protein chain
increases: the folding problem for the HP-model has been
demonstrated to be NP-complete [4]. More tractable approximate
search methods are therefore employed for optimization. Several
biologically-inspired algorithms have been applied to the HP-
lattice optimization problem, including memetic algorithms [5,6],
particle swarm optimization [7], a contact interactions method [8],
an immune algorithm [9] and ant colony optimization [10].
Custiodio et al. recently reported a related approach to
optimization of HP-lattice models using a genetic algorithm,
termed the “adaptive genetic algorithm with phenotypical
crowding” or GAHP [5]. This method employs a “crowding”
parental replacement strategy which forces competition between
the most similar individuals in the population. This approach
allows for the formation of niches and thus the preservation of
genetic diversity in the population. As the GAHP algorithm
showed promising results – increased performance (as measured
by fewer function evaluations) compared to competing algorithms
and improved solutions (as measured by the number of H-H
contacts) – we wished to use it for future work. However, despite

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.

SAICSIT '16, September 26 - 28, 2016, Johannesburg, South Africa.

Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-4805-8/16/09…$15.00

DOI: http://dx.doi.org/10.1145/2987491.2987529

the fact that the original paper states “GAHP’s source code will be
made available on request to the academic community”, repeated
requests to the authors for the code were not forthcoming.
Therefore, in this work we created an implementation of the
GAHP method. Our goal was to create a correct implementation
that was freely available to the public and which can be used as a
platform with which to test and profile the method for
performance improvements, including parallelization for
execution on multiple cores. Our implementation is here validated
through reproduction of the tests described in the original paper.
We then extend the tests of the method with both larger and
smaller data sets, and, finally, profile the performance of the
method across a range of protein chain lengths.

2. METHODS
Our implementation of the GAHP algorithm is here termed
AGAHP (Alternative implementation of GAHP) to avoid
confusion with the original. Our implementation is freely
available on Github at https://github.com/BrutishGuy/ADAGP. In
our development, we closely followed the methods described in
Custiodio et al. [5], as follows.

2.1 HP model
The hydrophobic–polar (HP) model is premised on the
hydrophobic effect: during the folding process, hydrophobic
amino acids will tend to group together in a hydrophobic core of
the protein, hidden from the water solvent (which is polar).
Conversely, the hydrophilic, polar amino acids will tend to lie on
the surface of the protein exposed to water. The HP-model
therefore abstracts the amino acid sequence to a binary sequence
of monomers that are either hydrophobic (H) or hydrophilic/polar
(P).

The HP lattice model for a specific protein is stored as a sequence
of directions that are traversed in the 3D lattice to reach the next
H or P monomer [5]. There are six possible directions from any
lattice point: 𝐹,𝐵, 𝐿,𝑅,𝑈,𝐷 - forward, back, left, right, up and
down (Figure 1).

2.2 Fitness function
The energy of a conformation in the HP lattice is calculated as the
negative of the number of hydrophobic–hydrophobic contacts,

defined as two non-consecutive (i.e. non-bonded) H monomers
occupying adjacent sites on the lattice. For the genetic algorithm,
energy is equivalent to fitness: a lower energy implies a more
optimal model. Optimization aims to find the best conformation
for a given HP sequence (i.e. with the most H-H contacts) by
modifying the direction sequence using the genetic operators,
discussed in Section 2.5.

2.3 Initial population
From the specification of the sequence of H or P monomers for
the protein chain under investigation, an initial population of
molecular conformations is randomly generated and checked with
a repair mechanism (discussed below). The initial population was
set to 500 individuals and function evaluations limited to four
million (equivalent to roughly two hundred thousand generations
in this scheme). In cases of comparisons with other algorithms
and where optimal energies are known, this upper bound was
rarely reached.

2.4 Parental selection and replacement
Each generation creates ten new individuals, which may or may
not be added to the population.

Parent conformation structures are chosen from the population
with tournament selection [14, 15]. Four candidates for the
tournament are selected randomly from the population; the
tournament then proceeds by selecting one or two individuals
(based on the operator being used) with the probability, 𝑃! , of
selecting the 𝑖th individual with fitness 𝑓! from a population of
size 𝑁 given by

𝑃! =
𝑓!
𝑓!!

!!!
(2)

This strategy allows for the fittest individuals to be selected more
often, while still preserving diversity in the population.

