
Implementation, Validation and Profiling of a Genetic 
Algorithm for Molecular Conformational Optimization 

Victor Gueorguiev  
Department of Computer Science, 

University of Cape Town,  
Private Bag X3, Rondebosch, 7701, 

South Africa  
GRGVIC001@myuct.ac.za

 Michelle Kuttel 
Department of Computer Science, 

University of Cape Town,  
Private Bag X3, Rondebosch, 7701, 

South Africa  
mkuttel@cs.uct.ac.za 

 
ABSTRACT 

Prediction of the lowest energy conformation of a protein chain is 
a challenging optimization problem in computational chemistry 
and biology. Simple lattice-based protein models have been 
shown to be effective representations of the characteristics of 
proteins important in protein folding.  An effective genetic 
algorithm for conformational optimization of proteins represented 
by the hydrophobic-hydrophillic lattice model was recently 
published. In this work, we create a publically available 
implementation of this genetic optimization algorithm. Tests of 
our implementation show equivalent performance to that reported 
for the original, in terms of both optimal conformation and 
number of function evaluations. In addition, we test our 
implementation across a range of data set sizes to characterize the 
performance of the algorithm as chain length increases: 
benchmarking that is necessary for future optimization and 
parallelization of the algorithm. 

CCS Concepts 
• Computing methodologies→Molecular simulation  
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1. INTRODUCTION 
Determination of the three dimensional structure of an arbitrary 
protein from the sequence of its constituent amino acids has been 
identified as one of the ten most sought after solutions in protein 
bioinformatics [1]. Most proteins fold rapidly into a well-defined 
single low-energy conformation under physiological conditions. 
The conformation of a given protein is of interest because it 
largely determines the protein’s biological function. Thus, 
knowledge of the three-dimensional structure of a protein can 

assist in understanding disease mechanisms and hence inform 
drug design strategies. 

The theoretical prediction of the structure of a specific protein 
chain requires both an effective model of the protein structure as 
well as an efficient optimization algorithm.  The most accurate 
atom models are quantum-mechanical.  However, although the 
interactions between atoms are governed by quantum mechanics, 
currently it is not feasible to perform a precise quantum-
mechanical conformational optimization for large molecules such 
as proteins.  Therefore, theoretical models commonly used for 
conformational modeling instead use classical mechanical 
approximations.  These molecular mechanical models range from 
complex all-atom representations with a force expression 
representing interactions between atoms, to coarse-grained (but 
effective) lattice models where each amino acid monomer is 
represented as a single unit.   

Lattice models simplify the molecular representation by both 
removing atomic detail and discretizing space as a lattice.  The 
simplest model, the hydrophobic-hydrophilic (HP) lattice model, 
represents a protein as a series of connected amino acid monomers 
on a 3D lattice.   All constituent amino acids are classified as 
either hydrophobic (H) or hydrophyllic/polar (P) monomers. 
Despite their simplicity, lattice-based protein models have been 
shown to exhibit key features of the protein-folding mechanism 
[2] and are an effective simplification for studying this process 
[3]. 

