Fast, Realistic Terrain Synthesis

Thesis by
Justin Crause

In fulfilment of the requirements
for the degree of

Master of Science

Supervised by

Assoc. Prof. James Gain

Assoc. Prof. Patrick Marais

July 2015

Plagiarism Declaration

| know the meaning of Plagiarism and declare that all of the work in the document, save for that
which is properly acknowledged, is my own.

Abstract

The authoring of realistic terrain models is necessary to generate immersive virtual environments
for computer games and film visual effects. However, creating these landscapes is difficult — it
usually involves an artist spending many hours sculpting a model in a 3D design program. Specialised
terrain generation programs exist to rapidly create artificial terrains, such as Bryce (2013) and
Terragen (2013). These make use of complex algorithms to pseudo-randomly generate the terrains,
which can then be exported into a 3D editing program for fine tuning. Height-maps are a 2D data-
structure, which stores elevation values, and can be used to represent terrain data. They are also a
common format used with terrain generation and editing systems. Height-maps share the same
storage design as image files, as such they can be viewed like any picture and image transformation
algorithms can be applied to them.

Early techniques for generating terrains include fractal generation and physical simulation. These
methods proved difficult to use as the algorithms were manipulated with a set of parameters.
However, the outcome from changing the values is not known, which results in the user changing
values over several iterations to produce their desired terrain. An improved technique brings in a
higher degree of user control as well as improved realism, known as texture-based terrain synthesis.
This borrows techniques from texture synthesis, which is the process of algorithmically generating a
larger image from a smaller sample image. Texture-based terrain synthesis makes use or real-world
terrain data to produce highly realistic landscapes, which improves upon previous techniques.
Recent work in texture-based synthesis has focused on improving both the realism and user control,
through the use of sketching interfaces.

We present a patch-based terrain synthesis system that utilises a user sketch to control the
location of desired terrain features, such as ridges and valleys. Digital Elevation Models (DEMs) of
real landscapes are used as exemplars, from which candidate patches of data are extracted and
matched against the user’s sketch. The best candidates are merged seamlessly into the final terrain.
Because real landscapes are used the resulting terrain appears highly realistic. Our research
contributes a new version of this approach that employs multiple input terrains and acceleration
using a modern Graphics Processing Unit (GPU). The use of multiple inputs increases the candidate
pool of patches and thus the system is capable of producing more varied terrains. This addresses the
limitation where supplying the wrong type of input terrain would fail to synthesise anything useful,
for example supplying the system with a mountainous DEM and expecting deep valleys in the
output. We developed a hybrid multithreaded CPU and GPU implementation that achieves a 45
times speedup.

Acknowledgements

Completing this task has been both a pleasure and a curse. | started out full of energy, enthusiasm
and happy to explore this exciting work. But the sense of relaxed freedom in the 'master's
environment' was to be short lived. | quickly realised the enormity of the task ahead and the time
ticked by alarmingly. My progress slowed and fell below expectation and then | was tempted into
the real world and the prospect of earning a proper living. My biggest challenge was explaining this
to my supervisors, but | mustered up the courage and faced the difficult conversation...that was two
years ago. Since then I've slowly but steadily plodded along, finding it challenging to balance a
professional career with my studying and still have a social life. It has taken me longer than planned
but I've had fantastic support and guidance from my supervisors James and Patrick, who never
wavered in their support of my efforts over the years. | have now reached the end of this road and
completed my mammoth project. My heartfelt thanks to all my friends and family who have
encouraged and motivated me, even when | was thinking of throwing in the towel!

Looking back on it now, it was an amazing adventure. There will be many memories of long days
in the lab with friends, the morning muffins from our weekly meetings and the pub lunches
afterwards — celebrating the end of yet another week. | am now able to close this chapter of life and
start work on my next adventure.

To everyone that made this possible, THANK YOU.

Table of Contents

PLAGIARISM DECLARATION....cccistimiminisemssnismssnssssssssssssssssssssssasssssssssasssnsssssnssssssnsssnssasssssnssnns II
& N 2 3 73 0 III
ACKNOWLEDGEMENTS..... o iisitrsmsssssmmsssssmsssssssssmsssssssssssssssssssssssmssssssnssasssnssmssssssmssasssnssasssnsnns IV
TABLE OF CONTENTS ..coiotiitiminimmisnisesssnisnisssssssssssssssssssssssssssssssssssassssssnssasssnsssssnsssasans snssasssnssnssans \"/
LIST OF FIGURES. ... s sscesssssessssssssssssssssmsssssssssmsnssssnssssssessmssnsssmssassssssassss sneasssnssmsnnns VIII
LIST OF TABLES ...ttt ssssssssssssss s s sssssass s ssnssssssnsssssssssmssas sssssassns ssnssanssnssnssans XIV
LIST OF LISTINGS ..o ceeirerrcrssssersssssssessssssssssssssssasssssssssssssssssssnsssessmssssssassnssssssmssss senssasssessmsnnns XVI
1 INTRODUCTION....occcrerersesssssesssssssssmsssssssssssssssssssssssmsssssssssasssessmssssssassnsssnssnsssassmssasssmsnnses 1
1.1 2] 3
1.2 L0a T g1+ TU 4T T PN 4
1.3 LI =TT o 1T =N 4

2 BACKGROUND: TERRAIN GENERATIONirinississsissssssesssmsssmssssssssssssssssssssssssmsssns 5
21 Terrain Representationccciiiiiiiiiiiiiiiiiiiiiiiiniiineniiisssssesiiinsssssssssiisesssssssssssssssssssssssssnes 5
2.2 BT 110 T CT=T =T o o o 7
2.2.1 Fractal-based ENerationc.ciiiiirieiiiieeiee sttt st st st b e b enee s 8
2.2.2 Physics-based ENEratioNnc.uviiiiiiiiiiee e e e e e e e rar e e e e eeaaes 11
2.2.3 Texture-based SENEratioNn ...ttt e st sar e 13

2.3 L0 LT =T 0o 01 o Y 17
2.3.1 Parameter ManipUIation......cocueoiiiinieeiieeetee ettt ettt sttt e sa et esae e sar et sareenaes 17
2 I A [4 Yo {= B o= Y=o I oo o o] USSR 17

B T8 T] ol oY1 o= PR 17

2.4 0 T o 1T o T Y 18

3 BACKGROUND: GPUS & NVIDIA CUDA......ccmmismssnssssssnsssssasssssssssssssssssssssssssssssssssasns 20
3.1 GPUs and Parallel Programming...........ccciiiieeeeeeiciiiiieecennsseessereenmssssssseeeennssssssssesssnnnssssssssessnnnnsssnns 20
3.2 NVIDIA CUDAcoiiiiiintretiiiisisssseetisissssssssstsssnssssssssssssssnnsnns 22
3.2.1 Motivation for using CUDA over alternativesueeeiiiiieiiiiiiee et arre e e e e 22
3.2.2 CUDA Programming IMOGEL.........ccccuuieeeiiiieieiiee e siieeeesiee e sete e e sae e s esstee e ssneeeeesnaeeeenssaeesnnsaeeesnsneenns 22
3.2.3 EXECULION PIPEIINE. ...ttt e e e e e e e e e e s et bbta e e e e e e sesnbtbeeeeeeeessantbareaaseannes 23
I S V=Y o o Vo AV o 1T =Y of o SR 29

3.3 Performance considerationscccccviiiiiiiiiiiiiiiii e 32
3.3.1 Maximise memory throUZNPUL.........coiiiiii e e et e e e srae e e snaeeeeas 32
3.3.2 Maximise Parallel @XECULIONuiiiii ittt e e e e e s e saata e e e e e e e e aataeseeaeeennes 33
3.3.3 Maximise instruction throUgNPUL.........c.eeiiiiiii e e e s aee e 33

34 LU 0] 44T T 7 33

4 FRAMEWORK ... coitiiimiiismsnssmisssssssssssssssmsssssssssmssssssmssssssessmssssssassss ssnssassss sanssasssnssmssnsssnsnssn 34
4.1 User Input & Feature EXtraction........ccccceiiiiiiiiinnnnniiiiiiiiennniiiiinessssiiesmssssisssssssssssssssssses 34

4.2 PatCh MatChing ..ccccciiiiiiiiicccccccc e s e e e e e s e e s s e e s e s e s s e s s s s essesesesanannns 37

4.2.1 FEAtUrE IMAtCNING .. coocuieeiiieite ettt ettt s bt e bee s bt et e s bt e s neesbeeeneeebeeenneenane 37
4.2.2 NON-FEATUIE MatChiNG....cccuiiie ettt e e e ee e e st e e e e era e e sasaeeesasseeeesraeeeannneas 39
4.3 Lo Lol T =T - T 41
e T8 R 1 -1 o] o U PSS 41
4.3.2 Shepard INtErPOolationco it sttt saee s e e 42
4.3.3 POISSON EQUATION SOIVETeiiieeiiie ettt ettt e et e e e e e e et e e e st e e e e sreeesnsaeeesstaeeeeseaeesnnnneas 44
4.4 L2 =T ol T 0 1T oo T PN 45
5 ENHANCED FRAMEWORK. ... ciicsnessesssssssssssssssssssssssssssssssnsssssssssssssssssssnssnssnssnssnssasans 47
5.1 Multiple Input Sources
5.2 CPU and GPU Accelerated SYNtRESIseemeeeeeeeeesssssssssssssssssssssssssnsnnnns 48
5.3 Simplified User Sketching INterface.........ceeeeeeeeeeeeeeeeeeeemenemeeneeeeeeemmmmemsesess 49
5.4 Pre-Processors and Pre-Loaders........ccccvviiiiiiiiiiiiiiiiiiiiiiiisssssssssssssssssssssssssssssssssssssssnens 50
5.5 SUMIMIAIY .cuiiiuuiiiieeiiirieiiirreiiiraeisirsssssienssssnssssssmssssssmssasssssssssssssnssssssnnsss 51
6 FEATURE SYNTHESISooerrrrrcrsesssssscsssssssssssssessmssssssmsssssssesmsssssnssnsssessmssssssassnsssnssnsans 52
6.1 Feature Extraction & Pre-Loaderscccceiiiiiiiiiiiiiiiiiiiiiisssssnssssssssssssssssssssssssssnnns 52
6.2 COSt FUNCHIONS.ccceiiiiiiiiiiiniiiiiiiiiiieiiieiiiiiieiieeeieeeeeeeeesessssiesssnsnns 52
(o3 R o= {0 < 2 o]] T V= USSR 53
6.2.2 Sum-of-Squared DIfferenCes (SSD)iiiuiercieeiieeeiieeiiee et e steesre e steeeaeesreessseesbeesabeesabeesareesaseennes 54
(oI T Lo T Y - T =T o Lol TSP PPPPPPPN 54
6.2.4 GraPh-CUL COSE .eiuiiiiiiiiiieiiee ettt ettt e s e bt e st e e s at e e sab e e bt e e sabeesateesabeesnteesaneennees 55
6.3 Feature MatChing — CPU........eeeeiiiiiieeececccirtieereeessess s reennesssssssesennassssssssesesnnnsssssssssssnnnsssssssessnnnnns 55
6.3.1 Sequential CPU IMpPlementation........occiiiiieiier sttt e e e e s e e e stae e e snaeeesnaeeeens 56
6.3.2 Parallel CPU IMpPlementation...... ...ttt e e e e et e e e e e e e e anraeeaeeeeeanes 59
6.4 Feature Matching — GPUcciiiiiiiiiiiiiiiiiiiiiiissnssssssssssss s s s s sssssssssssssssssssssssssnns 60
6.4.1 Caching of data 0N GPUcoccuiiiiiiiee ettt ettt e et e e et e e e te e e eeabte e e sbbeeeesstaeeesnsaaeessraeeans 60
(o B A U LYY g o ol o 8 A Tt [o RSP 61
6.4.3 Candidate Cost CalCUlatioNsccoiuiiiieiiiie ittt sttt e e et e e seasaee s snbeeeens 61
6.4.4 StOring Best Candidatescccccuiieiiiieeeiiieeieiiee e sttee e e sttt e sseee e e staeeeesste e e esaeeeeesnaeeeessteeesanaeessnsneeans 68
(o T |V 1= T =41 o V- S PP PPPTPTPPPRE 69
6.5 FEAtUIE IMIEIZINE ..ceevereiiiiiiiiiiiiiiiiiiiiiieiisisisiiiinessssssssssssnesssssssssssnrssnsnes 70
6.6 OPtIMISALIONS. .. ceeeeeciiiiieiiccctrr e ee e e e sse s e e s eerns s sssssssesnnssssssssseeennnsssssssseesnnnssssssssesnnnnnsnnnns 71
7 NON-FEATURE SYNTHESIS ... iimnnisnssssssesssssssssssssssssssssssssssssesssssssssssssssssssasns 74
7.1 Candidate EXEractioN........ceeeeeeeeeeeeeeeeeneemeneeeeeeemeeesemeessnss 74
7.2 Candidate Matching and MErgiNgeeeeeeeeeeeeeeeeeeeeeeeemseeemmeesessessnnns 75
7.2.1 Selecting TArget PAtChoooo i e e e e s et e e e e e e et ba e e e e e eeanas 75
7.2.2 Matching — CoSt FUNCLIONS ...c.uvviieiiiieecciiee et s see et sere e s ae e e et e e eeneee e e sanaeeeentaeeesnsaeeesneneeans 75
7.2.3 Matching — CPU IMPIementationcoocuiiiiieii ettt e e e et e e e e e e et rae e e e e e eeaes 76
7.2.4 Matching — GPU IMpPlementationcccuiiiiecieriiiie et see e e e s ite e e e sntae e e snaeeesnneeeens 77
A T |V, 1= =41 o V- SRR PPRS 78
7.3 OPEIMISATIONS. .cciieiueiiiiiiiiiiiiiiiiiiiirtietirresassssesttresssssssssstneesssssssssssssssssssssssssnssssssssssssssssnsnsssssss 78
£ 24 D0 0 80
8.1 Feature SYNthESiS. ... e e e e e e e e e 81
0 Y <o [0 =T o | (=] W O S YT 2 o o USSP 81
8.1.2 Single versus Multi-Threaded CPU...........ooiiiieiiiiiieeeciieeeetee et e e e e e e ere e e s nte e e e sntae e e ennaeeesneaeeens 82

Vi

8.1.3 CPU versus incremental GPU implementations.......cccccvieiecieeeiiiiee ettt evae e evee e 83

8.1.4 ULiliSiNg GPU TeXLUIE IMIBIMOIYeeiiuiiiiiieeiie ittt sttt ettt st e et e sb e sat e sareesab e e sabeesnteesaneennees 85
8.1.5 CPU versus GPU Sorting of Candidates........cccceeiiiuieeeeiiiiieiiiee s eetree e stre e e e stre e e snaa e e snraeeens 86
8.1.6 Blocked GPU for ASyNnChronOUS PrOCESSING ...c...eeevieiieeriieiieerite ettt ettt s 87
8.1.7 Culling Nearby UsSer PatChEsccocuuieieiiiee ettt e e e e s tae e e e sata e e e eanaee e enaaeeens 88
8.1.8 Feature CoOMPIeXity Changeccocuiiiiiiiiieiiierteeett ettt et sare bt e sane e 90
8.2 NON-Feature SYNthESIscccciiiiiiiiiiiiiici e e s e e e e s s s s e s s s s e e s s eseeens 91
8.3 FUIl SYNERESIS coiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiissssss sannannns 92
8.3.1 Comparison With PrevioUS WOTKcccciiiiiiiiee e cirie et e e e s eere e e s ate e e esataeeeeanaaeesnreeeens 92
8.3.2 Single versus MUlti-SoUrce SYNTNESIS.......ccouiiiiiiiiieiieeee ettt s s 94
I TR T -1 o o BTNl =1 o =SSR 96
8.4 SUMIMIAIY ceuuiiiiiiiiriuneiiisiiinrreassssssssinmssssssssssssrsssnnsssssss 97
O CONCLUSION ...cooericrrereessssssssssssssmssssssssssssssssmssssssmsssssssesassssssnssnsssessmssssssassss senssasssnssmssssssasan 100
9.1 LIMiItations ...cccvviiiiiiiiiiiiiiiii e 101
9.2 FUBUFE-WOTK ..ceeeeiiiiiiiiinneeiiiiiiissinnssesisiisssssssssessssssssssssnssssssssssssssnssesssssssssssnnsesssssssssssnnssssssssssssnns 101
LIST OF REFERENCES ... ssssssssssssssssssssssssssssssssssssasssnsssssanssasas 103
T T2 S S D\ D)
10.1 Feature Synthesis — CPU VI vS. CPU V2ccceeeeeeeeeeeeeeeeeeeeeeeeeeeneeeesssessssssmsssssssssssssssssssssnnsnnnnnnnns
10.2 Feature Synthesis — CPU v2 vs. CPU Parallel
10.3 Feature Synthesis — CPU Parallel vs. GPU implementationscceeeeeeeeeeeeeeeeeeeeeeeneeeeeeeennnnnenenne 110
10.4 Feature Synthesis — Using GPU TeXture IMemOrYccccccceeeeeeemennmneensensssmssssssssssssssssssssssssssssssssnnss 111
10.5 Feature Synthesis — CPU vs. GPU Candidate SOrting......ccccccceeriiimreeeiciiiiiiemnencsccenineennnssssesneeennnnes 112
10.6 Feature Synthesis — Asynchronous Blocked Implementationccceeeeeeeeeneennneeeenenenneennnnennnnnes 113
10.7 Feature Synthesis — Culling Nearby User Patches........ccceueeiiiiiiiiireecicciiiireresccesnrseennessscesseennnnes 114
10.8 Feature Synthesis — Feature Complexity Changecceeeeeeeeeeeeemennennnnnnnnnnmnmesssssssssssssssssssssssssssses 114
10.9 NON-FEature SYNtheSiS ...cccceeeeiiiiiiiieiiiciiriireeiescces e reeneeesse s s e s e ennnssssessssennnssssssssssesnnnsssssssesennnnes 115
10.10 Full Synthesis — Previous WOTKccccceiiiiiiiiiniisssssssssssisss 115
10.11 Full Synthesis — Single vs. Multiple SOUICes........cccciiermeeciieiriiieemeciieeniireeneesseereeeenesssssessssennnnes 116
10.12 Full Synthesis — Varying PatCh Size.......ccccovvriiiiriiiiininnnninininnnnnnsnsssns 117

vii

List of Figures

Figure 1.1: Example of a landscape generated for an upcoming game The Witcher Ill (2015).............. 1
Figure 1.2: Still from the movie Avatar (2009) with computer generated landscape.cccceevevveeenns 2
Figure 2.1: Example of height-map. 2D image shown on left with corresponding 3D rendering on the
right. Generated and rendered in GEOGEN (2013) ..oeiiiiiiiieeiiiieeciiie et e e eestre e e e rere e e e reae e e e e aaneeeas 5
Figure 2.2: Triangulated Irregular Network format. (a) Top-down representation. (b) Perspective

VEBW 1t tteeee ettt et e e e e st bttt e e e e e e s bbbt e e e e e e e e e s s bbb e e e e e e e e e aa b e b e e e e e e e e e aabetaeeeeeeeaaaabetaaeeee e e e anbaataeeeeeeanannrrraaaeas 6
Figure 2.3: Screengrab of the generated landscape in Minecraftcccoccvveeeieiiiie e 7
Figure 2.4: One of the earliest known examples of a Brownian Surface: Fractal Brown Islands
(Y e T=T oo R K =32) TSR 8
Figure 2.5: Example of Poisson Faulting over several iterationscccceeecveeeieciieecccieee e 9
Figure 2.6: The first 6 iterations of a Midpoint-Displacement algorithm........ccccccevvviiieeniiiieeiiieen. 10

Figure 2.7: Example of terrain generated through noise synthesis. Generated and rendered in
LCT=To T CT=T T 1701 SRR 11
Figure 2.8: Example of Hydraulic erosion. This is the fractal-generated terrain in Figure 2.7 after a
hydraulic erosion algorithm has been applied. Generated and rendered in GeoGen (2013).............. 12
Figure 2.9: lllustration of patch placement order. (a) User Sketch. (b) Tree structure from PPA. (c) The
root patch is placed first. (d) Breadth-first traversal guides placement of proceeding patches. (e)
After feature placement is complete non-feature patches are placed. (f) Final result. (Image taken

iR e Y o IA (Lo Ul =] - | N 07010 1) PRt 15
Figure 2.10: Results of synthesis. (a) User Sketch. (b) DEM Exemplar File. (c) Synthesis output. (d)
Rendered terrain. (Image taken from Zhou et al. (2007)) ...cccvvieiieeecieeciee et e esae e 16

Figure 3.1: (a) Floating-Point Operations per Second and (b) Memory bandwidth, for both CPU and
GPU (NVIDIA, 2013b). This shows the large difference between GPU and CPU performance leading to

the use of GPUs for accelerated computation.........cccuveiieciiiiiiciiie e 20
Figure 3.2: GPU devotes more transistors to data processing (NVIDIA, 2013b). There are significantly
more Arithmetic Logic Units (ALUs) dedicated to the control and cache units.cccccceeevvevieeeineeens 21
Figure 3.3: CUDA Processing Flow. (1) Data is copied from host to device; (2) Kernel is executed; (3)
Data is processed in the many threads on the GPU; (4) Result is copied back to host.ccc.......... 23
Figure 3.4: Schematic overview of the Grid-Block-Thread layout (NVIDIA, 2013b). The kernel is
loaded onto the device which is comprised of the blocks and threads.c.cccoeevveiiiiei e, 24

Figure 3.5: Example Grid/Block/Thread Indexing for a 2D grid and block layout (NVIDIA, 2013b).25
Figure 3.6: Architecture of a Scalar Multiprocessor unit for a GeForce GTX 580 (Fermi) GPU (NVIDIA,
2013c). This represents all the command, control and cache units present.........cccccceecceeeeecieeecenneen. 27
Figure 3.7: Example of Fermi's Dual Warp Schedulers. Each scheduler is assigned a group of warps;
the first scheduler is responsible for warps with positive ID and the second for negative IDs. At each
clock-cycle both the schedulers select an instruction to execute for a particular warp. Since two
warps are run concurrently, each works on only half its instructions, requiring two cycles to
COMPIETE. (NVIDIA, 2013C)..ueiciiieeieeeiiieeiiee ettt eeteeeteeesteeesbeeestaeestbeesbeeesaseesatasensaeesaseseasseesnseesaseeesaseean 28
Figure 3.8: Memory Hierarchy. Each level shows the scope of the different types of memory. Local
memory is restricted to a single thread. Shared memory can be accessed from all threads in a single
block and global memory is accessible between one or more grids. (NVIDIA, 2013b)cccveeennneee. 30

viii

Figure 3.9: Memory access pattern for coalesced reading. Both (a) and (b) require a single 128B
transaction whereas (c) requires two 128B transactions, which decreases performance to 50%.
(NVIDIA, 2013D) teeiiuieeeieeeiieeiieeeieeesieesitee ettt e steeestaeesseeesseesssseesssessnssessssessnssessssessnssessssessssessneessnsesenns 32
Figure 4.1: Overview of patch-based terrain synthesis framework developed by Tasse et al. (2011).
The terrain sketching interface is the entry point to the system, where the user sketches their
desired terrain. This is used initially to produce a synthesised terrain, which together with a source
file is run through feature extraction. Patch matching and merging is run with the result being
deformed according to the user’s initial sketch to produce the final terrain. This feeds back allowing
the user to modify the terrain and re-run synthesis.cccceovciiie i 34
Figure 4.2: Different steps of ridge extraction with the Profile recognition and Polygon breaking
Algorithm (Tasse et al., 2011). The final result is the minimum amount of points required to describe
the Main fEAtUIrE Path. ... e e e e s e e e s erta e e e srraeeesanes 35
Figure 4.3: Patch-based texture synthesis. a) Users sketch input. b) Valley lines extracted from
feature extraction on exemplar. c) Output after feature matching has completed. d) Final output
after non-feature matching has COmMPleted........ooouiii i s 37
Figure 4.4: Example of different feature types based on the number of control points. a) Feature end
point. b) Feature path. c) FEature BranCh...........oouiiii i 38
Figure 4.5: Feature dissimilarity Tasse et al. (2011), an illustration of how the algorithm examines the
pixel data in a patch. (a) User patch. (b) Candidate patch. (c) Height profile for values perpendicular
to path. (d) Height profile for values along path.cooiiirieiii e 39
Figure 4.6: Example showing the empty region ®, with the boundary d® highlighted in blue. A patch
Pn centred around a point on @@ is €Nlarged.cccvveeiieeiii e e 40
Figure 4.7: Illustration of the graph-cut algorithm between patches PO and Pn. The optimal seam
connects adjacent pixels between the two PatChes..........coovvviiiiicciii e 42
Figure 4.8: Example of the graph-cut algorithm steps. a) & b) Patches Po and Pn. c) The overlap
region Q highlighted. d) The optimal seam between the two patches highlighted after merging......42
Figure 4.9: Results of Shepard Interpolation. a) Output from graph-cut algorithm. b) B is deformed to
match the pixel values of A along the optimal seam........ccooviiiiiiiiii e 43
Figure 4.10: Poisson equation solving process. a) The image as output from Shepard Interpolation,
patch P’. b) The gradient fields of the patch P’. c) The modified gradient fields free of discontinuities
along the seam. d) The final output after the Poisson equations are solved...........cccceevvevvieeecieeennnenn. 44
Figure 4.11: Comparison of patch merging techniques (Tasse et al., 2011). (a) No patch merging. (b)
Graphcut algorithm. (c) Shepard Interpolation. (d) Results from Zhou et al. (2007). (e) Results from
TASSE €1 Al (2010). oottt e e et e e e ettt e e e et ta e e e e eataeeeeaabaeaeeaataeee e aaaeaaeabaeeeearreeeeanreaaaan 46
Figure 5.1: Overview of our proposed system for enhanced terrain synthesis. The entry-point to our
system is the simplified sketching interface, which when synthesis is initiated, run through feature
extraction to build the user candidates. A collection of varying source files is run through feature
extraction also, with the feature data being used in matching and merging with the sketch data. A
final step fills in the gaps left from feature synthesis with data from the source candidates to
[oloY 0 0] o [=T o LI A= = o TR 47
Figure 5.2: Examples of limitations with using a single source for terrain synthesis. (a) Using an input
terrain without the correct type of feature data, source image lacks ridge details. (b) System can
produce noticeable repetition in OULPUL teIraiN.ceeii i 48
Figure 5.3: a) The main sketching interface with all menus expanded. b) Sample sketch drawn with
feature detection run. c) Output after feature synthesis. d) Final outputccceecvieiiriieeeeicieeeens 50

Figure 6.1: Feature synthesis pipeline showing flow of data for the Feature Matching & Merging
block Of OUP SYSEEM (FIGUIE 5.1) c..uuriieiiiiiieicciiee ettt e e e are e e e e e e e e e abe e e s enbeeeeenraeeeenneeas 52
Figure 6.2: Feature profiling algorithm against user and source candidate patches. Segments r and s
represent profile paths for the PatChes. ... 53
Figure 6.3: Overview of the second version of sequential CPU feature matching. Feature merging is
included as it is a required part of the flow. More information on the merging process is found in

<o 1 To] o [S T T PSP PP PP OPPPPPPPPTPIN 56
Figure 6.4: Overview for parallel CPU feature matching.cccccovvviiviiiiiicciee e 59
Figure 6.5: Overview of the GPU feature matching pipeline.........cccoecvieiieciiei i 60

Figure 6.6: Overview of the feature merging pipeline: a) Single-threaded pipeline, b) Internal block
fOr MUILItAIrEAdEd VEISION. . .eeiieiee e e e b e e s abe e sbeeesneeeenbeeenaes 70
Figure 6.7: Example of repetition in output terrain. (a) Repetition with adjacent patches (b)
Repetition check implemented to overcome this iSSUEueviviiiiiiiiiiiiicciee e 71
Figure 6.8: (a) Example of error with feature detection engine forming multiple parallel lines. (b) This
results in heavy overlaying of patches, which wastes performance.cccccceveiiiiiiieieiiiicccciieeeee e, 72
Figure 6.9: lllustration of blocked design for candidate processing. a) A queue of blocks of length k
that are sequentially processed by the algorithm in b) on the GPU. Results form a queue c) which is
Processed Y the CPU IN d) ..ccuiiiiieeeiie ettt ettt e s e e et te e s te e e aa e e s ateesabaeesabeesntasesaaesnreeenns 73
Figure 7.1: Non-feature synthesis pipeline showing flow of data for the Non-Feature Matching &
Merging block of our syStEM (FIGUIE 5.1)uiiiiiiiie ettt e e et e e et e e eebre e e s enrr e e e eenreeeean 74
Figure 7.2: Overview of the GPU non-feature matching pipeline. Candidates are cached on the GPU
initially. The system then loops until all ‘holes’ are filled. GPU acceleration is used to calculate the
costs with the rest being done 0N the CPU...........c..uuiii i 77
Figure 8.1: The two test images used for evaluation. a) The small 512 X 512 terrain. b) The large
5000 x 5000 terrain. The white lines represent ridges with the black lines being valleys as detected
{03V 1 g =BV 2y =T o o RSP STR 80
Figure 8.2: Runtime chart comparing the two main CPU implementations. These two
implementations have very similar runtimes despite the large architectural changes between them.
Table 10.1 gives the runtime numbers in a table and reveals that CPU v2 is slightly faster than v1...82
Figure 8.3: Runtime results comparing the parallel CPU implementation against CPU v2. Here we
observe a large reduction in synthesis time almost reducing it by half on the large terrain. Full
runtime values are presented in Table 10.2. ... e e e e 82
Figure 8.4: Speedup graph comparing the runtime in seconds and the observed speedup for the
parallel CPU implementation over CPU v2. We observe a 1.7 times speedup achieved for both test
L8=1 0 =110 T TP P PP PPPPP ORI 83
Figure 8.5: Runtime results for the eight GPU implementations compared against the parallel CPU
implementation for the small and large terrains. We can see an overall downward trend to the graph
with the times decreasing with each iteration. vl is a translated form of the parallel CPU
implementation. v2 adds some shared memory and more threads. v3 attempts to optimise functions
but introduces more branching. v4 unrolls an entire loop utilising more concurrent threads. v5
changes the architecture to allow a new dimension of threads for improved concurrency. v6
optimises v5 preventing unnecessary recalculation of values. v7 combines elements from v5 and v6.
v8 revisits v4 and incorporates the newer changes in v7. Full runtime values are presented in Table
0 2 TSR 84

Figure 8.6: Speedup and runtime graph comparing the parallel CPU version against all eight GPU
implementations. Similar performance is noted for both the small and large terrains, although a
slightly higher speedup is noted for the larger terrain.cccccuevieeee e 84
Figure 8.7: Runtime results for our texture memory GPU implementation being compared against
GPU v8. There is a slight performance gain when using texture memory. This is because we already
are using coalesced memory access for our image data. Full runtime values are presented in Table
0 PP PPPPPUPPPR 85
Figure 8.8: Speedup and runtime graph comparing the use of GPU texture memory against the
parallel CPU and GPU v8 implementations. Using texture memory now brings the total speedup to
24 times fast than the parallel CPU implementation.cccccveiiiiiieriniiec e 85
Figure 8.9: Runtime results comparing the three different candidate soring functions. The Patch
Matching component in the graph includes the sorting operation, which is why we see the green
bars decreasing in size with the GPU and Thrust (2013) implementations. Full runtime values are
Presented iN Table 10.5. ... it e e et e e e st e e e e e abe e e s e abeeeeenteeeeanseeeeennseeeeennrenas 86
Figure 8.10: Speedup and runtime graph comparing the three different candidate sorting functions.
We see a modest performance increase when using the GPU for sorting, even with our simple kernel
implementation. Using the Thrust (2013) library further improves the result due to their kernel being
a1 F=4 YAV AN T o] 410 0 Y=Y PP 86
Figure 8.11: Runtime results comparing against our asynchronous blocked design against the current
best GPU implementation using Thrust sorting. For this test we need to compare the total runtime as
the two components are run concurrently on the CPU and GPU, which reduces the overall time as
there is far less idling occurring. The timings for matching and merging are approximately the same
but due to running them asynchronously we see a reduced overall runtime (Table 10.6). 87
Figure 8.12: Speedup and runtime graph for the asynchronous blocked design against the parallel
CPU and Thrust GPU implementations. We see a marginal increase with the asynchronous design for
the small terrain with a very large increase on the large terrain. This is attributed to the total number
of features, as the large terrain has a high feature count it is divided up into more blocks which
enables the concurrent processing on the CPU and GPU..........coooviiiiiiiiiiie e eeeee e 87
Figure 8.13: The two test images used to test culling of excess user patches. These were designed to
exacerbate the unfortunate feature of the original feature extraction algorithm. a) The small
512 X 512 terrain. b) The large 5000 X 5000 terrain. The white lines represent ridges with the
black lines being valleys as detected by the system. ... 88
Figure 8.14: (a) Example of error with feature detection engine forming multiple parallel lines. (b)
This results in heavy overlaying of patches, which wastes performance. These excess patches are
LU 1=To I <1V 1 o TSI Y] A= 0 PSSR 89
Figure 8.15: Runtime results comparing the implementations when either culling of nearby user
patches or not. This is an issue with the original feature extraction algorithm. We address this by
examining user patches and removing those that are in close proximity to one another. This reduces
the total number of features requiring synthesis and thus improves performance as shown above.
Full runtime values are presented in Table 10.7. ..o e e e e e e s 89
Figure 8.16: Speedup and runtime graph showing the performance gain when culling nearby user
patches that are not required. We see a higher gain in the smaller terrain as the proportion of culled
patches is higher than the [arger terrain. ... e 89
Figure 8.17: Runtime results for complexity with increasing total number of patches requiring
synthesis. We observe that with an increase in the number of features we see an increase in the

Xi

time required, with approximately the same proportion of time spent on matching and merging
components. Full runtime values are presented in Table 10.8.ccccoocveeiiiiier e 90
Figure 8.18: Plotting the runtime and feature count values on a graph shows a linear relationship for
both, which indicates that the system scales well when increasing the number of features.............. 90
Figure 8.19: Runtimes for the four main contributing components during non-feature synthesis
comparing a CPU only implementation to a GPU-enhanced one. We observe that calculating the
candidate costs on the GPU significantly reduces the required time. Examining the time values in
Table 10.9 we see a 200 times speedup for cost calculation on the small terrain..........cccccvveeeennnennn. 91
Figure 8.20: Speedup and runtime graph for the non-feature synthesis stage of our system
comparing CPU bound and GPU-enhanced implementations.ccccoecieeiiiiieniceiien e 91
Figure 8.21: The user images used for this test. a) The original small 512 X 512 terrain. b) The larger
2000 x 2000 image, which only features valley data.ccceeeevciieiiiciiee e 92
Figure 8.22: Runtime results comparing the previous work by Tasse et al. (2011) to our system. We
were only able to run their CPU version, which is why we include our two CPU implementations and
our best GPU implementation. The graph above shows that the runtime for our system is far less
with the three implementations appearing as tiny columns. Table 10.10 provides the actual runtime
values, which better shows the time difference between all the versions.cccccovvvvvvveviiiiiiiiiieiennnn. 92
Figure 8.23: Speedup and runtime graph comparing the previous work to our system. Here we see
the large performance increase our system achieves when running under the same test conditions.

