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Abstract

Visibility culling is a means of accelerating the graphical rendering of geometric models. Invisible

objects are efficiently culled to prevent their submission to the standard graphics pipeline. It is

advantageous to preprocess scenes in order to determine invisible objects from all possible camera

views. This information is typically saved to disk and may then be reused until the model geometry

changes. Such preprocessing algorithms are therefore used for scenes that are primarily static.

Currently, the standard approach to visibility preprocessing algorithms is to use a form of ap-

proximate solution, known as conservative culling. Such algorithms over-estimate the set of visible

polygons. This compromise has been considered necessary in order to perform visibility prepro-

cessing quickly. These algorithms attempt to satisfy the goals of both rapid preprocessing and rapid

run-time rendering.

We observe, however, that there is a need for algorithms with superior performance in prepro-

cessing, as well as for algorithms that are more accurate. For most applications these features are

not required simultaneously. In this thesis we present two novel visibility preprocessing algorithms,

each of which is strongly biased toward one of these requirements.

The first algorithm has the advantage of performance. It executes quickly by exploiting graph-

ics hardware. The algorithm also has the features of output sensitivity (to what is visible), and a

logarithmic dependency in the size of the camera space partition. These advantages come at the cost

of image error. We present a heuristic guided adaptive sampling methodology that minimises this

error. We further show how this algorithm may be parallelised and also present a natural extension

of the algorithm to five dimensions for accelerating generalised ray shooting.

The second algorithm has the advantage of accuracy. No over-estimation is performed, nor

are any sacrifices made in terms of image quality. The cost is primarily that of time. Despite the

relatively long computation, the algorithm is still tractable and on average scales slightly super-

linearly with the input size. This algorithm also has the advantage of output sensitivity. This is the

first known tractable exact solution to the general 3D from-region visibility problem.
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In order to solve the exact from-region visibility problem, we had to first solve a more general

form of the standard stabbing problem. An efficient solution to this problem is presented indepen-

dently.
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Preface

We adhere to certain conventions within this dissertation. In general, vectors are capped with arrows

(e.g., �a), points, coordinate components and integers are referenced by the lower case letters of the

standard English alphabet (e.g., a). Differentiation between points and integers should be clear from

the context. Sets are denoted by the upper case letters of the standard English alphabet (e.g., A).

Scalars are represented by lower case Greek letters (e.g., α). The notation for polyhedra may vary,

depending on whether they are treated as sets of points explicitly (e.g., . . . ∈ P ), or as elements of

a set themselves (e.g., p ∈ . . .). Other particulars are defined in context.

All proofs that we consider interesting, yet non-essential are included in Appendix A for the

reader.
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Chapter 1

Introduction

When viewing 3D scenes of high depth complexity, only a small proportion of scene primitives are

visible from any given view-point. It is desirable to remove these invisible primitives as early in the

graphics pipeline as possible. This prevents unnecessary wastage of system resources. The principal

advantage of such output sensitive rendering, is that the resulting rendering time is proportional to

the visible primitive count. This feature allows rendering time to become invariant with the overall

complexity of the scene and, in practice, allows for higher frame rates and/or more complex scenes.

The class of algorithms that perform such a partitioning of a scene into visible and invisible

primitives (polygons for the purposes of this dissertation), are known as visibility culling algorithms.

It is important to differentiate between hidden surface removal [SSS74] algorithms, that determine

which fragments of the scene geometry are visible, and visibility culling algorithms that remove

invisible primitives from the graphics pipe-line before they are even transformed from object space.

Hidden surface removal is mandatory and is still applied, but only to those primitives considered

visible by the culling algorithm.

Visibility culling algorithms may be categorised according to their accuracy in differentiating

between visible and invisible primitives. We augment the taxonomy of Cohen-Or et al. [COCSD03]

and discriminate between conservative, approximate, exact, and additionally, aggressive visibility

algorithms (Table 1).

Conservative techniques consistently overestimate and incur what we term false visibility errors.

These occur when primitives that are not visible are considered visible. This results in sub-optimal

run-time performance, due to the unnecessary submission of invisible primitives to the rendering

pipeline1.

1In this context, the term “optimal” refers to rendering time only. We acknowledge that practical concerns, such as

1
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Run-Time Performance
Image Quality Optimal Sub-optimal

Correct Exact Conservative
Errors Aggressive Approximate

Table 1:
Classification of visibility culling algorithms.

In contrast, aggressive methods always underestimate the set of visible geometry and exhibit

false invisibility, where visible primitives are excluded erroneously. Aggressive visibility causes

image error, but can be useful in practice if: (a) the perceptual impact of the error is acceptably

small for the application, (b) the algorithm is computationally efficient or (c) it handles scenes that

cannot be solved effectively with conservative alternatives, due to excessive overestimation.

Approximate visibility techniques incur both false visibility and false invisibility errors. For

some applications such algorithms may offer a desirable compromise between the advantages and

disadvantages of conservative and aggressive techniques.