When new individuals are created from the population, members
must be replaced to maintain a fixed population size. In the
“crowding” strategy implemented, a distance metric is used to
determine the closest matching individual in the population to the
new member; if the new member has a lower energy than the
closest member, the new member replaces it in the population. If
they have equal values, then there is a fifty percent chance of
replacement. In the final case the new individual is discarded. The
distance metric is the distance metric error (DME) given by

𝐷𝑀𝐸 =
𝑝! − 𝑞!
𝑁 𝑁 − 1

!

!,!

(3)

where summation is over the length of both the molecules, the
value 𝑝! is the magnitude of the 𝑖th coordinate of H monomer site
in the first chain and 𝑞! denotes the magnitude of the 𝑗th
coordinate of the H monomer site on the second chain. This
function is computationally expensive to evaluate: even using
matrix operations, this step is still 𝑂(𝑛!) and thus one of the
biggest bottlenecks in the algorithm.

Figure 1:An example of the HP lattice encoding scheme. The
blue spheres are H monomers and white are the P monomers.
The white connectors indicate the molecular chain and blue
connectors indicate the HH contacts. Here the fitness of the

molecule is 4 (4 contacts).

2.5 Genetic operators
There are six genetic operators that can be applied to a chain in
the GAHP algorithm: two-point crossover (2X), multi-point
crossover (MPX), local move (LM), segment mutation (SMUT),
exhaustive search mutation (EMUT) and loop move (LPM). The
crossover 2X and MPX operators are standard in genetic
algorithms [15]. 2X conducts a two-point crossover of parents to
produce two new members of the population. The MPX operator
chooses multiple crossover points from the parent sequences (a
random number of points between 2 and 10) and produces two
offspring using alternating segments from each parent.

The LM, LPM, SMUT and EMUT operators are more complex,
specific to the HP-problem, and are discussed in detail in
Custodio et al. [5].

The LM operator swaps the directions of two consecutive
monomers at a random location in the HP sequence. For example,
if the moves for two consecutive monomers are U,R (up, then
right), LM will alter the sequence to R,U.

The LPM operator works in a similar fashion, except that the
monomers with swapped directions are not necessarily adjacent,
but are chosen from two random locations on the monomer chain.

The SMUT operator works on a segment of molecule (of a
random size between 2 and 7 monomers) and changes the
direction of each monomer randomly to one of the six directions.
Note that the random choice may be the same as the original
value.
The EMUT operator selects a random monomer in the HP
sequence and changes its direction to the best possible direction
among the six according to the fitness function evaluation for each
option. Only five evaluations are required, as the current
conformation evaluation is already calculated in the previous step.

After application of any of the operators LM, LPM, SMUT and
EMUT to a molecular HP chain, collision detection must be
performed to ensure that the molecule is still in a valid
conformation.

2.5.1 Dynamic application of operators
Operators are applied according to a dynamic probability [5]
which is adjusted every generation, as follows. Whenever an
operator creates an individual with better fitness than the current
best in the population, that operator is rewarded with a numerical
reward equal to the difference in HH contacts between the old
best and current individual. The operators that created the parent
of the individual are rewarded with half that amount (or a quarter
to each if two parents were used in crossover rather than a single
parent in mutation). This simple reward addition for the 𝑖th
operator is given by

𝑅! = 𝑅! + 𝑓!"!!"#$ − 𝑓!"!!"#$ (4)

The probability is then

𝑃 𝑖 =
𝑅!
𝑅!!

!!!
 5 .

After the creation of ten new individuals, the probabilities of
operators are adjusted to new values calculated as their current
overall reward as fraction of the total reward for all operators. No
probability can fall below five percent so as to eliminate it from
use, a simple check subtracts the shortfall from the current highest
probability to keep probabilities above five percent. The rewards
for each operator are initialized to 1 to ensure uniformity. Finally,

if an operator has not produced an optimal individual in five
hundred calls to the method, then a penalty of one unit is given as
a negative reward, while maintaining that the operator’s reward
stays above one. This mechanism ensures that operators that
stagnate the population after some time are penalized and then
allows for other operators to be more likely, eventually returning
to a uniform distribution if no improvements are made. This has
the benefit of exploring the fitness landscape more efficiently for
a global minimum.