Figure 8.24: a) Output from Tasse et al. (2011) system. b) Output from our system using the same
Yo (Yo 10 ol 1 TSP 93
Figure 8.25: Runtime results when running either a single or database of fifteen source files. The
figure shows the times for the feature and non-feature synthesis components. We see the majority
of the impact being confined to the feature synthesis stage, this is due to there being more
candidates needing evaluation. Non-feature synthesis results are very close in size as there is more
of an impact from the number of iterations required to fill the output terrain with the candidate
matching only being a small percentage of the runtime. Full runtime values are presented in Table
0 0 O SRS 94
Figure 8.26: Output terrain for: a) Single source. b) Multiple SOUrces........ccccccvveeecveeiiieeccie e 95
Figure 8.27: Example when running a ridge only terrain using a) Single source — Grand Canyon. b)
Multiple sources. The single source does not have sufficient ridge data resulting in a poor terrain
compared to the clearly defined structure when using multiple sources.........ccccocvveeivcieeicnciieeeeeneen. 95
Figure 8.28: Runtime results when using different patch sizes to synthesise terrains. We observe that
for the small terrain the optimal patch size is 64 X 64 with the large terrain performing better with
larger patch sizes. Upon further inspection of the timing values (Table 10.12), we note that for both
terrain sizes the feature matching component performs fastest with a patch size of 64 X 64. Larger
patch sizes reduce the non-feature synthesis time as more data is placed on each iteration, requiring
[ESS OVEIAIL ettt ettt e s e e st e et e st e st te e s be e e bt e e satee e baeesabeesbeeebaeesbaeene 96
Figure 8.29: Speedup and runtime graph showing the effect of varying the patch size for synthesis
operations. For the small terrain the optimal size is 64 X 64, with the large terrain performing best
With the 96 X 96 PALCN SIZE.uviiiiiiiee e et e et e e e e bte e e e e bre e e e sbaeeeesastaeeesanes 97
Figure 8.30: Our small test terrain (512 X 512). b) The output from our synthesis system
(Completed in 13 seconds). ¢) 3D rendering of the terrain.cccceeeeeciiii e 98

xii

Figure 8.31: a) The lambda symbol drawn as valleys (500 X 500). b) The output from our synthesis
system (Completed in 14 seconds). c) 3D rendering of the terrain........ccccceeecveieecciee e, 98
Figure 8.32: a) A combination of ridges and valleys (1000 X 1000). b) The output from our
synthesis system (Completed in 52 seconds. c) 3D rendering of the terrain.ccccceeeeeveeeeccreeeeennen. 99
Figure 8.33: a) A combination of ridges and valleys (1000 X 1000). b) The output from our
synthesis system (Completed in 49 seconds. c) 3D rendering of the terrain.ccccceeeecieeeecceeecenneen. 99

xiii

List of Tables

Table 2.1: Comparison of terrain generation methods. *A high user-control system is provided by
L=l o | 24001) PR RUOSO TN 19
Table 3.1: Device Memory Summary. *Cached on devices with Compute Capability 2.0 and up. 31
Table 8.1: Number of detected user features patches and dimensions of the two main test terrains
we use. Difference is ridge/valley count is determined by feature extraction and dependant on

£] o] I U =T PO PSPPI 80
Table 8.2: Number of detected features before and after the culling algorithm. The dimensions for
the terrain are, 512 X 512 for the small terrain and 5000 X 5000 for the large terrain................. 88
Table 9.1: Comparison of terrain generation methods. Table from section 2.4cccovveeeieeeinnnne 101

Table 10.1: Runtime results comparing the two main CPU implementations. A speedup column is
provided to show the performance gain achieved with version two. These implementations perform
very similarly despite the large architectural changes.ccecvveiieciiiiicciece e 109
Table 10.2: Runtime results showing the performance improvements when multithreading our CPU
v2 implementation. Only the cost computation stage was multithreaded as such the times for the
other sections remain relatively the SAMEe.ooo i 109
Table 10.3: Runtime results comparing the parallel CPU implementation against the different GPU
implementations for the small and large terrains. vl is a translated form of the parallel CPU
implementation. v2 adds some shared memory and more threads. v3 attempts to optimise functions
but introduces more branching. v4 unrolls an entire loop utilising more concurrent threads. v5
changes the architecture to allow a new dimension of threads for improved concurrency. v6
optimises v5 preventing unnecessary recalculation of values. v7 combines elements from v5 and v6.
v8 revisits v4 and incorporates the newer Changes iN V7.ccuveeeeciiie et e 110
Table 10.4: Runtime results comparing the texture memory GPU implementation compared to the
parallel CPU and GPU v8 implementations. There is a slight performance gain when using texture
memory. This is because we already are using coalesced memory access for our image data. The first
two speedup columns are comparing the methods against the CPU implementation with the last
speedup value comparing the improvement texture memory provides compared to the current best
(€ W2 T o o1 [T g T=T o = 4 oY o PR 111
Table 10.5: Runtime results comparing sorting of the candidates with the CPU, our own GPU kernel
or using the Thrust (2013) library. We observe a large speedup when using the GPU to sort
candidates, which is further increased when using the optimised Thrust library. The first two
speedup columns compare the GPU sorting algorithms to CPU sorting with the final speedup value
comparing the improvement Thrust provides over our implementation.ccccccvvveeeeiiieiccininnenn. 112
Table 10.6: Runtime results comparing the parallel CPU and our current best GPU implementation,
using Thrust sorting, against our asynchronous block system. This allows us to execute code on both
the CPU and GPU concurrently, which produces a very large improvement over our current best GPU
implementation. The first two speedup columns are compared to our parallel CPU implementation
with the last indicating the gain when using asynchronous processing over the Thrust enabled GPU
[1aaY o] (=T g V=Y o1 = 14 Lo o PR SSPPN 113
Table 10.7: Runtime results comparing the implementations when either culling of nearby user
patches or not. This is an issue with the original feature extraction algorithm. We address this by
examining user patches and removing those that are in close proximity to one another. This reduces

Xiv

the total number of features requiring synthesis and thus improves performance as shown above.
We see a higher gain in the smaller terrain as the proportion of culled patches is higher than the
Y =T O =T =11 TSRS 114
Table 10.8: Runtime results for varying complexity in terms of the number of total features
synthesised by the system. We observe that with a linear increase in the total number of features
there is a linear increase in the time required. This allows our system to scale for larger more
oo T3] o] L= =T o - 1o TP 114
Table 10.9: Runtime results for the non-feature synthesis stage of our system. Times presented are
for a CPU only and GPU enhanced implementations. The GPU is utilised for cost calculations to help
reduce the overhead of synthesis, the other components are left CPU bound. There is a massive
improvement in the cost calculation stage, which has the largest runtime on the CPU. 115
Table 10.10: Runtime results when comparing our system to the previous work by Tasse et al.
(2011). Timing values for Ridges, Valleys and Non-Feature Synthesis were provided in the previous
system as such we omit the breakdown for our system in order to only compare the relevant data.
While we could only compare the CPU implementation of Tasse et al. (2011), we observe that our
system runs significantly faster under the same test conditions. Our system was run with a single
source file to match the outpUt MOre ClOSEIY.....ccocviiii i 115
Table 10.11: Runtime results for our system when using either a single input source or our database
of fifteen. We see the feature synthesis stage has a fairly high cost for using multiple files, although
less so when using the larger terrain. We observe the runtimes for non-feature synthesis being very
close between the two implementations due to the large cost of running many iterations to
completely fill the output terrain. When looking at the total synthesis time for the large terrain we
see the larger database has very minor impact on the performance.ccccoceeieciiiieicciiee e 116
Table 10.12: Runtime results for varying the size of the patch used by our system. We start off with a
small 32 X 32 patch size up to a large 160 X 160 patch size. We observe two outcomes when
looking at the feature and non-feature synthesis components, which is similar for both terrain sizes.
For feature synthesis we see a patch size of 64 X 64 being optimal with the fastest runtime
recorded. For non-feature synthesis we observe that the larger the patch size the faster the runtime.
This is attributed to a larger area being merged into the output, which reduces the amount of empty
areas thus requiring less iterations to COMPlete.cooviiiiiiciiii e 117

XV

List of Listings

Listing 3.1: Example of a CUDA Kernel. This kernel takes a flattened square array of size w and
SQUATIES 118 VAIUES. ..eveieiiiiee e ccieee ettt ettt e e et e e e et e e e e e e atae e e eeabaeeeeeabeeeeeaasaaeeeanbaeeesanseeeeennseeeeennsenns 26
Listing 3.2: Example Kernel Invocation. This is the sample code which will launch the CUDA kernel
defined in Listing 3.1. The threads-per-block and blocks-per-grid are defined and used in the call. This

also assumes initialisation of data for the array on the device.cccccovvveiiiiiiiicccei e, 26
Listing 5.1: Algorithm overview for the candidate searching algorithmccccoocveriiiiiiiiiiiicninnne 49
Listing 6.1: Feature Profiling algorithmi...........oo it e 54
Listing 6.2: Sum-of-Squared Differences algorithmcccvriieiiii e 54
Listing 6.3: Noise Variance algorithmccuiiiiiiiie e e e e sare e e 55
Listing 6.4: Graph-cut cost algOrithm........cccuviiiieeee e e e e 55
Listing 6.5: Algorithm overview for the version one of sequential feature matching.........cccccceeuunee. 56
Listing 6.6: Algorithm overview for selecting the best overall patchcccoviviieiiiiciiiiee, 57
Listing 6.7: Algorithm overview for the version two of sequential feature matching.........c..cccc........ 58
Listing 6.8: Overview for the user patch extraction onthe GPUccccceeviiiiiiiiniiieiniicnec e 61
Listing 6.9: Overview for the candidate patch extraction kernelcccccovveeriiiiniiiiniiinic e 62
Listing 6.10: First version of our GPU cost calculation processccccueeeeccieeeeciieeecccieee e 63
Listing 6.11: Second version of our GPU cost calculation process......cccoceevvveeeiieenieeeniieeniieeeniee e 64
Listing 6.12: Fourth version of our GPU cost calculation processcc.ccceeveervieenieeiniieenieeenieesieeenns 64
Listing 6.13: Overview for the advanced candidate patch extraction kernel...........cccoovveeeiiveeeinnnn.n. 65
Listing 6.14: Fifth version of our GPU cost calculation process.........cccevcveeriieeiiieeniieenieeniee e 66
Listing 6.15: Sixth version of our GPU cost calculation processcccecveerveeeiieenieeenieeniee e 67
Listing 6.16: Seventh version of our GPU cost calculation processcccoccvueeeeeiiieeeeciiieeececreee e 67
Listing 6.17: Eighth and final version of our GPU cost calculation processccecceeevveeniieerneeerieennne 68
Listing 6.18: Algorithm for sorting candidates based on cost in ascending order........c.cceccevevveeriiennns 69
Listing 7.1: Algorithm overview for building boundary datasetccccceeeviieeeiiiiee e, 75
Listing 7.2: Algorithm overview for the CPU non-feature matching implementationccccccecue.n. 76
Listing 7.3: Algorithm overview for the CPU non-feature matching implementationccccocue. 77

XVi

1 Introduction

Detailed terrain models are a fundamental component of many 3D scenes used in computer
games (Figure 1.1) and the creation of film visual effects (Figure 1.2). The creation of realistic
artificially-generated terrain helps the gamer or audience feel immersed in the environment. In
some instances, where the landscape is only used as a visual backdrop with no user interaction, a
simple two-dimensional (2D) terrain profile might be satisfactory. This profile can be either a hand
drawn graphic or an image of a real landscape. This technique was used in early games and virtual
environments to reduce the space requirements and computational complexity. However, it is more
often a requirement that the environment be navigable, which requires a three-dimensional (3D)
landscape. Creating these landscapes is no easy task — it usually involves an artist spending many
hours tweaking a 3D mesh structure. As the requirements for larger, more realistic and detailed
terrains increase so does the complexity and amount of time required to manually create them. As
an alternative artists can make use of real landscapes in the form of digital elevation models (DEMs)
that can be obtained from the US Geological Survey (USGS, 2013). These provide true realism but
often do not match up with the artist’s vision, thus requiring manual editing. This has led to great
interest in the procedural generation of terrain models. Procedural methods are algorithms that

allow for the quick generation of data with little user input.

Figure 1.1: Example of a landscape generated for an upcoming game The Witcher Il (2015)

Terrain synthesis is the process of creating an artificial landscape algorithmically using procedural
methods. The two most common procedural methods are fractal generation and physical simulation.
These generate terrains with a minimal amount of user input in the form of algorithm parameters.
These parameters are usually unintuitive and many iterations of synthesis may be required before
an optimal set of parameters is found to generate a suitable terrain. Software packages such as
Bryce (2013) and Terragen (2013) can be used, but in most cases the artist will still need to tweak

1

the terrain to achieve the desired look. These packages use methods that pseudo-randomly displace
height values of an initially flat terrain model according to a given fractal technique. Furthermore,
these programs are unable to simulate physical weathering patterns, and generated terrain models
must be exported to some other system to add such detail. An erosion system will enhance the
realism of the input terrain but requires the user to have a fair understanding of erosion models and
is also computationally expensive. These programs can more rapidly generate terrains but the
results are somewhat random. A system that allows the user to specify terrain constraints and
produces a realistic-looking terrain that closely matches the user’s expectations would be ideal.

Figure 1.2: Still from the movie Avatar (2009) with computer generated landscape.

An alternative procedural method is example-based, which works by utilising existing terrain data,
often in the form of Digital Elevation Models (DEMs) commonly from the USGS (2013), and
recombining them using texture synthesis techniques. Current state-of-the-art systems using this
method are those by Zhou et al. (2007) and Tasse et al. (2011). The user specifies their requirements
in the form of a sketch, which provides the location of certain dominant features, such as mountains
and valleys. The system then takes this sketch and breaks it up into small blocks or patches which it
then searches for the best match from a pool of candidates — patches taken from the DEM files with
feature rich characteristics. For the areas where no features are described, the system will populate
the terrain with insignificant data — candidates with no dominant feature characteristics. The use of
DEMs as the input source produces terrains that appear highly realistic. Combining realism with the
flexibility of a sketching interface provides a good system for synthesising artificial terrains. There
are some issues with the current implementations, which include being slow to execute and limited
with the variability of the terrain when using only a single input source. These are two key areas for
improvement.

1.1 Aims

The primary objective of this research thesis is to build a terrain synthesis system to rapidly
generate realistic terrains from the input of a simplified user interface. The system builds on
previous work by Tasse et al. (2011) and provides several extensions to improve the synthesis
results. To facilitate this objective, the following key requirements were identified:

e A system capable of producing realistic terrains, making use of landscape data from the
United States Geological Survey (2013). A user study conducted by Tasse et al. (2011)
confirmed that their system produces terrain that is more realistic than ones generated by
a multi-resolution deformation (a procedural synthesis method). The same techniques will
be incorporated into this research with the results being compared to the system by Tasse
et al. (2011).

e A simple interface that allows the user to sketch out the placement of both ridge and
valley line features to describe the overall design of their terrain.

e Make use of a large collection of input terrains to increase the candidate pool for
synthesis. When using a single input terrain the variability of features is constrained by
the amount of sample data available. Using multiple input sources allows for better
quality, more diverse terrains. This objective represents the novel contribution of this
research.

e Accelerate the process by implementing CPU caching algorithms and optimising the
process to reduce the synthesis time.

e Further accelerating the synthesis process with the aid of programmable Graphics
Processing Units (GPUs) and NVIDIA’s Compute Unified Device Architecture (CUDA).
Modern GPUs have become more powerful than CPUs by orders of magnitude for certain
computations that can be parallelised, such as scientific data processing. CUDA is an
application interface developed to enable General Purpose GPU (GPGPU) computing. This
has spawned a new era in computational research focusing on parallel computation.
Texture synthesis is one field which benefits from parallel computation. We make use of
this to dramatically reduce the time it takes to complete a synthesis option, thus making
our system suitable as a rapid prototyping tool. We combine the CPU & GPU optimisations
to create a hybrid system for maximum performance.

e The system will be evaluated with visual inspection to verify that the realism of our output
matches the quality of the previous system. Speedup comparisons will be made between
all the different CPU and GPU versions to evaluate their performance.

1.2 Contributions

The main contribution for this research is the introduction of multiple input sources to increase
the variety of data available during synthesis operations. Prior work with patch-based systems
focuses on the use of a single input source to synthesise the terrains (Zhou et al., 2007, Tasse et al.,
2011). This is reliant on the user selecting the correct source to get the best results as some sources
might not contain the correct features required. We show that our system is capable of producing
very large terrains, varied terrains. Our hybrid CPU-GPU implementation is capable of a 40 times
speedup over a single-core CPU system.

1.3 Thesis structure
The structure of the thesis is as follows:

e Chapters 2 and 3 contain background information on procedural terrain generation and
Graphics Processing Units (GPUs) respectively. GPUs can be used to accelerate
computation of parallel algorithms and we use them to reduce synthesis times of our
system.

e Chapter 4 provides a detailed analysis of the system developed by Tasse et al. (2011),
which we extend in this thesis. The limitations of this system are highlighted together with
our proposed improvements.

e Chapter 5 presents the overview of our system, focusing on our new contributions to
example-based terrain generation.

e Chapters 6 and 7 describe the core components of feature and non-feature synthesis in
detail. This includes the various CPU and GPU versions we developed while improving and
optimising the system.

e Results are presented in Chapter 8 which compares our new system to that of Tasse et al.
(2011). A single core CPU implementation is compared to a hybrid approach, which
incorporates multiple threads and a GPU to accelerate the synthesis stage. Visual
assessment is used to verify that realism is preserved with our proposed modifications.

e Chapter 9 concludes the thesis and lists some possible avenues of future work to improve
and further accelerate the synthesis of terrains.

2 Background: Terrain Generation

This chapter provides an overview of methods to procedurally generate terrains. We begin by
describing common representations of terrain data (Section 2.1) and follow this with a discussion of
important generation techniques (Section 2.2). A summary of the techniques and motivation for our
choice of synthesis concludes this chapter.

2.1 Terrain Representation

The simplest representation of terrains is as a two-dimensional grid-based data-structure. This
data-structure is commonly represented as an image known as a height-map. Height-maps are easy
to use given their uniform grid-based nature, where each entry stores a height value for the
corresponding location on the terrain. Figure 2.1 shows a simple example of a height-map
represented as a 2D image (shown left) and the corresponding 3D rendering on the right. The pixel’s
intensity represents the height of the terrain and is stored in a single channel of the image, resulting
in a grayscale image. The USGS (United States Geological Survey) have surveyed many real
landscapes and made available in a height-map digital form commonly referred to as Digital
Elevation Models (DEMs). These DEMs are freely available from the USGS website (USGS, 2013).
Height-maps can be encoded using a variable number of bits. If only a single channel (8-bit) is used,
this allows only 255 possible height values, which is insufficient for replicating highly detailed terrain.
The number of bits used depends largely on the format, with most DEM files being stored using 16-

bit images, giving 65,535 height values.

Figure 2.1: Example of height-map. 2D image shown on left with corresponding 3D rendering on the right. Generated
and rendered in GeoGen (2013)

The regular grid structure of height-maps facilitates storage efficiency and ease of implementation
and is well suited to filter-based image processing. However, height-maps are not without
limitations. For instance, they lack the ability to represent overhangs, caves or structures where a
given location needs multiple height values.

Terrain models can also be represented as a mesh of polygons, usually triangles. Triangulated
Irregular Networks (TINs) are a type of mesh structure in which the terrain is composed of a set of
connected, variably sized triangles (Peucker et al., 1978). The triangles vertices are adaptively
chosen, often with a Delaunay triangulation algorithm (Fowler and Little, 1979), to produce an
accurately representation of the terrain. TINs are able to capture three-dimensional structures such
as caves, where a height-map would fail, and also support a level-of-detail (LOD) system: higher
density areas are represented with many small, tightly-packed triangles and smoother, less detailed
areas with fewer larger triangles. As a result of the LOD system, the storage overhead for TINs is
small; they are, however, more difficult to manipulate procedurally due to their non-uniform
structure. An example of a TIN model is provided in Figure 2.2. TINs are more appropriate for
manual terrain modelling or rendering systems as these packages are designed to work with vertices
at non-uniform locations. For more details on TINs we refer the reader to Abdelguerfi et al. (1998)
and Pajarola et al. (2002).

(a) (b)

Figure 2.2: Triangulated Irregular Network format. (a) Top-down representation. (b) Perspective view

Voxels (volumetric elements) are another way of representing terrains (Kaufman et al., 1993,
Dorsey et al., 1999). Voxels are the 3D equivalent to a 2D pixel. They are aligned in a three-
dimensional grid structure with their locations inferred from their index in the grid. Voxels can store
data such as colour and opacity, which together create 3D structures. As such voxel-grids are
capable of producing terrains with caves and other 3D structures. They are also widely used in the
scientific and medical domains. However, they have a large memory and storage overhead. This
impacts on rendering performance and restricts the size of structure that can be represented. A
good example of a voxel-based environment is from the popular video game Minecraft (2015), as
seen in Figure 2.3.

Another example of representing volumetric data is through using a system of particles, to
simulate granular materials such as sand. Bell et al. (2005) present such a system with non-spherical
particles. Granular materials behave differently compared to fluids because they can flow down a
slope like fluid and they can also form a static volume like a solid. These systems are more suited for
small-scale simulations where dynamic interactions are required as they require complex algorithms
to simulate the inter-particle interactions. Longmore et al. (2013) extend this work to leverage the

6

parallel processing capabilities of modern GPUs. However, while more efficient than a CPU-based
implementation, the system is only intended for small-scale volumes due to it being computationally
expensive. The system uses 3D textures to store the particle information, which requires a large
amount of memory and limits the number of particles that can be simulated. These limitations
prevent us from utilising particles to represent a large terrain.

Figure 2.3: Screengrab of the generated landscape in Minecraft

Height-maps are the format most widely supported by common terrain generation packages
(Terragen, 2013, Bryce, 2013, WorldMachine, 2013). These packages make use of image processing
functions, which are easy to implement on height-map images. Another reason to use height-maps is
that real landscape data produced from aerial or satellite surveys is stored in this format. Since our
research will make extensive use of DEM images, and extends an existing height-map based
approach, our synthesis system is also based on height-map data-structures.

2.2 Terrain Generation

Terrain generation is the process of creating an artificial landscape using procedural algorithmic
methods. Artificial terrains have many applications, including virtual environments, computer games
and movies. Terrains can be manually sculpted in 3D design programs but this is time consuming.
Fortunately, the process can be accelerated through the use of procedural methods. There are three
broad categories of procedural terrain generation techniques: Fractal, Physics and Texture-based. A
fractal surface is generated using a stochastic algorithm designed to produce fractal behaviour that
mimics that of a natural landscape. Physical simulations generally enhance the realism of a fractal
surface by applying erosion techniques to the surface. Finally, texture-based methods borrow
techniques from texture synthesis and typically copy data from a source image to build a new
terrain. Specialised programs such as Terragen (2013) and Bryce (2013) incorporate a number of
procedural methods for generating terrains quickly. However, these implementations only use

7

fractal techniques and may allow for erosion. We will show that in many cases such an approach is
not suitable when the user has a specific terrain design in mind. Each category is described in the
subsections below.

2.2.1 Fractal-based generation

Fractal methods were introduced by Benoit Mandelbrot in his seminal book, “The Fractal
Geometry of Nature” (Mandelbrot, 1983). He observed that natural shapes often contain self-similar
patterns: magnified areas are statistically similar to the original shape. He introduced Fractal
Geometry, which is a mathematical representation for natural shapes that are not easily described
by Euclidean geometry. The term ‘fractal-based’ has been applied more loosely over the years and as
such not all the techniques discussed in this section are truly fractal. Here the term classifies
techniques that generate terrains that exhibit self-similar patterns even if the algorithm is not
mathematically fractal.

Fractional Brownian motion (fBm) describes the process of representing these self-similar shapes.
It is also known as the “Random Walk Process” and consists of a series of steps in a random
direction, where the steps are normally distributed with a mean of zero and variance representing
the roughness. In terms of terrain generation, this involves a series of iterations of a stochastic
algorithm. Mandelbrot reasoned that if this process were extended in two dimensions the resulting
“Brownian surface” could be a visual approximation of a landscape in nature. Some of his work
explored the creation of these types of surfaces (Mandelbrot, 1975). Numerous researchers have
extrapolated Mandelbrot’s research and adapted it to produce fractal-based terrains (Fournier et al.,
1982, Voss, 1985, Miller, 1986, Lewis, 1987, Musgrave et al., 1989, Saupe, 2003). One of the earliest
known images of a Brownian Surface is presented in Figure 2.4; it is part of a sequence of fractional
Brown Islands.

Figure 2.4: One of the earliest known examples of a Brownian Surface: Fractal Brown Islands (Mandelbrot, 1983)

Poisson Faulting is one of the earliest forms of fractal terrain generation (Mandelbrot, 1983, Voss,
1985). This technique involves applying a series of Gaussian random displacements (faults) to a
plane. In simpler terms, a line is chosen across the plane and one side displaced by a random height.
This height value is reduced after each fault to avoid abrupt height changes in the final resulting
terrain. Figure 2.5 shows an example of the faulting process, captured at various synthesis stages.

8

This was employed by Mandelbrot to create fractal coastlines (Mandelbrot, 1975) and fractal planets
by Voss (1985). Faulting has a fixed resolution, which means there is no consideration of level-of-
detail (LOD). LOD is important in terrains as features are present on different scales, such as large
scale mountains at a coarse level and cracks on a fine level. These techniques also suffer from an
0(n®) runtime, depending on the resolution and number of iterations, which severely impacts
performance. This led to the development of subdivision methods, discussed next.

a) 1 Iteration b) 2 Iterations c) 3 Iterations d) 4 Iterations

e) 10 Iterations f) 100 Iterations g) 500 lterations h) 1000 Iterations

Figure 2.5: Example of Poisson Faulting over several iterations

Subdivision methods work by iteratively adding finer levels of detail by dividing the current terrain
level. Midpoint-displacement is an example of this and is used to generate terrains (Fournier et al.,
1982, Miller, 1986, Lewis, 1987, Mandelbrot, 1988, Saupe, 2003). There a many midpoint-
displacement techniques, usually differing in the way points are interpolated during each step. A
simple example starts with a quad on a plane and randomly assigns the corners with seeding values.
This quad is then divided into four smaller quads. The values of the corners of the new quads are
interpolated between the corners of the parent quad. The midpoint value is additionally offset by a
random value controlled by the desired roughness of the terrain. This process is repeated on each of
the new quads until a desired LOD is obtained. This is shown in Figure 2.6; the simple process
outlined above is easily implemented and can run in linear time. Many subdivision methods are
subject to the “creasing problem” (Miller, 1986). This is the occurrence of creases or slopes along the
quad boundaries which are visually noticeable. A possible solution to this is to also apply a
displacement to all the points, not just the midpoint, this is called “successive random addition”
(Saupe, 1989). This leads to a significant amount of additional calculations being required, leading to
a general preference for simple Midpoint-displacement. Both these methods produce unnatural
repeating patterns in the terrain. Furthermore, only a single parameter is available to control terrain
roughness, which limits user control. Nonetheless, due to its fast generation time, most terrain
generation packages (such as Terragen (2013)).

Figure 2.6: The first 6 iterations of a Midpoint-Displacement algorithm

Procedural Noise Synthesis can be informally defined as being the random number generator of
computer graphics. It is random and unstructured in pattern and is used when there is a need for a
source with extensive detail but lacking in evident structure. An example of a terrain synthesised
utilising noise synthesis is shown in Figure 2.7. These are popular methods used by commercial
packages, such as Bryce (2013), and have been widely researched (Fournier et al., 1982, Saupe,
1991, Schneider et al., 2006). Terrains are generated with simple implementations that involve the
summation of successive down-scaled copies of a band-limited noise function. This type of noise
generating function was first introduced by Ken Perlin (1985) and has been improved over the years
(Perlin, 2002). Typically each new copy contains a higher band-limited frequency with lower
amplitude such that large scale features are generated in early iterations and finer detail in the later
ones. A known problem with Perlin noise is that it is weakly band-limited as each band contains only
frequencies in a power-of-two (Lewis, 1989). This leads to aliasing and loss of detail. Wavelet noise
(Cook and DeRose, 2005) address these issues by taking an image filled with random noise (R) and
downsampling to half its size (R'). This image is then upsampled to full size (R*") and subtracted
from the original image (R). This results in band-limited data that can be used in terrain generation.
This method has the benefit of being almost perfectly band-limited and provides effective level of
detail without the aliasing issues of Perlin noise (Cook and DeRose, 2005). Wavelet noise is also fast
and easy to implement, leading to its use in terrain generation applications (de Carpentier, 2007,
Gain et al., 2009, Cui, 2011). For more details, we refer interested readers to the survey of
procedural noise functions by Lagae et al. (2010)

10

Figure 2.7: Example of terrain generated through noise synthesis. Generated and rendered in GeoGen (2013)

For additional information on fractal-based generation, we refer the reader to Ebert et al. (2003).
Musgrave covers many fractal generation methods in his work “Methods for Realistic Landscape
Imaging” (Musgrave, 1993). Fractal methods are easy to implement and widely supported by terrain
generation programs. User control suffers as their parameters are not intuitive and one cannot
easily generate specific variations of terrain. The generated terrain also lacks realism since it is
missing structures that arise from natural weathering and erosion on landscapes. The generation of
such aspects of realistic-looking terrains can be achieved by physics simulations; we provide a
discussion of such techniques below.

2.2.2 Physics-based generation

Physics-based methods aim to improve the realism of artificially generated terrain by simulating
the effects of erosion. Kelley et al. (1988) use hydrology data to generate stream network drainage
patterns that can be used to determine the topography of a terrain surface. However, this method,
while efficient, lacks the detail of a fractal surface since the terrain is modelled from the stream
network. While the stream network controlling the generation may be fractal, the surface used as
the initial terrain is not and cannot be made so without disturbing the drainage basins and stream
paths. Musgrave et al. (1989) combine a fractal height-map with a hydraulic model. Water is
dropped at each vertex and allowed to run off the terrain. The water erodes the surface by
depositing material at different locations based on a sediment load function for the water passing
over the vertex. Musgrave et al. (1989) also introduce a global model for simulation they based on
thermal weathering.

Thermal weathering is a simulation where sharp changes in elevation are diminished by knocking
material loose from steep inclines to eventually pile up at the bottom of the slope. This process
iterates until the maximum angle of stability for the material (talus angle) is reached. This technique
is simple to implement and runs efficiently (Musgrave et al., 1989, Mardk et al., 1997, Olsen, 2004).
The following equation is evaluated at every vertex to determine the movement of material:

11

u ={h}‘+ct(h?—hk‘—T), hY —h{ >T
e Y, hy—h{<T

The difference in the height h of the current vertex v and its neighbour u is compared with the
globally defined talus angle T. If its slope is greater than the talus angle then a fixed percentage c;of
the difference is moved onto the neighbour. Benes and Forsbach (2001) introduce a terrain structure
that is more suitable for realistic erosion algorithms. Their model consists of a 2D grid similar to a
height-map but with each location storing an array representing different layers. Each layer stores
information, such as the elevation, and material properties, such as density. This is a trade-off
between a height-map and full voxel terrain. The model allows for air layers and, as such, cave
structures can be created. Thermal erosion is suitable for deposition of material to smooth out steep
slopes but does not simulate drainage patterns. This is achieved with hydraulic erosion.

Hydraulic (Fluvial) erosion is a simulation that deposits water at the vertices of the terrain and
allows it to flow downhill, eroding the surface as it goes. This method has been extensively
investigated in the literature (Kelley et al., 1988, D'Ambrosio et al., 2001, Benes et al., 2006, Kristof
et al., 2009). Hydraulic erosion is more complex than thermal erosion but is simply described by
associating each vertex v at time t with a height h{, volume of water w{ and an amount of sediment
sf, suspended in it. At each time step excess water and sediment is passed to the vertex’s
neighbours. There are two approaches to calculating hydraulic erosion; Eulerian and Lagrangian.
Eulerian focuses on a fixed window and observes the particles affects only while they are in it.
Whereas Lagrangian focuses on an individual particle and tracks its movement throughout the
system (Kristof et al., 2009). Figure 2.8 shows an example of a terrain before and after hydraulic
erosion has been applied. Nagashima (1998) use a 2D fractal river network to which thermal and
hydraulic erosion simulations are applied, which erodes the banks. Bene$S and Forsbach (2001)
improve on previous work by distributing sediment to the vertex’s eight neighbours and

implementing evaporation to simulate water pools drying up.

Figure 2.8: Example of Hydraulic erosion. This is the fractal-generated terrain in Figure 2.7 after a hydraulic erosion
algorithm has been applied. Generated and rendered in GeoGen (2013)

12

The above methods describe a simple diffusion model, which does not accurately describe water
movement and sediment transport. These are closely related to the velocity of the water. Chiba et
al. (1998) introduce an enhanced method that incorporates a water velocity field. Water is placed at
each vertex and the velocity of the water is determined by the local gradient. While the water flows,
it dissolves some of the surface and deposits the stored sediment according to the velocity field. This
improved realism comes at the cost of higher computational cost. Neidhold et al. (2005) develop a
physically correct simulation based on fluid dynamics, which runs interactively, and allows for real-
time manipulation of the parameters. These physics-based methods are good for improving the
realism of a fractal-generated terrain but suffer from a high computational overhead.

Physics-based methods run extremely slowly when the number of points on the height-map or the
number of simulation iterations increases. One way to improve the simulation time is to sacrifice
physical correctness (Olsen, 2004). Another solution is to utilise modern GPUs to accelerate the
simulation (Anh et al., 2007, Mei et al., 2007, St'ava et al., 2008). Despite sacrificing correctness,
these methods are still difficult to control as the user can only modify a few base parameters before
the simulation runs. The user also requires a fair understanding of the underlying physical laws to
implement correctly. A better way to achieve realistic-looking terrain is to utilise surveyed data of
natural landforms, for example DEMs (USGS, 2013).

2.2.3 Texture-based generation

Texture-based methods borrow techniques from the field of texture synthesis. Texture synthesis is
a widely used technique in computer graphics for procedurally generating textures. It is used to
construct a larger, possibly tileable, image from a small sample image. Textures can be arranged
along a spectrum based on their properties from structured to stochastic. Structured textures are
best described as possessing a repetitive, regular pattern while stochastic textures contain little
structure, being close to random noise. These extremes are connected by a smooth transition as
described by Liu et al. (2004). A full description of texture synthesis and its implementations is
beyond the scope of research and it is only briefly discussed here as an introduction to texture-
based terrain generation. We refer readers to an extensive survey on texture synthesis by Wei et al.
(2009). There are two main approaches to texture synthesis: pixel-based and patch-based. Pixel-
based methods generate the texture pixel-by-pixel with the new pixels value determined by its local
neighbourhood. A drawback to pixel-based methods is that they tend to lose global structure. This
shortcoming is addressed by patch-based methods. Patch-based methods copy and stitch blocks of
pixels from the source into the output. This preserves global structure and patterns and is thus
better suited to realistic texture-based terrain generation.

Balancing both user control and realism is difficult to achieve with both fractal-based and physics-
based methods, due to their use unintuitive synthesis control parameters. Texture-based methods
can use real height-maps (DEMs) as the source files and can thus produce highly realistic terrains.
This is a recent approach to terrain generation and research on the subject is limited (Chiang et al.,
2005, Dachsbacher, 2006, Saunders, 2006, Brosz et al., 2007, Zhou et al., 2007).

Chiang et al. (2005) present a patch-based system to iteratively generating macroscopic terrain
based off the construction of geometric primitives by the user. A database of patches (terrain units)
is manually populated by segmenting out features from real landscape maps based on two
properties. The height variation for each scanline in the unit must have a higher elevation near the

13

centre and be lower on the boundaries. There can also only be one type of feature present, for
example a hill, mountain, plain and plateau. The matching process compares the profile of the users
primitive to that of the terrain units, based on cross-section, mountain ridge and terrain contour
similarity. The best matching terrain unit is then orientated and translated to closely match its
corresponding primitive. The selected unit is placed, such that it partially overlaps with adjacent
units. The overlapped areas are stitched using a cutting method which selects pixels that minimise
the elevation difference between the two units. The results from this system show boundary
artefacts due to only considering horizontal height differences. Also the manual generation of the
database increases the work required by the user and is limited to ridge-based features.

Dachsbacher (2006) adapts a pixel-based texture synthesis technique based on non-parametric
sampling by Efros and Leung (1999). This grows a texture, a pixel at a time, by analysing the
neighbourhood, which is a square window around the source pixel. Evaluating only the height value
of the pixels produces unsatisfactory results because abrupt changes become visually noticeable
when the terrain is rendered and artificially lit. In order to compensate for this, Dachsbacher (2006)
takes into account the horizontal and vertical derivatives and this produces better results. His system
allows the users to place pieces of height-maps on the work surface and have missing data
synthesised. Being reliant on the technique of Efros and Leung (1999), the system suffers from long
computational times but does produce compelling results. Dachsbacher (2006) suggests the use of
better performing texture synthesis techniques, as well as an exploration of a patch-based approach
for further the research. In general per-pixel methods do not adequately preserve underlying feature
structure from the source, and this has stimulated research into patch-based methods.

Saunders (2006) present a design-by-example technique for terrain synthesis. His system utilises
real-world terrain height-maps in the form of Digital Elevation Models (DEMs). Users are asked to
first classify the various terrains according to their characteristics, into a logical library. This serves as
the palette for the synthesis engine. The user uses this palette to describe by-example the
characteristics they desire in their terrain. He achieves this during the design phase using a 2D CAD-
style set of tools. Arbitrarily shaped polygonal regions are drawn in the interface and assigned a
specific palette. Now the terrain is synthesised using a genetic algorithm. This algorithm is launched
multiple times to generate successively higher resolution height-maps (successively finer levels-of-
detail). At each level, the genetic algorithm finds a plausible way of arranging small patches of data
from the respective pallets for each region. To enhance realism a border refinement operation is
conducted, which is itself a subdivision operation controlled genetic algorithm. This replaces straight
boundaries with short segments forming an irregular and hence less artificial-looking boundary. The
output is deemed realistic as each synthesised region is statistically similar to the input files assigned
to the palette. This system is said to produce an unlimited diversity of reasonably realistic terrains
due to the use of a genetic algorithm. However, the actual results are no more compelling than
fractal terrains after physical erosion. Further research is required to improve the visual quality of
the system.

Brosz et al. (2007) present a terrain synthesis by-example system which makes use of two
different terrains to synthesise a new one. The first terrain is termed the base and contains a rough
estimate of large-scale features, such as mountains. The second is the target and contains high-
frequency, small-scale features. The goal of the system is to extract patches of small-scale features
from the target and apply them to the large-scale features of the base terrain. They incorporate an

14

automatic method for mapping during patch merging called Image Quilting (Efros and Freeman,
2001). It is a texture synthesis technique and starts by breaking up the base terrain into overlapping
square blocks. Then for each block i in the base, a similar block j is found in the target based on
feature similarity. The extended characteristics of the matched block j are copied back into block i.
But instead of directly copying the data as it would be done in Image Quilting, only the details of the
two patches are copied and linearly blended together. This method of blending does not produce
the boundary artefacts that are common in most patch-based texture synthesis systems. The terrain
synthesis system by Brosz et al. (2007) works well for combining high-frequency details into a base
terrain to produce a higher resolution terrain. However, it does not create a notably different terrain
from the input. As such the overall realism is closely tied to the given base terrain.