However, even with the simplest models, the conformational 
space available to a protein is enormous.  As a result, an exact 
solution to the conformational optimization problem rapidly 
becomes infeasible as the length of the input protein chain 
increases: the folding problem for the HP-model has been 
demonstrated to be NP-complete [4]. More tractable approximate 
search methods are therefore employed for optimization.  Several 
biologically-inspired algorithms have been applied to the HP-
lattice optimization problem, including memetic algorithms [5,6], 
particle swarm optimization [7], a contact interactions method [8], 
an immune algorithm [9] and ant colony optimization [10]. 
Custiodio et al. recently reported a related approach to 
optimization of HP-lattice models using a genetic algorithm, 
termed the “adaptive genetic algorithm with phenotypical 
crowding” or GAHP [5]. This method employs a “crowding” 
parental replacement strategy which forces competition between 
the most similar individuals in the population.  This approach 
allows for the formation of niches and thus the preservation of 
genetic diversity in the population. As the GAHP algorithm 
showed promising results – increased performance (as measured 
by fewer function evaluations) compared to competing algorithms 
and improved solutions (as measured by the number of H-H 
contacts) – we wished to use it for future work.  However, despite 
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the fact that the original paper states “GAHP’s source code will be 
made available on request to the academic community”, repeated 
requests to the authors for the code were not forthcoming.  
Therefore, in this work we created an implementation of the 
GAHP method. Our goal was to create a correct implementation 
that was freely available to the public and which can be used as a 
platform with which to test and profile the method for 
performance improvements, including parallelization for 
execution on multiple cores. Our implementation is here validated 
through reproduction of the tests described in the original paper.  
We then extend the tests of the method with both larger and 
smaller data sets, and, finally, profile the performance of the 
method across a range of protein chain lengths. 

 

2. METHODS 
Our implementation of the GAHP algorithm is here termed 
AGAHP (Alternative implementation of GAHP) to avoid 
confusion with the original.  Our implementation is freely 
available on Github at https://github.com/BrutishGuy/ADAGP. In 
our development, we closely followed the methods described in 
Custiodio et al. [5], as follows. 

2.1 HP model 
The hydrophobic–polar (HP) model is premised on the 
hydrophobic effect: during the folding process, hydrophobic 
amino acids will tend to group together in a hydrophobic core of 
the protein, hidden from the water solvent (which is polar). 
Conversely, the hydrophilic, polar amino acids will tend to lie on 
the surface of the protein exposed to water.  The HP-model 
therefore abstracts the amino acid sequence to a binary sequence 
of monomers that are either hydrophobic (H) or hydrophilic/polar 
(P).   
 

The HP lattice model for a specific protein is stored as a sequence 
of directions that are traversed in the 3D lattice to reach the next 
H or P monomer [5]. There are six possible directions from any 
lattice point: 𝐹,𝐵, 𝐿,𝑅,𝑈,𝐷   - forward, back, left, right, up and 
down (Figure 1).  
 

2.2 Fitness function 
The energy of a conformation in the HP lattice is calculated as the 
negative of the number of hydrophobic–hydrophobic contacts, 

defined as two non-consecutive (i.e. non-bonded) H monomers 
occupying adjacent sites on the lattice. For the genetic algorithm, 
energy is equivalent to fitness: a lower energy implies a more 
optimal model.  Optimization aims to find the best conformation 
for a given HP sequence (i.e. with the most H-H contacts) by 
modifying the direction sequence using the genetic operators, 
discussed in Section 2.5. 
 

2.3 Initial population 
From the specification of the sequence of H or P monomers for 
the protein chain under investigation, an initial population of 
molecular conformations is randomly generated and checked with 
a repair mechanism (discussed below). The initial population was 
set to 500 individuals and function evaluations limited to four 
million (equivalent to roughly two hundred thousand generations 
in this scheme). In cases of comparisons with other algorithms 
and where optimal energies are known, this upper bound was 
rarely reached.  
 

2.4 Parental selection and replacement 
Each generation creates ten new individuals, which may or may 
not be added to the population.  

Parent conformation structures are chosen from the population 
with tournament selection [14, 15]. Four candidates for the 
tournament are selected randomly from the population; the 
tournament then proceeds by selecting one or two individuals 
(based on the operator being used) with the probability, 𝑃! ,  of 
selecting the 𝑖th individual with fitness 𝑓!   from a population of 
size 𝑁 given by 
 

𝑃! =   
𝑓!
𝑓!!

!!!
(2) 

 
This strategy allows for the fittest individuals to be selected more 
often, while still preserving diversity in the population.  
 