2.6 Collision detection and repair
Collision detection entails checking that set of directions for a
given chain of monomers does not result in two monomers
occupying the same lattice point. The collision detection
algorithm [5] starts from a lattice coordinate {x,y,z}. Then, to
calculate the next coordinate, a unit is added or subtracted from
the relevant coordinate of the point (x or y or z) according to the
direction listed (for example, a move of F adds 1 to x, whereas B
subtracts 1). Each point calculated is added to a list of points. If a
newly calculated point is already in the list, then a collision has
occurred. If the molecule is traversed without any collisions, then
it is a valid conformation.

A repair mechanism is used in the generation of new molecules
for the initial population. In this procedure, a candidate is
checked at each stage/monomer for a collision. If one occurs, the
monomer is assigned a new random direction. This procedure
repeats until either there is no longer a collision, or all directions
lead to collisions. In the latter case, rather than removing the
member from the population, the fitness of the individual is
assigned to zero.

2.7 Validation and performance
To compare our AGAHP to the results reported for GAHP, we
used the same data sets reported in original work, as follows. We
used two sets of randomly generated sequences comprising ten
sequences of protein molecules 48 monomers in length (numbered
48.1 to 48.10) [10] and ten sequences of proteins 64 monomers in
length (numbered 64.1 to 64.10) [7]. In addition, we used five
biologically inspired sequences comprising 46, 58, 103, 124 and
136 length monomers [12, 13]. In analyzing function evaluations,
chains of 27 monomers were used [7]. All data sets are included
in the open-source implementation.

In addition, we tested the algorithm further with randomly
generated chains. First, we generated a data set of three protein
chains 200 monomers in length: chain 200.1 has 100 hydrophobic
monomers, 200.2 has 50, and 200.3 has 30. For each test case
involving a specific molecule, a set of fifty runs (twenty for
molecules of length 200) was recorded and the best result, the
average of the best results and the standard deviation is quoted for
the AGAHP.

Then we generated chains for benchmarking of the code. For this,
chains of sizes 25, 50, 75, 100, 125... 200, 225, and 250 were
generated, with 50% of monomers hydrophobic (H). The
algorithm was executed with each chain on ten trials/runs with
3000 generations each and the time taken to execute the entire
calculation is taken. This gives a good indication of the scalability
of the algorithm with increasing chain length. Of course, runtime
will vary according to the machine it is executed on, but this
serves as an indication of the scalability of the algorithm with
increasing monomer length.

Averages and standard deviations for fitness values of optimal
structures predicted by the algorithm are calculated over 50 runs
for the sequences of length 64 and 27 shown in Tables 3 and 4,

and over 20 runs for the sequences of length 200, with a
population size of 500 and 3000 generations in each case.
Repeated runs are necessary for exploring solution space, as the
algorithm has many random components and varying initial
conditions.

The performance of the algorithm is analyzed in a similar way to
F.L. Custodio et al. [5]. A call to evaluate the fitness of a
candidate in the population counts as a function call/evaluation.
The number of function evaluations to reach an optimal (or best
solution in the case no optimal is found) fitness for a given
monomer sequence compared against the performance analysis
conducted on GAHP (which have also conducted their own
comparisons against other methods).

3. RESULTS AND DISCUSSION
Our reimplementation of the GAHP algorithm, AGAHP,
produced comparable results to GAHP for the overwhelming
majority of test cases (Table 1). For the set of 48- and 64-
monomer chains (Table 1) AGAHP produced results that agree
with GAHP on eight of the ten cases for the 48 length chains and
6 out of the 10 on the 64 length chains. Note that the results for
GAHP are not necessarily optimal and that alternative algorithms
or, indeed, additional experiments may identify more optimal
structures. Molecular conformational optimization suffers to a
considerable degree form the multiple-minima problem: as
discussed in Custodio et al., the low standard deviation for the
best fitness values over the fifty runs is indicative of the
algorithm’s tendency to become stuck in a tightly packed fitness
landscape of local optima around a low-energy conformation.
This is quite evident from the standard deviation associated with
the mean of each fitness measurement: each experiment, with 50
trials/ runs, had a substantial deviation with respect to the quoted
mean, indicating that there were widely varying best fitness values
at the end of each of the trials. For example, using sequence 64.1,
fitness values ranged from 21 to the optimal 31 and an average of
26.13. Because of the random nature of this algorithm, repeated
experiments may produce different results. It is thus quite
conceivable that, over many more trials, the algorithm may
converge to a more optimal structure. Indeed, our implementation
identifies structures with more H-H contacts than the original
GAHP in some of the “biologically inspired” test cases: 46.1, 58.1
and 103.1. Further, in most cases the averages between AGAHP
and GAHP do fall within the bounds of each other's standard
deviations. However, on some of the test cases, (e.g. 48.3 and
64.6) the AGAHP averages trailed the GAHP minimum by two
or three H-H contacts with a low standard deviation, indicative of
a local minima traps.