(@) (b)
.
i ° 4
o)
é ‘
(d) (e) (f)

Figure 2.9: lllustration of patch placement order. (a) User Sketch. (b) Tree structure from PPA. (c) The root patch is
placed first. (d) Breadth-first traversal guides placement of proceeding patches. (e) After feature placement is complete
non-feature patches are placed. (f) Final result. (Image taken from Zhou et al. (2007))

Zhou et al. (2007) present a novel patch-based terrain synthesis system that makes use of DEM
files and produces compelling results (Figure 2.10). The process starts with a user sketch and DEM
exemplar file, the system produces a new terrain based on the exemplar’s features. Figure 2.9
illustrates the algorithm and shows the three main stages:

o A User Sketch and DEM exemplar are provided to the system. These undergo a feature
extraction process which identifies large-scale curvilinear features such as rivers, valleys
and mountains. Zhou et al. (2007) adapt a technique borrowed from geomorphology
named the Profile recognition and Polygon breaking Algorithm (PPA) which was
developed by Chang et al. (1998) to identify such features. The PPA performs a breadth-
first search of the input file and produces a tree structure of features. A PPA tree of the
exemplar DEM is used to produce the candidate patches used in the next stage.

e The second stage controls the matching and merging of feature data into the output
terrain. The PPA tree of the user sketch is broken up into patches used to order

15

placement. Each user patch is compared to the candidate patches and the best match is
merged into the output. This process ends when all user features are exhausted.

e In the final stage, ‘holes’ in the output are filled by merging patches from the exemplar
with no strong features.

The procedure for matching and merging is complex and discussed in detail in sections 4.2 and

4.3, respectively. The system is capable of producing a 1000 X 1000 terrain in approximately 5
minutes on an Intel Pentium 4 2.0 GHz with 2GB RAM. However, there are some limitations of their
system, which are addressed by Tasse et al. (2011).

Figure 2.10: Results of synthesis. (a) User Sketch. (b) DEM Exemplar File. (c) Synthesis output. (d) Rendered terrain.
(Image taken from Zhou et al. (2007))

Tasse et al. (2011) build upon work done by Zhou et al. (2007) and present improved patch
merging more suitable to terrain structures that remove the visible boundary seams from
overlapping multiple patches. This modified system forms the basis for the research in this thesis
and we thus provide a detailed description of their system in chapter 4.

16

2.3 User Control

Procedural methods are designed to automate the terrain generation process with minimal user
intervention. However, artists desire some level of control of the process. A trade-off must thus be
made between user control and algorithm autonomy. There are several methods of user control, the
most common being parameter manipulation.

2.3.1 Parameter manipulation

Parameters or variables can be used to control the generation of terrains. For example, in noise-
based generation there are parameters for the amplitude and frequency of the noise function.
Fractal-based methods additionally include a parameter for the roughness, which controls the
irregularity of the generated surface (Fournier et al., 1982). Physics-based systems are also
controlled through various parameters. These include the simulation length, strength of the erosion
functions and others (Musgrave et al., 1989). The genetic algorithm used by Saunders (2006) has a
large number of controlling variables and requires extensive testing to find an optimal set. The
principal drawback to the use of such parameters is that the artists often do not know what the
effect of changing them will have on the resulting output. Achieving a desired terrain design is likely
to be an exercise of trial and error since the parameters are generally unintuitive. An improvement
to parameter manipulation is the use of images to control the system.

2.3.2 Image-based control

Manually designing terrain models can be achieved by using existing 2D painting programs, for
example Terragen (2013). Procedural methods can also be controlled through using images.
Schneider et al. (2006) make use of images to represent the fractal base functions by providing a
painting interface. Their system provides immediate feedback to the user, providing a far more
intuitive form of control over arbitrary parameters. Saunders (2006) provide an authoring interface
where the user describes their desired layout of terrain by painting regions using their defined
palette. This is just a rough idea of where data from different terrains is to be placed during
synthesis, rather than the location of specific features. Zhou et al. (2007) make use of a user-defined
image which contains a simple sketch of the terrains layout to guide the synthesis. The image is
made up of either black or white painted strokes which correspond to valleys and ridges, with a grey
background indicating no preference. While this system can be used to specify the location of
specific features, there is no mechanism for controlling the specific height. Sketching systems are
primarily used by people to represent a rough design or layout. This provides a more intuitive system
for controlling the generation of terrain.

2.3.3 Sketching

A sketching system is best suited for when the user has a rough idea of what the final terrain
should look like. User-sketched strokes are used to specify the shape of the desired landscape.
Cohen et al. (2000) present an early form of terrain sketching in their system, Harold. Users design
and create hills and mountains by drawing 2D strokes in screen space. The endpoints of the stroke
are used to create the projection plane. This is used to project the stroke into world space, creating
the silhouette curve. The resulting curve forms a shadow, with points near to it being elevated based
on their distance to the silhouette curve. However, the depth of the mountain (perpendicular to the
screen) is constant with its cross-section being parabolic. This creates mountains that are unnatural
in appearance when viewed from different angles. Watanabe and lgarashi (2004) improves on
Harold by adjusting the depth and cross-section shape according to the shape of the stroke, resulting

17

in more natural looking terrain. Gain et al. (2009) present a more complex terrain sketching system
based on Cohen et al. (2000). Users control the location and shape of landforms by drawing 2D
silhouette, shadow and boundary curves. These curves form constraints for a fast multi-resolution
surface deformation system. During this process wavelet noise characteristics (Cook and DeRose,
2005) are analysed and applied to the resulting terrain. The synthesis system is designed to faithfully
match the user’s strokes rather than just approximating them, which differs from previous work. The
system by Gain et al. (2009) offers a high degree of user control, allowing the user to intuitively add
features such as cliffs and indentations. However, the wavelet noise fails to add small-scale natural
features such as erosion patterns to the terrain. Additionally the deformations are distinctly visible
when applied to an existing natural terrain. These limitations result in less realistic terrain when
compared to other systems, such as Zhou et al. (2007).

More recent work by Tasse et al. (2014a), (2014b) presents a new method for editing of terrains
by sketching from a first person perspective. Most sketch-based terrain systems are controlled from
a top-down viewpoint, which makes it difficult to accurately describe the skyline that would be seen
from the ground. The system makes use of an existing terrain, which is rendered in a 3D
environment that the user can move about freely. The user will then sketch strokes to infer where
terrain features should be present. These strokes are then ordered, front to back, by inferring their
relative depth from the height of their end-points and detected T-junctions. Now features from the
terrain, such as silhouettes and ridges, are detected. By deforming existing features the nature of
the terrain is preserved as no extra features are created. The user strokes are now matched to one
of these features and a specific deformation algorithm is applied and ensures that small-scale
feature data is preserved. After the initial deformation the system checks that the newly modified
terrain does not occlude any of the user strokes. If this issue occurs the terrain undergoes further
deformation that will lower part of the terrain to remove the occlusion. This system allows a user to
easily personalise an existing terrain and also preserves the style and realism.

2.4 Discussion

Based on our evaluation in this chapter, we conclude that fractal terrains lack realism while
physical simulations are complex and expensive to run without extensive GPU enhancement. Both
approaches also provide limited user-control. Table 2.1 provides a comparison of the three main
categories of terrain generation. The “speed” entry is based on the time taken to synthesise a terrain
with a size of 1024 X 1024 in pixels, this is a rough estimate of the speed as the figures would
directly relate to the hardware being used. User-control is an expression of how easy the process is
to control and realism compares the characteristics of the output terrain with real landforms. A
summary of the main limitations for each category is also provided. This table shows that texture-
based methods provide a high degree of realism coupled with a fair degree of user-control. We
believe that realism and user-control are more important than speed of synthesis, particularly since
these algorithms have not been fully optimised and there is thus room for further improvements.
The content creator is more likely to wait for a longer synthesis to complete if the end result is closer
to their design requirements.

18

Speed User-Control Realism Main Limitations

Fractal-based Very fast Low — High* Low e Absence of natural erosion
e Non-intuitive control
parameters
e Pseudo-random output
terrain
Physics-based Thermal: Low Thermal: e Complextoimplement
Fast Medium e Requires a base terrain
e Minimal user control
Hydraulic: Hydraulic:
Slow High
Texture-based Slow Medium High e Limited user control

e Output dependant on number
of input terrains (exemplars)

Table 2.1: Comparison of terrain generation methods. *A high user-control system is provided by Gain et al. (2009)

Fractal-based techniques can run very quickly on modern CPUs but their output is unsuitable for
applications where highly detailed or realistic-looking terrain is required. The synthesis is controlled
with a set of parameters that do not clearly indicate their direct effect on the output, leading to a
very low level of user control. Physics simulations can be used to enhance the realism of a base
terrain by adding natural weathering effects. However, this also suffers from the same minimal user
control and as a consequence often relies on the quality of the base terrain. The complex
simulations impact on the performance of the system significantly, although recent work has
focused on accelerated algorithms using GPUs. Texture-based methods borrow techniques from
texture synthesis and make use of real landscapes as the source of their data, this makes the
generated terrains highly realistic. When the synthesis is controlled through a sketching or painting
interface, the level of user control is quite high and intuitive. The runtime is acceptable given the
preference for realism but recent advances in GPU acceleration have made these methods even
more appealing.

Natali et al. (2012) present a state-of-the-art report which evaluates a number of different
implementations for terrain generation, which we refer interested readers to. Based on our
evaluation of these terrain generation schemes we decided to extend the work done by Tasse et al.
(2011). This decision is based on their improvements to work done by Zhou et al. (2007), particularly
with the improved quality of merged patches. We present a detailed analysis and description of this
system in Chapter 4 along with our proposed extensions to their work. The next chapter contains
background information necessary to understand use of a Graphics Processing Unit (GPU) to reduce
synthesis time.

19

3 Background: GPUs & NVIDIA CUDA

Modern Graphics Processing Units (GPUs) are made up of a large number of simple Single
Instruction, Multiple Data (SIMD) processors that can be harnessed for general purpose computing.
Programming GPUs has been made easier with the development of application programming
interfaces (APIs) such as NVIDIA’s Compute Unified Device Architecture (CUDA). GPUs have evolved
into highly parallel, multithreaded, many-core processors with tremendous computational power
and high memory bandwidth — Figure 3.1. NVIDIA’s flagship GPU, the GeForce GTX680 attains a peak
theoretical performance of 3090 billion floating-point operations per second (GFLOP/s), which is
approximately 10X faster than Intel’s flagship Sandy Bridge 3770K processor which peaks at 294
GFLOP/s. AMD’s flagship GPU, the Radeon HD 7970, peaks at 4300 GFLOP/s representing a strong
contender in terms of performance.

This chapter introduces the concepts required to understand programming on GPU devices and
focuses of NVIDIA’s CUDA (NVIDIA, 2013a, NVIDIA, 2013b). In section 3.2.1 we motivate our choice
for CUDA over other alternatives. The remainder of the chapter provides information on the
programming model and execution pipeline for NVIDIA GPUs.

TI’;;chI»-rggcal rheoretical GB/s
5

3250 200 -
3000

NVIDIA GPU Single Precision 180
2750 g MVIDIA GPU Double Predision P
2500 =g Ntel CPU Single Precision 160 +

Intel CPU Deuble Precision GPU
2250 140 -
2000 120
1750

100 -
1500
1250 80 1
1000 60 - Sandy Bridge
750 { Westmere
TeslaC2050 . 4
500 Sandy Bridge 0 Bloomfield
Tesla C1060 20— Woodrest
250 Woodorat Bipdmfietd o rescatt Tarpertown
0 Y= Westmere 0 worthiviood T T T
Sep-FFNEUM4 jun-04 (r.najr-m“ﬁ”’e“m Dec-09 Aug-17 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Figure 3.1: (a) Floating-Point Operations per Second and (b) Memory bandwidth, for both CPU and GPU (NVIDIA, 2013b).
This shows the large difference between GPU and CPU performance leading to the use of GPUs for accelerated
computation.

3.1 GPUs and Parallel Programming
Graphics accelerators were the precursor to what we now call GPUs and have been in use in
computer systems since the early 1980’s principally to accelerate drawing operations. For the last
two decades the development of graphics hardware has been extensively driven by the gaming
industry since games required more vector-parallel processing power than typical CPUs could offer.
CPUs feature a complex processing architecture that cannot keep up with the large number of
fragment operations required to render complex 3D graphics efficiently. This led to the development
of specialised hardware that contains large numbers of simple processing units designed to
efficiently process large amounts of fragment data. Early GPUs (1990s) featured a fixed-function
rendering pipeline where specialised hardware components were dedicated to individual stages. The

20

user controlled the rendering process by configuring parameters such as vertex positions and
colours of vertices or lights. Because rendering functions were predicated on the availability of
compatible hardware, the use of a fixed-function pipeline evolved into a programmable one in 2001.
This enabled the control of vertex and fragment operations through small programs called shaders.
GPUs follow a different development philosophy from CPUs and focus more on parallel computation
over reduced memory latency. For example a CPU would process vertices and fragments
sequentially whereas a GPU can process multiple elements at the same time. Although modern CPUs
contain multiple cores leading to a small degree of parallelism, however, this is dwarfed by the large
number of cores GPU devices contain. GPUs adopt a SIMD approach, which utilises a large number
of simple processors to execute the shader programs in parallel. Shader languages such as the
DirectX High-Level-Shader-Language (HLSL), NVIDIA CG and the OpenGL Shading Language (GLSL)
can be used to write shaders for the GPU and facilitated the development of more advanced
rendering techniques than allowed by a fixed-function pipeline, such as bump-mapping. These
languages were initially used to write shaders for general purpose GPU computing but they are
inherently designed for graphics operations, such as filtering and rendering. The use of specific
graphics terminology made programming on GPUs inaccessible to typical programmers interested in
more general acceleration and this led to the development of a high level APIs such as CUDA. CUDA
was released in early 2007. It gives developers access to the virtual instruction set and memory of
these devices, allowing for general purpose GPU (GPGPU) programming. This followed NVIDIA’s
launch of the GeForce 8 series in 2006, which featured a generic stream processor enabling the GPU
to act as a more generalised processing device.

Control - ALU ALU

ALU ALU

CPU GPU

Figure 3.2: GPU devotes more transistors to data processing (NVIDIA, 2013b). There are significantly more Arithmetic
Logic Units (ALUs) dedicated to the control and cache units.

Modern GPUs dedicate more transistors to data processing rather than data caching and flow
control (shown in Figure 3.2). This explains the large discrepancy in floating-point capability between
the CPU and GPU (Figure 3.1). Because there are fewer transistors dedicated to caching, memory
latency typically becomes the main bottleneck of these systems. Consequently, GPUs are well-suited
to address problems that can be expressed as data-parallel computations. This means the same
program is executed on many data elements in parallel with a high arithmetic intensity. Arithmetic
intensity refers to the ratio of computation operations to memory operations. Unlike CPUs, GPUs
have a parallel throughput architecture, which emphasises executing many concurrent threads
slowly rather than a single thread quickly. Applications that require processing of large data sets can
use a data-parallel model to speed up computation, specifically those that have a high arithmetic

21

intensity. Apart from image processing and 3D rendering, other algorithms ranging from physics
simulations to computational finance can be expressed as data-parallel computations and greatly
accelerated. This has led to a great deal of research into exploiting GPU devices. The programming of
these GPGPU devices is achieved through the use of APIs such as NVIDIA’s CUDA but other
alternatives exist such as OpenCL (Khronos, 2013). These are discussed in section 3.2.1.

3.2 NVIDIA CUDA

NVIDIA released the initial version of its CUDA SDK in early 2007. This has evolved considerably
over the years but remains limited in availability, as only NVIDIA GPUs are supported. CUDA
programs are mostly written in C/C++ which gets compiled by NVIDIA’s nvcc compiler. Other
languages such as Python and Java are supported by 3" party wrappers. The CUDA API is better
suited to general programming than shader languages and has several advantages including
scattered memory access, exposed shared memory, and full support for integer and bitwise
operations. CUDA has continued to evolve as the underlying hardware architecture evolves and new
features are implemented. The use of these new features is linked with the Compute Capability (CC)
of the device, with higher level devices being fully backward compatible. At the start of our research
the GeForce 5xx series of devices were available with Compute Capability 2.0. As such further
discussion in this chapter is focused around the features available for this version.

3.2.1 Motivation for using CUDA over alternatives

NVIDIA CUDA is not the only high-level API for GPGPU programming. There is the now deprecated
ATI Stream (ATI, 2013) and the open-source OpenCL (Khronos, 2013). ATI released the first version
of Stream at the end of 2007 but subsequently deprecated this in favour of development in OpenCL.
It was developed explicitly for their Radeon series and was restricted to AMD GPUs. OpenCL, in
contrast is an open-source cross-platform framework that allows for execution of parallel programs
across heterogeneous hardware platforms. The support and performance of OpenCL has improved
steadily since its first release in 2008. However, despite all the improvements, CUDA paired with
compatible NVIDIA GPU still has a performance advantage over an OpenCL implementation (Karimi
et al., 2010, Du et al., 2012) and also has better support for 3" party libraries. Intel recently released
Xeon Phi (Intel, 2013), a hardware coprocessor comprised of many-core processors, set to rival the
use of GPUs for parallel computing. It went into first production in late 2012 and the initial variants
have a significantly higher price point than consumer grade GPUs and as yet not much support is
available for development. We expect this to change over the coming years but was not available for
consideration during our research.

This left a choice between an OpenCL and CUDA implementation for GPU acceleration in this
work. During the planning stage for our research, CUDA provided better performance and had
greater support than OpenCL. This led to our decision to develop a CUDA based solution for GPU
acceleration.

3.2.2 CUDA Programming Model

CUDA supports a C-like syntax which eases the transition for existing programmers without
requiring a graphics background. This language is also easily interoperable with standard C and C++
code. CUDA code gets compiled into a special format that is deployed at runtime to the CUDA-
capable device where the code is executed by thousands of lightweight threads. These threads are
divided up amongst the devices many compute cores. CUDA claims to run on any CUDA capable

22

device, which is not entirely true. New hardware features are introduced in the form of the devices
Compute Capability (CC). This is fully backwards compatible, which means that as long as the device
has the minimum required CC, the code will execute.

There are two hardware abstractions that CUDA defines: the device, which is a CUDA capable
GPU, and the host, which is the computer to which the device is connected. The execution of code
on the device is initiated by invoking a C-like function called a kernel. Before the kernel is called, data
needs to be transferred to the device’s memory. The kernel then executes simultaneously on the
many threads of the CUDA device, processing the data. After execution is complete the data can be
transferred back to the host. This is illustrated in Figure 3.3.

CPU

Copy processing data

: Copy the result

GPU
(GeForce 8800)

Instruct the processing)

Memory
for GPU

-
Execute parallel
in each core

S
[
[
[(I
eI

Processing flow DD

on CUDA I:I

Figure 3.3: CUDA Processing Flow. (1) Data is copied from host to device; (2) Kernel is executed; (3) Data is processed in
the many threads on the GPU; (4) Result is copied back to host.

There are two important high-level aspects to CUDA programming: memory management (how
data is transferred between host and device) and the execution pipeline (how data is processed on
the device). CPUs contain multiple levels of cache which hides memory access latency and ensures
the processor is always being utilised. This is not the case for GPUs, which rely on many lightweight
threads and instantaneous context switching to swap out threads waiting for memory and swap in
threads ready for processing. We now provide further explanation of these aspects.

3.2.3 Execution Pipeline

The key to understanding the CUDA execution pipeline is to understand how the GPU hardware
and software components interact and how instructions are scheduled. NVIDIA was careful to design
a software model so that it mirrors the characteristics of the underlying hardware. This means the
programmer can design their system such that it maps as closely as possible to underlying hardware.
Multiple schedulers provide fast switching of the many executable threads. The threads are grouped
into blocks and blocks are arranged into a grid. The GPU contains a number of Streaming
Multiprocessors (SMs) that are assigned a number of blocks from the grid. The SM is responsible for
scheduling the execution of the threads for the blocks it is allocated. However, the user is able to

23

fully control the thread and block layout. Appropriate design of these layouts can allow the
programmer to utilise the GPU more efficiently.

Software - The Grid, Blocks & Threads:

As of compute capability 2.0, the CUDA code is executed on a GPU device by launching a kernel,
which is a C-like function call. Parameters to this include the dimensions of the grid and block and
number of threads per block. The code within a kernel is divided up into smaller logical units called
blocks and has up to three-dimensions with maximum number of (65535 X 65535 X 65535) blocks
and are collectively known as the grid. In turn each of the blocks comprises of up to three-
dimensions, with a maximum of (1024 X 1024 X 64) and up to 1024 resident threads per block.
Resident threads refer to how many active threads can be instantiated within the block based on the
available resources for storing the threads context data. An example of this layout is shown in Figure
3.4. Each block on the grid is executed independently of the others with no guarantee on the order
of block execution and no mechanism for inter-block communication. The GPU scheduler controls
which block is being executed based on its availability of warps (discussed later — Block, Warp &
Thread Scheduling) ready for processing and enforcing cooperation could result in blocks being
stalled or a case of system deadlock. However, threads within the same block can communicate
through the use of shared memory (see section 3.2.4) and synchronisation (discussed later — Barrier
Synchronisation). There are a maximum of eight resident blocks per SM, and each SM is also limited
to a maximum of 1536 schedulable threads. The programmer needs to adhere to these constraints
in order to maximise device throughput. By adapting the computational problem to utilise all of the
available threads, the programmer can ensure the GPU is fully saturated with work.

Figure 3.4: Schematic overview of the Grid-Block-Thread layout (NVIDIA, 2013b). The kernel is loaded onto the device
which is comprised of the blocks and threads.

24

Layout & Indexing of Blocks & Threads

Blocks can be arranged in one, two and three-dimensions on the grid. A block supports up to
three-dimensional thread layouts. An example is presented in Figure 3.5 which features a grid with
dimensions of (3 X 2), which holds blocks of dimension (4 X 3). This gives a total of 6 blocks within
the grid, each with 12 threads. Grids support a maximum of 655352 blocks, but since a single block
is executed in a single SM, these serve more as a programming convenience for organising the
problem. The dimensionality of threads within a block is more important in maximising throughput
of the device. However, the layout of threads within a block can have a significant impact on
performance.

Grid

Block (0, 0) || Block (1, 0) || Block (2, 0)
SOIIIIIIIIDD SOOI
222222222222 2222222222
388 1553 ‘S‘S “

Block (0, 1) Block (1,1) | Block (2, 1)
SYNIINIIINDD > SIS
2 6»»333 §§§§§I 22992222222

b A

Block (1, 1)

Figure 3.5: Example Grid/Block/Thread Indexing for a 2D grid and block layout (NVIDIA, 2013b).

Thread indexing is a vital part in controlling the specific execution path and specifying what data
the thread is to operate on. When a kernel is executed, the defined number of threads will all
execute the same code. CUDA provides kernel variables that can be used to determine the index of
the thread and block, namely threadldx and blockldx respectively. Along with these are blockDim
and gridDim, which store the defined dimensions of a block (threads in a block) and grid (blocks in
the grid). Listing 3.1 provides a simple example of a CUDA kernel which squares the values of a
(512 x 512) array. The kernel invocation is provided in Listing 3.2 where the dimensions of the
blocks and grid are defined. In this example, blocks have a dimension of (32 X 32) which produces a
total of 1024 threads. In order to evaluate all values in the array, a grid size of (16 X 16) blocks is
required. CUDA operates on one-dimensional arrays, meaning multi-dimensional arrays need to be
flattened. After completion, all the values in the array will be squared.

25

1 global ExampleKernel(float* data, int data_w)

2 A

3 // Use index of thread to work out index in array to access
4 int idx_X = threadIdx.x + (blockIdx.x * blockDim.x);
5 int idx_Y = threadIdx.y + (blockIdx.y * blockDim.y);
6

7 // Calculate the flattened index (1D)

8 int idx_Flat = idx_X + (idx_Y * data_w);

9

10 // Read the value from the data array

11 float val = data[idx_Flat];

12

13 // Write back the value squared

14 data[idx_Flat] = val * val;

15}

Listing 3.1: Example of a CUDA Kernel. This kernel takes a flattened square array of size w and squares its values.

16 int main(void)

17 A

18

19 // Kernel invocation

20 dim3 threadsPerBlock(32, 32);

21 dim3 blocksPerGrid(16, 16);

22 ExampleKernel<<blocksPerGrid, threadsPerBlock>>>(data, data_w);
23

24}

Listing 3.2: Example Kernel Invocation. This is the sample code which will launch the CUDA kernel defined in Listing 3.1.
The threads-per-block and blocks-per-grid are defined and used in the call. This also assumes initialisation of data for the
array on the device.

Hardware - The GPU, Streaming Multiprocessors & Cores:

The CUDA software model arose directly from the design of the CUDA hardware. A CUDA capable
device is made up of a collection of Streaming Multiprocessors (SMs), which contain the CUDA cores,
memory infrastructure and control units as shown in Figure 3.6. There is a direct mapping between
the software and hardware models: grid to GPU device, block to a SM and a thread to a single core.

Each SM includes 32 Scalar Processors (SPs) or CUDA cores, 16 Load/Store Units, 4 Special
Function Units (SFUs), Dual Warp Schedulers and Dispatch Units, 32k 32-Bit registers and 64KB of
combined Shared Memory and L1 Cache (NVIDIA, 2013c). The SM is assigned a group of blocks (by
the GPUs scheduler) which it operates on in turn, with the threads defined by the block being
executed on the cores. The 16 load/store units allow for source and destination addresses for 16
threads to be calculated per clock-cycle, thus requiring only two cycles to access memory for all the
cores. The 4 SFUs execute transcendental instructions such as sin, cosine, and square root. Execution
in the SM is performed in a group called a warp (discussed later — Block, Warp & Thread Scheduling),
with each warp being comprised of 32 threads. Each SFU executes only one instruction per thread,
per clock, requiring 8 clock-cycles to complete a warp. These SFUs are decoupled from the dispatch
unit allowing it to issue instructions to other execution units while the SFUs are occupied. Dual Warp
Schedulers select an instruction from each warp and issue them to a group of 16 cores, 16
Load/Store units, or 4 SFUs which are executed independently. The fast on-chip memory provides
limited L1 cache and method for threads to cooperate. The architecture allows this memory space to

26

be divided into 16KB of L1 cache and 48KB shared memory, or 48KB L1 cache and 16KB shared
memory depending on the requirements of the programmer.

Figure 3.6: Architecture of a Scalar Multiprocessor unit for a GeForce GTX 580 (Fermi) GPU (NVIDIA, 2013c). This
represents all the command, control and cache units present.

CUDA is designed to operate with any number of SMs, as the total number of blocks is divided
amongst all available SMs. This produces a highly scalable model since adding more SMs to a device
increases computational throughput seamlessly. This is usually the principal difference between low-
end and high-end devices. High-end GPU devices usually carry a larger number of SMs and larger
amount of device memory.

Block, Warp & Thread Scheduling

When developing the kernel code, the programmer statically defines the number of blocks,
threads-per-block along and the dimensions of both. These are used when the kernel is invoked for
the hardware’s block scheduler to divide up and assign blocks to the devices SMs. Each SM breaks up
its assigned blocks into groups of 32 threads called warps. Each SM can have a maximum of 8
resident blocks and 48 resident warps, with others waiting in a queue. The number of warps per
block is calculated by taking the number of assigned threads (t) and dividing by the warp size (32).

Fermi devices have two warp schedulers which allows for each to select an instruction to be run
concurrently and independently. The hardware is mapped into two sets of 16 cores, 16 load/store

27

units and 4 SFUs. Each of the warp schedulers can utilise one of these items at any given time. There
is also no requirement that warps need to be from the same resident block. However, each of the
instructions belonging to a particular warp need to be executed in order. Each resident warp (w) has
its own context (instruction counter and registers). This means that instruction 7 of warp w; can
execute, then on the next clock-cycle instruction 3 of warp wg can execute, followed by instruction 8
of warp w; immediate after. This instantaneous context switching differs from that of a CPU which
has a heavy-weight thread context, and incurs a delay due having to copy register data in and out of
the CPU. CUDA allows for this instantaneous switch, as only a switch to the next scheduled warp’s
instruction pointer and registers is required, both of which are store in on-chip memory.

Warp Scheduler Warp Scheduler

Instruction Dispatch Unit Instruction Dispatch Unit

Warp 8 instruction 11 Warp 9 instruction 11
Warp 2 instruction 42 Warp 3 instruction 33

Warp 14 instruction 95 Warp 15 instruction 95

time

Warp 8 instruction 12 Warp 9 instruction 12

Warp 14 instruction 96 Warp 3 instruction 34

Warp 2 instruction 43 Warp 15 instruction 96

Figure 3.7: Example of Fermi's Dual Warp Schedulers. Each scheduler is assigned a group of warps; the first scheduler is
responsible for warps with positive ID and the second for negative IDs. At each clock-cycle both the schedulers select an
instruction to execute for a particular warp. Since two warps are run concurrently, each works on only half its
instructions, requiring two cycles to complete. (NVIDIA, 2013c)

Having the ability to instantaneously switch between warps is used in hiding memory latency, so
that when a warp makes a memory request it can be switched out for one awaiting execution. This is
however, predicated on the fact that there is another warp available for execution. With this in
mind, the programmer should design the system to provide enough warps in order to saturate the
device.

An example of how the dual warp schedulers work is presented in Figure 3.7. During the first
clock-cycle, instruction 11 from warp 8 and instruction 11 from warp 9 are executed. At the next
clock-cycle, instruction 42 from warp 2 and instruction 33 from warp 3 are executed. This shows that
two different instructions from two different warps are executed concurrently in the hardware. But
since there are 32 threads in a warp and only 16 execution units, both sets of instructions execute
twice over two clock-cycles, one for each batch of 16 threads.

Flow Control & Code Divergence

Flow control refers to the use of a control instruction (if, switch, do, for, while) in the execution of
a kernel. Using these controls can significantly impact the instruction throughput by causing threads
within a warp to diverge (follow different execution paths). In this case, all the required execution

28

paths are serialised and evaluated by all threads in the warp, increasing the number of instructions
executed. This means for an ‘if’ statement, the ‘true’ branch is evaluated first then the ‘false’ branch.
They are not executed concurrently as is the case with traditional multi-core CPU systems. Threads
that diverge down the ‘true’ branch will ignore execution when executing the ‘false’ branch, and the
‘false’ threads ignore execution in the ‘true’ branch. After all the paths have been followed, the
threads converge back to the same execution path.

However, if all the threads in the same warp follow the same execution path (i.e. all threads
evaluate to ‘true’ or ‘false’), then only the required branch is executed. If even a single thread
diverges within a warp then both branches will be executed. This is a result of CUDA using a lock-
step mode of execution within a warp, where all threads can only perform the same instruction at
any given clock-cycle. The programmer needs to take this into account when using flow control
statements so as to avoid the possibility of divergence.

Barrier Synchronisation

Synchronisation within a kernel allows the kernel to halt until all threads in the same block reach
the barrier. This technique, together with shared memory, allows for cooperation of threads within a
block. Synchronisation is limited to block level and, unlike multithreading on a CPU, it is impossible
to synchronise all threads across the device. Synchronisation is useful when using threads to load
data from global memory into shared memory before computation so as to make sure data is
available. A downside to using synchronisation is that threads blocked at a barrier are idle, which
reduces the overall performance of the device.

3.2.4 Memory Hierarchy

Since GPUs focus more on parallel data processing rather than memory caching, maximising the
memory throughput is essential to maximise performance. For example, a GeForce GTX 580 has a
peak memory bandwidth of 192.4GB/s but the host-to-device transfer over the PCle x16 Gen2 bus
peaks at a comparatively low 8GB/s. This means that transfers to or from the device should be
limited and calculations should be executed on the device, even if they would be faster on a CPU as
the memory transfer performance penalty would dominate processing time. For example, before
squaring the values of a 10,000 element 2D array of floats, 0.046s is required to transfer data to
host, calculated as follows (1s + [8GB/s + [10000% x 4B]]). On top of this the computation cost
for executing on the CPU needs to be added, which further increases the total computation time.
However, processing the array on the GPU only requires 0.0019s of compute time. This represents a
24x performance drop in transferring the data alone. CUDA has access to much of the memory
present on the GPU. The scope and characteristics of these memories are summarised in Table 3.1.

29

Thread
§ s _ Per-thread local

h memory

Thread Block

Per-block shared
memory

AAAA
YyYyYVvy

Grid 0

Block (0, 0) || Block (1, 0) || Block (2, 0)

|

Block (0, 1) || Block (1,1) || Block (2, 1) | |

|

Grid 1
Global memory

Block (0, 0) Block (1, 0)

e

Block (0, 1) Blocrlr(rd, 1)

i
|

Block (0, 2) Block (1, 2)

e

Figure 3.8: Memory Hierarchy. Each level shows the scope of the different types of memory. Local memory is restricted
to a single thread. Shared memory can be accessed from all threads in a single block and global memory is accessible
between one or more grids. (NVIDIA, 2013b)

There are two fundamental categories of memory: on-chip and off-chip. On-chip memory is very
fast with near zero latency for access but is very limited (64KB per SM). It includes both registers and
shared memory. Off-chip memory has a far higher latency, but is much larger (typically up to 3GB)
and includes global, local, constant and texture memory. Every level of the execution pipeline has a
corresponding memory space, as shown in Figure 3.8. Each memory type has a specific use and must
be assigned based on the problem being solved in order to maximise performance of the system.
The different memory types are discussed below:

There are 32k 32-Bit registers located on each multiprocessor that get shared between all its
cores. Accessing registers consumes zero extra clock cycles per instruction, but delays can occur if
there are read-after-write dependencies and bank conflicts. A bank conflict occurs when two or
more addresses of a memory request fall within the same bank. Information on bank conflicts can be
found in section 3.3.1.The read-after-write latency is approximately 24 cycles, which is how long a
thread is required to wait before accessing that register again. This latency can be hidden if at least
24 X n threads are active in the multiprocessor with n being the number of cores present. The
hardware scheduler attempts to optimally schedule instructions to avoid register bank conflicts and

30

works best when using a multiple of 64 threads per block. Should there not be enough registers in

the SM or if the value is too large to store, the data will spill over into local memory.

Location Cached Access _ Lifetime
Register On-Chip N/A r/w Thread Thread
Local Off-Chip *Yes r/w Thread Thread
Shared On-Chip N/A r/w Block Block
Global Off-Chip *Yes r/w Global Application
Constant Off-Chip Yes r Global Application
Texture Off-Chip Yes r Global Application

Table 3.1: Device Memory Summary. *Cached on devices with Compute Capability 2.0 and up.

Local memory resides in off-chip device memory and suffers from high latency and low
bandwidth. Up to 512KB may be allocated per thread. The compiler automatically assigns local
memory for large structures; arrays that would consume too much register space and “spilled over”
registers in the case the thread runs out of its allocated amount. Local memory accesses are always
stored in L1 and L2 cache and should be avoided as the latency is still very high.

Shared memory is located on-chip and can be accessed by all threads resident to the block
currently loaded onto the multiprocessor. It has a much higher bandwidth and lower latency
compared to global memory. Each SM has 48KB which is divided up into 32 distinct 32-Bit memory
banks that can each be accessed simultaneously within a warp. This means that 32 threads can each
make a request to shared memory without bank conflicts, provided multiple requests do not fall in
the same bank. Shared memory can either have all the threads read from the same memory address
or all read from unique addresses to avoid a bank conflict. Shared memory is useful for problems
that require threads to co-operate or when a larger problem is divided up between the threads to
solve a smaller component. The use of shared memory can greatly improve system performance
over using slower global memory.

Global memory is the largest pool of memory that is located off-chip and has a size up to 3GB that
can be read from and written to by all threads, blocks and the host system. Global memory is the
device equivalent of the host’s RAM. The downside to using global memory is the high latency
associated with reads and writes. This high latency can be offset if a coalesced memory read is
performed. Coalesced access occurs when all the threads within a warp (32 threads) can be
combined into as little as one memory read. Global memory consists of rows of 128-Byte (128B)
aligned segments that are accessed in 128B transactions. This allows for all threads in a warp to
access adjacent 4B words (float) in a single request provided the memory is aligned to a single cache
line, even if the reads are non-sequential. However, for misaligned access, two separate requests are
required to read all the memory for the threads. These different patterns are represented in Figure
3.9. The correct use of coalesced memory access for reading or writing data greatly improves
memory throughput on the device.

31

A
T,
N

Figure 3.9: Memory access pattern for coalesced reading. Both (a) and (b) require a single 128B transaction whereas (c)
requires two 128B transactions, which decreases performance to 50%. (NVIDIA, 2013b)

Constant memory is read-only off-chip memory stored in constant cache with a total size of 64KB.
It is mostly used by the host to set constant values that need to be read across multiple kernel
executions. Reads from constant memory cost one request from a register but only when all threads
are reading the same address. If different addresses are requested by threads within a warp then the
requests get serialized and the cost scales linearly with the number of different addresses read.

Texture memory is a read-only off-chip memory, which is part of global memory. The difference
between this and global memory is that it is spatially cached in one, two or three dimensions. With
the data being spatially cached and a lookup operation is performed on a memory address, the
adjacent memory locations, both vertically and horizontally, are also fetched and stored in L1 cache
on the device. This speeds up access when an operation on a given location requires the data stored
in neighbouring locations, such as image filtering. However, in the event of a cache miss the cost is
one read from device memory, negating the advantage of using texture memory. It is primarily used
when accessing two-dimensional data-structures where adjacent memory reads are required for
computation.