Exact visibility solutions provide both accurate images and optimal rendering performance. An

exact visibility query will produce a set containing no more or less than the set of visible primitives.

Another dimension in the classification of visibility culling algorithms is the distinction between

from-point and from-region visibility. The terminology introduced so far has been with reference

to from-point visibility, which is simply the determination of visibility from a single camera view-

point. This terminology can be extended naturally to from-region visibility.

The set of primitives visible from a region is defined as those that can be seen from at least one

view-point within that region. Equivalently, from-region visibility can be defined as the union of

the visible primitive sets from every point within the region. If this visibility set is overestimated,

the from-region visibility algorithm is conservative, if it is underestimated, then it is aggressive. If

both visible and invisible primitives are incorrectly classified, then the algorithm is approximate.

Finally, if the set of primitives reported visible by an algorithm is exactly the set of primitives that

are visible, then the algorithm is exact.

There are several advantages to using from-region visibility. The most commonly cited, is that

the overhead of visibility culling can be relegated to a pre-process. The camera view-point space

is partitioned into a finite set of regions and the set of visible primitives for each region can then

the additional time taken to query visibility itself, could outweigh the benefits of using a more accurate visibility set.
However, since this dissertation is concerned primarily with preprocessed visibility, this run-time query time is trivial.
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be computed and stored. At run-time, only the set of primitives visible from the region containing

the current camera view-point is rendered. This saves the often expensive cost of run-time visibility

determination. Pre-processing is best suited for scenes that are largely static, and so, this dissertation

focuses primarily on handling static scenes. Since from-point visibility may be applied at run-time,

such algorithms are usually well suited to dynamic scenes.

From-point visibility has the advantage of only ever having to solve visibility from a single

point. A point may be considered to be a degenerate region, implying that the from-point problem

may be considered a special case of the from-region problem. From-point solutions take advantage

of special structure, often applying optimisations that cannot be applied to the general from-region

case. This is critical, since the application of from-point visibility algorithms occurs at run-time

on a per-frame basis. To be effective, from-point techniques have to execute in significantly less

time than it would take for the graphics hardware simply to render all scene primitives. To date, all

from-point algorithms have been either conservative or approximate in nature.

By contrast, the pre-processing stage of from-region techniques occurs once only, and is usually

computed offline. This allows more time to be allocated to solving for more accurate visibility.

Exact quantification of this time, however, depends on the nature of the application.

It should also be noted that for many applications the final pre-process is generally performed

not by the end user, but rather the producers of the scene model. In such scenarios, computing

facilities such as high-end machines, or even machine clusters are often readily available.

During the development of the scene model, however, it is often desirable to pre-process the

scene many times for the purposes of previewing or prototyping. For this type of application it is

necessary to perform the pre-processes rapidly.

At present, conservativity is the industry standard for culling as a pre-process. Typically, con-

servative algorithms are used both during development and as a final pre-process.

We recognise two opposing problems. Firstly, we note that for some applications, very fast

visibility pre-processing is required – often faster than what is available. Indeed, for large models,

state of the art techniques may take several hours to pre-process. Secondly, after this pre-process,

there is the undesirable consequence that the result is still an overestimation of what is truly visible

from the pre-processed regions.

Yet another issue is the lack of consistency in this overestimation. Different algorithms respond

differently to the characteristics of different models. Some combinations of algorithm and model

may allow very accurate results to be obtained, while other combinations may be completely inef-

fectual. It is inconvenient and difficult to manage this inconsistency. Many applications are limited
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to certain types of models in order to accommodate the visibility subsystem. The fact that the output

of any exact algorithm is unique, removes such inconsistency and unpredictability. Furthermore, the

existence of an exact algorithm defines a yard stick, against which the output of non-exact visibility

algorithms can be measured for evaluation.

In this dissertation we present two new visibility pre-processing algorithms. The first is an

aggressive algorithm that solves for visibility more rapidly than any previous solution. It also has

the advantage that it is not prone to the overestimation of approximate or conservative solutions.

Our algorithm exploits standard graphics hardware and use adaptive sampling guided by heuristics

in order to minimise error.

The second algorithm is a tractable exact visibility algorithm. We consider this to be our major

contribution, since finding such a solution has been considered an important open problem. Indeed,

even the existence of a tractable solution has been doubted [Pla92]. The pre-processing time of

our exact algorithm is longer than most conservative techniques, but it does maintain near-linear

scalability. In order to solve the problem we have had to extend existing algorithms and develop

new ones. We detail our approach and list our contributions in the next two sections.

1.1 Approach

For our aggressive algorithm, our primary aim is performance. In order to achieve fast preprocess-

ing, we generalise a graphics hardware technique known as item buffer2 rendering to a region. This

is accomplished by aggregating item buffer samples over the surface of the region.

To minimise the error resulting from aliasing while sampling the surface, we use adaptive sam-

pling. We develop several heuristic error measures that guide the sampling and provide user control

over a performance/error tradeoff.