Sample conformations for structures 64.5, 64.8 and 103.1 are
shown in Figure 2. Note that a similar di-core structure of the
103.1 chain was also seen by Custodio et al, but our more optimal
structure has two additional contacts.

We also calculated optimal structures for three randomly
generated 200-monomer protein chains (Table 2 and Figure 3).
The genetic algorithm was not previously tested on structures of
this size. The 200.3 chain has the fewest hydrophobic monomers
(30) and hence the most extended conformation (Figure 3c), while
200.1 with 50% hydrophobic monomers is the most compressed
conformation, with a large hydrophobic core (Figure 3a).

Table 1: Comparison of best and average structures in terms
of number of HH contacts reported for the original GAHP [3]
and our AGAHP implementation. Standard deviations are
shown in brackets and best estimates across both
implementations are in bold.

No.
monomers ID

GAHP AGAHP

Best µ (σ) Best µ (σ)

48

1 32 30.72 (0.67) 32 29.98 (0.89)

2 34 31.26 (0.59) 34 31.11 (0.78)

3 34 32.08 (0.80) 32 30.41 (0.52)

4 33 31.16 (0.81) 33 30.93 (0.94)

5 32 30.52 (0.73) 31 29.81 (0.65)

6 32 29.86 (0.78) 32 29.32 (0.86)

7 32 29.82 (0.56) 32 28.32 (1.03)

8 31 29.32 (0.58) 31 28.26 (1.15)

9 34 31.92 (0.66) 34 30.98 (0.85)

10 33 31.08 (0.56) 33 30.06 (0.68)

64

1 31 28.50 (1.10) 30 26.13 (0.95)

2 36 33.18 (1.22) 36 32.25 (1.36)

3 44 41.88 (0.87) 43 40.69 (0.56)

4 39 36.02 (1.39) 39 35.80 (1.85)

5 40 37.96 (1.12) 38 34.88 (1.10)

6 33 31.52 (0.86) 31 28.55 (0.86)

7 28 26.70 (0.70) 28 24.69 (1.03)

8 36 33.72 (0.85) 36 32.26 (1.35)

9 38 36.32 (0.93) 38 35.12 (1.25)

10 31 28.90 (0.88) 31 28.51 (0.68)

46 1 35 33.04 (32.84) 36 33.23 (2.45)

58 1 42 40.04 (39.43) 43 38.56 (2.36)

103 1 50 46.58 (46.58) 52 47.67 (3.56)

124 1 63 58.12 (58.12) 63 56.55 (4.85)

136 1 70 62.22 (62.22) 68 60.32 (5.01)

Table 2: Best and average structures and number of function
evaluations for AGAHP for three randomly generated

structures of 200 monomers: 200.1 has 100 hydrophobic
monomers, 200.2 has 50, and 200.3 has 30.

No.
monomers ID Best µ (σ) No. f. eval.

200

1 98 87.15 (7.33) 465 300

2 48 38.03 (6.46) 392 600

3 29 21.68 (6.12) 367 100

The histograms of unique conformations with a specific number
of H-H contacts for each of the three 200-monomer chains are
graphed in Figure 4. As seen for shorter chains in the original
work by Custodio et al, in each case there is a peak near mean
number of H-H contacts for each chain, indicating that the
algorithm identifies many suboptimal solutions very close to the
optimal solution. An interesting additional feature we see for these
larger chains is the skewness of the peaks near the mean. These
indicate that, for larger chains, the algorithm finds substantially
more members of lower fitness below the mean value, as it builds
up to optimum and sub-optimum solution: the algorithm takes
longer to explore this much larger fitness landscape. A further
point is that, as the number of hydrophobic residues decrease from
200.1 to 200.3, the peak is less distinct and the number suboptimal
conformations increases.
In terms of performance, the GAHP and AGAHP
implementations show a similar number of fitness function
evaluations (Table 3). Differences in the number of evaluations is
again a largely statistical phenomenon due to the random nature of
operator applicability, which results in different numbers of
function evaluations depending on which type of operator
(mutation or crossover) is called.