These memory types each have their advantages and limitations. Selecting the right memory type
for the specific problem at hand is essential in obtaining higher performance from the device. Higher
memory throughput means that less time is spent waiting for data.

3.3 Performance considerations
In order to exploit the high computational power of modern GPU devices three key optimisations
are required (NVIDIA, 2013a):

3.3.1 Maximise memory throughput

Bank conflicts occur when two or more threads make an access request to the same memory
bank. If this occurs, the request gets serialized and the hardware splits the request into as many
conflict-free requests (n) as needed. This decreases memory throughput by a factor of n as a result.
However, if all the threads request the same address then a broadcast is performed. This is when the

32

address is read only once and broadcast to all the requesting threads. Bank conflicts should be
avoided to maximise memory throughput.

The amount of data being transmitted between the host and device should be minimised as the
bus transfer speeds are significantly slower than transfers within the device as shown in section
3.2.4. Another consideration is to select the correct memory type for the problem. Global memory is
larger but has the highest latency, although this can be reduced by using memory coalescing. Shared
memory provides fast access provided there are no bank conflicts and that the data is small enough
to fit.

3.3.2 Maximise parallel execution

The ratio of parallel to sequential computation must be balanced. Asynchronous calls should be
used where possible to enable concurrent execution between the host and device. Asynchronous
calls allow the host to transfer data to the GPU and continue processing. Once the data has been
transferred the kernel can be executed and the host can continue processing and initiate more
asynchronous calls. This allows for both devices to be continuously executing data in order to
maximise performance.

3.3.3 Maximise instruction throughput

The use of arithmetic instructions with low throughput should be avoided as larger throughput
hides memory latency. Branch divergence within a warp must be avoided as threads in a warp
cannot execute different code concurrently, requiring multiple passes to execute all branches.
Reducing unnecessary instructions and optimising away synchronisation points will also increase
instruction throughput.

3.4 Summary
Three key optimisations are required to exploit a GPUs full potential:

e Maximise memory throughput
e Maximise parallel execution
e Maximise instruction throughput

All the required hardware details should now be understood so that the implementation chapters
can be easily followed. Both chapters 6 and 7 include sections on our specific GPU implementations.
It is important to understand that GPU programs are defined by the launching of kernels, which
when executed are split up into many threads, blocks and grids. Knowledge of how these threads are
executed on the hardware is important in order to optimise the system to maximise performance.
Since different hardware generations provide different feature-sets, the compute capabilities must
be understood. Our system was designed around an NVIDIA GTX 580, which has a compute
capability of 2.0.

33

4 Framework

Source digital
elevation mode|
(DEM)
Texture Feat
> eatures
Feature extracted d Mpft:‘h
: in
Extraction & NG
Ll
Texture
List of candidates
Synthesised terrain ¥
Terrain Patch
Sketching Merging
Interface
L User Resulting terrain
sketched curves Y
Deformation
Deformed terrain I

Figure 4.1: Overview of patch-based terrain synthesis framework developed by Tasse et al. (2011). The terrain sketching
interface is the entry point to the system, where the user sketches their desired terrain. This is used initially to produce a
synthesised terrain, which together with a source file is run through feature extraction. Patch matching and merging is
run with the result being deformed according to the user’s initial sketch to produce the final terrain. This feeds back
allowing the user to modify the terrain and re-run synthesis.

This thesis extends the work done by Tasse et al. (2011), which is a patch-based terrain synthesis
system based on Zhou et al. (2007)’s work. An overview of Tasse et al. (2011)’s system is presented
in Figure 4.1. The authors improved on several aspects of Zhou et al. (2007)’s algorithm, discussed in
section 2.2.3, to enhance the quality of generated terrain. The components shaded in grey represent
the core terrain synthesis steps and are explained in this chapter.

4.1 User Input & Feature Extraction

Zhou et al. (2007) provides users with a limited 2D sketching interface. This only allows users to
specify the 2D position and type of feature, ridge or valley, but allows no control over the height of
these features. Tasse et al. (2011) develop a new hybrid scheme that makes use of the sketching
interface from Gain et al. (2009). Users are presented with an interactive environment that allows
them to sketch Z%D constraint curves. These curves describe the paths and types of features as well
as allowing the user to sketch out the height profile. This information is used during different stages
of the synthesis engine; the height profile is used to deform the terrain after it has undergone
merging and matching. Firstly the user’s sketches are converted into a 2D map containing the ridge
and valley curves to be used during feature extraction. An example of a user sketch is provided in
Figure 4.3 (a).

Feature extraction works by automatically identifying features, such as ridges and valleys, in the
target terrain. In image processing, features are typically identified through the use of edge-

34

detection methods. These features are characterised by the locally maximal derivatives of the image
intensity, whereas terrains are based on local extrema of the height-map. Naively applying the same
techniques to terrain feature extraction results in spurious features due to local height variations
(zhou et al., 2007). Thus a method making use of local extrema in the height-map is required to
extract the terrains features. The Profile Recognition and Polygon Breaking Algorithm (PPA) (Chang
et al., 1998, Chang and Sinha, 2007) is designed for this purpose. The original PPA inefficiently breaks
cycles by removing the largest value edge and runs in polynomial time with respect to the number of
edges. Bangay et al. (2010) explicitly reformulate the PPA as an equivalent process with the
elevation data represented as a graph and computes the minimum spanning tree (MST). The MST of
a graph is the subset of edges which allow the graph to remain connected and minimise the total
weight along all the edges, commonly created with greedy algorithms such Kruskal (1956) and Prim
(1957). The PPA comprises of the following 5 basic steps: Profile recognition, Target connection,

u\vﬁ# f
(a) Profile recognition (b) Target connection

}_ I
3

Polygon breaking, Branch reduction and Line smoothing.

(¢) Polygon Breaking (d) Branch reduction

Figure 4.2: Different steps of ridge extraction with the Profile recognition and Polygon breaking Algorithm (Tasse et al.,
2011). The final result is the minimum amount of points required to describe the main feature path.

1. Profile recognition is an algorithm that marks all points that could be part of a ridge line as
potential candidates. To determine if a point is a candidate, the algorithm takes it as the
centre of the profile. If there is at least one point with a lower height on both sides of the
profile then it is marked as a candidate. Furthermore, the profile is switched from N-S, NE—
SW, E-W to NW-SE to determine the candidacy of the point. Figure 4.2 (a) shows a series of
points marked as candidates.

2. Target connection: All the adjacent candidates are now connected to form weighted

segments, shown in Figure 4.2 (b). This process can produce many diagonal connections that
35

cross each other, when this occurs the program discards the less important edge. Edge
importance is calculated by summing the height values of the two connecting points with a
lower total weight being considered less important.

3. Polygon breaking: Target connection has the potential of producing closed polygons which
need to be eliminated, as they can cause cycles in the resulting graph. The program
repeatedly checks for closed polygons and removes the least important segment (lowest
weight value) until there are no closed polygons of any size left (Figure 4.2 (c)). This process is
achieved by taking all of the segments and sorting them by their weight. The PPA then checks
the lowest segment to see if it is part of a polygon. If it is, the segment is deleted and the next
lowest is checked. This process repeats until all of the segments have been processed. This
produces a tree structure with edges lying along the terrain features.

4. Branch reduction: After Polygon breaking there are many short branches most of which are
undesirable side effects of the Profile recognition stage generating too many redundant
points. These short branches are repeatedly deleted a user-defined number of times. Figure
4.2 (d) shows the result of the Branch reduction step.

5. Line smoothing: This step moves the points to the average weighted position based on its
location in relation to its neighbouring points. The weight of each point is valued proportional
to its elevation for ridges and inversely proportional to elevation for valleys. The new position
better fits the trend line and since it is an average it will never shift more than one grid space.
The final output is a tree representation of the final ridge or valley feature lines (Figure
4.3(b)).

Tasse et al. (2011) were primarily concerned with performance and the extraction of large-scale
terrain features. The original PPA was used with modifications to the Polygon breaking stage to
make use of a minimum spanning forest algorithm while preserving the Profile recognition and
Target connection steps. Kruskal’s algorithm was chosen as it performs several orders of magnitude
better than Polygon breaking. It is possible that the feature extraction data can be stored during a
pre-process step and read in at runtime, saving valuable time, this is discussed further in section 5.4.
Once the features have been extracted for both the DEM and user’s sketch, the algorithm proceeds
to the patch matching stage.

36

c) Features Completed d) Final Output

Figure 4.3: Patch-based texture synthesis. a) Users sketch input. b) Valley lines extracted from feature extraction on
exemplar. c) Output after feature matching has completed. d) Final output after non-feature matching has completed.

4.2 Patch Matching

Tasse et al. (2011) make use of a single exemplar to provide the source data for the system.
Feature extraction is run on both the exemplar and users sketch, with a collection of feature nodes.
Patches are centred on these nodes locations, which encompass a detected feature. For the
exemplar the patches are referred to as source candidates and are then rotated 8 times by 45° as
well as mirrored along the x-axis and y-axis giving a total of 10 candidates per patch. These
candidates are then compared to the patches from the user sketch. Patch matching is done in two
stages: feature and non-feature matching.

4.2.1 Feature Matching

Feature matching compares patches from the set of source candidates against the set of user
patches, searching for the best match. The output of the feature extraction process for both the
source file and user input produces a tree data-structure with edges falling on the terrain features.
These are connected with edge chains to form feature paths, as seen in Figure 4.2 (d). The matching
process starts by constructing the candidate pool from these edges, by using each edge position as
the central location of a candidate patch. The number of candidates is then expanded by rotating

37

and mirroring the patches, making the system more versatile. Feature matching follows a breadth-
first traversal of the feature tree, preferably starting at the node with the highest degree of
connectivity. The traversal proceeds along the paths in increments of one-half of the defined patch
size, which ensures successive patches only partially overlap. At each node the control points are

calculated, control points are the locations where the feature path intersects with a circle centred on

. . PatchSi . .
the node with a radius, r = %. The number of control points describes the type of feature

that this node is classified as. A single point indicates an end point; two points are a feature path and
more than two indicating a branch point (Figure 4.4). They are used in a set of cost functions with
the candidates to determine the best fitting patch. Three cost functions are evaluated; Feature
dissimilarity (Cf), Angle differences (C,) and Noise variance (C,). These functions are multiplied by
scalar values (a's) to control the level of influence each provides. The total cost (C;) for candidate Q
matching against target patch P is as follows:

Cep = arCrpQ T aCap T AnlnrQ

a) End-Point b) Feature Path

c) Branch Point

Figure 4.4: Example of different feature types based on the number of control points. a) Feature end point. b) Feature
path. c) Feature branch.

Feature dissimilarity

This function determines the similarity between the user and candidate patch by comparing their
height profiles using an L, norm. The height profiles consist of the height values along the outgoing
feature path, both along the feature path and perpendicular to it. These paths are shown in Figure
4.5 (a and b) and represented by lines O and P, respectively. Candidates with a lower feature
dissimilarity cost are more suitable matches.

Angle differences

The angles of the paths between the nodes for the given user and candidate patches are
compared using a normalized sum of squared differences. This angle difference indicates how similar
the structure of the candidate is to the user patch in terms of the top-down direction of the feature.

Noise variance

The noise variances of the user and candidate patches are computed at multiple levels of
resolution and their sum-of-squared differences added to make up this cost component. The noise
variance for given patch (P;) for levels [> 0, with [= 0 being the coarsest level, is the variance of
Gaussian noise computed by consecutively downsampling and upsampling P; to obtain the lower
resolution P;,4 and subtracting P, ; from P;. This process produces a set of frequency bands where

38

the details have been smoothed out. This cost function compares the noise differences between the
two patches at different frequency band levels. Lower variance between the patches indicates that
they have similar characteristics in terms of bumpiness at both coarse and fine scales.

(a) Target patch U7 (b) Candidate patch ...,
350 350
Height values of S from the target —— Heignht values of R from the target ——
Height values of S from the candidate —»— Height values of R from the candidate —»—
250 F ' trie SR it b 250 |- 'r*‘"‘—“‘—“f*\ 4
’ X
e R m
B 4 L st 2
150 150 o
100 -4 100 - 4
50 - 4 S0 1
n n
(¢) Height profiles

Figure 4.5: Feature dissimilarity Tasse et al. (2011), an illustration of how the algorithm examines the pixel data in a
patch. (a) User patch. (b) Candidate patch. (c) Height profile for values perpendicular to path. (d) Height profile for
values along path.

After all of the candidates are evaluated the total costs are sorted in increasing order, from this
the first five (lowest cost) candidates are selected. These final candidates are now run through the
Graph-cut cost algorithm used during merging (section 4.3.1). This algorithm evaluates the suitability
of the optimal seam. A high cost indicates a greater impact on merging due to more dissimilar pixel
data. The candidate with the lowest cost is selected as the matched patch and sent for merging into
the output terrain as described in section 4.3. This process repeats for all the user patches resulting
in the output shown in Figure 4.3(c). The system then starts matching the non-features to fill in the
missing regions.

4.2.2 Non-Feature Matching

After the feature matching is completed the output terrain may contain areas where no data has
been populated. To fill these holes with data, non-feature matching is performed. For this process,
new candidate patches are created from areas in the exemplar that contain no significant feature
data. These candidates are matched against already synthesised data in the output terrain and fill in
the empty region ®. Criminisi et al. (2004) show that the quality of the output terrain is affected by
the order of the filling process and propose a filling algorithm that prioritises patches along
structures. Tasse et al. (2011) made use of a similar algorithm for their implementation of the non-
feature synthesis, which ensures terrain features are preserved and propagated correctly.

39

Patch-based filling algorithm

This algorithm determines the location of the next patch to undergo matching and is based on a
best-first filling approach. The selection depends on priority values that are associated with every
point lying on the boundary of ®, d®. For a given patch B,, where n € d® (Figure 4.6), its priority
value is influenced by a confidence and data term. The confidence can be described as a measure of
the amount of reliable information surrounding the pixel n. It is calculated by summing the number
of pixels in the patch area that contain already placed data, then dividing by the total number of
pixels (PatchSize®). This gives a representation for the amount of already placed data the patch
contains. The data term is a function of the strength of the isophotes (linear structures) hitting the
front of the boundary of @, where there is no valid data. This term increases the priority for patches
that an isophote flows into. This is fundamentally important to the algorithm because it encourages
linear structures to be synthesised first and propagate securely into the output terrain. These two
terms are combined together to yield the priority value for B,.

Figure 4.6: Example showing the empty region ®, with the boundary d® highlighted in blue. A patch P,, centred around
a point on d® is enlarged.

Criminisi et al. (2004) proposed a filling priority that is calculated by multiplying the confidence
and data terms. This, however, discards pixels with a data term equal to zero even if their confidence
term is large. Instead, these terms can be added together as in Nie et al. (2006). At each iteration of
the algorithm the pixel that has the highest priority value is selected. Once a new location has been
determined, matching is used to select the best candidate to fill the area. Non-feature matching
ends when there are no more empty regions to fill.

Matching process

The candidate patches do not contain any significant feature data and thus, the matching criteria
are slightly different from that of feature matching. The set of candidates are evaluated against two
cost functions: noise variance difference C, and the normalized sum of squared differences over the
overlapping area C,. C,, minimises the difference in the bumpiness of the surface of the patch and Cs
matches the pixel data already synthesised in the output terrain. The total cost C; is computed by

40

adding the two cost values together after they are multiplied by a scaling factor a. This determines
the amount of influence each function has on the output as follows:

C; = a,C, + aCs

Tasse et al. (2011) uses scaling values of a, = 0.0001 and ag = 10, which were chosen after
observing the magnitudes of the individual components to ensure both contribute to the total
weighting. After the candidates are evaluated, the costs are arranged in ascending order with the k
best candidates selected for a second round of cost evaluations. These short-listed candidates are
now evaluated against the Graph-cut equation to determine which patch would make the best fit.
The best fitting patch is then selected and merged into the output. This process repeats until there
are no holes left in the resulting terrain, marking the end of the terrain synthesis process (Figure
4.3(d)).

4.3 Patch Merging

Once the system has found a matching patch, it must be placed in the output terrain. If this new
patch were simply pasted into the output and overlapped existing data, a seam would appear as if
there are different pixel values in the new patch. Thus a system is required to seamlessly merge the
new patch (B,) with any existing data. A patch (P,) is cut out from the target image at the location
where the new patch is to be placed. The region where existing data in P, overlaps with data in P, is
defined as (). Tasse et al. (2011) develop an improved merging algorithm using three different
techniques: Graph-cut (Kwatra et al., 2003), Shepard Interpolation (Shepard, 1968) and a Poisson
equation solver (Pérez et al., 2003). This new combination produces superior results to those of
Zhou et al. (2007).

4.3.1 Graph-cut

Patch merging starts by performing a Graph-cut to determine the optimal seam between patches
P, and P, over the overlap region € (Figure 4.7). Or more specifically, the minimum cost cut of the
graph is required. This is a well-known graph problem; minimum cut (max flow) (Sedgewick, 2001)
with easy to implement algorithms. Kwatra et al. (2003) use this algorithm with a weighted cost
function M, which penalises seams traversing through low frequency variations. This function is used
to determine the weight of the edge between pixels a and b in the overlap region and is defined as
follows:

|Fo(a) = Bu(@)] + |Fy(P) — By (b))

M(a,b,P,,P,) =
(@b, Fo.) GE (@)] + |GE (B)] + |GE (@) + |GE (b))

with d representing the direction of the gradient, which is also the same as the direction of the
edge ab. Gﬁoand Gﬁnare the gradients of the patches P, and P, along the direction d. The graph-cut
process uses the optimal seam to select which data from the new patch P, is to be placed into the
output image. Figure 4.8 shows the main stages in the graph-cut algorithm. The optimal seam is now
known but still visible in the target and further processing is required to hide it.

41

Cut

A
N

13 4 14 |+ 15 — 16

[e o) [o o]

[e o) co
/ \
oo\9——10—11—12/oo

[o o) (o o)

Q

Figure 4.7: lllustration of the graph-cut algorithm between patches P, and P,,. The optimal seam connects adjacent
pixels between the two patches.

N
T LT

0 Q d)

Figure 4.8: Example of the graph-cut algorithm steps. a) & b) Patches P, and P,,. c) The overlap region Q highlighted. d)
The optimal seam between the two patches highlighted after merging.

4.3.2 Shepard Interpolation

A useful by-product of the Graph-cut process is that it partitions the target patch into two
portions: the sink A containing pixels that come from P, and the source B containing P,,. The visible
seam can be removed by deforming B to match that of A along the cut. Tasse et al. (2011) chose to
implement a deformation technique based on point features proposed by Milliron et al. (2002) to
perform the deformation of the source producing B'. The pixels contained in B are displaced by
A(x), which is calculated from A(x;) — B(x;) for the points x; along the seam and scaled by a
distance-based normalised weight @;(x). The deformation is defined as:

B'(x) = B(x) + A(x)
N
A(x) = (Z ai(x)) (AG) = B(x)
i=0

with normalised weight:

42

w;(x)
2o wj(x)

w;(x) =

where w;(x) is 1 at x; and falls off radially to a distance dgy. The weighting function w; was chosen to
be an Inverse Weighting function as defined by Shepard (1968):

dg —d(x, x)\" _
w0 =1(aeny) - it <d

0, otherwise

where d(x, x;) is the distance between x and x;, dy the area of influence, and a the smoothness
factor. This deformation process is better known as Shepard Interpolation with the results of this
process following the graph-cut shown in Figure 4.9.

a) Graph-cut path b) B deformed to fit A along path

Figure 4.9: Results of Shepard Interpolation. a) Output from graph-cut algorithm. b) B is deformed to match the pixel
values of A along the optimal seam.

A limitation of Shepard Interpolation is that it does not take into account the gradient values,
which results in discontinuities found in the resulting gradient field. These discontinuities manifest in
visual artefacts that are not visible in a 2D top-down representation of the terrain, but create
obvious surface irregularities in 3D renderings of the terrain (Figure 4.11 (a-d)). This problem is
solved by removing the optimal seam in the gradient field Gp instead of the height values in P. Gp
consists of the gradient fields G from the sink A and Gg from the source B. The above equations are
used by substituting A(x;) with G, (x;) and B(x;) with Gg(x;).

GH(x) = () + ()
N
AG) = (Z ai(x>> (GG — G (x)
i=0

The gradient field Gp is now free of discontinuities, since both G4 and Gg have the same values
along the seam. The final step of patch merging is to calculate the new elevation values from the
modified gradient field by solving a Poisson equation.

43

4.3.3 Poisson equation solver
The following Poisson equation with Dirichlet boundary conditions must be solved to calculate the
final elevation values of patch P':

VZP' = V.Gp, P'la6 = Plasg 4.1
v2pr = a%P' N 0%P'
T ox? 9y?
aG¥ aGY
V. GP = P _P
dx dy

Gp = (G£,G})

where V2P’ is the Laplacian of P’, V. Gp is the divergence of the gradient field G and 6 represents
the entire patch area. Finite-difference methods (FDM) are used to construct a system of linear
equations that approximate equation 4.1 (George, 1970). The Conjugate Gradient method of
Shewchuk (1994) is used to solve the linear system for the unknown values of the new patch P’. The
process starts by translating the height values within the overlapping area, which is approximately
one-third of the patch size, into gradient values. Next the gradient values along the seam are set to
zero. Now the Poisson equation is solved to determine the best set of height values to fit the
modified gradients. The generation process is not confined to the boundaries of the patch, as
neighbouring pixels may have been deformed during Shepard Interpolation, which also need to be
considered. The newly generated values for P’ are placed into the final terrain, which results in a
smoothly transitioning terrain that is free of visual artefacts (Figure 4.11(e)).

d)

Figure 4.10: Poisson equation solving process. a) The image as output from Shepard Interpolation, patch P'. b) The
gradient fields of the patch P'. c¢) The modified gradient fields free of discontinuities along the seam. d) The final output
after the Poisson equations are solved.

44

4.4 Research Outcome

Tasse et al. (2011) improved on the already impressive results of Zhou et al. (2007) by: enhancing
the matching process, increasing the candidate patches from the exemplar by a factor of 10; and the
addition of noise variance along with some tweaks to the existing cost functions. A visual
comparison of the results was conducted by Tasse et al. (2011) and found that in most situations
their results produced better matches to the users input compared to previous work. They noted
that the current approach to patch merging based on a combination of graph-cut and Poisson seam
removal (Zhou et al., 2007), is not well suited to terrains. This is because the techniques produce
terrains with discontinuities in the second order derivatives. These discontinuities appear as
artefacts on the terrain and are more noticeable when viewing the output terrain in 3D. A user study
was conducted which confirmed that their new patch merging technique, Shepard Interpolation with
a Poisson equation solver, is superior and succeeds in eliminating the boundary artefacts (Figure
4.11). User experiments were conducted by Tasse et al. (2011) to determine the realism of their
generated terrains. They found that there was no statistical significance proving that real unmodified
terrains were superior to those generated by their system. They conclude that the realism of their
terrain is not dissimilar to that of real-life landscapes. We identified several key aspects that Tasse et
al. (2011) have improved over previous work:

e A terrain sketching interface allows for greater user control (Gain et al., 2009). Users will
benefit from an interactive development environment with intuitive controls based on

. 1 .
drawing ZED constraint curves.

e Performance issues of the PPA feature extractions are addressed using minimum spanning
trees, similar to Bangay et al. (2010)’s work.

e By including noise variance similarity and sum-of-squared-difference cost functions on the
overlapping region of already placed patches, the feature matching process has improved.

e By replacing the thin-plate spline deformation from the matching stage and mirroring and
rotating candidate patches increases the sample pool. This increases the likelihood of finding
good matches in the sample terrain.

e The feature dissimilarity cost function is modified to take height differences along outgoing
branches of a feature into consideration.

e The filling order for non-feature matching is changed to a best-first filling approach based on
gradient values (Criminisi et al., 2004). Noise variance similarity is also used during this phase.

e Lastly, a novel patch merging algorithm more appropriate to terrains is introduced. Along the
optimal seam between two patches, discontinuities in the gradient field are removed with a
scattered point interpolation and a Poisson equation solved for the new height values instead
of just setting them to zero. This method produces a more realistic landscape, especially when
viewed in 3D.

Tasse et al. (2011) propose possible extensions to their synthesis framework: utilising multiple
DEM exemplar files and enhancing performance with GPU acceleration. In the next chapter we look
into these extensions as well as some others in our enhanced framework.

45

(a) (b)
(c) (d)

(e)

Figure 4.11: Comparison of patch merging techniques (Tasse et al., 2011). (a) No patch merging. (b) Graphcut algorithm.
(c) Shepard Interpolation. (d) Results from Zhou et al. (2007). (e) Results from Tasse et al. (2011).

46

5 Enhanced Framework

Patches with no strong feature elements

Source File
Database

Feature

| Extraction

Non-Feature

Feature Matching 3
> & Merging —> Matching

& Merging
U
ser Feature
Sketching —) Extraction |
Interface
+ Final
Terrain

Figure 5.1: Overview of our proposed system for enhanced terrain synthesis. The entry-point to our system is the
simplified sketching interface, which when synthesis is initiated, run through feature extraction to build the user
candidates. A collection of varying source files is run through feature extraction also, with the feature data being used in
matching and merging with the sketch data. A final step fills in the gaps left from feature synthesis with data from the
source candidates to complete the terrain.

The terrain synthesis system of Tasse et al. (2011) produced compelling results due to their novel
patch merging technique and enhanced user interface that allows 2%D manipulations of the terrain.
However, some improvements can still be made to the system. An important improvement is
support for increasing the candidate patch pool through the use of multiple input source files. This
will allow for greater variability in synthesised terrains, provided it can be done efficiently. To
accommodate this change, synthesis speed needs to be hugely increased. This requires
parallelisation of core algorithms, extensive optimisation and careful use of pre-computation. We
chose to use GPU-based parallelisation as the core of our extensions since a GPU is well suited to
many image-based operations. Figure 5.1 is a design overview of our proposed system with the
areas representing the main differences from the system of Tasse et al. (2011) outlined in red. This
chapter describes the design of our framework so as to provide a high-level understanding of our
objectives.

5.1 Multiple Input Sources

Previous work on texture synthesis mainly focuses on the use of a single source file, from which
data is extracted. This limits the variation available, as it is highly unlikely that a single source
contains enough variation to meet the user’s requirements, particularly for highly varied or large
terrains. For terrain generation this limitation is easily observed by using a single source file that
contains mostly flat landscape data and attempting to synthesis large mountainous regions (Figure
5.2a). This can also lead to noticeable repetition during patch synthesis (Figure 5.2b). While we
found no research relating specifically to terrain generation using multiple sources, Wei (2003)
proposes a multi-source pixel-based texture synthesis technique. Their system minimises an error

47

function by examining all the pixel inputs within individual neighbourhoods (patches) to find the best
set of input pixels. This error function is a weighted sum of the L, norm between the
neighbourhoods of two different inputs. Unfortunately this technique does not adapt well to the
system designed by Tasse et al. (2011). We found no other suitable research relating to the use of
multiple input sources for terrain generation; instead we develop our own as an extension to Tasse
et al. (2011).

We propose a system that supports a large number of input terrains in order to maximise the
variation of data. This will allow for more diverse and rich landscapes to be generated. By using
many individual files, the work can be more easily distributed to multiple processing elements
without the need for complex logic to divide and distribute a single file amongst them. In order to
provide this functionality, much of the underlying algorithm needs to be modified. During the
feature and non-feature synthesis stages, the candidate patches from each input source are
evaluated against the target patch. The best matching patches from each of the input sources are
retained and compared with the overall best patch being selected for merging into the output
terrain. The specifics of this process are discussed in detail in chapters 6 and 7. One disadvantage is
that the all input sources will no long fit into memory: data must be streamed to and from the
secondary memory. However, this is an acceptable cost given the improvements arising from a
multiple source system. Nonetheless, in order to minimise the performance impact, additional
optimisations will be introduced to speed up the overall processing pipeline.

a) b)

Figure 5.2: Examples of limitations with using a single source for terrain synthesis. (a) Using an input terrain without the
correct type of feature data, source image lacks ridge details. (b) System can produce noticeable repetition in output
terrain.

5.2 CPU and GPU Accelerated Synthesis

The process of synthesising terrains is complex and requires a large amount of processing power.
The candidate patch searching algorithm is O(a(m X n)), where a is the number of source files for
m candidates against the n user patches to match (Listing 5.1). Then there is the searching within
each of the patches to evaluate the cost. Some aspects of this process can be parallelised since the
algorithm is not dependant on each iteration’s result. This allows for multithreading to be

48

implemented in order to exploit the parallelism of modern CPUs. For example, the looping over the
n user patches for each candidate can be divided up amongst multiple processing cores. Assuming 4

processing cores, the complexity for the algorithm is reduced to approximately O (@)
1 Loop over source files (a) {

2 Loop over candidates (m) {

3 Loop over user patches (n) {

4 Calculate cost of m for n

5 }

6 }

7}

Listing 5.1: Algorithm overview for the candidate searching algorithm

However, some components of the system are sequential because they require information from
previous iterations to complete. An important sequential component is the patch merging process.
Merging selects the final candidate based on the information contained in the final output terrain.
Despite these limitations, substantial performance can still be gained from a multithreaded
approach. These gains can be magnified by leveraging the extremely high degree of parallelism that
GPU devices offer. The details of these parallel implementations are covered in sections 6.3.2 and
6.4. By reducing the time required for terrain synthesis, the system becomes far more responsive
and also allows larger terrains to be generated in reasonable time.

5.3 Simplified User Sketching Interface

To simplify the process of specifying the user’s input to the system, a simplified sketching
interface was designed. The interface provides the user with two pens that are used to draw the
desired locations of ridges (mountains) or valleys, which make up the features. Once the user is
satisfied with their sketch the synthesis option can be selected. The user is required to finish
sketching all of their desired strokes as the system, while efficient, is not capable of interactive
runtimes due to the large amount of data that requires processing. Next the drawn strokes are
compressed down to produce a single image, which uses a binary system of black and white marking
to represent the ridges and valleys. This image is run through feature extraction, which decomposes
the sketched curves into a series of linked nodes/vertices in a graph structure. This graph structure is
then split into a series of patches that are compared to the source candidates during synthesis. The
details of the feature extraction process are described in section 6.1.

After all the features have been matched there may be many ‘holes’ in the output terrain where
no features were drawn by the user. These areas are now filled with featureless data extracted from
the input terrains in the form of patches. Once complete the final terrain is displayed in the
interface. During the synthesis operation, several stages are rendered and kept as snapshots which
can be viewed from the interface. These include the feature detection phase, which overlays thin
lines over the sketch to show where the system detected features for both input terrains and user
sketch. The result of each synthesis operation is also saved. The current output, representing the
state of the system, is displayed in the interface and updated after every merge operation is
completed. All these images can be easily switched between. The interface is updated continuously
during the synthesis process so that the user can see each of the patches being placed into the
output. The interface also allows the user to save the output terrain as well as the other snapshots
as either a PNG image or Terragen terrain file. Loading of user sketches is also supported, which is

49

useful for testing purposes as it allows one to synthesise the same terrain multiple times for
comparison purposes. Other useful tools include undo/redo commands and an eraser pen to make
sketching easier. There are plans to extend the user interface further in the future as described in
section 9.2. Figure 5.3 shows the different views of our interface.

Figure 5.3: a) The main sketching interface with all menus expanded. b) Sample sketch drawn with feature detection
run. c) Output after feature synthesis. d) Final output

5.4 Pre-Processors and Pre-Loaders

Running feature extraction on the input sources during synthesis wastes valuable time. The
inefficiency can be addressed by pre-computing and storing the feature data and then reading it in
when required. This observation brought about the notion of pre-processing data as an optimisation
step. The feature extraction process (Section 4.1) is computationally expensive. The output of this
phase is a graph of linked nodes (edge pairs) which represent x and y coordinates in the input file.
These edge pair coordinates are saved out to an external ASCII file as newline delimited entries. By
saving the data, each input file only has to be processed once. When loaded again these edge pairs
reconstruct the graph to form a series of nodes, with each node being the central point for source
patches. The patch size can be changed in the system to choose how much data around the node is
used by the system. We present results for varying the patch size in section 8.3.3.

Pre-loaders are used to pull all the required data into memory in order to speed up processing.
During the feature synthesis stage the raw image, along with the pre-processed feature extraction
data for each source, is loaded into memory. If there is insufficient space for all sources, source data

50

is loaded in batches, with each batch being processed before the next batch is read in. Storing the
data in memory allows for very quick access when calculating the best matching candidate for each
of the user patches. The candidates for the source file are generated on-the-fly for processing and
discarded when complete, thus limiting the total memory overhead by not keeping all candidates in
memory constantly. This process is also batched by the system, if a particular source file has a very
large number of candidates, to prevent it from running out of memory. This same principle is applied
to the GPU implementations, with the source images and feature extraction data persisted in GPU
memory. This is important as there is a very large overhead with transferring data from host to
device, provided there is sufficient memory, otherwise batching is performed.

5.5 Summary

We presented an overview of our enhanced terrain synthesis framework that builds on the work
by Tasse et al. (2011). It includes the use of multiple input sources to dramatically increase the
candidate pool of data, which leads to better quality synthesised terrain. Through data pre-
processing and optimisation of the synthesis pipeline we are able to reduce synthesis time despite
the increase in input data. The next two chapters cover the implementation details for the synthesis
process.

51

6 Feature Synthesis

Source File
Database Loop over user candidates
Loop over source database P o
Feature N St D N
3 ~
Extraction i R A 5 Sort \\
’ . Sort /3 // Candidates \
// Candidates \ / \
/ A / \
i \ ! Calculate Save Best \
Calculate (1 3 ¥
Al e " Save Best ‘Y—h | Costs ‘| Candidate | '
W osts | subset \ Round 2 |
User e \ | Round1 /’ \ /
Sketchin, > . \ \ /
g 7| Extraction > \ . \ Merge /
Interface \ : - /
N / \ Candidate 7
N Cd N\
~ Pz N 7
Sy | g P a3 g — s

Figure 6.1: Feature synthesis pipeline showing flow of data for the Feature Matching & Merging block of our system
(Figure 5.1)

Feature synthesis is the process of matching data from source terrains to a user sketch and placing
them seamlessly into an output terrain. First the candidates are extracted along feature lines from
the source terrain. These are then evaluated against the user patch by applying several cost
functions to determine a subset of optimal matches. This process is extremely resource intensive
and we present a parallel CPU and several different GPU implementations to speed up the matching
process. Once all the source files have been processed, the overall best match is calculated with a
second round of cost equations and then merged into the final image. The rest of this chapter
explains the process in detail; Figure 6.1 shows an overview for the feature synthesis pipeline.

6.1 Feature Extraction & Pre-Loaders

Once the user has completed sketching their desired terrain they can start the synthesis process.
To begin, the sketch they have drawn, is processed through feature extraction (Section 4.1), which
generates the feature paths as a set of connected nodes. These nodes mark the central location for
the user patches which are to be synthesised from the candidate data. The user’s sketch is pre-
processed to extract both ridge and valley data and then stored in memory. The control points,
which describe the type of feature, are also calculated at this point for later use. The feature
synthesis stage is then initiated. This stage requires the source files to be pre-loaded into memory
for faster access subsequent to a pre-processing stage (Section 5.4). Feature synthesis is then run for
all the user patches.

6.2 Cost Functions

The feature matching algorithm must quantify the difference between the source candidate and
user patches. There are two rounds of cost calculations, with the first round occurring during the
inner functions of feature matching (Section 6.3) and the second occurring before merging into the
final image (Section 6.5). There are four cost functions in total: Feature Profiling, Sum-of-Squared
differences, Noise Variance and Graph-cut cost. Feature profiling is part of round one; the others are

52

executed during round two. The reason for splitting this up is that the cost functions in round two
make use of the already placed data in the output terrain, to provide better statistics.

6.2.1 Feature Profiling

(a) Target patch U}, (b) Candidate patch V..,
350 350
Height values of S from the target —— Heignt values of R from the target ——
= [_ Height values of 5 from the candidate —»=— | ==y N _ Height values of R from the candidate —»=—
250+ - 280 ’?_A_H#“ﬂ\ J
o [X
zm_mwzm_ﬂﬁ% o
| AShEP, t’.‘l’:"."m
150 4 150 | ssett™ 4
e
100 - 100 4
50 - 1 50 .
n n

(¢) Height profiles

Figure 6.2: Feature profiling algorithm against user and source candidate patches. Segments r and s represent profile
paths for the patches.

Feature profiling quantifies the similarity of features between the candidate and user patches.
This cost is calculated by comparing the height profiles of lines r and s of the user patch p (Figure
6.2 (a) and (b)) with the L, norm (Sum-of-Squared Differences). Tasse et al. (2011) additionally
compare the height profile along the feature path, in contrast to Zhou et al. (2007) who only
compare height profiles perpendicular to the path. Figure 6.2 (c) illustrates the height differences
between the target and source patches for both segments. The lower the calculated cost, the more
likely the candidate is a good match for the user patch. This cost equation is used during the first
round of evaluations as it only requires the feature path data and does not rely on already
synthesised data. It therefore carries all the weight for the initial matching phase.