When new individuals are created from the population, members 
must be replaced to maintain a fixed population size. In the 
“crowding” strategy implemented, a distance metric is used to 
determine the closest matching individual in the population to the 
new member; if the new member has a lower energy than the 
closest member, the new member replaces it in the population. If 
they have equal values, then there is a fifty percent chance of 
replacement. In the final case the new individual is discarded. The 
distance metric is the distance metric error (DME) given by 
 

𝐷𝑀𝐸 =   
𝑝! − 𝑞!
𝑁 𝑁 − 1

!

!,!

(  3) 

where summation is over the length of both the molecules, the 
value 𝑝! is the magnitude of the 𝑖th coordinate of H monomer site 
in the first chain and 𝑞! denotes the magnitude of the 𝑗th 
coordinate of the H monomer site on the second chain.  This 
function is computationally expensive to evaluate: even using 
matrix operations, this step is still 𝑂(𝑛!) and thus one of the 
biggest bottlenecks in the algorithm. 

Figure 1:An example of the HP lattice encoding scheme. The 
blue spheres are H monomers and white are the P monomers. 
The white connectors indicate the molecular chain and blue 
connectors indicate the HH contacts. Here the fitness of the 

molecule is 4 (4 contacts). 



 

2.5 Genetic operators 
There are six genetic operators that can be applied to a chain in 
the GAHP algorithm: two-point crossover (2X), multi-point 
crossover (MPX), local move (LM), segment mutation (SMUT), 
exhaustive search mutation (EMUT) and loop move (LPM). The 
crossover 2X and MPX operators are standard in genetic 
algorithms [15]. 2X conducts a two-point crossover of parents to 
produce two new members of the population.   The MPX operator 
chooses multiple crossover points from the parent sequences (a 
random number of points between 2 and 10) and produces two 
offspring using alternating segments from each parent.  

The LM, LPM, SMUT and EMUT operators are more complex, 
specific to the HP-problem, and are discussed in detail in 
Custodio et al. [5].   

The LM operator swaps the directions of two consecutive 
monomers at a random location in the HP sequence. For example, 
if the moves for two consecutive monomers are U,R (up, then 
right), LM will alter the sequence to R,U.  

The LPM operator works in a similar fashion, except that the 
monomers with swapped directions are not necessarily adjacent, 
but are chosen from two random locations on the monomer chain.  

The SMUT operator works on a segment of molecule (of a 
random size between 2 and 7 monomers) and changes the 
direction of each monomer randomly to one of the six directions. 
Note that the random choice may be the same as the original 
value. 
The EMUT operator selects a random monomer in the HP 
sequence and changes its direction to the best possible direction 
among the six according to the fitness function evaluation for each 
option. Only five evaluations are required, as the current 
conformation evaluation is already calculated in the previous step. 

After application of any of the operators LM, LPM, SMUT and 
EMUT to a molecular HP chain, collision detection must be 
performed to ensure that the molecule is still in a valid 
conformation.   

2.5.1 Dynamic application of operators 
Operators are applied according to a dynamic probability [5] 
which is adjusted every generation, as follows. Whenever an 
operator creates an individual with better fitness than the current 
best in the population, that operator is rewarded with a numerical 
reward equal to the difference in HH contacts between the old 
best and current individual. The operators that created the parent 
of the individual are rewarded with half that amount (or a quarter 
to each if two parents were used in crossover rather than a single 
parent in mutation). This simple reward addition for the 𝑖th 
operator is given by 

𝑅! =   𝑅! + 𝑓!"!!"#$ − 𝑓!"!!"#$     (4) 

The probability is then 

𝑃 𝑖 =   
𝑅!
𝑅!!

!!!
           5 . 