Table 3: Number of function evaluations reported for the
original GAHP [3] and calculated for our AGAHP

implementation for protein chains 64 amino acids in length.

No.
monomers ID GAHP AGAHP

64

1 228 000 198 600

2 115 000 131 200

3 87 000 94 400

4 159 000 145 400

5 134 500 149 500

6 177 000 191 400

7 76 500 71 600

8 178 500 165 400

9 74 500 103 200

10 82 500 98 300

It is interesting to compare the genetic algorithm’s performance
on short 27-monomer chains with that reported for the particle
swarm optimization (PSO) [7] and contact interactions (CI) [8]
(Table 3), an analysis not done by Custodio et al., who found
better performance for the longer-chains they used for
comparison. Despite finding optimum conformations for all
chains, the genetic algorithm does not always perform as well as
competing models on short chains in terms of function
evaluations. All though all algorithms found the same global
minimum structures, the genetic algorithm in some cases requires
many more function evaluations to achieve the same results. This
poor performance on smaller length monomer chains might be
attributed to the fact that the algorithm uses six operators together
with dynamically varying probabilities, which might be an overly
complex solution to a level of problem able to be solved by
simpler methods. For example, the EMUT requires four fitness
evaluations but may be an unnecessary operator for small
problems. Therefore, the genetic algorithm performs poorly on

smaller data sets, but out-performs other methods as the data size
increases [5].
Further, our analysis of the number of function evaluations is
performed for longer chains of 200 monomers shows that the
number of function evaluations can vary widely for different
chains (Table 2). The number of evaluations tends to increase
with increasing numbers of hydrophobic monomers for the three
200-monomer chains 200.1 has 100 hydrophobic monomers
(465 300 function evaluations), and 200.3 has 30 (367 100
function evaluations).

(a)

(b)

(c)

Figure 2: Best structures for selected sequences, with H-
H contacts shown in blue. (a) 64.5 (38 H-H contacts),
(b) 64.8 (36 contacts) and (c) 103.1 (52 contacts).

Table 4: Number of function evaluations reported for the

particle swarm optimization (PSO) [7] and contact
interactions (CI) [8] methods and calculated for our AGAHP
implementation for protein chains 27 amino acids in length.

No.
monomers ID AGAPC	
 CI	
 PSO	

27

1 6 870 15 854 3 158
2 7 980 19 965 5 771
3 9 410 7 991 2 667
4 10 200 23 525 8 556
5 4 920 3 561 893
6 9 870 14 733 12 790
7 13 560 23 112 17 024
8 1 540 889 149
9 2 270 5 418 1 915

10 3 150 5 592 2 638

(a)

(b)

(c)

Figure 3: Optimal structures for chains (a) 200.1, (b) 200.2
and (c) 200.3. H-H contacts are shown in blue. Figure 5: Plot of the real-time execution versus the length of the molecule

chain, on logarithmic scale, for monomers ranging from length 25 to 250,
together with fitted exponential model

Figure 4: Plots of the number of unique conformations that

appear over a 20 trial execution with 3000 generations using a
pool size of 500 chains of length 200. The results are shown for

the three 200-monomer chains; 200.1, 200.2 and 200.3

While the number of fitness function evaluations is the crucial
measure of performance when considering the time it takes to
reach global minimum [5,7,8], it is also useful to compare real-
time analysis of performance, as the fitness function is not the
only costly operation in the algorithm: the DME function is also
expensive. The time required for execution on chains ranging
from 25-250 monomers is plotted on a logarithmic scale in Figure
5. This shows that the real-time execution of the algorithm is
exponential with respect to the length of the molecule chain: one
can see an increase in the execution time data points which
appears linear in this scaling regime. A Chi-square test of the data
using an exponential model yields a good fit to the data. This

analysis indicates that the genetic algorithm could benefit from a
parallel genetic algorithm, [15] to reduce the time required to
optimize long protein chains.