1 Inputs: User Candidate, User Control Points, Source Candidate
2 Output: Cost value (float)

3

4 Initialise: total=0

5 Loop over control points {

6 Calculate points for segments r and s (Figure 6.2)

7 Run profiling for segments r and s {

8 Initialise: sum = 0,count =0

9 Iterate over all points on segment {

10 Calculate difference: (Diff = Ustyixer — STCpixer)
11 Add difference squared: sum+= Diff?

12 count + +

13 }

53

. _Vsum
14 Add sum to total: totald+= /count
15 }
16 }

17 Final cost: FP:mtal/#ControlPoints

Listing 6.1: Feature Profiling algorithm

6.2.2 Sum-of-Squared Differences (SSD)

The SSD function evaluates the differences between the source candidate and the user patches
(Listing 6.2). Here, a lower overall cost indicates a better matching candidate patch. The user patch is
extracted from the current output terrain, but as this may contain invalid (not yet synthesised data)
this SSD is only evaluated across the overlapping area of the patches. The SSD evaluates the
difference in the raw height values of the corresponding pixels, squares the difference and adds this
to the sum for the candidate patch.

1 Inputs: User Candidate, Source Candidate

2 Output: Cost value (float)

3

4 Initialise: sum = 0,count =0

5 for (i : PatchSize®) {

6 Obtain user candidate pixel value (U;)
7 if U; is valid {

8 Obtain source candidate pixel value (S;)
9 Calculate difference (Diff =U;-S;)
10 Add difference: sum+= Diff?

11 count + +

12 }

13}

14 Final cost: SSD = Vsum/count

Listing 6.2: Sum-of-Squared Differences algorithm

6.2.3 Noise Variance

The noise variance for the source candidate and user patches is computed at multiple levels of
resolution and the SSD of these differences is calculated. The lower the overall cost value the better
the chance of the two patches having similar characteristics in terms of roughness of the terrain at
different frequencies. We implemented the Wavelet Noise algorithm of Cook and DeRose (2005).
The noise variance for an image at a given resolution level is the variance of the Gaussian noise
produced by consecutively downsampling and upsampling the image, resulting in a lower frequency
image which is then subtracted from the current level. For the purposes of our research we make
use of three noise levels. A useful observation is that the orientation of the patches has no effect on
the noise variance, meaning that it only needs to be calculated once for all orientation changes of
the candidates. The cost calculation algorithm is presented in Listing 6.3. To limit the influence this
cost value has on the overall candidate cost, it is scaled by a = 0.001. This balances out the cost so
as not to overpower the SSD cost value.

Input: Noise variance arrays (User and Source candidates)
Output: Cost value (float)

Initialise: sum =0
for (i : #lLevels - number of levels of generated noise variance) {
sum+= (UsrVar[i] — SrcVarli])?

A v A W N R

54

7}

8 Final cost: NV = sum/#LevelS

Listing 6.3: Noise Variance algorithm

6.2.4 Graph-cut cost

During patch merging (Section 6.5) a Graph-cut (Section 4.3.1) is performed between the output
terrain and the best overall candidate patch, which determines the optimal seam between the two.
As part of this process, the minimum cut (max flow) is calculated in order to find the optimal seam
along which to cut. We use this value to quantify the placement of the candidate patch in the output
terrain (Listing 6.4). There is a large overhead in running this calculation and it is thus only executed
on a small subset

of the five lowest cost candidates with the best patch being selected for the merging process.

Inputs: Destination patch from output terrain, Candidate patch
Output: Cost value (float)

Initialise graph-cut algorithm {
Create vector to store cuts (C)
Loop over pixels in patch (PatchSize?) {
If pixel is valid then add coord to C
}
Loop over C {
Determine sink / source status of cuts coord

W 00 N O UVl A W N B

bR
R ®

}

iy
N

}

Initialise graph structure (G)
Loop over C {

Calculate weight and add as edge to G
}

Calculate maximum flow of G and return as cost value

I e Y
N ounobhow

Listing 6.4: Graph-cut cost algorithm

6.3 Feature Matching - CPU

Our first implementation of the feature matching algorithm is a sequential CPU algorithm. We
develop two different versions of this algorithm with the difference lying in the order of looping over
the datasets. We then select the more efficient of the two in terms of both speed and memory
efficiency and develop a parallel implementation to further improve performance. During terrain
synthesis the feature matching process is executed twice, once for matching ridges and once for
valleys. In this section we first discuss the cost calculation process and then present the sequential
and parallel implementations.

55

6.3.1 Sequential CPU Implementation
Loop over source database

-

-

-~
~
Vd 5 N
/ 2 Sort N\
,’ ‘| Candidates
/
{
. Calculate
A Save Best
V- Costs > Subset
\ Round 1
\
\
A
i > /

Figure 6.3: Overview of the second version of sequential CPU feature matching. Feature merging is included as it is a
required part of the flow. More information on the merging process is found in section 6.5.

The design of the sequential implementation is adapted from Tasse et al. (2011) and extended to
account for multiple input sources. An overview of this process is provided in Listing 6.5 representing
version one of the sequential implementations. It starts with the data obtained from feature
extraction of the user’s sketch, which is processed to produce a set of user nodes. These nodes
represent ridge/valley features that need to be matched against data in the source terrains. The
algorithm loops over these nodes; this is done so that data is placed into the final output
sequentially and then used in cost calculations for successive patches. Within each iteration, the
current user node is prepared: the pixel data from the users sketch is extracted centred on the node.
The control points calculated during feature extraction are also obtained, which describe the type of
feature this node is. This data represents the user patch that is to be matched against the source

files and is run as an inner loop.

Inputs: User Sketch, Source Files, Source Feature Extraction Data

Output: Image with features synthesised

Extract features from user sketch

Prepare user nodes

Loop over user nodes {
Prepare user patch
Loop over source files {

1
2
3
a
5 Verify features were found (abort if none)
6
7
8
9

10 Verify features

11 Prepare source nodes

12 Prepare source patches (candidates)
13 Calculate costs for all candidates
14 Sort candidates on cost

15 Save subset (best-set)

16 }

17 Find best overall patch from best-sets
18 Merge best patch

19 }

Listing 6.5: Algorithm overview for the version one of sequential feature matching.

All the source files are evaluated in this inner loop (source-loop), with the first step being to
ensure the source file has been pre-processed and pre-loaded into memory. The pre-processing step

56

Feature
Merging

runs the feature extraction algorithm in the background; the results are saved to hard disk to
prevent the need to run this costly process repeatedly. There is a small chance this has not
happened yet if there are a large number of source files in the system. The process will block until
the data is properly available, as the pre-processing is carried out in a separate thread (see section
6.6 on optimisations). The source file now undergoes a preparation stage, where the raw extracted
feature data is processed into nodes. This state verifies that this file has the correct type of features
(ridge / valley) before converting these nodes into patches. During the conversion process the
patches undergo a series of transformations. They are rotated eight times through 45° increments as
well as mirrored along the x and y axes, to produce ten variants for each patch (hereafter referred
to as the candidates). At this point the candidates are matched against the user patch according to
the feature profile cost function (Section 6.2.1), to produce the cost values for each candidate. This
data is now sorted in ascending order and a small subset of the best candidates (best-set) is stored
for additional processing. For the purposes of our research we use a subset size of five candidates
per source file, because we found that larger set sizes increased synthesis time due to the more
complex second round of cost calculations. Smaller subset sizes would reduce the variability at
merge time, which could potentially lead to the same patch being placed adjacent to one another.
This would create noticeable visual artefacts, which we can address by skipping the selection of the
same patch for adjacent merge operations. The matching process continues evaluating all source
files and adding the best-set of each to an array. Once this array is complete it is returned to the
user-loop where processing continues.

Inputs: Array of best candidates
Output: Single best patch

1
2
3
4 Initialise variables

5 Extract user patch (U) from current state of final output terrain
6 Generate noise statistics for U

7 Loop over best candidates array {

8 Extract candidate (C) from its source file

9 Run sum-of-squared differences cost function for C against U

10 Run noise variance cost function for C against U

11 Run feature profiling cost function for C against U
12 Record sum of cost functions for candidate

13 }

14 Sort the candidates cost value in ascending order
15 Loop over best five {

16 Run graph-cut cost function for C against U
17 }

18 Select lowest cost patch as best overall

Listing 6.6: Algorithm overview for selecting the best overall patch

After all source files have been evaluated there is an array of best candidates with a maximum size
of (#SourceFiles X 5), which is processed to determine the best overall patch for merging. There
can be fewer candidates if there is insufficient feature data in a source file to provide a reasonable
match. At this point a second round of cost equations is run on all these candidates to find the best
overall patch, as described by Listing 6.6. There are two parts to this. Firstly all the candidates are
evaluated with the SSD, noise variance and feature profiling cost functions. They are then sorted
again and the best five candidates are run with the Graph-cut cost equation to work out the best
patch to merge. This best patch is now merged into the final output terrain as described in Section

57

6.5. The process repeats until all the user patches have been matched, at which point feature
synthesis is complete and non-feature synthesis is executed to fill in any gaps in the output terrain
with data from the source files that contain no strong features (featureless). This process is
described in chapter 7.

The implementation above is optimised for use with a single source file as per Tasse et al. (2011),
because the source candidates and user patches can be directly compared to each other while being
kept in memory for fast access. By extending it to support multiple input files, each of these sources
needs to be loaded into memory and candidates extracted for every user patch. This requires the
source files to be swapped in and out of memory multiple times leading to a large performance
overhead. Another approach is to retain the user patches in memory and allow for the source files to
be loaded once per synthesis and compared against all user patches. This solution trades space
efficiency for time efficiency. Results for the differences between version one and the optimised
version two are presented in section 8.1.1.

The alternative version of sequential feature matching (Listing 6.5) is described in Listing 6.7. The
process starts by processing the user’s sketch through feature extraction and generation of the
nodes as before. At this point all the nodes are processed to create an array of user patches. This
array is cached in memory and has provision for storing the best-set candidates for all the source
files. This requires a larger amount of memory as the best-set for all source files and all user patches’
needs to be stored. This is because the merging process can only take place after all the source files
have been evaluated.

Inputs: User Sketch, Source Files, Source Feature Extraction Data
Output: Image with features synthesised

1
2
3
4 Extract features from user sketch

5 Verify features were found (abort if none)
6 Prepare user nodes

7 Create array of user patches

8 Loop over source files {

9 Verify features

10 Prepare source nodes

11 Prepare source patches (candidates)

12 Loop over user patches {

13 Calculate costs for all candidates
14 Sort candidates on cost

15 Save subset (best-set)

16 }

17 }

18 Loop over user patches {

19 Find best overall patch from best-sets
20 Merge best patch

21}

Listing 6.7: Algorithm overview for the version two of sequential feature matching.

Next the system loops over all the source files, verifies features, prepares the nodes and
generates the candidates. All the user patches are then evaluated against all the candidates with the
best-set of candidates for each user patch stored for later processing during the merging loop. After
all sources have been processed the system finally loops over the user patches to process the best-
set candidates for each. The overall best patch is determined through a second round of cost

58

calculations and then merged into the final terrain, with feature synthesis concluding after all user
patches have been merged. Based on the results (Section 8.1.1), we observed a marginal speed
improvement over version one. This improvement comes from not having to swap the source files,
which includes a preparation step before cost calculation. It is mostly mitigated from our pre-
processing and caching optimisation. However, this version scales better when a larger number of
source files are used and provides an easier implementation for distributed computation, as there is
less context switching of data involved. It was decided that this would be the optimal solution and
subject to further optimised through multithreading as described in the next section.

6.3.2 Parallel CPU Implementation
Loop over source database

—_———
=
- -~

> & AR
7/ ~N
> N
y \
\
// Calculate Costs Round 1 \

\

/, Thread 0 Thread 1 Thread 2 \
;L \
|

! Feature
- Thread 3 Thread 4 Thread x L) z
! ‘?\‘ , Merging

/

\\ /

\ q Save Best 5 Sort //

\\ | Subset ‘| Candidates /
\ /
4 /
& s
" 7
Nk o

Figure 6.4: Overview for parallel CPU feature matching.

The parallel CPU implementation builds on Sequential CPU version two by adding additional
threads to several of the components to better utilise the multiple cores of modern CPUs. Figure 6.4
shows the same version two pipeline but with the parallelised parts highlighted. There are two
components that we have targeted for multithreading: the pre-processing stage and calculating the
candidate costs for both rounds. In order to support the use of multiple threads, some changes were
required to manage the threads and correctly distribute the workload. The pre-loader system
distributes the workload by giving each thread a different source file to process. This works well as
there is consequently no shared data between the threads.

During the matching process a large number of candidates are compared to the current user
patch. This process can benefit greatly from multithreading with the candidates being equally
divided between the threads. Once all the candidates have been processed by all the threads, a
single thread then performs the sorting process with the best-set stored before moving onto the
next user patch. Once all the user patches have been evaluated then the next source file is
processed. The parallelisation in the system could be extended by unrolling one of the loops. Then
having each of the source files processed by a separate thread controller, which itself spawns
multiple threads for the cost calculations. However, this would not improve performance and could
actually hamper it — CPUs have a low number of cores and creating too many threads would force

59

the CPU to thread swap constantly resulting in lower overall performance. This idea, however, is
explored in section 6.4 with GPU matching.

Once all the source files have been processed, the system starts the merging process with the
second round of cost calculations. Again, the cost calculations for the candidates are divided up
between multiple threads to speed up processing. A single thread is required to perform the sorting
and the final merging process before moving onto the next user patch.

6.4 Feature Matching - GPU

Loop over source database

>
// \\\
/

/ ¥ \
/ Cache Data

/ on GPU \
\
/ il \
Execute Cost \

Calculation Kernel |

Feature

|
|
- -l +
G v —> Merging
|
\

Execute I
Sorting Kernel
\

\ v /
\ Transfer Best /
\ Subset to CPU |

Figure 6.5: Overview of the GPU feature matching pipeline

This section discusses our implementation of feature matching on GPU devices to further reduce
the synthesis time by exploiting the high degree of parallelism the GPU offers. Figure 6.5 shows an
overview of the GPU pipeline with the components processed on the CPU and GPU as shown. In
order to maximise the performance, a good balance between host (CPU) and device (GPU) is
required. We show how the design of our parallel CPU implementation can be adapted so that the
most suitable parallelisable components can be processed on the GPU.

6.4.1 Caching of data on GPU

Before any processing can be performed on the GPU, the data needs to be transferred over from
host memory to the devices global memory. There is a very high overhead in transferring such data,
so it is desirable to pre-load the data and cache it on the GPU. The first time a synthesis operation is
begun, the data is transferred, which means that running another synthesis will be faster as there is
no transfer cost. For the purpose of testing in Chapter 8, we run all tests after the data has been
cached. Once the data is cached in the devices global memory it is transferred to higher speed
device memory for cost calculation. We implemented several CUDA kernels to compare the use of
these different types of memory (Section 6.4.3).

60

6.4.2 User Patch Extraction

The first stage of running the synthesis on the GPU is to process the user’s sketch through feature
extraction. This is still performed on the CPU, but the user node data is transferred to the GPU. The
user patches are now extracted from the data according to the pseudo code in Listing 6.8.

Inputs: User Patches
Output: None (Results kept in GPU memory)

Allocate memory on GPU {
Patch cords: 2 X (#UserPatches x SizeOf (int))
Patch control points: 2 X (#UserPatches X #MaxControlPoints X SizeOf (int))
Number of Patch control points: 1 X (#UserPatches X SizeOf (int))

}

Copy user data from host to device

Allocate memory to store user patches: (#UserPatches><PatchSize2 xSizeOf(float))
PatchSize PatchSize

11 Init kernel: GridDim=(> 5 ,#UserPatches): BlockDim = (32,32)

12 Execute extraction kernel {

13 Calculate lookup coordinates for sketch
14 Calculate memory address for output

15 Extract pixel data from source

16 Store data in user patches memory

17 }

W 00 N O V1 A WN B

=
[

Listing 6.8: Overview for the user patch extraction on the GPU

Firstly, blocks of memory are allocated on the device, and the user’s sketch and accompanying
feature extraction data are loaded into this space. An additional large array is allocated, which stores
patches extracted from the user sketch. The user patch extraction kernel is then executed, using a

Patc;;Size ,PatC;;Size ,#UserPatches) and block dimensions (32,32). The

blocks are sized to fit within a single CUDA warp to maximise efficiency. We divide up the grid so

grid with dimensions of (

that multiple blocks can process a single patch and add a 3™ dimension to iterate over all the user
patches. One pre-requisite is that we select a patch size that is a multiple of the CUDA warp size — for
our research we used a standard patch size of 64. Zhou et al. (2007) made use of a patch size of 80
pixels, they determined this by the spatial scale of the source file being used as well as the detail of
the resulting image required by the user. Tasse et al. (2011) also make use of the 80 pixel patch size,
we chose to use a smaller patch to better suit our GPU system design and although marginally
smaller it should not impact the output much. We do a comparison of our system with that of Tasse
et al. (2011) in section 8.3.1, where we provide the output images from their system with ours using
a patch size of 80 and then of 64. After the user patch extraction kernel is executed, we are ready to
process the candidates.

6.4.3 Candidate Cost Calculations

The system now loops over the source files to analyse the costs of all the candidates against the
user patches. The process starts by allocating memory on the GPU to store the source image along
with the data obtained from feature extraction. This data is only cached to the GPU once, at first
runtime, for every source file. The largest computation time comes from calculating the costs of all
the candidates for all the user patches. We develop a total of eight different GPU versions to
investigate various techniques to maximise performance.

61

Initial GPU versions

The first four versions share a similar starting point, memory is allocated to store a single
candidate patch (PatchSize? x SizeOf (float)) bytes. There are two nested loops that are run,
the first loops over all the source patches and the second over the number of candidate

transformations, this is set at ten variations per patch. Inside the inner loop the candidate image
PatchSize PatchSize
32 ’ 32
(32,32) is used to efficiently extract the candidate patch from the source image. When running the
cost calculation, there is an additional loop which iterates over all the control points for the user

data is extracted. A kernel with grid dimensions () and block dimensions

patch. This number describes the kind of feature that was detected during feature extraction and is
thus variable for each patch. The code then diverges into one of the four different versions, although
with each setting the grid dimension equal to the number of user patches to process.

Inputs: Source File, Patch Offset
Output: Candidate patch stored in GPU memory

. , , PatchSize PatchSize
Init Kernel: Gruﬂhn1==(2 %

Execute extraction kernel {
Calculate lookup coordinates for sketch
Calculate memory address for output
Extract pixel data from source
Store data in user patches memory

) : BlockDim = (32,32)

W 00 N O VT B WNBR

10 }
Listing 6.9: Overview for the candidate patch extraction kernel

The first version (Listing 6.10) is a simple attempt that uses a block dimension (1) that makes use
of a single thread and executes all the code sequentially. This is highly inefficient and the
performance results reflect this (Section 8.1.3), although still much faster than a sequential CPU
implementation. The goal of this implementation was to directly translate our CPU implementation
and provide a base to work from for GPU optimisations.

1 Inputs: Source Candidates

2 Output: Calculated costs for candidates - Stored in GPU memory

3

4 Allocate memory on GPU {

5 Candidate Patch: PatchSize X PatchSize X SizeOf (float)

6 }

7 Loop over source patches {

8 Loop over number of source transformations {

9 Execute candidate patch extraction kernel (Listing 6.9)

10 Init kernel: GridDim = (#UserPatches) : GridBlock = (1)

11 Execute cost calculation kernel {

12 Loop over control points {

13 Calculate points for segments r and s (Figure 6.2)
14 Run profiling for segments r and s {

15 Initialise: sum = 0,count =0

16 Iterate over all points on segment {

17 Calculate difference: (Diff = UsTyixer — STCphixer)
18 Add difference squared: sum+= Diff?

19 count + +

NN
R ®
-
-

62

22 Add sum to total: total+= vsum/

count
23 }
: . .total
24 Final cost: FP: /#ControlPoints
25 }
26 }
27 }

28 Free candidate patch GPU memory
Listing 6.10: First version of our GPU cost calculation process

The second version (Listing 6.11) increases the block dimension to (4) to allow four threads to run
concurrently. This divides up the work so that each thread works on a component of the cost
function when looping over the control points. Each of the segments is broken up in two, centred on
the control point’s location as per Figure 6.2. Because there is now more than one thread doing
calculations, we make use of a small amount of shared memory to store the cost value from each
threads calculation. A useful observation made is that the only variation in code, where branching
occurs, is the calculation of the segment positions. After that the same code path is executed for all
four threads concurrently with their results stored in separate shared memory locations. The final
step is to synchronise the threads and then have a single thread perform the final summation of the
costs from the other ones stored in shared memory. This value is then divided by the number of
control points to produce the final cost for this candidate.

1 Inputs: Source Candidates

2 Output: Calculated costs for candidates - Stored in GPU memory
3

4 Allocate memory on GPU {

5 Candidate Patch: PatchSize X PatchSize X SizeOf (float)

6 }

7 Loop over source patches {

8 Loop over number of source transformations {

9 Execute candidate patch extraction kernel (Listing 6.9)
10 Init kernel: GridDim = (#UserPatches) : GridBlock = (4)

11 Execute cost calculation kernel {

12 Allocate shared memory: 4 X SizeOf (float)

13 Loop over control points {

14 Calculate points for segments r and s (Figure 6.2)
15 Run profiling for segments r and s {

16 Initialise: sum = 0,count =0

17 Iterate over all points on segment {

18 Calculate difference: (Diff = UsTyixer — STCphixer)
19 Add difference squared: sum+= Diff?

20 count + +

21 }

22 }

23 Add sum to total for thread x: total,+= Vsum/count
24 }

25 ~Synchronise threads~

26 If thread.id == 0 {

27 Total cost: sum(costs in shared memory)

28 Final cost: Fp: total COSt/#ControlPoints

29 }

30 }

31 }

32}

63

33 Free candidate patch GPU memory
Listing 6.11: Second version of our GPU cost calculation process

The third version also makes use of shared memory and the same block dimension of (4), but
changes several other aspects. The majority of the algorithm is the same as the second version
(Listing 6.11). A total of (4 X SizeOf (float)) bytes of shared memory is used for this version. An
‘abs’ function was removed because its inverse was placed inside an ‘if clause which was already
executing, to remove the performance hit that an abs function has on the GPU pipeline. Another
improvement was to not initialise the shared memory to a zero value. Instead, during the looping
over the control points, the first iteration will set the value with successive calls adding to the cost.
The function that performs the cost calculation with the given edge was unrolled and placed directly
into the kernel for a slight performance gain. A single thread is still required to sum the total cost
after a synchronisation before the kernel returns.

1 Inputs: Source Candidates

2 Output: Calculated costs for candidates - Stored in GPU memory
3

4 Allocate memory on GPU {

5 Candidate Patch: PatchSize X PatchSize X SizeOf (float)

6 }

7 Loop over source patches {

8 Loop over number of source transformations {

9 Execute candidate patch extraction kernel (Listing 6.9)
10 Init kernel: GridDim = (#UserPatches) : GridBlock = (128)
11 Execute cost calculation kernel {

12 Allocate shared memory: 128 X SizeOf (float)

13 Calculate points for segments r and s (Figure 6.2)
14 Initialise: sum = 0,count =0

15 Iterate over all points on segment {

16 Calculate difference: (Diff = UsTpixer — STCpixer)
17 Add difference squared: sum+= Diff?

18 count + +

19 }

20 Add sum to total for thread x: total,+= VSU™ count
21 ~Synchronise threads~

22 If thread.id == 0 {

23 Total cost: sum(costs in shared memory)

24 Final cost: Fp: total COSt/#ControlPoints

25 }

26 }

27 }

28 }

29 Free candidate patch GPU memory
Listing 6.12: Fourth version of our GPU cost calculation process

The fourth version (Listing 6.12) attempts to use additional threads, to iterate over the additional
control points as separate threads. This means individual threads have no loop structures. We
multiply the current block dimension of (4) by a set maximum number of control points of 32 to give
a dimension (128). The previous work we were extending had a hard limit of 32 control points,
which we adopted as well. However, this hard constraint is not advised for varying patch sizes as the
number of control points varies with the size of the patches. We now unroll the loop over all the

64

control points and use some logic to work out which control point the thread is working on. The
shared memory amount is also increased to (16 X SizeOf (float)) bytes, so each thread has its
own piece of memory. The process ends with the single thread totalling all the shared memory
blocks. This method proves inefficient as there are not always 32 control points which results in
threads being idle and wasting executing time. After the development of some of our advanced GPU
implementations we discovered that the system in fact uses no more than three control points for
our given patch size. Adjusting values down to four yielded significant improvements in this version
and is re-integrated in our advanced implementations in version eight. The explanation for the poor
results was the idling of the vast majority of threads, which were not required and a waste of
resources.

Advanced GPU versions
The next four GPU versions are different in that only a single loop is used, which iterates over the
source patches. We allocate enough memory to hold all the different transformations of a source

patch (10 x PatchSize? x SizeOf (float)) bytes. A kernel with grid dimensions

(PatchSize PatchSize
32 ! 32

patch, perform the required transformations and then store all of them (Listing 6.13). Versions 6-8

,10) and block dimensions (32,32) is used to efficiently extract the source

share a common grid dimension (#UserPatches) for the cost kernels. The code now diverges for
each of the four advanced GPU versions.

Inputs: Source File, Patch Offset
Output: Candidate patch stored in GPU memory

. , . PatchSize PatchSize
Init Kernel: Grllem:(2 a2

Execute extraction kernel {
Calculate lookup coordinates for sketch for all transformations
Calculate memory address for output
Extract pixel data from source
Store data in user patches memory

,#Transformations) : BlockDim = (32,32)

W 00 N O VT B~ WNBR

10 }
Listing 6.13: Overview for the advanced candidate patch extraction kernel

Version five (Listing 6.14) is a modified implementation of version three that makes use of
additional blocks, which runs each of the ten transformations. The grid dimensions are expanded to
(#UserPatches, 10) with the block dimensions still set at four threads. There is a slight speedup
due to splitting up the workload to a greater degree.

1 Inputs: Source Candidates

2 Output: Calculated costs for candidates - Stored in GPU memory

3

4 Allocate memory on GPU {

5 Candidate Patch: PatchSize X PatchSize X #Transformations X SizeOf (float)
6 }

7 Loop over source patches {

8 Execute candidate patch extraction kernel (Listing 6.13)

9 Init kernel: GridDim = (#UserPatches,#Transformations) : GridBlock = (4)
10 Execute cost calculation kernel {

11 Allocate shared memory: 4 X SizeOf (float)

12 Loop over control points {

13 Calculate points for segments r and s (Figure 6.2)

65

14 Initialise: sum = 0,count =0

15 Iterate over all points on segment {

16 Calculate difference: (Diff = UsTtyixer — STCpixer)
17 Add difference squared: sum+= Diff?

18 count + +

19 }

20 Add sum to total for thread x: total,+= Vsum/count
21 }

22 ~Synchronise threads~

23 If thread.id == 0 {

24 Total cost: sum(costs in shared memory)

25 Final cost: Fp: total COSt/#ControlPoints

26 }

27 }

28 }

29 Free candidate patch GPU memory
Listing 6.14: Fifth version of our GPU cost calculation process

Version six (Listing 6.15) is an extension to version five, but instead of using more blocks for
processing we exploit part of the initialisation in the feature profiling algorithm. For each of the
control points in the user patch, the four threads work out their corresponding offset location for
each of the segments. Then they compare the height profiles with the candidate patch. Each of the
threads will calculate the initial part and then when it comes to comparisons with the candidate
patches, we add an additional loop which will check each of the candidates. The shared memory is
increased so that each thread can store its information for each of the ten candidates it is evaluating.
The process ends with a single thread totalling the costs from each of the threads for each of the
candidates, producing ten cost values. Due to the additional looping done by single threads, this
version works best when there are a large number of user patches to evaluate to ensure the GPU is
fully saturated to offset the looping overhead.

1 Inputs: Source Candidates

2 Output: Calculated costs for candidates - Stored in GPU memory
3

4 Allocate memory on GPU {

5 Candidate Patch: PatchSize X PatchSize X #Transformations X SizeOf (float)
6 }

7 Loop over source patches {

8 Execute candidate patch extraction kernel (Listing 6.13)

9 Init kernel: GridDim = (#UserPatches) : GridBlock = (4)

10 Execute cost calculation kernel {

11 Allocate shared memory: 4 X 10 X SizeOf (float)

12 Loop over control points {

13 Calculate points for segments r and s (Figure 6.2)
14 Initialise: sum = 0,count =0

15 Iterate over all points on segment {

16 Calculate difference: (Diff = Usryixer — STCpixer)
17 Add difference squared: sum+= Diff?

18 count + +

19 }

20 Add sum to total for thread x: total,+= Vsum/count
21 }

22 ~Synchronise threads~

23 If thread.id == 0 {

66

24 Total cost: sum(costs in shared memory)
25 Final cost: Fp; total COSt/#ControlPoints
26 }

27 }

28 }

29 Free candidate patch GPU memory

Listing 6.15: Sixth version of our GPU cost calculation process

Version seven (Listing 6.16) combines features from versions five and six, taking the additional
looping from six and using the extra dimensions from five for the processing. The grid dimensions
are still set to the number of user patches but the block dimensions are extended to (4,10). The
shared memory is thus increased to allow for the ten transformations for each of the four
components. But instead of adding an extra loop as done in version six, we use the extra dimension
of threads to calculate the costs. While this version performs better than version five, it can at best
perform the same or slightly worse than version six. It also requires terrains with large numbers of
user patches to fully saturate the GPU with enough independent blocks.

1 Inputs: Source Candidates

2 Output: Calculated costs for candidates - Stored in GPU memory
3

4 Allocate memory on GPU {

5 Candidate Patch: PatchSize X PatchSize X #Transformations X SizeOf (float)
6 }

7 Loop over source patches {

8 Execute candidate patch extraction kernel (Listing 6.13)

9 Init kernel: GridDim = (#UserPatches) : GridBlock = (4, #Transformations)
10 Execute cost calculation kernel {

11 Allocate shared memory: 4 X 10 X SizeOf (float)

12 Loop over control points {

13 Calculate points for segments r and s (Figure 6.2)
14 Initialise: sum = 0,count =0

15 Iterate over all points on segment {

16 Calculate difference: (Diff = UsTyixer — STCpixer)
17 Add difference squared: sum+= Diff?

18 count + +

19 }

20 Add sum to total for thread x: total,+= vSum/cmmt
21 }

22 ~Synchronise threads~

23 If thread.id == 0 {

24 Total cost: sum(costs in shared memory)

25 Final cost: Fp: total COSt/#ControlPoints

26 }

27 }

28 }

29 Free candidate patch GPU memory
Listing 6.16: Seventh version of our GPU cost calculation process

Our final GPU version (Listing 6.17) takes another look at the less impressive version four and
attempts to improve its performance. We optimised the looping mechanics to prevent unrequired
threads from executing code thus resulting in it performing better than the original version four. We
also performed testing to determine a better limit for the control points and never observed more

67

than four control points for any of the input files we made use of. The improvements from version
seven are also incorporated, which brings the block dimensions to (16,10). This improves
substantially on version four and doubles the speed of version seven. We then investigated making
use of texture memory to improve performance further.

1 Inputs: Source Candidates

2 Output: Calculated costs for candidates - Stored in GPU memory
3

4 Allocate memory on GPU {

5 Candidate Patch: PatchSize X PatchSize X #Transformations X SizeOf (float)
6 }

7 Loop over source patches {

8 Execute candidate patch extraction kernel (Listing 6.13)

9 Init kernel: GridDim = (#UserPatches) : GridBlock = (32, #Transformations)
10 Execute cost calculation kernel {

11 Allocate shared memory: 32 X 10 X SizeOf (float)

12 Calculate points for segments r and s (Figure 6.2)

13 Initialise: sum = 0,count =0

14 Iterate over all points on segment {

15 Calculate difference: (Diff = Ustyixer — STCpixer)

16 Add difference squared: sum+= Diff?

17 count + +

18 }

19 Add sum to total for thread x: total,+= Vsum/count

20 ~Synchronise threads~

21 If thread.id == 0 {

22 Total cost: sum(costs in shared memory)

23 Final cost: Fp: total COSt/ s controlPoints

24 }

25 }

26}

27 Free candidate patch GPU memory
Listing 6.17: Eighth and final version of our GPU cost calculation process

GPU Texture Memory

We added an option to enable the use of texture memory on the GPU for the user sketch and
source images. This affects the user patch extraction kernel, along with the candidate extraction
kernel used in each of the GPU versions for cost calculation. Section 8.1.4 presents the results
obtained from using texture memory. The implementation requires few code changes from the
implementations in Listing 6.9 and Listing 6.13, a bound texture reference is needed for the lookups
instead of passing in an array. The system is capable of interchangeably using texture memory or the
global memory array directly during synthesis.

6.4.4 Storing Best Candidates

Once the cost kernels have been executed for all of the source files, the data needs to be sorted
and only the best set of candidates retained. This set then needs to be relayed to the CPU for the
merging process to begin. We develop two different implementations for this process; the first
simply transfers all the raw cost data to the CPU for sorting, while the second performs the sorting
on the GPU.

68

The first implementation relies entirely on the CPU to perform the sorting operation. This requires
the raw cost data be transferred back to host memory. We made use of the built in C++ stable sort
algorithm. Once transferred, we create a data-structure that associates the candidate indices and
cost values. This is now sorted in ascending order of cost, with the five lowest cost candidates being
saved. This processed is repeated for all of the user patches and the results sent for merging.
Transferring the raw data to the host has a high time cost due to the large amount of data being
transferred, sorting on the GPU and transferring only the best-set data would, in theory, be more

efficient.

1 Inputs: Candidate costs for each user patch

2 Output: Set of 5 best candidates for each user patch
3

4 Allocate memory on GPU (#UserPatches X 5 X SizeOf (int))
5 Init kernel: GridDim = (#UserPatches) : BlockDim = (1)
6 Execute sort kernel {

7 Loop over number to keep: 5 {

8 Loop over #CandidateCosts {

9 Store lowest cost candidate index

10 Set cost to infinity to indicate stored
11 }

12 }

13 }

14 Create array on host (#UserPatches X 5)

15 Copy data from device to host

16 Build best set from index values for #UserPatches

Listing 6.18: Algorithm for sorting candidates based on cost in ascending order

The GPU sorting implementation has two different modes: the first is our own written kernel
(Listing 6.18) to sort the data and the second uses an external library, Thrust (2013), which includes
functions optimised for sorting. Our sorting kernel has a grid dimension (#UserPatches) and block
dimensions (1); this provides a single thread that runs over two loops. It is based on the observation
that a full sort is not required. The outer loop iterates over the number of candidates we chose to
retain (5), searching the entire set of candidates looking for the lowest cost. When found the index
for the candidate is recorded and its cost set to infinity before the next iteration. Once the kernel is
finished executing the results are transferred to the host, so the CPU can assemble the best set
candidates and pass them to the merging process. The use of the Thrust (2013) library provides a
function that is highly optimised, to replace our sorting kernel, while the rest of the process remains
the same. The results for all three variants of this process are presented in section 8.1.5.

6.4.5 Merging

Now that the best-set of candidates is available back on the CPU side, they can be processed for
merging. The merging process is not ported to the GPU in our research and is thus done on the CPU.
Section 6.5 describes the process for merging; while the CPU is processing some of the data for
merging, the GPU continues building up new sets of data asynchronously as part of the blocked
design. This splits the workload into smaller chunks so that the CPU can be processing a chunk while
the GPU is preparing the next; this is described in section 6.6.

69

6.5

Feature Merging

i mTTT TR ~o
Loop over user candidates o - W
LTS ~ T s N
7 N Calculate Costs Round 2
£ o Sort X %
/ ’ Candidates \ Thread 0 Thread 1 Thread 2 \
// \ \
| [Calcul \ ‘
Calculate Thread 3 Thread 4 Thread x
Feature ! Save Best | *
. —)4 1 Costs 3. ? Y -
Matching Candidate |
\ Round 2 ! /
\ // Merge 2 Sort //
\ J : :
\ Merge / Candidate Candidates
V. [Candidate ,/ C Save Best
N 4 N ‘| Candidate g
~ i = > ~ & -
Ko ~_ -
a) b)

Figure 6.6: Overview of the feature merging pipeline: a) Single-threaded pipeline, b) Internal block for multithreaded
version.

The merging process used in our system remains largely unchanged from that of Tasse et al.
(2011), as described in section 4.3. Figure 6.6 shows an overview of the merging process with the
parallelisable components separated out. Once the matching system has completed for all the
source files and the best set is produced, the merging process takes over and a second more
comprehensive round of cost calculations is undertaken. This is part of the merging core because the
information already synthesised in the output terrain is used. The combination of SSD and Noise
Variance allows a recalculation of the cost values based on the synthesised data. This list is then
resorted and only a small subset of five candidates is evaluated against the Graph-cut cost due to
the large computational overhead it carries. The overall best candidate is selected and passed onto
the merging process.

The merging process is responsible for placing the best candidate into the output terrain. Simply
pasting the candidate directly into the output terrain will result in obvious artefacts with a very
pronounced straight boundary due to the difference in pixel values. For the result to appear
seamless, a combination of techniques is used. First a Graph-cut (Section 4.3.1) is performed on the
overlapping area to find an optimal cut path. However, this seam remains visible, which requires
further processing. Shepard Interpolation (Section 4.3.2) is used to deform the pixel data around the
seam so that the pixels on both sides have similar values. This process works well with a top-down
view of the 2D image showing no visible artefacts. However, a 3D rendering of the terrain shows that
the gradient values along the seam are not matched, revealing an unnatural discontinuity. Tasse et
al. (2011) correct this artefact by performing seam removal on the image gradient field of the
overlapping region. The final elevations for this patch are reconstructed from the modified gradient
field by solving a Poisson equation (Section 4.3.3). The patch has now been successfully placed into

the terrain free from any visual artefacts and the process can proceed to the next patch.