After the creation of ten new individuals, the probabilities of 
operators are adjusted to new values calculated as their current 
overall reward as fraction of the total reward for all operators. No 
probability can fall below five percent so as to eliminate it from 
use, a simple check subtracts the shortfall from the current highest 
probability to keep probabilities above five percent. The rewards 
for each operator are initialized to 1 to ensure uniformity. Finally, 

if an operator has not produced an optimal individual in five 
hundred calls to the method, then a penalty of one unit is given as 
a negative reward, while maintaining that the operator’s reward 
stays above one. This mechanism ensures that operators that 
stagnate the population after some time are penalized and then 
allows for other operators to be more likely, eventually returning 
to a uniform distribution if no improvements are made. This has 
the benefit of exploring the fitness landscape more efficiently for 
a global minimum. 

2.6 Collision detection and repair 
Collision detection entails checking that set of directions for a 
given chain of monomers does not result in two monomers 
occupying the same lattice point. The collision detection 
algorithm [5] starts from a lattice coordinate {x,y,z}. Then, to 
calculate the next coordinate, a unit is added or subtracted from 
the relevant coordinate of the point (x or y or z) according to the 
direction listed (for example, a move of F adds 1 to x, whereas B 
subtracts 1). Each point calculated is added to a list of points. If a 
newly calculated point is already in the list, then a collision has 
occurred. If the molecule is traversed without any collisions, then 
it is a valid conformation.  

A repair mechanism is used in the generation of new molecules 
for the initial population.  In this procedure, a candidate is 
checked at each stage/monomer for a collision.  If one occurs, the 
monomer is assigned a new random direction.  This procedure 
repeats until either there is no longer a collision, or all directions 
lead to collisions. In the latter case, rather than removing the 
member from the population, the fitness of the individual is 
assigned to zero.  

2.7 Validation and performance 
To compare our AGAHP to the results reported for GAHP, we 
used the same data sets reported in original work, as follows.  We 
used two sets of randomly generated sequences comprising ten 
sequences of protein molecules 48 monomers in length (numbered 
48.1 to 48.10) [10] and ten sequences of proteins 64 monomers in 
length (numbered 64.1 to 64.10) [7].  In addition, we used five 
biologically inspired sequences comprising 46, 58, 103, 124 and 
136 length monomers [12, 13]. In analyzing function evaluations, 
chains of 27 monomers were used [7].  All data sets are included 
in the open-source implementation. 

In addition, we tested the algorithm further with randomly 
generated chains.  First, we generated a data set of three protein 
chains 200 monomers in length: chain 200.1 has 100 hydrophobic 
monomers, 200.2 has 50, and 200.3 has 30.  For each test case 
involving a specific molecule, a set of fifty runs (twenty for 
molecules of length 200) was recorded and the best result, the 
average of the best results and the standard deviation is quoted for 
the AGAHP.  

Then we generated chains for benchmarking of the code. For this, 
chains of sizes 25, 50, 75, 100, 125... 200, 225, and 250 were 
generated, with 50% of monomers hydrophobic (H). The 
algorithm was executed with each chain on ten trials/runs with 
3000 generations each and the time taken to execute the entire 
calculation is taken. This gives a good indication of the scalability 
of the algorithm with increasing chain length. Of course, runtime 
will vary according to the machine it is executed on, but this 
serves as an indication of the scalability of the algorithm with 
increasing monomer length. 

Averages and standard deviations for fitness values of optimal 
structures predicted by the algorithm are calculated over 50 runs 
for the sequences of length 64 and 27 shown in Tables 3 and 4, 



and over 20 runs for the sequences of length 200, with a 
population size of 500 and 3000 generations in each case. 
Repeated runs are necessary for exploring solution space, as the 
algorithm has many random components and varying initial 
conditions.  

The performance of the algorithm is analyzed in a similar way to 
F.L. Custodio et al. [5]. A call to evaluate the fitness of a 
candidate in the population counts as a function call/evaluation. 
The number of function evaluations to reach an optimal (or best 
solution in the case no optimal is found) fitness for a given 
monomer sequence compared against the performance analysis 
conducted on GAHP (which have also conducted their own 
comparisons against other methods). 
 