4. CONCLUSIONS AND FUTURE WORK
We have created an alternative and publicly available
implementation of the GAHP genetic algorithm for protein
structure prediction using the hydrophobic-hydrophilic lattice
model. Our alternative implementation is freely available to the
public at https://github.com/BrutishGuy/ADAGP.

We have tested this implementation on the data sets used for the
original implementation, as well as on additional data sets and
found that the results agree with those produced by GAHP on a
large majority of the test cases. On the additional data sets, some
novel structures were observed, such as di-core and tri-core
hydrophobic cores.

Our analysis of the number of function evaluations shows
equivalent performance to that reported for GAHP. The analysis
on shorter length chains shows that the algorithm performs worse
compared to other methods by requiring more function
evalutations.

In addition, our real-time analysis of the execution on chains
ranging in size from 40 -400 monomers shows a non-linear
exponential increase in the real-time execution as the length of the
chain increases, holding all other algorithm parameters constant.
This points to promising future work of introducing a parallel
genetic algorithm that may be run on multi-processor or multi-
core architectures to achieve a speed-up for larger and more
interesting chain structures and reduce the execution time needed.
In addition, extension of our implementation to a more
sophisticated all-atom model, as in Custodio et al., will also be
explored.

5. ACKNOWLEDGMENTS
The South African Medical Research Council funding agency
provided financial support for this work.

6. REFERENCES
[1] Tramontano, A. 2005. Problem 4: Protein Structure

Prediction. In The Ten Most Wanted Solutions in Protein

[2] Bioinformatics, Chapman & Hall/CRC mathematical
biology, Etheridge, A., Gross, L., Lenhart, S., Maini, P.,
Safer, H. Voit, E., Eds.; CRC Press: Boca Raton, FL, 117-
139.

[3] Chandru, V., DattaSharma, A. and Kumar, V.S.A. 2003. The
algorithmics of folding proteins on lattices, Discrete Appl.
Math. 127,1,145–161.

[4] Berger, B. and Leighton, T. 1995. Protein folding in the
hydrophobic hydrophilic (HP) model is NP-complete.
Journal of Computational Biology, 5, 27-40.

[5] Custodio, F. L., Barbosa, H. J. C., Dardenne, L. E. 2014. A
multiple minima genetic algorithm for protein structure
prediction, Applied Soft Computing, 15, 88-99.

[6] Bazzoli, A. and Tettamanzi, A. G. B.. 2004. Memetic
algorithm for protein structure prediction in a 3D-lattice HP
model, Applications of Evolutionary Computing,
EvoWorkshops, 1-10.

[7] Mansour, N., Kanj, F. and Hassan, K., 2012. Particle Swarm
Optimization Approach for the Protein Structure Prediction

in the 3D HP Model. Interdisciplinary Sciences Computer
Life Sciences, 4, 190-200.

[8] Toma, L. and Toma, S. 1996. Contact interactions method: A
new algorithm for protein folding simulations. Protein
Science, 147-153.

[9] Cutello, V., Nicosia, G., Pavone, M., and Timmis, J. 2007.
An immune algorithm for protein structure prediction on
lattice models, Trans. Evol. Comp. 11, 1, 101–117.

[10] Shmygelska, A. and Hoos, H.H. 2005. An ant colony
optimisation algorithm for the 2D and3D hydrophobic polar
protein folding problem, BMC Bioinformatics. Vol. 6, 30.

[11] Hart, W., Krasnogor, N. , Smith, J. and Pelta, D. 1999.
Protein structure prediction with evolutionary algorithms.

Proceedings of the Genetic and Evolutionary Computation
Conference, Vol. 23, 1596-1601.

[12] K. A. Dill, H. S. Chan and K. M. Fiebig, "Cooperativity in
protien-folding kinetics," Proceedings of the National
Academy of Sciences, USA, vol. 90, pp. 1942-1946, 1993.

[13] K. Yue, K. M. Fiebig, P. D. Thomas, H. S. Chan, E. I.
Shaknhovich and K. A. Dill, "A test of lattice protein folding
algorithms," Proceedings of the National Academy of
Sciences, USA, pp. 325-329, 1995.

[14] Melanie, M. Introduction to Genetic Algorithms, Cambirdge,
Massachusetts: The MIT Press, 1999.

[15] Davis, L. Handbook of Genetic Algorithms, Boston: London
International Thomson Computer Press, 1