The cost computation part of this process is enhanced with multithreading to better distribute the
workload. The recalculation of the costs for all the best-set candidates is divided equally amongst a
set of threads, after which a single thread sorts the data. The Graph-cut cost is only executed on the
top five candidates, each of which is run in a separate thread. The actual merging of the patch into
the output terrain is done on a single thread.

70

6.6 Optimisations

Throughout the implementation of the feature synthesis a number of optimisations were applied
to improve the system. The two cost calculation rounds are one such example; these were described
in sections 6.2 and 6.3. Due to the system architecture changes required for multiple input sources it
is not possible to run some of the cost functions without data from the output terrain.

a) b)

Figure 6.7: Example of repetition in output terrain. (a) Repetition with adjacent patches (b) Repetition check
implemented to overcome this issue

There is a chance that during synthesis the same candidate may be chosen for successive user
patches. This leads to a repetition of adjacent patches in the output terrain, which is visually jarring.
In order to fix this issue we keep track of the last placed candidate, which is penalised with a very
high cost to prevent it being selected, unless there are no other matches. Since our system only
retains a maximum of five candidates for each user patch, we have a limited amount of data to
choose from when preventing repetition. This is a trade-off with the amount of memory available to
the system as keeping more candidates would require much more memory and increase the time to
complete synthesis. Figure 6.7 shows an example of such repetition artefacts as well as the same
user sketch being synthesised with our fix to prevent repetition in adjacent patches. This
improvement only retains a reference to the last placed patch, which does not help if adjacent
patches are not processed successively. As such the repetition artefact may still occur. To address
this, a secondary data-structure could be maintained and queried at merge time to ensure that the
same patch was not being placed adjacent or even in close proximity. This would add further
complexity for the system and was chosen to be left for future work. Implementing this concept
would require us to store more candidates as it would shift the limitation of repetitiveness to how
many patches there are to choose between.

During the feature extraction process, the distance between successive nodes may be as little as a
few pixels, which will result in a significant overlap of patches. This would be extremely wasteful
since we would end up synthesising the same area multiple times. To address this we only generate

patches that have a minimum linear distance of 1/16 th the patch size between neighbouring nodes.

This can dramatically reduce the number of user patches, especially in larger terrains where the

71

feature extraction process produces errors with edges forming closely spaced parallel lines (Figure
6.8). Improvements to the extraction algorithm could potentially solve this issue.

a) b)

Figure 6.8: (a) Example of error with feature detection engine forming multiple parallel lines. (b) This results in heavy
overlaying of patches, which wastes performance.

Pre-loading all the data into memory means the system only needs to read it from disk once,
which saves on the transfer time from disk. This allows us to improve performance over the system
designed by Tasse et al. (2011). Their system extracts the pixel data for every candidate from the
source file and stores it in memory during the cost calculations. This method quickly exhausts all
available system memory and could potentially crash when processing source files with large
numbers of patches. A source file with 5,000 patches would expand to 50,000 candidates under the
different transformations, which would require 800MB worth of memory to store just the 64 X 64
pixel patch data. There is also a large time overhead in extracting all the candidates before
computing their cost. We developed our system to keep only the original source file in memory and
do direct memory lookups during cost calculations. This allows us to process very large source files
with thousands of candidates. Once the best patch is located by the system, its pixel data is
extracted and passed to the merging subsystem.

When developing the GPU implementation many optimisations from the CPU implementation
were retained. Pre-loading the data onto the GPU device allows for much faster synthesis as the
largest overhead with GPU programming is copying data between the host and device. We have also
optimised the GPU kernels through proper use of the available memory types (Section 6.4.3).

72

Loop over source database

- ~

- R Loop over user candidates
s z
/ i N \ in each block of results
/ e
/ Cache Data \\ A R S
s
i on GPU \ /7 5| sort %
Block 0.k f/ v \ Results 0...k // Candidates \
| Execute Cost \ / \\
: !
| Calculation Kernel L " Calculate o— \
- | | .
»| |Block k...2k| ¥ ! |Results k...2k —}4 L[Costs [3] iote ¥--»
i Execute I \ | Round2 I
\ Sorting Kernel / \ /
\ /
Block 2k...n \ ¥ / Results 2k...n \\ Merge /
\ Transfer Best / \ 4. did /
. / g Candidate Vi
a) 1 Subsetto CPU | ,) % o
/ ~ £
_J / 2o SN
= Lo d)
b)

Figure 6.9: lllustration of blocked design for candidate processing. a) A queue of blocks of length k that are sequentially
processed by the algorithm in b) on the GPU. Results form a queue c) which is processed by the CPU in d)

The last important optimisation is the development of a blocked design, which splits the work into
a series of chunks for processing the cost calculations (Figure 6.9). This design became necessary for
very large user sketches with hundreds or even thousands of user patches. Our algorithm is designed
to process all the user patches in order to store the best set of candidates before the merging
process. But processing all the data in the limited high-speed memory available on a GPU is not
possible. Thus, it becomes necessary to divide the task into a series of smaller chunks. Another
benefit of this blocked design is that after a block has been processed by the GPU, its results are
transferred back to the CPU to begin the merging process. At that point the next block is processed
by the GPU. This allows for a balance of the CPU and GPU processing capabilities. There is a small
overhead with managing the various processes but as shown in section 8.1.5 there is a reduction in
the synthesis time when balancing the tasks asynchronously. As the CPU is slower at processing than
the GPU, these changes ensure that the CPU is never idle during the synthesis process.

There are several improvements that have not yet been implemented and are listed in section 9.2
for the future work. Further GPU optimisations can be achieved by exploiting the functionality
provided on new generation devices. Next we look into the non-feature synthesis process.

73

7 Non-Feature Synthesis

Patches with no strong feature elements

4

Loop until no empty spaces left
P g) Calculate R
/ | Costs 3 Sort e
/ ;
; Candidates \
‘ p Select \
== P A1 Next Yr——n~n
\ Target { |
\ £ Save Best //
A Merge | Subset /]
N 5. 7
~_ Patch 2 |
RS e e |

<

Non-Feature Matching & Merging

Figure 7.1: Non-feature synthesis pipeline showing flow of data for the Non-Feature Matching & Merging block of our
system (Figure 5.1)

After all the user features have been matched by the system there are areas in the output that
have no data and appear as holes in the terrain. Non-feature synthesis is the process of filling these
holes with data from the source files that contain no strong features. This process sequentially
selects an area, matches a suitable candidate and then merges the data. This is sequential due to the
matching process relying on data in the output terrain, which is updated with each iteration. There
are few subroutines that can be accelerated through parallel processing, such as the cost
calculations, which we implemented on the GPU. Figure 7.1 shows an overview of the non-feature
synthesis process, which is described in the rest of this chapter.

7.1 Candidate Extraction

Candidate patches that contain no strong feature data are required for the non-feature synthesis.
These patches are extracted from the source files using a modified feature extraction algorithm. As
we need the overall synthesis results to be repeatable, the extraction algorithm cannot have any
randomness in the selection process, unless a seeded random number is used for repeatable results.
We designed our system to examine fixed intervals along the x and y axes of the source files for
suitable candidates. This gives us a fixed number of candidates and the interval is calculated as
follows,

Interval = (SrcWidth — (2 x PatchSize?) = 8)

where SrcWidth is the width of the source file. This is calculated for both axes, which gives us the
coordinates to iterate over. These form the centre points for the patches to be extracted. Each of

these locations is then compared to the feature extraction node list to make sure that the patch

L .., . Patchsi
location is not within % pixels of a feature node. This ensures that we avoid patches with

74

strong features being used. Finally, each of the valid patches are extracted from the source file and
then the next source file is then examined. We purposely chose a small number of candidates per
source file to limit the complexity of the overall system and the impact on performance. This was
due to the non-feature synthesis process not being ported to the GPU due to time constraints; this is
noted as future work in section 9.2.

Candidate extraction is run as a pre-processing step at the beginning of non-feature synthesis; all
of the valid patches from all source files are cached in memory for later processing in this stage. To
increase the number of candidates for the system, each patch is rotated and mirrored in the x and y
planes similarly to feature synthesis. These candidates are now examined during the matching stage.

7.2 Candidate Matching and Merging

The system now loops continuously until there are no longer any holes in the output terrain.
There is no way of pre-computing the number of non-feature patches that need to be placed to
complete the process. This is because the boundary is continually changing with each merge
operation, with each placing a different amount of data into the output. Patches are placed at
locations on the boundary only so as to provide some valid data to facilitate merging. This
unpredictability prevents us from determining the runtime. A single iteration comprises selection,
matching and merging processes. The system has no smallest size of hole that it will match and will
handle a hole consisting of a single pixel, which ensures the output contains no invalid data. Once all
the holes have been filled the synthesis process concludes and the final image is displayed.

7.2.1 Selecting Target Patch

For the first iteration the system needs to evaluate the output terrain to identify all the locations
that are on the boundary of placed data and an empty area. This is done once over the whole image
and then, after each merging operation, only the affected area is updated. Each of these boundary
locations has an associated priority value, which is based on the already placed data around the
patch location. At the start of non-feature synthesis, the current output image is processed to build
up a list of priority values for the boundary pixels (Listing 7.1). This list is sorted at the start of each
iteration, the location with the highest priority is selected for the current matching and merging
operation. The details of this algorithm are discussed in section 4.2.2.

1 Loop over output pixels {

2 if pixel valid && on boundary {

3 Calculate priority and add to 1list
4 }

5}

Listing 7.1: Algorithm overview for building boundary dataset

7.2.2 Matching - Cost Functions

Non-feature synthesis makes use of three of the same cost functions used for feature synthesis,
namely sum-of-squared differences, noise variance and graph-cut. These cost functions are well
suited as they make use of already placed data in the output terrain. We again make use of two
rounds of cost calculations. This lets the system only compare a subset of candidates from the first
round against the computationally expensive second round. The first round compares the candidate
patches with the Sum-of-Squared Differences (SSD) (Section 6.2.2) and Noise Variance (Section
6.2.3) cost functions. After the candidates are evaluated and sorted, the five lowest cost candidates

75

are evaluated against the Graph-cut cost (Section 6.2.4) function and the best patch is selected for
merging.

7.2.3 Matching - CPU Implementation

Our CPU implementation for non-feature synthesis is adapted from Tasse et al. (2011), with
additional enhancements. An overview of this process is provided in Listing 7.2 and the CPU pipeline
is illustrated in Figure 7.1. The process starts by extracting the candidate patches from all the source
files and storing them in memory (Section 7.1). The boundary dataset is now initialised. This
evaluates all the points that lie on the boundary of synthesised data and a hole and computes an
associated priority value (Listing 7.1). The process now enters a hole-filling loop, which only
concludes when there are no remaining holes in the output terrain.

1 Extract candidates from all source files
2 Populate boundary dataset

3 Loop until no holes {

4 Select target patch

5 First round cost calculation

6 Sort results

7 Second round cost calculation

8 Sort candidates

9 Merge best patch

10 Update boundary dataset

Listing 7.2: Algorithm overview for the CPU non-feature matching implementation

The first step is to select a target patch for matching (Section 7.2.1). Once a patch is found, its
pixel data, where it exists, is extracted from the output terrain and passed to the first round of cost
calculations. For each candidate patch, the SSD is calculated for the areas that correspond to valid
data in the target patch for each of the different transformations. The noise variance for all the
candidate transformations are identical, thus only one comparison is required and the result is
added to each of the candidates total cost. After all the candidates have been evaluated, they are
sorted in ascending order and the five with the lowest cost are run through a second round of more
comprehensive cost calculations. The second round uses the Graph-cut cost function to measure the
quality of the merge for the patch. The results are sorted once again with the overall cheapest patch
being selected for actual merging. The boundary dataset is now updated around the modified
location before the process repeats, continuing until all the holes are filled.

The only parts of this implementation that benefit from parallelism are the cost calculations,
which could be distributed amongst a group of threads. However, due to time constraints we chose
not to implement a parallel CPU implementation and instead invested time in a basic GPU
implementation where we parallelise the cost calculation stage. There is room for improvement of
non-feature synthesis through better optimisation and parallelism, but this is left for future work
(Section 9.2).

76

7.2.4 Matching - GPU Implementation

Loop until no empty spaces left

— - —_—
— -

- ~

e 4 SN &
% N
4 \
// Select Next | \
/ Target I \\
Patches with no strong /’ v \

feature elements / Transferr target Vierse Patch \\

:I " f data to GPU Rlgerare \

4 l T |

. |Cache Candidates ; A
- P on GPU —}\ Execute Cost Choose Best I 2
\\ Calculation Kernel Overall Patch /]

/
\ l T /]
\ \ Execute = Transfer Best /
\ | Sorting Kernel Subset to CPU // l
% T % |
7
N -

=2 ~ - & |

-~ — who

Figure 7.2: Overview of the GPU non-feature matching pipeline. Candidates are cached on the GPU initially. The system
then loops until all ‘holes’ are filled. GPU acceleration is used to calculate the costs with the rest being done on the CPU.

The GPU implementation we have developed is a basic attempt at parallelising non-feature
synthesis; only the cost calculation and sorting are performed on the GPU with the rest done on the
CPU. An overview of this process is presented in Listing 7.3. The process starts with caching all of the
source files on the GPU, but this is normally skipped as the source files will have already been cached
on the GPU as part of feature synthesis. The candidate extraction process starts with allocating
memory to store all the candidates in GPU memory. We then loop over all the source files and
calculate all the valid candidate positions as per section 7.1. These positions are now transferred to
the GPU and an extraction kernel is executed, with grid dimensions of

(Pat;f;Size,PatZ;Size,#ValidCandidates) and block dimensions (32,32). The pixel data is

extracted from the source file and stored in GPU memory before the next source file is processed.

Cache source data on GPU (CPU -> GPU)
Execute candidate generation (GPU)
Populate boundary dataset (CPU)
Loop until no holes {
Select target patch (CPU)
Transfer target patch data (CPU -> GPU)
First round cost calculation (GPU)
Sort results (GPU)
Transfer best-set to CPU (GPU -> CPU)
Second round cost calculation (CPU)
Sort candidates (CPU)
Merge best patch (CPU)
Update boundary dataset (CPU)

W 00 N O VT A W N R

I O = I
A W NRO
—

Listing 7.3: Algorithm overview for the CPU non-feature matching implementation

The boundary data set is now populated, as in the CPU implementation, and this concludes the
pre-processing stage. The system will loop until all the holes are filled and synthesis is complete. The
CPU selects the next target patch based on the priority values for the boundary pixels. The

77

coordinates are sent to the GPU and used to extract the target patch pixel data from the output
terrain and transfer it to GPU memory. Due to the output changing after each merge operation,
which is done on the CPU, there is no copy of it stored on the GPU. A CUDA kernel to compare the
costs is now executed in two parts, the first part calculates the SSD and the second the noise
variance of the target patch. The SSD calculation has grid dimensions of
(#ValidCandidates, #Transformations) and block dimensions (PatchSize), which allows each
of the candidates and its associated transformations to be run as separate blocks. With the number
of threads equalling the patch dimensions, each one has an assigned x coordinate and calculates the
SSD value for all of the y coordinates. There is now a synchronisation phase, because the threads all
execute independently and we require all threads to have finished executing and writing their
results to memory. A single thread now sums up the SSD values from each of the other threads and
stores the final SSD cost in an array on the GPU.

The noise variance is then calculated for all the candidates using a kernel with grid dimensions
(#ValidCandidates) and block dimensions (1). Because the noise variance for a candidate is the
same irrespective of its transformation, we need not calculate it for each transformation. After the
cost is calculated the total is added to the cost array from the SSD stage, the cost is also added to
each of the candidate transformation cost values. This process completes when all the source files
have been evaluated. The final cost array is now sorted on the GPU, in ascending order. We designed
a simple kernel for this process but also developed a version that makes use of the Thrust (2013)
library for improved performance. This is similar to feature synthesis candidate sorting (Section
6.4.4). The best subset of five candidates is now returned to the CPU where they undergo the
second round of cost calculations. This was done on the CPU, as our simple port of the code to GPU
resulted in a negative speedup due to the algorithm complexity.

The graph-cut cost function is now used to compare each of these five candidates, which are then
sorted with the lowest cost one being chosen as the best overall. This patch is sent to the merging
process to be placed into the output terrain. When this process is run for the first time candidate
generation process is required, but on successive iterations this step is skipped and only the
calculation process is run with the new target patch. Once all the holes are filled the data is deleted
from the GPU memory.

7.2.5 Merging

Once the best patch has been selected it is merged into the output terrain. This process is almost
the same as that detailed in feature synthesis (Section 6.5). The difference is that the merge step
does not conclude the synthesis. Since the merging process alters the output terrain, the boundary
needs to be updated for target selection. This is done using the location of the patch and the process
then continues with selecting a new target. If there are no remaining targets the synthesis concludes
returning the final result to the user.

7.3 Optimisations

During the implementation of non-feature synthesis a number of optimisations were applied to
improve the synthesis process. An important optimisation improved the memory utilisation of
candidate extraction: in order to limit the amount of memory required, only a single patch is stored
for each candidate. Thus, only 90° rotations and mirrors can be supported since 45° rotations require
data from the surrounding patch. This reduces the number of candidates per patch to six, down from

78

ten for feature extraction (Section 6.1). This is more efficient as we can easily change the direction
when reading the pixel data and we do not need to perform interpolation or store a larger area to
include pixels on the edges of a 45° rotation.

By pre-processing all the source files and keeping the candidates cached in memory, we are able
to quickly evaluate all of them against the selected target patch without the need to loop over the
source files. This is possible due to the low number of candidate patches taken from each source file,
which keeps the memory requirements relatively low. This is important for the GPU implementation
as swapping data in and out would negate any performance gains. We kept the number of
candidates low since the process was not ported to the GPU and increasing the candidates would
hamper performance more. As part of the future work, the number of candidates could be increased
after the system is ported to the GPU.

As part of the optimisation process for feature synthesis, we developed a multithreaded graph-cut
cost function. As the data input for this function is the same for the non-feature synthesis, we are
able to reuse this to give a slight performance increase.

79

8 Results

In this chapter we present the results and evaluate the extent to which we met our initial goals.
Our research has two primary goals; firstly to extend the work of Tasse et al. (2011) by utilising a
large collection of source files for the synthesis operation; and secondly, to improve system
performance to counteract the inclusion of many more source files and allow the creation of larger
more complex terrains. Evaluation takes the form of visual assessment of the terrains generated by
our system, compared to the previous system as well as the use of performance metrics to evaluate
the speed.

The test system we utilised features an Intel Core i7 processor with 16GB of RAM and an NVIDIA
GeForce GTX 660 Ti GPU. All experiments were run on a fresh reboot of the computer with minimal
other processes running; tests were run ten times with the average time reported to allow for
representative performance figures. We designed two test images for synthesis, a small 512 X 512
one and a large 5000 X 5000 one (Figure 8.1). These have a different number of user candidates to
match against to increase the complexity (Table 8.1) as calculated from the feature extraction
algorithm. We have separated the ridges and valley runtimes to show values for different numbers
of features. If the number or ridges and valleys were the same then near identical runtimes would
be observed as the algorithm is the same.

Small Terrain Large Terrain |
Dimensions 512 x 512 5000 x 5000
Ridges 38 68
Valleys 18 900

Table 8.1: Number of detected user features patches and dimensions of the two main test terrains we use. Difference is
ridge/valley count is determined by feature extraction and dependant on sketch used.

a) b)

Figure 8.1: The two test images used for evaluation. a) The small 512 X 512 terrain. b) The large 5000 X 5000 terrain.
The white lines represent ridges with the black lines being valleys as detected by the system.

80

The results are organised into three sections. The first two sections cover each of the main
components of the synthesis engine, namely feature and non-feature synthesis. The third section
covers the system as a whole, where the comparison with the previous work is discussed. All the
stacked column charts in this section provide the runtime in seconds with the columns made up from
the major contributing stages of the algorithm; Patch Matching and Patch Merging. Speedup graphs
are also presented to show the performance gains obtained.

8.1 Feature Synthesis

We began by evaluating the feature synthesis component of our system. As feature synthesis is
the first part of system, the images we generate contain holes, which are filled in the next stage of
synthesis. We start off with a very basic CPU implementation, which is based directly off Tasse et al.
(2011). Each GPU test builds upon the previous one with, the first version being unoptimised and
each of the subsequent optimisations being covered in their own subsection. Some of the
optimisations make use of different tests; such differences are noted in the description.

8.1.1 Sequential CPU versions

The first test we conduct compares our two sequential CPU versions (CPU vl and CPU v2) to
evaluate which one is better suited for further development. The first version closely matches that
of Tasse et al. (2011), which results in repeated loading and unloading of the source files into
memory. Our improved version inverts the loop processing logic, thus only loading each source file
once, as well as caching the user patches in memory for faster access.

From the results in Figure 8.2 we observed that there is very little speedup overall for our second
version. If we look at the raw runtime values in Table 10.1 we see a dramatic reduction in time spent
regenerating the source candidates, especially on the larger terrain. This value, however, is very
small and insignificant in the overall synthesis. Since the source files are only loaded once, the time
for pre-processing is the same across different terrain complexities. This result motivated us to
continue the development of the second version, as it is expected to scale to both larger terrain sizes
and a larger number of source files. There is only one disadvantage to the architecture change
between the two versions. The first one evaluates every user patch against all source candidates
before selecting the best one and merging it. This allows for already merged data to be taken into
account to improve selection criteria and result in a better overall merged patch. In order to
compensate for this, we keep a list of possible matches in our second version. This list of candidates
is evaluated after the matching process completes in which merging is conducted and the candidates
are re-evaluated based on information from placing previous patches. Through testing we found
very little visual difference between our two versions.

81

Small Terrain Large Terrain

5000

5000

4000

O Patch Merging

3000 O Patch Matching

Runtime (5)
8

2000

1000

CPU v1 CPU v2 CPU vl CPU w2

Figure 8.2: Runtime chart comparing the two main CPU implementations. These two implementations have very similar
runtimes despite the large architectural changes between them. Table 10.1 gives the runtime numbers in a table and
reveals that CPU v2 is slightly faster than v1.

8.1.2 Single versus Multi-Threaded CPU

Based on the results of our sequential implementations we choose to further develop our second
version and utilise additional threads to reduce the synthesis time. The whole system could not be
multithreaded, or more specifically the iterative merging process, where each successive patch is
calculated based on information from already placed patches and thus introduces and order
dependency. Our test system features four cores with Intel’s Hyperthreading giving a total of eight
threads that can be run concurrently. The area targeted for multithreading was the cost calculation
process which accounts for over 95% of the total runtime; thus any improvement would have a
significant impact. In order to accommodate multiple threads, minor changes were required to
control the distribution of the workload. From the results in Figure 8.4, we observed a 1.7 times
speed improvement, which translates to a 35 minute reduction in time on the large terrain.

Our multithreaded implementation was relatively basic and unoptimised, but it served as a proof
of concept for our GPU implementations. From the results it is evident that there was much
potential for improving the running time by parallelising the cost calculation process

Small Terrain Large Terrain
300 6000
250 5000
- 200 4000)
n O Patch Merging
(4]
E 150 3000 O Patch Matching
-
H
= 100 2000
50 1000
0 ; 0 ; .
CPU v2 CPU Parallel CPU v2 CcPU Parallel

Figure 8.3: Runtime results comparing the parallel CPU implementation against CPU v2. Here we observe a large
reduction in synthesis time almost reducing it by half on the large terrain. Full runtime values are presented in Table
10.2.

82

Small Terrain Large Terrain

300.0 18 6000 18

- 16 / - 16
250.0 \ / 5000 N
200.0 1.2 4000 1.2
z ./ z ./ == Runtime (5]
v 10 & - 10
£ 1500 5 3000
H - 0.8 i - 0.8 =ll=Speedup over
= w "CPU 2’
100.0 0.6 2000 0.6
- 0.4 - 04
50.0 1000
- o2 - o2
0.0 . 0.0 0 . 0.0
CPU v2 CPU Parallel CPU w2 CPU Parallel

Figure 8.4: Speedup graph comparing the runtime in seconds and the observed speedup for the parallel CPU
implementation over CPU v2. We observe a 1.7 times speedup achieved for both test terrains.

8.1.3 CPU versus incremental GPU implementations

Here we provide the results for our eight different GPU implementations and compare them to
the multithreaded CPU version (Figure 8.5). We began with our first GPU version (GPU v1), which is
simply the multithreaded CPU code translated to execute directly on the GPU and saw the synthesis
time reduced by half. Our second (GPU v2) and third (GPU v3) implementations explored adding
additional threads and makes use of shared memory to allow the threads to operate independently,
with a single thread summing the value at the end. This again saw our synthesis time cut in half,
although our third version actually performed slightly worse than the second. This can be attributed
to the additional if statement used to initialise the memory on the fly as it introduces another step
for the algorithm. The fourth version (GPU v4) again adds more threads, which allows an entire loop
to be executed in parallel on the system. We first tried providing 32 threads for each of the 4 cost
calculation components as this was the maximum defined control points in previous work. This
actually performed significantly worse than the prior implementations.

For our advanced GPU implementations we changed the underlying architecture of the system in
order to run each of the candidate transformations in a separate thread concurrently. Version five
(GPU v5) extends the work done in version three, which doubles the performance due to the
increase in concurrency, netting a 14 times speed improvement on the large terrain. Version six
(GPU v6) exploits some setup requirements in the cost calculation algorithm to avoid repeatedly
calculating the same value. This version performs slightly worse than version five but the difference
is insignificant. This is due to the setup overhead for calculating and storing the values up front.
Version seven (GPU v7) attempts to bring together the features of both versions five and six, but the
results fall between the two prior versions.

Our eighth version (GPU v8) revisits version four as we performed additional profiling and
discovered that there were never more than 3 control points required to describe the user and
source candidates under a variety of test cases for our given patch size of 64. We then adjusted the
number of threads down to 4 which gave a total of 16 threads required (down from the 128 needed
before). Running our tests again for version four yielded a modest improvement. We then included
the enhancements from version seven and achieved a total speedup of 21 times overall (Figure 8.6)

for the large terrain. The speedup achieved for the cost calculation process alone is 44 times faster
83

than the CPU implementation. Runtime and speedup graphs for all GPU implementations compared
against the multithreaded CPU version are provided in Figure 8.6.

Small Terrain

O Patch Merging

=

[Patch Matching

Runtime (s)

20 44—]
) , , , I = = P e=

CPU Parallel GPUv1 GPU w2 GPU v3 GPU v4 GPU v5 GPU vb GPU v7 GPU vB

Large Terrain

O Patch Merging

O Patch Matching

Runtime (s)

1000

o . ’_|’_‘|_|l_||—||—||—|

CPU Parzllel GPUw1 GPU v2 GPU w3 GPU v4 GPU w3 GPU vE GPU V7 GPUvB

Figure 8.5: Runtime results for the eight GPU implementations compared against the parallel CPU implementation for

the small and large terrains. We can see an overall downward trend to the graph with the times decreasing with each

iteration. v1 is a translated form of the parallel CPU implementation. v2 adds some shared memory and more threads.

v3 attempts to optimise functions but introduces more branching. v4 unrolls an entire loop utilising more concurrent

threads. v5 changes the architecture to allow a new dimension of threads for improved concurrency. v6 optimises v5

preventing unnecessary recalculation of values. v7 combines elements from v5 and v6. v8 revisits v4 and incorporates
the newer changes in v7. Full runtime values are presented in Table 10.3.

Small Terrain Large Terrain
180 18 3500 25
4 L
160 \ ’ 16 2000 1%
140 14 \ 20
\ 2500
_. 120 12 _ \
= \ = - 1s
= 2000
§ 100 \ / 10 3 \ =$=Runtime (s}
£ 80 5 @
H \ -3 1500 10
v
60 & 1000 == Speedup over
a0 A | 'CPU Parallel
20 ——, 2 % ‘_N“_._.._.
0 —_—_— o 0 —_— 0
= oz ¥ % ¥ ¢ % 3% % = g ¥ 2 % ¢ o2 % £
@ 2 2 2 2 2 2 | 2 m | 2 2 2 2 2 2 2
o oo o o o o o o o o o o o o o o oo oo
o () Q Q Q Q Q (&) a o (&) a (U] () () () (&) (&)
]]
o o
=) (=)

Figure 8.6: Speedup and runtime graph comparing the parallel CPU version against all eight GPU implementations.
Similar performance is noted for both the small and large terrains, although a slightly higher speedup is noted for the
larger terrain.

84

8.1.4 Utilising GPU Texture Memory

We added the use of texture memory to our system. This can be combined with any of the
aforementioned GPU implementations. Texture memory is part of the GPUs global memory, but is
specialised in that it is spatially cached, which allows for quick read access for neighbouring
locations. This is useful for our extraction kernels in which we extract pixel data from source images
and apply transformations to rotate the candidates. From the results in Figure 8.7, we observe a
small increase in performance for our final GPU implementation when using texture memory for
both user and source patch extraction. The performance increase is only minor as the existing
implementations already make use of coalesced global memory for optimal memory performance.
This brings the total speedup over our CPU implementation to 24 times, with the cost calculation
stage seeing a 56 times speedup for the large terrain.

Small Terrain Large Terrain

12 160

10

100 O Patch Merging

O Patch Matching

Runtime (5}
Runtime (5)
E

GPU vB GPU Tex GPU vB GPU Tex

Figure 8.7: Runtime results for our texture memory GPU implementation being compared against GPU v8. There is a
slight performance gain when using texture memory. This is because we already are using coalesced memory access for
our image data. Full runtime values are presented in Table 10.4.

Small Terrain Large Terrain
180 20 3500 30
Y A - 18
160 \ / 3000 +* -
120 16 \
\ f L 14 2500 \
120 - 20
= S - =—#=—Runtime (s}
e 100 \ / % 20w
£ \/ 10 -E \/ 15
= B0 =fll=Speedup over
H] & 1500 peedup
E e & "CPU Parallel’
60 /\ A - 10 ©
/ \ T e 1000
® e / \
2 / \! , >/ \ e
0 ; ; s} 0 ; ; 0

CPU Parallel GPU vB GPU Tex CPU Parallel GPU vB GPU Tex

Figure 8.8: Speedup and runtime graph comparing the use of GPU texture memory against the parallel CPU and GPU v8
implementations. Using texture memory now brings the total speedup to 24 times fast than the parallel CPU
implementation.

85

8.1.5 CPU versus GPU Sorting of Candidates

For our GPU implementations we developed three independent variants for sorting of the
candidates based on their computed cost values. The above tests were conducted using our own
sorting kernel (as described in section 6.4.4). An external library, Thrust (2013), was also used to
provide a more hardware optimised sorting solution to improve system performance. We also
developed a CPU sorting algorithm that makes use of the C++ stable_sort function (C++, 2015) to
compare against the GPU versions. From the results (Figure 8.9), we note that there is a modest
improvement by changing the method for candidate sorting. Candidates are sorted after the cost
calculation stage, which produces the best subset lists. These are then evaluated during the best
patch location stage, which again makes use of a sort to determine the best overall patch. The
Thrust version improves the speed of the entire system even further due to the code being highly
optimised and purposely designed for the hardware to extract maximum performance. Comparing
the speedup of the Thrust version over our previous best GPU implementation with texture
memory, we observe a total speedup of 27 times (Figure 8.10) for the large terrain. Thrust sorting
will thus be used for subsequent tests covered in this chapter.

Small Terrain Large Terrain

250

[
S

[
R
‘

200 —

[
(=]
‘

150 +— O Patch Merging

=]
‘

O Patch Matching

[a4]

100 +— —

Runtime (5)

Ey
‘

50 —

P

0 T T | o] T T 1
CPU Sorting GPU Sorting Thrust Sorting CPU Sorting GPU Sorting Thrust Sorting

Figure 8.9: Runtime results comparing the three different candidate soring functions. The Patch Matching component in
the graph includes the sorting operation, which is why we see the green bars decreasing in size with the GPU and Thrust
(2013) implementations. Full runtime values are presented in Table 10.5.

Small Terrain Large Terrain
14 20 250 20
12 -~ A - 18 F 18
\ - 16 200 . 16
10 - 14 - 14
= s 12 = 150 1.2 =#=Runtime (s
- e ~ 5 /
E 10 5 F 10
c & i =fli=5peedup over
= 08w oo 08 ‘CPU Sorting'
4 - 06 - 06
- 04 50 0.4
2
- 02 - 02
0 . . 0.0 0 . . 0.0
CPU Sorting GPU Sorting Thrust Sorting CPU Sorting GPU Sorting Thrust Sorting

Figure 8.10: Speedup and runtime graph comparing the three different candidate sorting functions. We see a modest
performance increase when using the GPU for sorting, even with our simple kernel implementation. Using the Thrust
(2013) library further improves the result due to their kernel being highly optimised.

86

8.1.6 Blocked GPU for Asynchronous Processing

The last optimisation we developed was an asynchronous blocked design that would process the
user patches in groups of 50. When one batch is completed, it is sent back to the CPU where it is
processed for merging, while the next batch is processed on the GPU. This allows for asynchronous
processing by the CPU and GPU to potentially reduce idling.

The results in Figure 8.11 show an impressive reduction in synthesis time compared to our
previous best result (GPU v8 with texture memory and Thrust sorting). Examining the timing values
in Table 10.6, the results are initially confusing as adding the three main components results in a
larger value than the actual runtime. This is a result of the Source Patch Matching and Patch
Merging operations executing asynchronously. When there are less than 50 user patches then there
is no benefit to the blocked design. We now observe that our maximum speedup achieved is 48
times (Figure 8.12) faster than our CPU implementation. The speedup is greater when larger terrains
are used with a high number of patches to match.

Small Terrain Large Terrain

8 120

7 100

6
- 80
;5
o OTotal Runtime
Es 60
]
s
g 3 40

z

20
1
1] T | 0 T 1
GPU Thrust GPU Async GPU Thrust GPU Async

Figure 8.11: Runtime results comparing against our asynchronous blocked design against the current best GPU
implementation using Thrust sorting. For this test we need to compare the total runtime as the two components are run
concurrently on the CPU and GPU, which reduces the overall time as there is far less idling occurring. The timings for
matching and merging are approximately the same but due to running them asynchronously we see a reduced overall
runtime (Table 10.6).

Small Terrain Large Terrain
180 300 3500 50.0
160 A L 450
L 250 5000 A =

140 - \ / - 40.0

120 200 0 \ [350
- = L 30.0 ==#=Runtime (s)
T 100 \ / < 2000
£ \/ - 150 -E \ 250
£ 80 == Speedup over
= /\ 5 = X 200 'CPU Parallel

0

150
40

(=]
[=]

/\ e |
7\ N VA
ZA e OV N N

CPU Parallel GPU Thrust GPU Async CPU Parallel GPU Thrust GPU Async

=]

Figure 8.12: Speedup and runtime graph for the asynchronous blocked design against the parallel CPU and Thrust GPU
implementations. We see a marginal increase with the asynchronous design for the small terrain with a very large
increase on the large terrain. This is attributed to the total number of features, as the large terrain has a high feature
count it is divided up into more blocks which enables the concurrent processing on the CPU and GPU.

87

8.1.7 Culling Nearby User Patches

One optimisation that is included in all our test cases works by culling detected user patches that
are too closely spaced to an existing chosen patch. This can occur as an artefact from the feature
detection algorithm where branch reduction fails and results in multiple segments that describe the
same feature line. However, this issue is not a bug in the implementation but rather an unfortunate
feature of the algorithm. This produces multiple patches that describe the same feature and leads to
over-synthesising, a wasteful exercise. In order to better test this scenario we designed two new test
terrains (Figure 8.13). Table 8.2 records the total number of patches detected from feature synthesis
and the number of features used after the culling algorithm.

Small Terrain Large Terrain

Ridges 201 88 909 722
Valleys 146 84 753 661

Table 8.2: Number of detected features before and after the culling algorithm. The dimensions for the terrain are,
512 x 512 for the small terrain and 5000 X 5000 for the large terrain.

We note the speedup obtained by removing the unnecessary patches in Figure 8.15 and Figure
8.16: there is a noticeable decrease in synthesis time after reducing the number of user patches. This
is less apparent on the larger terrain where the proportion of overlapping patches is far less. The
overlap issue is exacerbated along 45° angles or if the drawn lines are too thick, as long parallel
paths form that lead to divergence on the same feature (Figure 8.14).

a) b)

Figure 8.13: The two test images used to test culling of excess user patches. These were designed to exacerbate the
unfortunate feature of the original feature extraction algorithm. a) The small 512 X 512 terrain. b) The large
5000 x 5000 terrain. The white lines represent ridges with the black lines being valleys as detected by the system.

a)

b)

Figure 8.14: (a) Example of error with feature detection engine forming multiple parallel lines. (b) This results in heavy
overlaying of patches, which wastes performance. These excess patches are culled by the system.

50
45
40
35
30
25
20
15
10

Runtime (5)

Small Terrain

Culling Off Culling On

250

200

150

100

50

Large Terrain

Culling Off Culling On

O Patch Merging

O Patch Matching

Figure 8.15: Runtime results comparing the implementations when either culling of nearby user patches or not. This is
an issue with the original feature extraction algorithm. We address this by examining user patches and removing those
that are in close proximity to one another. This reduces the total number of features requiring synthesis and thus

50

45

40

Runtime (s)

improves performance as shown above. Full runtime values are presented in Table 10.7.