3. RESULTS AND DISCUSSION 
Our reimplementation of the GAHP algorithm, AGAHP, 
produced comparable results to GAHP for the overwhelming 
majority of test cases (Table 1).  For the set of 48- and 64-
monomer chains (Table 1) AGAHP produced results that agree 
with GAHP on eight of the ten cases for the 48 length chains and 
6 out of the 10 on the 64 length chains. Note that the results for 
GAHP are not necessarily optimal and that alternative algorithms 
or, indeed, additional experiments may identify more optimal 
structures. Molecular conformational optimization suffers to a 
considerable degree form the multiple-minima problem: as 
discussed in Custodio et al., the low standard deviation for the 
best fitness values over the fifty runs is indicative of the 
algorithm’s tendency to become stuck in a tightly packed fitness 
landscape of local optima around a low-energy conformation. 
This is quite evident from the standard deviation associated with 
the mean of each fitness measurement: each experiment, with 50 
trials/ runs, had a substantial deviation with respect to the quoted 
mean, indicating that there were widely varying best fitness values 
at the end of each of the trials. For example, using sequence 64.1, 
fitness values ranged from 21 to the optimal 31 and an average of 
26.13. Because of the random nature of this algorithm, repeated 
experiments may produce different results.  It is thus quite 
conceivable that, over many more trials, the algorithm may 
converge to a more optimal structure.  Indeed, our implementation 
identifies structures with more H-H contacts than the original 
GAHP in some of the “biologically inspired” test cases: 46.1, 58.1 
and 103.1.  Further, in most cases the averages between AGAHP 
and GAHP do fall within the bounds of each other's standard 
deviations.  However, on some of the test cases, (e.g. 48.3 and 
64.6)  the AGAHP averages trailed the GAHP minimum by two 
or three H-H contacts with a low standard deviation, indicative of 
a local minima traps. 

Sample conformations for structures 64.5, 64.8 and 103.1 are 
shown in Figure 2. Note that a similar di-core structure of the 
103.1 chain was also seen by Custodio et al, but our more optimal 
structure has two additional contacts. 

We also calculated optimal structures for three randomly 
generated 200-monomer protein chains (Table 2 and Figure 3). 
The genetic algorithm was not previously tested on structures of 
this size. The 200.3 chain has the fewest hydrophobic monomers 
(30) and hence the most extended conformation (Figure 3c), while 
200.1 with 50% hydrophobic monomers is the most compressed 
conformation, with a large hydrophobic core (Figure 3a). 
 
 

Table 1: Comparison of best and average structures in terms 
of number of HH contacts reported for the original GAHP [3] 
and our AGAHP implementation. Standard deviations are 
shown in brackets and best estimates across both 
implementations are in bold. 

No. 
monomers ID 

GAHP AGAHP 

Best µ  (σ) Best µ  (σ) 

48 

1 32 30.72 (0.67) 32 29.98 (0.89) 

2 34 31.26 (0.59) 34 31.11 (0.78) 

3 34 32.08 (0.80) 32 30.41 (0.52) 

4 33 31.16 (0.81) 33 30.93 (0.94) 

5 32 30.52 (0.73) 31 29.81 (0.65) 

6 32 29.86 (0.78) 32 29.32 (0.86) 

7 32 29.82 (0.56) 32 28.32 (1.03) 

8 31 29.32 (0.58) 31 28.26 (1.15) 

9 34 31.92 (0.66) 34 30.98 (0.85) 

10 33 31.08 (0.56) 33 30.06 (0.68) 

64 

1 31 28.50 (1.10) 30 26.13 (0.95) 

2 36 33.18 (1.22) 36 32.25 (1.36) 

3 44 41.88 (0.87) 43 40.69 (0.56) 

4 39 36.02 (1.39) 39 35.80 (1.85) 

5 40 37.96 (1.12) 38 34.88 (1.10) 

6 33 31.52 (0.86) 31 28.55 (0.86) 