Small Terrain

Culling Off Culling On

25

20

15

10

0.3

0.0

speedup (x)

220

210

200

1s0

180

170

150

150

Large Terrain

N/
N

/N

./ S

Culling Off Culling On

13

12

12

11

11

10

10

0g

== Runtime (s}

== Speedup over
"Culling Off'

Figure 8.16: Speedup and runtime graph showing the performance gain when culling nearby user patches that are not
required. We see a higher gain in the smaller terrain as the proportion of culled patches is higher than the larger terrain.

89

8.1.8 Feature Complexity Change

In order to evaluate the scalability of our system we developed a test that progressively increases
the total features being matched against. We achieved this by sketching the initial test image and
then duplicating the strokes around the image to roughly increase the complexity at a fixed interval.
This allows us to predict how our system will work given more complex user sketches. The results in
Figure 8.17 can be better visualised as a graph (Figure 8.18), where we compare the runtime and
speedup against the number of features. As the features increase linearly so does the synthesis time.
Since the system scales linearly, larger terrains can be produced within an acceptable amount of

time.

200
180
160
140
120
100

B0

60

Runtime (5)

20

Complexity

O Patch Merging

O Patch Matching

=

380

iy

1145

Total Feature Count

1541

Figure 8.17: Runtime results for complexity with increasing total number of patches requiring synthesis. We observe that
with an increase in the number of features we see an increase in the time required, with approximately the same
proportion of time spent on matching and merging components. Full runtime values are presented in Table 10.8.

120.00

Runtime vs Complexity

100.00

A

80.00

60.00

Runtime (z)

al

20.00

7

0.00

380

770

Feature Count

1145

1541

4.5
4.0
35
3.0
2.5 ==e=Runtime

2.0 —p—=Feature Count

15
10
0.5

0.0

Figure 8.18: Plotting the runtime and feature count values on a graph shows a linear relationship for both, which
indicates that the system scales well when increasing the number of features.

90

8.2 Non-Feature Synthesis

The non-feature synthesis GPU-based component was only partially completed due to scope
constraints. Nonetheless, we did implement an initial GPU-enhanced version that borrows
techniques from our feature synthesis implementations to perform the cost calculations on the GPU.

The rest of the processing remains single threaded and CPU-bound. Figure 8.19 presents results,
comparing our CPU and GPU enhanced implementations. We observe a very large speedup in the
cost calculation stage but no noticeable speedup in other aspects (Table 10.9). More research time is

required to explore moving other components to the GPU. For instance, the selection of the next

target; this requires a large proportion of the overall runtime, especially on larger terrains where the

number of holes in the terrain increases dramatically. Given the very long runtime for non-feature

synthesis, especially on the large terrain, any speedup will have significant impact on the total time.

The GPU-version reduces the synthesis time from over 90 minutes to just 54 minutes.

Runtime (5}
= = [[[
(=] w o (0] [=]

wn

Small Terrain

Large Terrain

5000

5000

4000

3000

2000

1000

cPU GPU Enhanced CcPU

GPU Enhanced

O Merging Patch
O Find Best Patch
@ Cost Calculation

O Target Selection

Figure 8.19: Runtimes for the four main contributing components during non-feature synthesis comparing a CPU only
implementation to a GPU-enhanced one. We observe that calculating the candidate costs on the GPU significantly
reduces the required time. Examining the time values in Table 10.9 we see a 200 times speedup for cost calculation on

30

25

Runtime (s)
& 3

=
(=]

Small Terrain

the small terrain.

Large Terrain

4.0 6000

L35 \
5000

*\ /F

/

X

/ N\

7N

" N

cPU GPU Enhanced

=z
a
20 3 3000
[
-3
- 1_5 wi
2000
- 10
1000
- 05
0.0 0

CFU

GPU Enhanced

18

16

14

1z

10

08

0.6

0.4

0.2

0.0

== Runtime (s}

== 5peedup over
'CPU'

Figure 8.20: Speedup and runtime graph for the non-feature synthesis stage of our system comparing CPU bound and

GPU-enhanced implementations.

91

8.3 Full Synthesis

The tests covered in this section seek to quantify system aspects that globally affect both feature
and non-feature synthesis, such as changing the patch size. We also compare our system with the
previous work by Tasse et al. (2011). For these tests, we use our best performing implementation:
GPU version eight with texture memory, Thrust sorting and asynchronous blocking.

8.3.1 Comparison with previous work

We compare our system to Tasse et al. (2011). We were able to obtain a copy of their software
system in order to do a direct comparison with our system on the same hardware. Unfortunately
only their CPU implementation executed correctly. We include our CPU version to more closely
compare results and draw comparisons from the results section of their paper. For the purposes of
the test we configured our system to only use a single source file. Another issue encountered was
their system was unable to handle our large test image, which we then substituted for a different
smaller image with dimensions 2000 X 2000 (Figure 8.21).

a) b)

Figure 8.21: The user images used for this test. a) The original small 512 X 512 terrain. b) The larger 2000 x 2000
image, which only features valley data.

Small Terrain Large Terrain
&00 8000
7000
500 -
1 o
. 400 - NEI-I"I-FEE_tL.IrE
s 5000 - Synthesis
o
E 300 4 4000 - O Feature
K Synthesi
E 3000 - ynthesis
200 -
2000
100 7 1000 -
o S o -
Tasse etal. CPUv2Z0 CPU Parallel GPU Best Tasse etal. CPUv2Z.0 CPU Parallel GPU Best

Figure 8.22: Runtime results comparing the previous work by Tasse et al. (2011) to our system. We were only able to run
their CPU version, which is why we include our two CPU implementations and our best GPU implementation. The graph
above shows that the runtime for our system is far less with the three implementations appearing as tiny columns.
Table 10.10 provides the actual runtime values, which better shows the time difference between all the versions.

92

Small Terrain

Large Terrain

500 30.0 2000 450
‘ / 400
500 \ , 70.0 7000
\ / 800 e
400 300
= 50.0 = 5000 == Runtime (s
] - 250
£ 300 400 4000
= i Y 200 ==Speedup over
= 300 ¥ 3000 ‘Tasse et al.’
200 /\ 15.0
/ \ 200 2000 100
100 / \
\ 100 1000 5.0
" " J \—._‘
o 4 . . ; . . : 0.0 0 T T T 0.0

Tasse etal. CPUv2.0 CPU Parallel GPU Best Tasse etal. CPUv2.0 CPU Parallel GPU Best

Figure 8.23: Speedup and runtime graph comparing the previous work to our system. Here we see the large performance
increase our system achieves when running under the same test conditions.

From the results in Figure 8.22 and Figure 8.23, we observe that our system, even when using
multiple source files, runs significantly faster than the previous work. This is not entirely a fair test,
however, as we were unable to compare our system to their GPU implementation. Examining their
results section we extrapolate that their system would yield faster results when conducting a full
synthesis, as the entire system was run on a GPU. Our system lacks acceleration in the non-feature
synthesis area, with most of this processing executed on the CPU. However, the advances we have
made for our feature synthesis component are significantly faster. The resulting terrain produced by
their system appears similar to our own output, with both matching the input user sketch. However,
based on the test sketch, the image synthesised with our system appears clearer, with bolder
feature traits and also follows the sketch better.

Figure 8.24: a) Output from Tasse et al. (2011) system. b) Output from our system using the same single source file.

93

8.3.2 Single versus Multi-Source synthesis

A core objective of our research was to incorporate the use of multiple input source files to
provide a greater candidate pool and improve the overall variety. We compare our synthesis result
when given a single source file and when given a collection of fifteen varying source terrains (Figure
8.25). As expected we see a decrease in performance with the system requiring twice as long for the
small terrain to execute. The feature matching stage is where most of the processing time is spent,
as there are many more candidates to evaluate for each user patch. The results are similar for the
large terrain with noting a decrease in performance. However, since we are making use of the
asynchronous blocked implementation, the cost calculation and patch merging steps are run
concurrently on the large terrain. This reduces the impact of using multiple source files compared to
the small terrain. This occurs on the larger terrain only as the number of features requiring synthesis
is high enough to have the system split it into blocks.

Small Terrain Large Terrain
18 3500
16 3000
14
12 2500 O Nen-Feature
= Synthesis
T 10 2000 v
E O Feature
E 8 1500 Synthesis
= 5
1000
4
5 S00
o T | o T |
single Source Multi-Source Single Source Multi-Source

Figure 8.25: Runtime results when running either a single or database of fifteen source files. The figure shows the times
for the feature and non-feature synthesis components. We see the majority of the impact being confined to the feature
synthesis stage, this is due to there being more candidates needing evaluation. Non-feature synthesis results are very
close in size as there is more of an impact from the number of iterations required to fill the output terrain with the
candidate matching only being a small percentage of the runtime. Full runtime values are presented in Table 10.11.

When examining the non-feature synthesis results, we note that the number of source files has a
much smaller impact on the relative synthesis times for the small and large terrains. The slowdown
occurs with the generation of the source candidates and when sorting, due to there being a larger
number of candidates. Target selection is one of the largest components leading to the high cost for
non-feature synthesis. It is unaffected by the number of candidates being evaluated. As such larger
terrains are less influenced by the size of the source database. Figure 8.26 shows the small terrain
after synthesis when using a single and multiple source files, with the multi-source output having
better ridge data. Another use case that our multi-source system would excel in is, when the user is
attempting to generate a mountainous landscape, for instance, but the single source file is based off
the Grand Canyon without sufficient mountainous data (Figure 8.27). The system would produce
poor results due to the lack of diversity, which is resolved by using various terrain types as input
sources.

94

b)

Figure 8.26: Output terrain for: a) Single source. b) Multiple sources

b)

Figure 8.27: Example when running a ridge only terrain using a) Single source — Grand Canyon. b) Multiple sources. The
single source does not have sufficient ridge data resulting in a poor terrain compared to the clearly defined structure
when using multiple sources.

95

8.3.3 Patch Size change

One final test examines the effect of varying the size of patches. This alters all aspects of the
system, as a reduction in patch size increases the number of user patches generated to cover the
same sketched area. As discussed earlier, we chose a base patch size of 64 X 64, which was based
on CUDA grouping 32 threads into warp units. We tested patch sizes in increments of 32 starting at
32 % 32, up to 160 X 160. Our results are presented in Figure 8.28, with the runtime and speedup
visualised in Figure 8.29.

An interesting pattern emerges when examining performance results for the feature and non-
feature components. For feature synthesis we see an improvement in performance when moving
from 32 X 32 to 64 X 64, but the performance decreases thereafter as the patch size increases. This
is explained by the increase in patch area, which impacts the performance when calculating the cost
for a patch. This is largely mitigated by the decrease in the number of candidates to synthesise.
However, when it comes to patch merging the increased patch area impacts the performance more
severely, taking up more of the synthesis time as the patch size increases. These results are mirrored
for both the small and large terrains, which leads us to conclude that the influence of patch size is
independent of the size of the synthesised terrain.

Small Terrain Large Terrain
25 10000
— go00 {1
20 — — 8000 |
i 7000 O Nen-Feature

=15 || T = 5000 —+— Synthesis
é] 5000 —j O Feature
£ 10] - 4000 4—] Synthesis
= — L | 3000 +—|]

e — 2000

o T T T T | o T T T T |

32x32 G4 x64 S6x96 128x 128 160x 160 32x32 6B4x64 0O96x96 128x 128160x 160

Figure 8.28: Runtime results when using different patch sizes to synthesise terrains. We observe that for the small
terrain the optimal patch size is 64 X 64 with the large terrain performing better with larger patch sizes. Upon further
inspection of the timing values (Table 10.12), we note that for both terrain sizes the feature matching component
performs fastest with a patch size of 64 X 64. Larger patch sizes reduce the non-feature synthesis time as more data is
placed on each iteration, requiring less overall.

96

Small Terrain Large Terrain

25 14 10000 45

9000 A |
/ F 2 \ / M
20 8000 \ / L 3c
10 7000
\ ¥ [20
= 15 = 6000 == Runtime (s)
z =
z ~— ~s fosS V4 23
E i 5000
= - 20 =—l—Speedup over
H -06 & /\ pecdup
g 10 2 4000 —
/ \'\ 15
L o4 3000 J -
5 2000 - 10
- o2
1000 0.3
0 0.0 0 0.0
32x32 G4x64 96x96 128x128 160x 160 32x32 64x64 96x96 128x 128160x 160

Figure 8.29: Speedup and runtime graph showing the effect of varying the patch size for synthesis operations. For the
small terrain the optimal size is 64 X 64, with the large terrain performing best with the 96 X 96 patch size.

Turning to the non-feature synthesis results, we see an increase in the performance as the patch
size increases. This performance gain is attributed to the larger area covered by each patch
placement operation. With a larger area being merged into the final terrain, there are significantly
fewer open areas. This reduces the number of operations required to complete the synthesis and
thus the time required. This pattern is exhibited for both terrain sizes. However, the large terrain
requires a very large number of patches to complete synthesis and the time reduction is relatively
significant. Similarly, when the patch size increases the cost calculation step is reduced, as is the
selection of the next location to synthesise, due to reduced number of iterations required overall.
We observe an increase in the merging time due to a larger patch area having to be evaluated when
running the complex merging algorithms.

The above results motivate our choice for the patch size of 64 X 64 especially with the feature
synthesis stage. This size also ensures the highest relative speedup between successive patch sizes.

8.4 Summary

Here we evaluated the performance of all the various implementations of our system. We started
with a primitive CPU implementation and progressed to an asynchronous blocked design that
balances work between the CPU and GPU in order to maximise performance. We demonstrated a
peak speedup of 45 times, when looking at feature matching and merging alone, and a 2.7 times
speedup when including non-feature synthesis. We also evaluate our system against the previous
work of Tasse et al. (2011) and observe speedups of 42 times over their CPU implementation for a
large test terrain. Unfortunately we did not have access to their GPU implementation in order to do
a comparative test but speculated on the results. Our inclusion of a multi-source database is shown
to significantly improve the output terrain, especially when a single source lacks the feature types in
the user sketch. Our system only parallelises a small portion of the algorithm and obtains the high
speed increases; Chapter 0 presents some aspects that could be explored to further increase
performance. We now showcase some example terrains with 3D renderings of the result.

97

<)

Figure 8.30: Our small test terrain (512 X 512). b) The output from our synthesis system (Completed in 13 seconds). c)
3D rendering of the terrain.

a) b)

Gf. &

o

Figure 8.31: a) The lambda symbol drawn as valleys (500 X 500). b) The output from our synthesis system (Completed
in 14 seconds). c) 3D rendering of the terrain.

98

Figure 8.32: a) A combination of ridges and valleys (1000 X 1000). b) The output from our synthesis system (Completed
in 52 seconds. c) 3D rendering of the terrain.

<)

Figure 8.33: a) A combination of ridges and valleys (1000 x 1000). b) The output from our synthesis system (Completed
in 49 seconds. c) 3D rendering of the terrain.

99

9 Conclusion

The primary objective of our research is to build a terrain synthesis system that is capable of
rapidly generating realistic terrains from a simple user-sketched image. We base our research on the
work by Tasse et al. (2011) as their work produces highly realistic terrains using patch-based
techniques. We develop several extensions to their research including the use of multiple source
terrains in an effort to increase the candidate pool available during synthesis to allow for more
varied generated terrains. We also develop a highly parallelised GPU solution to dramatically
accelerate the synthesis operation.

We developed a number of different implementations ranging from a simple CPU only one, to an
advanced asynchronous design utilising both the CPU and GPU for maximum performance. The
inclusion of multiple input sources addresses limitations where certain types of user feature would
not be possible to synthesise on a single source due to limited variability within it. This vast increase
in candidates to choose from results in better matching features being synthesised. Other
optimisations were implemented during feature matching, which results in terrains with clearer,
bolder feature traits that more closely follow the user’s original sketch.

From tests, we determine that our system is capable of producing terrains that match the quality
of the previous system (Tasse et al., 2011) due to using components of their existing system and
integrating the new components. We were able to produce more diverse terrains through the use of
multiple input sources. The performance impact when using multiple sources varied between 0.5
times to 0.95 times the original synthesis time, depending on the size of the terrain being generated.
This was for our test system with fifteen source files and further increasing this would change the
results and requiring more synthesis time. Several optimisations were integrated, which further
improved performance. Our highest speedup obtained for a hybrid CPU/GPU solution overall was 76
times faster than the first implemented CPU version. This reduced the feature synthesis time for
small terrains from 272 seconds to just under 7 seconds and from 90 minutes to just under 70
seconds for our large test terrain. Comparing our system to the previous work we see a significant
increase in performance, despite not having ported our entire system to be GPU based.

Revisiting our comparison of synthesis techniques from section 2.4, we saw that texture-based
methods have a slow speed in comparison to fractal and physics-based techniques (Table 9.1).
However, our system shows large speed improvements, reducing synthesis to just seconds while
offering a high degree of user-control and realism. Fractal based methods can achieve interactive
synthesis and allow users to immediately see the effects of parameter changing but do not have the
degree of control our system provides. We describe the main limitation and some possible future
improvements to our system next, but even with these improvements it is unlikely the system could
attain interactive speeds due to the very large amount of data that needs to be processed.

100

Speed User-Control Realism Main Limitations

Fractal-based Very fast Low — High* Low e Absence of natural erosion
e Non-intuitive control
parameters
e Pseudo-random output
terrain
Physics-based Thermal: Low Thermal: e Complextoimplement
Fast Medium e Requires a base terrain
e Minimal user control
Hydraulic: Hydraulic:
Slow High
Texture-based Slow Medium High e Limited user control

e Output dependant on number
of input terrains (exemplars)

Table 9.1: Comparison of terrain generation methods. Table from section 2.4

9.1 Limitations

Due to the large scope of the project, and the time constraints imposed by a master’s degree, we
were unable to complete all the desired tasks. The main limitation is that the system was not ported
to the GPU in its entirety with the final merging process still being CPU-bound. The merging process
is inherently sequential and does not map efficiently to the GPU. We have proposed some solutions
to the problem (see below), which would allow for some aspects of the process to be parallelised,
but did not have sufficient time to successfully implement them. Another limitation is that the
sketching interface only allows for two-dimensional manipulations and has no method for specifying
the height of the output terrain, apart from choosing between ridges and valleys.

9.2 Future-work

Our research can be extended by implementing a higher degree of CPU multithreading for the
CPU-bound processes to fully utilise the CPU’s performance. Closer interoperability between the
CPU and GPU would greatly reduce the time either spent idle. Ensuring that maximum performance
of the system is reached. Many aspects of the current CPU code could easily be modified to allow for
a threaded environment. However, this is not suited to GPU calculation, since the size of the data
and the consequent transfer time would far outweigh the computational benefits.

Fully porting the entire system to the GPU would provide greater performance gains, but the
caveat is that some aspects might not translate well to a GPU solution and may actually reduce the
overall performance. Strandmark and Kahl (2010) developed a distributed graph-cut algorithm, but
even their system does not guarantee a speedup. Their work could be built upon to enhance our
system. Even if no speedup is achieved, the system would still be capable of processing larger
datasets that would not entirely fit in memory.

The core of the synthesis engine is broken up into smaller parallelisable tasks, which are carried
out on a single GPU. This system could be extended to support multiple GPU devices, which could
dramatically increase the performance, with the only foreseeable issue being the complexity of logic
required to control the division of labour between multiple devices. The CPU is often idle during the
GPU calculation stages and is thus well suited to handling the control logic.

101

Improvements to the sketching interface can be made to allow the user to manipulate the
strength (height) of the features to be synthesised. This would enable far greater control over the
synthesis process. Another addition would be to give the user a method of describing the non-
feature areas. This could be achieved by making use of noise profiles of the source terrains. A set of
brushes could be provided that the user could paint on the sketch to indicate the type of noise
profile to be synthesised. The type of brushes provided could be auto-generated based on the
diversity of the input sources provided.

The current system will process all the source files in the specified directory during a synthesis
operation. This will not always be the most optimal set, as some terrains might not contain the
correct type of features required by the user’s sketch. A better system would incorporate a way to
categorise the sources based on their features. This would reduce the amount of files queried during
synthesis, which would improve the performance and allow for larger databases to be used.

A similar process could be applied to non-feature synthesis to allow the user to control the type of
data that is placed in certain areas through an improved sketching interface. Non-feature data could
be classified based on noise profiles for the candidate patches, with similar candidates being
grouped together into categories. A number of brushes could be made available on the interface
corresponding to these various categories. The result of this process is that only candidates from the
specified category would be queried during the synthesis for a particular area, which would reduce
the number of comparisons. This would also give the user more control over the appearance of the
resulting terrain.

102

List of References

ABDELGUERFI, M., WYNNE, C., COOPER, E. & RQY, L. 1998. Representation of 3-D elevation in terrain
databases using hierarchical triangulated irregular networks: a comparative analysis.
International Journal of Geographical Information Science, 12, 853-873.

ANH, N. H., SOURIN, A. & ASWANI, P. Physically Based Hydraulic Erosion Simulation on Graphics
Processing Unit. Proceedings of the 5th international conference on Computer graphics and
interactive techniques in Australia and Southeast Asia, 2007 New York, NY, USA. ACM, 257-264.

ATl. 2013. Stream [Online]. Available: http://developer.amd.com/resources/archive/archived-
tools/gpu-tools-archive/ati-stream-software-development-kit-sdk-v1-4-beta/.

AVATAR 2009. Avatar.

BANGAY, S., DE BRUYN, D. & GLASS, K. 2010. Minimum spanning trees for valley and ridge
characterization in digital elevation maps. Proceedings of the 7th International Conference on
Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa. Franschhoek, South
Africa: ACM.

BELL, N., YU, Y. & MUCHA, P. J. 2005. Particle-based simulation of granular materials. Proceedings of
the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation. Los Angeles,
California: ACM.

BENES, B. & FORSBACH, R. Layered data representation for visual simulation of terrain erosion.
Computer Graphics, Spring Conference on, 2001., 2001. 80-86.

BENES, B., TESINSKY, V., HORNYS, J. & BHATIA, S. K. 2006. Hydraulic erosion. Computer Animation
and Virtual Worlds, 17, 99-108.

BROSZ, J., SAMAVATI, F. & SOUSA, M. 2007. Terrain Synthesis By-Example. In: BRAZ, I,
RANCHORDAS, A., ARAUJO, H. & JORGE, J. (eds.) Advances in Computer Graphics and Computer
Vision. Springer Berlin Heidelberg.

BRYCE. 2013. Bryce 7 [Online]. Available: http://www.daz3d.com/products/bryce/bryce-what-is-
bryce.

C++. 2015. C++ stable_sort [Online]. Available:
http://www.cplusplus.com/reference/algorithm/stable_sort/.

CHANG, Y.-C. & SINHA, G. 2007. A visual basic program for ridge axis picking on DEM data using the
profile-recognition and polygon-breaking algorithm. Computers & Geosciences, 33, 229-237.

CHANG, Y.-C., SONG, G.-S. & HSU, S.-K. 1998. Automatic extraction of ridge and valley axes using the
profile recognition and polygon-breaking algorithm. Computers & Geosciences, 24, 83-93.

CHIANG, M.-Y., TU, S.-C., HUANG, J.-Y., TAl, W.-K., LIU, C.-D. & CHANG, C.-C. Terrain synthesis: An
interactive approach. International workshop on advanced image tech, 2005.

103

CHIBA, N., MURAOKA, K. & FUJITA, K. 1998. An erosion model based on velocity fields for the visual
simulation of mountain scenery. The Journal of Visualization and Computer Animation, 9, 185-
194.

COHEN, J. M., HUGHES, J. F. & ZELEZNIK, R. C. 2000. Harold: a world made of drawings. Proceedings
of the 1st international symposium on Non-photorealistic animation and rendering. Annecy,
France: ACM.

COOK, R. L. & DEROSE, T. 2005. Wavelet Noise. ACM Trans. Graph., 24, 803-811.

CRIMINISI, A., PEREZ, P. & TOYAMA, K. 2004. Region filling and object removal by exemplar-based
image inpainting. Image Processing, IEEE Transactions on, 13, 1200-1212.

CUI, J. 2011. Procedural cave generation. University of Wollongong.

D'AMBROSIO, D., DI GREGORIO, S., GABRIELE, S. & GAUDIO, R. 2001. A Cellular Automata Model for
Soil Erosion by Water. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and
Atmosphere, 26, 33 - 39.

DACHSBACHER, C. 2006. Interactive Terrain Rendering: Towards Realism with Procedural Models and
Graphics Hardware. Universitat Erlangen—Nirnberg.

DE CARPENTIER, G. J. P. 2007. Interactively synthesizing and editing virtual outdoor terrain. Delft
University of Technology.

DORSEY, J., EDELMAN, A., JENSEN, H. W., LEGAKIS, J. & PEDERSEN, H. K. Modeling and Rendering of
Weathered Stone. Proceedings of the 26th annual conference on Computer graphics and
interactive techniques, 1999 New York, NY, USA. ACM Press/Addison-Wesley Publishing Co.,
225-234,

DU, P., WEBER, R., LUSZCZEK, P., TOMOV, S., PETERSON, G. & DONGARRA, J. 2012. From CUDA to
OpenCL: Towards a performance-portable solution for multi-platform GPU programming.
Parallel Computing, 38, 391-407.

EBERT, D. S., MUSGRAVE, F. K., PEACHEY, D., PERLIN, K. & WORLEY, S. 2003. Texturing and modeling:
a procedural approach, Morgan Kaufmann.

EFROS, A. A. & FREEMAN, W. T. 2001. Image quilting for texture synthesis and transfer. Proceedings
of the 28th annual conference on Computer graphics and interactive techniques. ACM.

EFROS, A. A. & LEUNG, T. K. Texture synthesis by non-parametric sampling. Computer Vision, 1999.
The Proceedings of the Seventh IEEE International Conference on, 1999 1999. 1033-1038 vol.2.

FOURNIER, A., FUSSELL, D. & CARPENTER, L. 1982. Computer Rendering of Stochastic Models.
Commun. ACM, 25, 371-384.

FOWLER, R. J. & LITTLE, J. J. 1979. Automatic Extraction of Irregular Network Digital Terrain Models.
SIGGRAPH Comput. Graph., 13, 199-207.

GAIN, J.,, MARAIS, P. & STRARER, W. Terrain Sketching. Proceedings of the 2009 symposium on
Interactive 3D graphics and games, 2009 New York, NY, USA. ACM, 31-38.

104

GEOGEN. 2013. Procedural heightmap generator [Online]. Available:
https://code.google.com/p/geogen/.

GEORGE, J. A. 1970. The use of direct methods for the solution of the discrete Poisson equation on
non-rectangular regions. Stanford University.

I, T. W. 2015. The Witcher IIl.
INTEL. 2013. Xeon Phi [Online]. Available: www.intel.com/xeonphi.

KARIMI, K., DICKSON, N. G. & HAMZE, F. 2010. A performance comparison of CUDA and OpenCL.
arXiv.

KAUFMAN, A., COHEN, D. & YAGEL, R. 1993. Volume Graphics. Computer, 26, 51-64.

KELLEY, A. D., MALIN, M. C. & NIELSON, G. M. 1988. Terrain Simulation Using a Model of Stream
Erosion. SIGGRAPH Comput. Graph., 22, 263-268.

KHRONOS. 2013. OpenCL [Online]. Available: http://www.khronos.org/opencl/.

KRISTOF, P., BENES, B., KRIVANEK, J. & ST'AVA, 0. 2009. Hydraulic Erosion Using Smoothed Particle
Hydrodynamics. Computer Graphics Forum, 28, 219-228.

KRUSKAL, J. B., JR. 1956. On the Shortest Spanning Subtree of a Graph and the Traveling Salesman
Problem. Proceedings of the American Mathematical Society, 7, 48-50.

KWATRA, V., SCHODL, A., ESSA, 1., TURK, G. & BOBICK, A. 2003. Graphcut textures: image and video
synthesis using graph cuts. ACM SIGGRAPH 2003 Papers. San Diego, California: ACM.

LAGAE, A., LEFEBVRE, S., COOK, R., DEROSE, T., DRETTAKIS, G., EBERT, D. S., LEWIS, J. P, PERLIN, K. &
ZWICKER, M. 2010. A Survey of Procedural Noise Functions. Computer Graphics Forum, 29, 2579-
2600.

LEWIS, J. P. 1987. Generalized Stochastic Subdivision. ACM Trans. Graph., 6, 167-190.

LEWIS, J. P. 1989. Algorithms for Solid Noise Synthesis. SSGGRAPH Comput. Graph., 23, 263-270.

LIU, Y., LIN, W.-C. & HAYS, J. 2004. Near-regular texture analysis and manipulation. ACM Trans.
Graph., 23, 368-376.

LONGMORE, J.-P., MARAIS, P. & KUTTEL, M. M. 2013. Towards realistic and interactive sand
simulation: A GPU-based framework. Powder Technology, 235, 983-1000.

MANDELBROT, B. B. 1975. Stochastic models for the Earth's relief, the shape and the fractal
dimension of the coastlines, and the number-area rule for islands. Proceedings of the National
Academy of Sciences, 72, 3825-3828.

MANDELBROT, B. B. 1983. The Fractal Geometry of Nature, Times Books.

MANDELBROT, B. B. 1988. The Science of Fractal Images. In: PEITGEN, H.-O. & SAUPE, D. (eds.). New
York, NY, USA: Springer-Verlag New York, Inc.

105

MARAK, I, BENES, B. & SLAVIK, P. Terrain erosion model based on rewriting of matrices.
Proceedings of The Fifth International Conference in Central Europe on Computer Graphics and
Visualization, 1997. 341-351.

MEI, X., DECAUDIN, P. & HU, B.-G. Fast Hydraulic Erosion Simulation and Visualization on GPU.
Computer Graphics and Applications, 2007. PG '07. 15th Pacific Conference on, 2007. 47-56.

MILLER, G. S. P. 1986. The definition and Rendering of Terrain Maps. SIGGRAPH Comput. Graph., 20,
39-48.

MILLIRON, T., JENSEN, R. J., BARZEL, R. & FINKELSTEIN, A. 2002. A framework for geometric warps
and deformations. ACM Trans. Graph., 21, 20-51.

MINECRAFT 2015. Minecraft.
MUSGRAVE, F. K. 1993. Methods for Realistic Landscape Imaging. Yale University, New Haven, CT.

MUSGRAVE, F. K., KOLB, C. E. & MACE, R. S. 1989. The Synthesis and Rendering of Eroded Fractal
Terrains. SIGGRAPH Comput. Graph., 23, 41-50.

NAGASHIMA, K. 1998. Computer generation of eroded valley and mountain terrains. The Visual
Computer, 13, 456-464.

NATALI, M., LIDAL, E. M., PARULEK, J., VIOLA, |. & PATEL, D. Modeling terrains and subsurface
geology. Eurographics 2013-State of the Art Reports, 2012. The Eurographics Association, 155-
173.

NEIDHOLD, B., WACKER, M. & DEUSSEN, O. 2005. Interactive physically based Fluid and Erosion
Simulation, Bibliothek der Universitat Konstanz.

NIE, D., MA, L. & XIAO, S. Similarity based image inpainting method. Multi-Media Modelling
Conference Proceedings, 2006 12th International, 0-0 0 2006. 4 pp.

NVIDIA. 2013a. CUDA C Best Practices Guide [Online]. Available: http://docs.nvidia.com/cuda/cuda-
c-best-practices-guide/index.html.

NVIDIA. 2013b. CUDA C Programming Guide [Online]. Available: http://docs.nvidia.com/cuda/cuda-
c-programming-guide/index.html.

NVIDIA. 2013c. NVIDIA Fermi Compute Architecture Whitepaper [Online]. Available:
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architectur
e_Whitepaper.pdf.

OLSEN, J. 2004. Realtime Procedural Terrain Generation. Department of Mathematics And Computer
Science (IMADA).

PAJAROLA, R., ANTONIJUAN, M. & LARIO, R. QuadTIN: Quadtree based Triangulated Irregular
Networks. Proceedings of the conference on Visualization '02, 2002 Washington, DC, USA. |IEEE
Computer Society, 395-402.

PEREZ, P., GANGNET, M. & BLAKE, A. 2003. Poisson image editing. ACM SIGGRAPH 2003 Papers. San
Diego, California: ACM.

106

PERLIN, K. 1985. An Image Synthesizer. SIGGRAPH Comput. Graph., 19, 287-296.
PERLIN, K. 2002. Improving Noise. ACM Trans. Graph., 21, 681-682.

PEUCKER, T. K., FOWLER, R. J., LITTLE, J. J. & MARK, D. M. The Triangulated Irregular Network. Amer.
Soc. Photogrammetry Proc. Digital Terrain Models Symposium, 1978. 532.

PRIM, R. C. 1957. Shortest connection networks and some generalizations. Bell system technical
journal, 36, 1389-1401.

SAUNDERS, R. L. 2006. Realistic terrain synthesis using genetic algorithms. Texas A&M University.

SAUPE, D. 1989. Point Evaluation of Multi-Variable Random Fractals. /n: JURGENS, H. & SAUPE, D.
(eds.) Visualisierung in Mathematik und Naturwissenschaften. Springer Berlin Heidelberg.

SAUPE, D. 1991. Random Fractals in Image Synthesis. In: CRILLY, A. J., EARNSHOW, R. A. & JONES, H.
(eds.) Fractals and Chaos. Springer New York.

SAUPE, D. 2003. Fractals. Encyclopedia of Computer Science. Chichester, UK: John Wiley and Sons
Ltd.

SCHNEIDER, J., BOLDTE, T. & WESTERMANN, R. Real-time editing, synthesis, and rendering of infinite
landscapes on GPUs. Vision, modeling and visualization, 2006. 145-152.

SEDGEWICK, R. 2001. Algorithms in C, Part 5: Graph Algorithms, Addison-Wesley, Massachusetts.

SHEPARD, D. 1968. A two-dimensional interpolation function for irregularly-spaced data.
Proceedings of the 1968 23rd ACM national conference. ACM.

SHEWCHUK, J. R. 1994. An introduction to the conjugate gradient method without the agonizing
pain. Carnegie-Mellon University. Department of Computer Science.

ST'AVA, O., BENES, B., BRISBIN, M. & KRIVANEK, J. Interactive Terrain Modeling Using Hydraulic
Erosion. Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, 2008 Aire-la-Ville, Switzerland, Switzerland. Eurographics Association, 201-210.

STRANDMARK, P. & KAHL, F. Parallel and distributed graph cuts by dual decomposition. Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, 2010. IEEE, 2085-2092.

TASSE, F. P., EMILIEN, A., CANI, M.-P., HAHMANN, S. & BERNHARDT, A. 2014a. First person sketch-
based terrain editing. Proceedings of Graphics Interface 2014. Montreal, Quebec, Canada:
Canadian Information Processing Society.

TASSE, F. P., EMILIEN, A., CANI, M.-P., HAHMANN, S. & DODGSON, N. 2014b. Feature-based terrain
editing from complex sketches. Computers & Graphics, 45, 101-115.

TASSE, F. P., GAIN, J. & MARAIS, P. 2011. Distributed Texture-based Terrain Synthesis. University of
Cape Town.

TERRAGEN. 2013. Terragen 2 [Online]. Available: http://planetside.co.uk/products/terragen2.

THRUST. 2013. Thrust [Online]. Available: https://code.google.com/p/thrust/.

107

USGS. 2013. US Geological Survey [Online]. Available: http://nationalmap.gov/.

VOSS, R. F. 1985. Random Fractal Forgeries. In: EARNSHAW, R. (ed.) Fundamental Algorithms for
Computer Graphics. Springer Berlin Heidelberg.

WATANABE, N. & IGARASHI, T. 2004. A sketching interface for terrain modeling. ACM SIGGRAPH
2004 Posters. Los Angeles, California: ACM.

WEI, L.-Y. 2003. Texture synthesis from multiple sources. ACM SIGGRAPH 2003 Sketches &
Applications. San Diego, California: ACM.

WEI, L.-Y., LEFEBVRE, S., KWATRA, V. & TURK, G. State of the Art in Example-based Texture Synthesis.
Eurographics 2009, State of the Art Report, EG-STAR, 2009-04-03 2009. Eurographics
Association, 93-117.

WORLDMACHINE. 2013. World Machine 2 [Online]. Available: http://www.world-machine.com/.

ZHOU, H.,, JIE, S., TURK, G. & REHG, J. M. 2007. Terrain Synthesis from Digital Elevation Models.
Visualization and Computer Graphics, IEEE Transactions on, 13, 834-848.

108

10 Appendix

10.1 Feature Synthesis - CPU v1 vs. CPU v2

Small Terrain

Large Terrain

Feature Synthesis

Speedup (x)

Speedup (x)

Ridges
User Patch Generation
Source Patch Matching

Source Pre-Processing

Cost Computation
Candidate Sorting
Best Patch Locating
Patch Merging
Valleys
User Patch Generation
Source Patch Matching

Source Pre-Processing

Cost Computation

Candidate Sorting

Best Patch Locating
Patch Merging

Runtime (s)

CPU V1 CPUv2
272.100101 270.6899590
192.780592 191.828335
0.001063 0.000519|
185.037051 188.088532
0.604155 0.016185
184.135469 184.382445
1.985055 2. 717081
0.000354 0.000618|
3.740209 3.739285
79.319514 78.861661
0.000495 0.000234
77.756361 77.299443)
0.294814 0.016550|
74.559710 74.687050
0.906126 1.210457|
0.000211 0.000253|
1.561903 1.561985|

2.05
1.01
37.33
1.00
0.73
0.57
1.00

2.12
1.01
17.81
1.00
0.75
0.33
1.00

Runtime (s)

CPUV1 CPUv2
5228.739683 5196.345002
392.088227 390.610168
0.002061 0.001056/
382.585721 380.622629)
1.097261 0.016061
375.573276 374.8510560]
3.474588 4.724773
0.000707 0.001048
9.496532 9.986483
4336.651464 4805.734834
0.028629 0.015006
4760.851660 4730.833789
15.085132 0.016549
4668.067237 4663.888232
45.652328 65.524820
0.008847 0.014543
75.483537 74.886038

1.95
1.01
68.32
1.00
0.74
0.67
0.95

1.91
1.01
911.57
1.00
0.70
0.61
1.01

Table 10.1: Runtime results comparing the two main CPU implementations. A speedup column is provided to show the
performance gain achieved with version two. These implementations perform very similarly despite the large
architectural changes.

10.2 Feature Synthesis - CPU v2 vs. CPU Parallel

Small Terrain

Large Terrain

Runtime (s)
CPU v2.0 CPU Parallel
5196.345002 3086.622345

Runtime (s)
CPU V2.0 CPU Parallel
270.689996 161.331427

Speedup (x) Speedup (x)

Feature Synthesis

Ridges 191.828335 114.366444 390.610168 232.147651
User Patch Generation 0.000519 0.000517 1.00 0.001056 0.001056| 1.00
Source Patch Matching 188.088532 112.166348 1.68 380.622629 226.272194 1.68
Source Pre-Processing 0.016185 0.016177 1.00 0.016061 0.015576 1.03
Cost Computation 184.382445 108.460261 1.70 374.851056 220.500621 1.70
Candidate Sorting 2.717081 2.717063 1.00 A.724773 4.721274 1.00
Best Patch Locating 0.000018 0.000616 1.00 0.001048 0.001046| 1.00
Patch Merging 3.739285 2.199579 1.70 9.936483 5.874402 1.70

Valleys 78.861661 47.464983 4805.734834 2854.474695
User Patch Generation 0.000234 0.000234 1.00 0.015006 0.014862] 1.01
Source Patch Matching 77.299443 46.545935 1.66 4730.833789 2810.409222 1.68
Source Pre-Processing 0.016550 0.016540 1.00 0.016543 0.016547| 1.00
Cost Computation 74.687090 43.,933582 1.70 4663.888232 2743.463660 1.70
Candidate Sorting 1.210457 1.210437 1.00 65.524820 65.524789 1.00
Best Patch Locating 0.000253 0.000251 1.01 0.014543 0.014518| 1.00
Patch Merging 1.561985 0.918814 1.70 74.886038 44,050610, 1.70

Table 10.2: Runtime results showing the performance improvements when multithreading our CPU v2 implementation.
Only the cost computation stage was multithreaded as such the times for the other sections remain relatively the same.

109

10.3 Feature Synthesis - CPU Parallel vs. GPU implementations

Small Terrain - Runtime (s)
CPUParallel] GPUv1 | GPUv2 | GPUv3 | GPUvA | GPUVS | GPUv6 | GPUVT | GPUVS

Feature Synthesis 161.831427 74.7A5849 36.122684 36.449545 26.859928 13.793737 14.395617 14.165048 10.541528
Ridges 114.366444 41.478099 20.330847 20.705550 14.756384 8.624020 8.042182 7.874463 6.135917
User Patch Generation 0.000517 0.002068| 0.001894| 0.002370
Source Patch Matching 112.166348 18.303053| 5.781124| 4.068311

Source Pre-Processing 0.016177] 0.006445| 0.001121 0.001156| 0.001480| 0.001870

Cost Computation 108.460261) 38.193079| 17.075027 4.764113| 4.549670| 2.835311

Candidate Sorting 2.717063| 1.230833| 1.224459 1.224380] 1.226562| 1.226380|

Best Patch Locating 0.000616] 0.006160(0.002436) 0.002026| 0.003401| 0.004739|
Patch Merging 2.199579 2.025726 2046943 2.091445

Valleys 47.464983 33.267750 15.791837 3 3 6.353435

User Patch Generation 0.000234] 0.001812| 0.001983 0.001879] 0.001873| 0.002110|
Source Patch Matching 46.545935| 32.420493| 14.948588 5.501704| 5.420605| 3.536636|
Source Pre-Processing 0.016546| 0.002021 0.001003| 0.000937] 0.001067| 0.002424
Cost Computation 43.933582] 31.153961| 13.690704| 13.612432 4.243842| 4.160566| 2.275046)
Candidate Sorting 1.210437] 1.260102| 1.255129| 1.259009 1.255057] 1.256038| 1.255834
Best Patch Locating 0.000251] 0.004389| 0.001743| 0.002935 0.001860] 0.002924| 0.003352]
Patch Merging 0.918814] 0.845445| 0.841266| 0.865345 0.849852| 0.868107| 0.866815|

Large Terrain - Runtime (s)
CPU Parallel| GPUv1 GPUv2 GPUv3 GPUv4 GPU V5 GPUv6 GPU VT GPU v8

Feature Synthesis 3086.622345 859.452684 409.377173 417.778100 316.60877> 209.293373 164.387438 164.483185

Ridges 232.147651 75.828522 37.523981 38.225733 29.101007 19.279009 17.684657 17.524401
User Patch Generation 0.061903| 0.063504 0.062444| 0.062705|
Source Patch Matching ©69.002362 31.376603) 10.420102| 7.674574
Source Pre-Processing 0.009060 0.014392 0.006217| 0.007276|
Cost Computation 66.525701] 28.891024 7.944341| 5.203817|
Candidate Sorting 2.458855 2.463232] 2460839 2.454676|
Best Patch Locating 0.008722 0.007929 0.008682| 0.008782
Patch Merging 6.764257 6.785627 7.041855| 6.935151
Valleys 2854.474695 783.624162 371.853192 379.552367 287.507769 190.0143632 146.702781 146.958785 126.816074
User Patch Generation 0.014862] 0.101599| 0.098654| 0.098491 0.099733| 0.099454
Source Patch Matching 2810.409222) 742.197632| 330.767996| 337.585458| 245.507015 105.078874| 104.975374| 84.991130
Source Pre-Processing 0.016547] 0.067072| 0.049911| 0.080541| 0.086351 0.062882| 0.070113| 0.073676|

Cost Computation 2743.463666(719.303015| 208.037628| 314.682022| 222585388 82.289110] 82.113281| 62.173043
Candidate Sorting 65.524789| 22.739906| 22.624760| 22.737232| 22.747771 22.656609| 22.696333| 22.647466|
Best Patch Locating 0.014518| 0.087408| 0.055452| 0.085445| 0.087254 0.070052| 0.095351| 0.096654
Patch Merging 44.050610| 41.324931| 40.986541| 41.868418| 41.901215 41.526321| 41.883671| 41.725489

Table 10.3: Runtime results comparing the parallel CPU implementation against the different GPU implementations for
the small and large terrains. v1 is a translated form of the parallel CPU implementation. v2 adds some shared memory
and more threads. v3 attempts to optimise functions but introduces more branching. v4 unrolls an entire loop utilising
more concurrent threads. v5 changes the architecture to allow a new dimension of threads for improved concurrency.
v6 optimises v5 preventing unnecessary recalculation of values. v7 combines elements from v5 and v6. v8 revisits v4 and
incorporates the newer changes in v7.

110

10.4 Feature Synthesis - Using GPU Texture Memory

Small Terrain

Feature Synthesis

Ridges

CPU Parallel
161.831427
114.366444

Runtime (s)

GPU vE
10.541528
6.135917

GPU Tex
8.999886
5.373410

Speedup over CPU

GPUv3

GPU Tex

Speedup
over v3

User Patch Generation 0.000517 0.002370| 0.001987 0.22 0.26 1.19
Source Patch Matching 112.166348| 4.068311 3.328250 27.57 33.70 1.22
Source Pre-Processing 0.016177| 0.001870 0.001232 8.65 13.13 1.52
Cost Computation 108.460261 2.835311 2.098202 38.25 51.69 1.35
Candidate Sorting 2.717063| 1.226380| 1.225992 2.22 2.72 1.00
Best Patch Locating 0.000616 0.004739| 0.002816 0.13 0.22 1.68
Patch Merging 2.199579 2.065236 2.043173 1.07 1.08 1.01

Valleys 47.464983 4.405610 3.6260470
User Patch Generation 0.000234 0.002110 0.002001 0.11 0.12 1.05
Source Patch Matching 46.545935 3.536680| 2.761992 13.16 16.85 1.28
Source Pre-Processing 0.016546| 0.002424 0.000997 6.83 16.60 2.43
Cost Computation 43.933582 2.275046| 1.503504 19.31 20.22 1.51
Candidate Sorting 1.210437 1.255854 1.255539 0.96 0.96 1.00
Best Patch Locating 0.000251] 0.003352 0.0015945 0.07 0.13 1.72
Patch Merging 0.918814 0.866815 0.862483 1.06 1.07 1.01
Large Terrain
Runtime (s) Speedup over CPU Speedup
CPU Parallel GPU v8 GPU Tex GPU v3 GPU Tex overvd

Feature Synthesis

Ridges

3086.622345
232.147651

141.488504
14.672430

125.887834
12.996462

User Patch Generation 0.001056 0.062705 0.067021 0.02 0.02 0.94
Source Patch Matching 226.272194 7.674574 6.220553 29.48 36.37 1.23
Source Pre-Processing 0.015570| 0.007276 0.004344 2.14 3.59 1.67
Cost Computation 220.500621, 5.203817 3.753462 42.37 58.75 1.39
Candidate Sorting 4.721274 2.454670| 2.456292 1.92 1.92 1.00
Best Patch Locating 0.001046| 0.008782 0.006433 0.12 0.16 1.37
Patch Merging 5.874402 £.935151 6.708887 0.85 0.88 1.03

Valleys 2854.474695 126.816074 112.891422
User Patch Generation 0.014862 0.099454 0.099500 0.15 0.15 1.00
Source Patch Matching 2810.409222| 84.991130 71.666311 33.07 39.22 1.19
Source Pre-Processing 0.016547| 0.073676 0.062649 0.22 0.26 1.18
Cost Computation 2743.463666| 62.173043 48.853884 44.13 56.16 1.27
Candidate Sorting 65.524789 22.647466| 22.666603) 2.80 2.89 1.00
Best Patch Locating 0.014518| 0.096694 0.082957 0.15 0.18 1.17
Patch Merging 44.050610 41.725489 41.125611 1.06 1.07 1.01

Table 10.4: Runtime results comparing the texture memory GPU implementation compared to the parallel CPU and GPU
v8 implementations. There is a slight performance gain when using texture memory. This is because we already are
using coalesced memory access for our image data. The first two speedup columns are comparing the methods against
the CPU implementation with the last speedup value comparing the improvement texture memory provides compared
to the current best GPU v8 implementation.

111

10.5 Feature Synthesis - CPU vs. GPU Candidate Sorting

Small Terrain

Runtime (s)

Speedup over CPU

Speedup

CPU Sorting | GPU Sorting | Thrust Sortingl GPU Sorting | Thrust Sorting over GPU

Feature Synthesis 12.678237 9.022137 7.037827
Ridges 8.356787 5.398602 4.511774
User Patch Generation 0.002545 0.002066| 0.002370 1.23 1.07 0.87
Source Patch Matching 6.283441 3.329156| 2.420604 1.89 2.60 1.38
Source Pre-Processing 0.003036| 0.001437 0.001084 211 2.80 1.33
Cost Computation 2.109137| 2.098663| 2.107912 1.00 1.00 1.00
Candidate Sorting 4.141839 1.225630| 0.300835 3.38 13.77 4.07
Best Patch Locating 0.007287 0.003416 0.004354 2.13 1.67 0.78
Patch Merging 2.070801 2.067380 2.083801 1.00 0.99 0.99
Valleys 4.321450 3.623535 2.526053
User Patch Generation 0.002175 0.002236| 0.002044 0.97 1.06 1.09
Source Patch Matching 3.453277| 2.761616 1.663156 1.25% 2.08 1.66
Source Pre-Processing 0.001839 0.001726 0.000757 1.07 2.43 2.28
Cost Computation 1.500838| 1.502602| 1.505681 1.00 1.00 1.00
Candidate Sorting 1.933492] 1.255184 0.151018 1.54 12.80 8.1
Best Patch Locating 0.005162] 0.002096 0.003278 2.46 1.57 0.64
Patch Merging 0.865998 0.859684 0.860853 1.01 1.01 1.00
Large Terrain
Runtime (s) Speedup over CPU Speedup

Feature Synthesis

Ridges

CPU Sorting | GPU Sorting | Thrust Sorting) GPU Sorting |Thrust Sorting over GPU

208.050630
18.351054

126.973870
13.278647

111.550104
11.529683

User Patch Generation
Source Patch Matching
Source Pre-Processing
Cost Computation
Candidate Sorting
Best Patch Locating
Patch Merging

0.066535
11.267451
0.007293
3.835242
7.373658
0.015873
7.017067

0.066883
6.258385
0.005249
3.790283
2.455467
0.007365
6.953378

0.068119
4.471157
0.003516
3.762511
0.684837
0.011246
6.990407

0.99
1.80
1.39
1.01
3.00
2.16
1.01

0.98
2.52
2.07
1.02

10.77
1.41
1.00

0.98
1.40
1.49
1.01
3.59
0.65
0.99

Valleys

User Patch Generation

Source Patch Matching
Source Pre-Processing
Cost Computation
Candidate Sorting
Best Patch Locating

Patch Merging

189.699576
0.112380
147.562560
0.081786
45.481234
97.366113,
0.179276
42.024636,

113.695224
0.104432
71.802278
0.070201
45.000015
22.651851
0.079965
41.788514

100.020421
0.102666
58.209333
0.043295
48.833930
9.108347
0.108337
41.708422

1.08
2.06
1.17
1.01
4.30
2.24
1.01

1.09
2.54
1.89
1.01
10.69
1.65
1.01

1.02
1.23
1.62
1.00
2.49
0.74
1.00

Table 10.5: Runtime results comparing sorting of the candidates with the CPU, our own GPU kernel or using the Thrust
(2013) library. We observe a large speedup when using the GPU to sort candidates, which is further increased when
using the optimised Thrust library. The first two speedup columns compare the GPU sorting algorithms to CPU sorting
with the final speedup value comparing the improvement Thrust provides over our implementation.

112

10.6 Feature Synthesis - Asynchronous Blocked Implementation

Small Terrain

Runtime (s) Speedup over CPU Speedup
CPU Parallel | GPU Thrust | GPU Async | GPU Thrust | GPU Async | over Thrust
Feature Synthesis 161.831427 J.037827 6.607751
Ridges 114.366444 4.511774 4.134249
User Patch Generation 0.000517 0.002370| 0.001885 0.22 0.27 1.26
Source Patch Matching 112.166348| 2.420604, 2.375004 46.34 a47.23 1.02
Source Pre-Processing 0.016177| 0.001084 0.000735 14.92 20.35 1.36
Cost Computation 108.460261 2.107912 2.067151 51.45 52.47 1.02
Candidate Sorting 2.717063 0.300835 0.297279 0.03 0.14 1.01
Best Patch Locating 0.000616 0.004354, 0.003483 0.14 0.18 1.25
Patch Merging 2.199579| 2.088201 1.755116) 1.05 1.25 1.19
Valleys 47.464983 2.5260503 2.472902
User Patch Generation 0.000234 0.002044 0.001798 0.11 0.13 1.14
Source Patch Matching 46.545935 1.663150| 1.626961 27.99 28.61 1.02
Source Pre-Processing 0.016546| 0.000757 0.000749 21.87 22.09 1.01
Cost Computation 43.933582 1.505681] 1.479801 20.18 20.60 1.02
Candidate Sorting 1.210437 0.151018 0.141718 8.02 8.54 1.07
Best Patch Locating 0.000251] 0.003278 0.002319 0.08 0.11 1.41
Patch Merging 0.918814 0.860853 0.842810 1.07 1.09 1.02
Large Terrain
Runtime (s) Speedup over CPU Speedup
CPU Parallel | GPU Thrust | GPU Async | GPUThrust | GPU Async | over Thrust
Feature Synthesis 3086.622345 111.550104 68.531263
Ridges 232.147651 11.529683 10.130781
User Patch Generation 0.001056 0.068119) 0.065550 0.02 0.02 1.04
Source Patch Matching 226.272194, 4.471157| 4.358404 50.61 51.92 1.03
Source Pre-Processing 0.015570| 0.002516 0.002343 4.43 4.66 1.05
Cost Computation 220.500621 3.762511 3.702657 58.60 50.55 1.02
Candidate Sorting A4.721274 0.684837| 0.635609 6.80 7.43 1.08
Best Patch Locating 0.001046| 0.011246| 0.007806 0.09 0.13 1.44
Patch Merging 5.874402 6.990407 6.950981 0.84 0.85 1.01
Valleys 2854.474695 100.020421 58.400482
User Patch Generation 0.014862| 0.102666| 0.096177 0.14 0.15 1.07
Source Patch Matching 2810.409222 58.209333 55.846058 48.28 50.32 1.04
Source Pre-Processing 0.016547 0.043295 0.026975 0.38 0.61 1.61
Cost Computation 2743.463666 48.833930 47.873112 56.18 57.31 1.02
Candidate Sorting 65.524789 9.108347, 7. 732866 7.19 B.47 1.18
Best Patch Locating 0.014518| 0.108337 0.089898 0.13 0.16 1.21
Patch Merging 44.050610) 41.708422 42.241699 1.06 1.04 0.99

Table 10.6: Runtime results comparing the parallel CPU and our current best GPU implementation, using Thrust sorting,
against our asynchronous block system. This allows us to execute code on both the CPU and GPU concurrently, which
produces a very large improvement over our current best GPU implementation. The first two speedup columns are
compared to our parallel CPU implementation with the last indicating the gain when using asynchronous processing
over the Thrust enabled GPU implementation.

113

10.7 Feature Synthesis - Culling Nearby User Patches

Small Terrain

Large Terrain

Feature Synthesis

Valleys

Runtime (s)

Culling Off
44575818

18.264112

Culling On
22.717946

Speedup (x)

Runtime (s)

Culling Off
210.679105

95.456662

Culling On
176.090025

83.671197

Speedup (x)

Ridges 206.311706 11.340142 115.222443 92.418828
User Patch Generation 0.008714 0.004231 2.06 0.105202 0.101363| 1.03
Source Patch Matching 17.702781 6.990403 2.53 70.422854 55.509404 1.27
Source Pre-Processing 0.014339 0.007372 1.94 0.120667 0.075329 1.60
Cost Computation 11.549297 4.516402 2.56 46.792403 36.916863 1.27
Candidate Sorting 6.115225 2.4568392 2.49 23.422729 18.438620, 1.27
Best Patch Locating 0.023361 0.010214 2.34 0.086826 0.078439| 111
Patch Merging 8.600211 4,345508 1.98 44.694387 36.807561, 1.21

User Patch Generation 0.005557 0.004366 1.27 0.094586 0.094699| 1.00
Source Patch Matching 11.849165 7.214704 1.64 60.995559 53.084093 1.15
Source Pre-Processing 0.003069 0.005512 1.65 0.127965 0.066334 1.93
Cost Computation 2.041921 4675941 1.72 40581834 35.303080 1.15
Candidate Sorting 3.785017 2.523086 1.50 20.213967 17.643906 1.15
Best Patch Locating 0.013124 0.010145 1.29 0.071608 0.070622 1.01
Patch Merging 6.409391 4158733 1.54 34.366517 30.492405 1.13

Table 10.7: Runtime results comparing the implementations when either culling of nearby user patches or not. This is an
issue with the original feature extraction algorithm. We address this by examining user patches and removing those that
are in close proximity to one another. This reduces the total number of features requiring synthesis and thus improves
performance as shown above. We see a higher gain in the smaller terrain as the proportion of culled patches is higher
than the larger terrain.

10.8 Feature Synthesis - Feature Complexity Change

Runtime (s)

Feature Count

380 770 1145 1541
Feature Synthesis 30.939944 53.472603 78.260373 110.815706
Ridges 13.707008 15.945270 26.986280 38.879797
User Patch Generation 0.067431 0.074991 0.076889 0.085137
Source Patch Matching B.630530 17.373795 25.460282 37.438202
Source Pre-Processing 0.004646 0.011593 0.022171 0.043379
Cost Computation 7.492320 14.761641 20.742458 28.729611
Candidate Sorting 1.104025 2.526881 4.588528 8.499628
Best Patch Locating 0.013307 0.035492 0.052619 0.0388187
Patch Merging 10.138998 16.375170 21.924746 29.305117

Valleys 17.232936 33.527334 51.280093 71.935909
User Patch Generation 0.070370 0.081682 0.087379 0.103568|
Source Patch Matching 15.593666 31.254787 49.137721 63.922107|

Source Pre-Processing 0.007824 0.018771 0.039102 0.074120
Cost Computation 13.435021 26.261687 39.759585 53.003480|
Candidate Sorting 2.093096 4.850851 9.136727 16.552344
Best Patch Locating 0.024511 0.054753 0.094800 0.151200
Patch Merging 10.768992 22.829954 34.641575 A7.037576|

This allows our system to scale for larger more complex terrains.

114

Table 10.8: Runtime results for varying complexity in terms of the number of total features synthesised by the system.
We observe that with a linear increase in the total number of features there is a linear increase in the time required.

10.9 Non-Feature Synthesis

Small Terrain Large Terrain
CPU GPU Enhanced | Speedup (x) CPU GPU Enhanced | Speedup (x)
Non-Feature Synthesis 25.657241 7.261747 3.53 5574.503558 3270.905490 1.70
Generate Source Candidates 0.158949 0.015000 0.158722 0.014966

Inttialise Omega | ooss268 ooea307l 101 ff 1471480 1a4es030f 100 |

Get Next Target 0.442839 0.443905 1840.985378 1902.049310

Sorting Omega 0.064358 0065023 099 || 529135204 543928055 097 |

Cost Calculation 19.872205 0.096544 2604.309317 14.880738

Sorting Candidates 0.058681 1535224 o002 || 5261691 217.122643] 0.02 |

Find Best Patch 0.405882 0.455423 53.408648 51.875471
Merging Patch 539.5682

Table 10.9: Runtime results for the non-feature synthesis stage of our system. Times presented are for a CPU only and
GPU enhanced implementations. The GPU is utilised for cost calculations to help reduce the overhead of synthesis, the
other components are left CPU bound. There is a massive improvement in the cost calculation stage, which has the
largest runtime on the CPU.

10.10 Full Synthesis - Previous Work

Small Terrain
Runtime (s) Speedup over Tasse et al.
Tasse et al. CPUv2.0 | CPUParallel | GPU Best CPUv2.0 |CPU Parallel] GPU Best

Total Synthesis 567.474000 3.140256
Feature Synthesis 201.712000 :

Ridges
Valleys
Non-Feature Synthesis

Large Terrain

Runt-ime (s) Speedup over Tasse et al.
Tasse et al. CPUv2.0 | CPUParallel| GPU Best CPUv2.0 |CPU Parallel] GPU Best
Total Synthesis 7460.135000 226.9672: 216.476559
Feature Synthesis 654.425000 .6681¢ 17.028104

Ridges 65 5000 ; 17.028104
Non-Feature Synthesis 6205.710000 8. 2 199.4428455 166.835811

Table 10.10: Runtime results when comparing our system to the previous work by Tasse et al. (2011). Timing values for
Ridges, Valleys and Non-Feature Synthesis were provided in the previous system as such we omit the breakdown for our
system in order to only compare the relevant data. While we could only compare the CPU implementation of Tasse et al.

(2011), we observe that our system runs significantly faster under the same test conditions. Our system was run with a

single source file to match the output more closely.

115

10.11 Full Synthesis - Single vs. Multiple Sources

Small Terrain Large Terrain

Runtime (s) Runtime (s)

Speedup (x) | |Single Source| Multi-Source | Speedup (x)

Single Source| Multi-Source

Total Synthesis 7.819481 15.405385 : b 6 3217.503113
Feature Synthesis 2.094224 8.662770 35.790: 82.477729
Ridges 1.391658 5.291615 6.2 E 10.848514
User Patch Generation 0.001920 0.002221 0.86 0.063670 0.080309| 1.05
Source Patch Matching 0.058827 3.224222 0.02 0.133099 5.796704 0.02
Source Pre-Processing 0.000129 0.001084 0.12 0.000441 0.003274 0.13
Cost Computation 0.038935 2.899855 0.01 0.074109 5.134853| 0.01
Candidate Sorting 0.018687 0.309995 0.06 0.055980 0.643227 0.09
Best Patch Locating 0.000803 0.004745 0.17 0.001960 0.006830| 0.29
Patch Merging 1.328188 d 0.64 6.083430 6.950793| 0.88
Valleys 0.702566 55 29.545392 71.629215
User Patch Generation 0.001366 0.001657| 1.13 0.094067 0.093394 1.01
Source Patch Matching 0.047725 2.486569 0.02 1.521386 69.111122, 0.02
Source Pre-Processing 0.000004 0.000685) 0.01 0.004004 0.031189| 0.13
Cost Computation 0.037336 2.330338 0.02 0.357425 60.512516) 0.02
Candidate Sorting 0.009165 0.149637 0.06 0.538805 7.964012 0.07
Best Patch Locating 0.000430 0.003563 0.13 0.014083 0.086265| 0.16
Patch Merging 0.651718 0.881730 0.74 29.161845 41.278248 0.71

Non-Feature Synthesis 5.725257 6.742615 0.85 3013.608546 3135.025384 0.96
Generate Source Candidates 0.003451 0.030741 0.003091 0.029903

Initialise Omega 0.074822 0.065653| 114 || 1e62981 1463157 112 |

Get Next Target 0.445233 0.452896 1836.908801 1863.952450

0059441 0066826 0.9 || 532757324 542432483 098 |

Cost Calculation 0.102188 0.100574 14.885734 14.737024

Sorting Candidates 0.144254 0.907089| 0.6 || 27213139 122.224458

Find Best Patch 0.391972 0.447185 49.892418 51.130308

Table 10.11: Runtime results for our system when using either a single input source or our database of fifteen. We see
the feature synthesis stage has a fairly high cost for using multiple files, although less so when using the larger terrain.
We observe the runtimes for non-feature synthesis being very close between the two implementations due to the large
cost of running many iterations to completely fill the output terrain. When looking at the total synthesis time for the
large terrain we see the larger database has very minor impact on the performance.

116

10.12 Full Synthesis - Varying Patch Size

Small Terrain

Runtime (s) Speedup over 32px
32x32 64 x 64 96 x 96 128 x 128 160 x 160 64 x 64 96 x 96 128 x 128 160 x 160
Total Synthesis 17.702534 13.980580 16.004281 18.995432 22.861861 1.27 1.11 0.93 0.77
Feature Synthesis 7.792151 7.060216 8.685814 11.260066 15.848494 1.10 0.90 0.60 0.40
Ridges 5.281415 4.508658 5.209432 6.822661 9.551658 1.17 1.01 0.77 0.55

User Patch Generation 0.002206| 0.002190| 0.002568 0.002733 0.002768| 1.01 0.86 0.81 0.80
Source Patch Matching 4.509848 2.432063 1.945530) 1.989511] 2.091009 2.02 2.52 2.47 2.35
Source Pre-Processing 0.005737 0.001120 0.001133| 0.002560| 0.001881 5.17 5.12 2.26 3.08
Cost Computation 4.236849| 2.118850 1.760964] 1.855808 1.989788 2.00 2.41 2.28 213
Candidate Sorting 0.646004 0.301765 0.177201 0.126152] 0.094104 214 3.65 5.12 6.86
Best Patch Locating 0.010367| 0.004143| 0.003345 0.002703 0.004112] 2.50 3.10 3.84 2.52

Patch Merging 1.031753] 2.074405| 3.261334 4.33041 7.457881) 0.50 0.32 0.21 0.14
Valleys 2.510737 2.551558 3 4.437405 6.296830 0.98 0.72 0.57 0.40
User Patch Generation 0.001535| 0.002135| 0.00229 . 0.002518| 0.72 0.67 0.70 0.61

Source Patch Matching 2212971 1.688215 1.588943| d 1.875935 1.31 1.39 1.36 1.18
Source Pre-Processing 0.001910 0.000880 0.000835| . 0.001159 217 2.29 249 1.65
Cost Computation 1.895923 1.5259103| 1.485853] 5 1.808238 1.24 1.28 1.22 1.05
Candidate Sorting 0.305725 0.152603 0.097979| . 0.062734 2.00 392 4.92 4.87
Best Patch Locating 0.004918 0.003257 0.002662| . 0.002991 1.51 1.85 241 1.64

Patch Merging 0.295131] 0.861208| 1.885143] . 4.418384] 0.34 0.16 0.10 0.07
Non-Feature Synthesis 9.910383 6.920364 7.319066 7.735366 L0133 1.43 1.35 1.28 1.41

Generate Source Candidates 0.000004 0.000004 0.000004 0.000004 0.000004
Initialise Omega 0.021156(0064253 0.093208| 045327l o087 033 | o023 | o015 | 016 |
Get Next Target 0.902328 0.462035 0.275398 0.187707 0.126047

0014281 oomss2l o001 639 | 3040 | sem: | 328 |

Cost Calculation 0.121113 0.097208 0.079778 0.030024 0.022988

Sorting Candidates 116152 0446110 00%0106| 0043091 415 [w038 | 5138 | 10705 |

Find Best Patch 0.980026 0.487460 0.381753 0.387719 0.288513
Merging Patch 2.817235 4.609964| 5.993800 6.85828 6.350219| 0.61

0.47 0.41 0.44

Large Terrain

Runtime (s) Speedup over 32px

96 x 96 128 x 128 128 x 128
Total Synthesis 9499.526314 3298.099709 2365.878455 2416.259514 2380.718240
Feature Synthesis 114.020%946 70.388126 93.469137 165.028469 221.776193
Ridges 7.955031 10.264930 12.858465 18.108056 21.434686

User Patch Generation 0.067114 0.071802] 0.067217 0.97 0.98 0.93 1.00
Source Patch Matching 6.955356| 3.051411 2.417770| 1.55 237 2.28 2.88
Source Pre-Processing 0.006750) 0.002753 0.002576| 1.84 2.89 2.45 2.62
Cost Computation 5.666742 3.777195 2.729738| 2.202575 1.50 2.26 2.08 2.57
Candidate Sorting 1.246707 0.685703| 0.417435 0.309137 0.206566| 1.82 2.99 4.03 6.04
Best Patch Locating 0.017734 0.004354 0.004977| 0.003867 1.63 4.07 3.56 4.59
Patch Merging 5.207338 9.848699| 14.979439| 18.943920 0.74 0.53 0.35 0.27

Valleys 3 3 146.920413
User Patch Generation 3 . . 0.098436|
Source Patch Matching 105.327639| o . 32.680596) 27.1765944] 1.83 2.67 3.22 3.88

Source Pre-Processing 0.061594 0.018780 0.020914 0.015399] 1.86 3.28 2.95 4.00
Cost Computation 88.098688 34.357757 28.930040] 24.549764 1.81 2.56 3.05 3.50
Candidate Sorting 16.695135 4.921386 3.598347| 2.534429 1.95 3.39 4.64 6.59

Best Patch Locating 0.229707 0.065475)
Patch Merging b . 142.918269
Non-Feature Synthesis 9385.505368 3227.711583 2267.409318 2251.231045 2158.942047 2.91 414 417 435
Generate Source Candidates 0.000004 0.000004 0.000004 0.000004 0.000004
| nitialiseOmega | o0as2514| 1473950 3.5761%| 6.00se6s| 9.25314f 031 [o013 [008 [005 |
Get Next Target 5255.923706 1865.092529 1103.501844 926.461208 746.169029

3118877476 121910444 78a3383s(579 | 1533 | sss | 397 |

Cost Calculation 16.200230 14.300963 14.101240 6.087718 5.784305

Sorting Candidates 216331482 g7.426378| 17.464585) 12.029516(274 | 677 | 3389 | asa0 |

Find Best Patch 100.179238 52.393124 53.907717 60.806208 63.783032

2.08 4.04 3.51 5.10

Table 10.12: Runtime results for varying the size of the patch used by our system. We start off with a small 32 x 32
patch size up to a large 160 X 160 patch size. We observe two outcomes when looking at the feature and non-feature
synthesis components, which is similar for both terrain sizes. For feature synthesis we see a patch size of 64 X 64 being

optimal with the fastest runtime recorded. For non-feature synthesis we observe that the larger the patch size the faster
the runtime. This is attributed to a larger area being merged into the output, which reduces the amount of empty areas
thus requiring less iterations to complete.

117

	1 Introduction
	1.1 Aims
	1.2 Contributions
	1.3 Thesis structure

	2 Background: Terrain Generation
	2.1 Terrain Representation
	2.2 Terrain Generation
	2.2.1 Fractal-based generation
	2.2.2 Physics-based generation
	2.2.3 Texture-based generation

	2.3 User Control
	2.3.1 Parameter manipulation
	2.3.2 Image-based control
	2.3.3 Sketching

	2.4 Discussion

	3 Background: GPUs & NVIDIA CUDA
	3.1 GPUs and Parallel Programming
	3.2 NVIDIA CUDA
	3.2.1 Motivation for using CUDA over alternatives
	3.2.2 CUDA Programming Model
	3.2.3 Execution Pipeline
	Software – The Grid, Blocks & Threads:
	Layout & Indexing of Blocks & Threads
	Hardware – The GPU, Streaming Multiprocessors & Cores:
	Block, Warp & Thread Scheduling
	Flow Control & Code Divergence
	Barrier Synchronisation

	3.2.4 Memory Hierarchy

	3.3 Performance considerations
	3.3.1 Maximise memory throughput
	3.3.2 Maximise parallel execution
	3.3.3 Maximise instruction throughput

	3.4 Summary

	4 Framework
	4.1 User Input & Feature Extraction
	4.2 Patch Matching
	4.2.1 Feature Matching
	Feature dissimilarity
	Angle differences
	Noise variance

	4.2.2 Non-Feature Matching
	Patch-based filling algorithm
	Matching process

	4.3 Patch Merging
	4.3.1 Graph-cut
	4.3.2 Shepard Interpolation
	4.3.3 Poisson equation solver

	4.4 Research Outcome

	5 Enhanced Framework
	5.1 Multiple Input Sources
	5.2 CPU and GPU Accelerated Synthesis
	5.3 Simplified User Sketching Interface
	5.4 Pre-Processors and Pre-Loaders
	5.5 Summary

	6 Feature Synthesis
	6.1 Feature Extraction & Pre-Loaders
	6.2 Cost Functions
	6.2.1 Feature Profiling
	6.2.2 Sum-of-Squared Differences (SSD)
	6.2.3 Noise Variance
	6.2.4 Graph-cut cost

	6.3 Feature Matching – CPU
	6.3.1 Sequential CPU Implementation
	6.3.2 Parallel CPU Implementation

	6.4 Feature Matching – GPU
	6.4.1 Caching of data on GPU
	6.4.2 User Patch Extraction
	6.4.3 Candidate Cost Calculations
	Initial GPU versions
	Advanced GPU versions
	GPU Texture Memory

	6.4.4 Storing Best Candidates
	6.4.5 Merging

	6.5 Feature Merging
	6.6 Optimisations

	7 Non-Feature Synthesis
	7.1 Candidate Extraction
	7.2 Candidate Matching and Merging
	7.2.1 Selecting Target Patch
	7.2.2 Matching – Cost Functions
	7.2.3 Matching – CPU Implementation
	7.2.4 Matching – GPU Implementation
	7.2.5 Merging

	7.3 Optimisations

	8 Results
	8.1 Feature Synthesis
	8.1.1 Sequential CPU versions
	8.1.2 Single versus Multi-Threaded CPU
	8.1.3 CPU versus incremental GPU implementations
	8.1.4 Utilising GPU Texture Memory
	8.1.5 CPU versus GPU Sorting of Candidates
	8.1.6 Blocked GPU for Asynchronous Processing
	8.1.7 Culling Nearby User Patches
	8.1.8 Feature Complexity Change

	8.2 Non-Feature Synthesis
	8.3 Full Synthesis
	8.3.1 Comparison with previous work
	8.3.2 Single versus Multi-Source synthesis
	8.3.3 Patch Size change

	8.4 Summary

	9 Conclusion
	9.1 Limitations
	9.2 Future-work

	10 Appendix
	10.1 Feature Synthesis – CPU v1 vs. CPU v2
	10.2 Feature Synthesis – CPU v2 vs. CPU Parallel
	10.3 Feature Synthesis – CPU Parallel vs. GPU implementations
	10.4 Feature Synthesis – Using GPU Texture Memory
	10.5 Feature Synthesis – CPU vs. GPU Candidate Sorting
	10.6 Feature Synthesis – Asynchronous Blocked Implementation
	10.7 Feature Synthesis – Culling Nearby User Patches
	10.8 Feature Synthesis – Feature Complexity Change
	10.9 Non-Feature Synthesis
	10.10 Full Synthesis – Previous Work
	10.11 Full Synthesis – Single vs. Multiple Sources
	10.12 Full Synthesis – Varying Patch Size