7 28 26.70 (0.70) 28 24.69 (1.03) 

8 36 33.72 (0.85) 36 32.26 (1.35) 

9 38 36.32 (0.93) 38 35.12 (1.25) 

10 31 28.90 (0.88) 31 28.51 (0.68) 

46 1 35 33.04 (32.84) 36 33.23 (2.45) 

58 1 42 40.04 (39.43) 43 38.56 (2.36) 

103 1 50 46.58 (46.58) 52 47.67 (3.56) 

124 1 63 58.12 (58.12) 63 56.55 (4.85) 

136 1 70 62.22 (62.22) 68 60.32 (5.01) 
 

Table 2: Best and average structures and number of function 
evaluations for AGAHP for three randomly generated 

structures of 200 monomers: 200.1 has 100 hydrophobic 
monomers, 200.2 has 50, and 200.3 has 30. 

No. 
monomers ID Best µ  (σ) No. f. eval. 

200 

1 98 87.15 (7.33) 465 300 

2 48 38.03 (6.46) 392 600 

3 29 21.68 (6.12) 367 100 
 



The histograms of unique conformations with a specific number 
of H-H contacts for each of the three 200-monomer chains are 
graphed in Figure 4.   As seen for shorter chains in the original 
work by Custodio et al, in each case there is a peak near  mean 
number of H-H contacts for each chain, indicating that the 
algorithm identifies many suboptimal solutions very close to the 
optimal solution. An interesting additional feature we see for these 
larger chains is the skewness of the peaks near the mean. These 
indicate that, for larger chains, the algorithm finds substantially 
more members of lower fitness below the mean value, as it builds 
up to optimum and sub-optimum solution: the algorithm takes 
longer to explore this much larger fitness landscape.  A further 
point is that, as the number of hydrophobic residues decrease from 
200.1 to 200.3, the peak is less distinct and the number suboptimal 
conformations increases.  
In terms of performance, the GAHP and AGAHP 
implementations show a similar number of fitness function 
evaluations (Table 3). Differences in the number of evaluations is 
again a largely statistical phenomenon due to the random nature of 
operator applicability, which results in different numbers of 
function evaluations depending on which type of operator 
(mutation or crossover) is called.   

Table 3: Number of function evaluations reported for the 
original GAHP [3] and calculated for our AGAHP 

implementation for protein chains 64 amino acids in length. 

No. 
monomers ID GAHP AGAHP 

64 

1 228 000 198 600 

2 115 000 131 200 

3 87 000 94 400 

4 159 000 145 400 

5 134 500 149 500 

6 177 000 191 400 

7 76 500 71 600 

8 178 500 165 400 

9 74 500 103 200 

10 82 500 98 300 
 

It is interesting to compare the genetic algorithm’s performance  
on short 27-monomer chains with that reported for  the particle 
swarm optimization (PSO) [7] and contact interactions (CI) [8] 
(Table 3), an analysis not done by Custodio et al., who found 
better performance for the longer-chains they used for 
comparison. Despite finding optimum conformations for all 
chains, the genetic algorithm does not always perform as well as 
competing models on short chains in terms of function 
evaluations. All though all algorithms found the same global 
minimum structures, the genetic algorithm in some cases requires 
many more function evaluations to achieve the same results. This 
poor performance on smaller length monomer chains might be 
attributed to the fact that the algorithm uses six operators together 
with dynamically varying probabilities, which might be an overly 
complex solution to a level of problem able to be solved by 
simpler methods. For example, the EMUT requires four fitness 
evaluations but may be an unnecessary operator for small 
problems. Therefore, the genetic algorithm performs poorly on  

 
 
 
 
 
 
smaller data sets, but out-performs other methods as the data size 
increases [5]. 
Further, our analysis of the number of function evaluations is 
performed for longer chains of 200 monomers shows that the 
number of function evaluations can vary widely for different 
chains (Table 2).  The number of evaluations tends to increase 
with increasing numbers of hydrophobic monomers for the three 
200-monomer chains 200.1 has 100 hydrophobic monomers 
(465 300 function evaluations), and 200.3 has 30 (367 100 
function evaluations).  

(a) 

(b) 

(c) 

Figure 2: Best structures for selected sequences, with H-
H contacts shown in blue.  (a)  64.5 (38 H-H contacts),  
(b) 64.8 (36 contacts) and (c) 103.1 (52 contacts). 

 



 
Table 4: Number of function evaluations reported for the 

particle swarm optimization (PSO) [7] and contact 
interactions (CI) [8] methods and calculated for our AGAHP 
implementation for protein chains 27 amino acids in length. 

 
 

 
 
 

 
 

 

No. 
monomers ID AGAPC	
   CI	
   PSO	
  

27 

1 6 870 15 854 3 158 
2 7 980 19 965 5 771 
3 9 410 7 991 2 667 
4 10 200 23 525 8 556 
5 4 920 3 561 893 
6 9 870 14 733 12 790 
7 13 560 23 112 17 024 
8 1 540 889 149 
9 2 270 5 418 1 915 

10 3 150 5 592 2 638 

(a) 

(b) 

(c) 

Figure 3: Optimal structures for chains (a) 200.1, (b) 200.2 
and (c) 200.3.  H-H contacts are shown in blue. Figure 5: Plot of the real-time execution versus the length of the molecule 

chain, on logarithmic scale, for monomers ranging from length 25 to 250, 
together with fitted exponential model 

 



 
Figure 4: Plots of the number of unique conformations that 

appear over a 20 trial execution with 3000 generations using a 
pool size of 500 chains of length 200. The results are shown for 

the three 200-monomer chains; 200.1, 200.2 and 200.3 
 
While the number of fitness function evaluations is the crucial 
measure of performance when considering the time it takes to 
reach global minimum [5,7,8], it is also useful to compare real-
time analysis of performance, as the fitness function is not the 
only costly operation in the algorithm: the DME function is also 
expensive. The time required for execution on chains ranging 
from 25-250 monomers is plotted on a logarithmic scale in Figure 
5.  This shows that the real-time execution of the algorithm is 
exponential with respect to the length of the molecule chain: one 
can see an increase in the execution time data points which 
appears linear in this scaling regime. A Chi-square test of the  data 
using an exponential model yields a good fit to the data.  This 

analysis indicates that the genetic algorithm could benefit from a 
parallel genetic algorithm, [15] to reduce the time required to 
optimize long protein chains. 

4. CONCLUSIONS AND FUTURE WORK 
We have created an alternative and publicly available 
implementation of the GAHP genetic algorithm for protein 
structure prediction using the hydrophobic-hydrophilic lattice 
model. Our alternative implementation is freely available to the 
public at https://github.com/BrutishGuy/ADAGP. 

We have tested this implementation on the data sets used for the 
original implementation, as well as on additional data sets and 
found that the results agree with those produced by GAHP on a 
large majority of the test cases. On the additional data sets, some 
novel structures were observed, such as di-core and tri-core 
hydrophobic cores.  

Our analysis of the number of function evaluations shows 
equivalent performance to that reported for GAHP. The analysis 
on shorter length chains shows that the algorithm performs worse 
compared to other methods by requiring more function 
evalutations. 

In addition, our  real-time analysis of the execution on chains  
ranging in size from 40 -400 monomers shows a non-linear 
exponential increase in the real-time execution as the length of the 
chain increases, holding all other algorithm parameters constant.  
This points to promising future work of introducing a parallel 
genetic algorithm that may be run on multi-processor or multi-
core architectures to achieve a speed-up for larger and more 
interesting chain structures and reduce the execution time needed. 
In addition, extension of our implementation to a more 
sophisticated all-atom model, as in Custodio et al., will also be 
explored. 
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