The adaptive sampling also increases performance, since over-sampling is avoided. To exploit

the reuse of samples, and to allow a progressive construction of the cell partition efficiently, we

introduce a sophisticated sampling scheme that only maintains samples that will definitely be re-

quired again. By integrating the visibility information available during the preprocess with rapid

from-point rendering techniques, we are able to accelerate the item buffer evaluation significantly.

We observe that one of the advantages of the sampling process, is that the item buffer encodes

directional information. We consider this to have many potential advantages for ray-tracing. By

subdividing the item buffer into several directional strata, we are able to compute a subdivision of

2Item buffer rendering is an efficient method for computing the set of visible primitives from a point [HA00].
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ray-space, that allows the fast lookup of ray intersections, while also accounting for occlusion.

When solving the exact from-region visibility problem, our aims are both tractability and accu-

racy. Our first step is to determine the type of processes required to compute the mutual visibility

between two polygons. Since visibility is defined in terms of sight-lines, we turn to a direct repre-

sentation of line space. We use a formalism, known as Plücker coordinates, that allows lines to be

represented as points on a hypersurface in a five dimensional projective space.

The advantage of this parameterisation is that it conveniently represents the set of lines through

a set of polygons as a single polyhedral volume. We develop several mathematical results that allow

for a closed form computation of this polyhedron in the important case where only the set of lines

through two polygons are required.

Similarly, the occluders between a pair of polygons can each be represented as a polyhedral

volume. Performing polyhedral set subtraction in Plücker space allows us to compute the the set of

lines that do not intersect a particular set of occluders. This solves the selective stabbing problem3,

of which the mutual visibility problem is a special case.

To achieve efficient polyhedral set subtraction in five dimensions, we improve on an existing

polyhedral complex splitting algorithm and adapt it to become a context aware polyhedral subtrac-

tion algorithm.

Given that we can now compute a representation of the set of lines visible between two poly-

gons, we integrate this query algorithm into a framework that uses it selectively and effectively.

Experimentally, we verify that the resulting technique is scalable and tractable in nature.

1.2 Contributions

We divide our contributions into three sections: Aggressive Techniques, Selective Stabbing and

Exact Techniques. Selective stabbing is not related to visibility exclusively, but is an important

geometric problem that required a solution in order for us to solve the exact from-region visibility

problem. The theoretical results arising from this research should contribute greatly to any work

requiring geometric manipulations in Plücker line space.

1.2.1 Aggressive Techniques

We have contributed a new aggressive algorithm that may be used to preprocess very large, very

complex models rapdily. We present the results of analysis and experiments that quantify both the

3Compute a representation for those lines that intersect a set of polygons S, but do not intersect a set of polygons M .
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performance and the accuracy of this algorithm.

In the process of developing this algorithm, we have also contributed the following:

• From-surface visibility. We have developed a new aggressive visibility algorithm that deter-

mines the set of polygons visible from a surface. The algorithm exploits hardware accelerated

rendering to sample visibility rapidly. A novel adaptive subdivision heuristic is used to min-

imise the error.

• Framework. We present, implement and verify a general divide and conquer strategy for sam-

ple based visibility. Our strategy provides a novel method for effective sample cache man-

agement, allowing us to process the scene progressively at no additional cost. This ensures

that our aggressive from-surface visibility algorithm is used effectively.

• Aggressive ray tracing. We present, implement and experimentally verify an extension to

the classic 5D Ray Classification algorithm [AK87], that makes it more suited for interactive

rendering. The algorithm is implemented as a natural extension of our aggressive visibility

algorithm to 5D. The visibility algorithm efficiently solves the occlusion problem encountered

by Arvo and Kirk.

1.2.2 Selective Stabbing

This problem is a natural generalisation of the well researched polygon stabbing problem from com-

putational geometry. The problem is cast as a constructive solid geometry problem in Plücker space.

We present and experimentally analyse our efficient solution to this problem.

Apart from the solution to this problem, we have made the following contributions:

• Two polygon case. We give a best and worst case optimal O(nm) algorithm for directly

constructing the 5D polytope representing the set of lines through two polygons. Our solution

is more efficient than the general solution, and takes advantage of novel results specific to

the two polygon case. In particular, we prove that the 5D polytope has the structure of a

4D polyhedron extruded along a particular direction. We give a closed form solution for

computing this direction and this polytope.

• Polytope Splitting. An improvement of the polytope-complex splitting algorithm of Bajaj and

Pascucci [BP96] that yields an efficient splitting algorithm, fully sensitive to the zone of the

splitting hyperplane.
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• CSG in general dimension. We present an optimised polyhedral set subtraction algorithm

that allows for the rapid subtraction of a polyhedron from a polyhedral complex, using our

improved polytope splitting algorithm.

1.2.3 Exact Techniques

We present the first tractable exact from-region visibility algorithm. We present empirical evidence

addressing the scalability of this algorithm. We experimentally verify its performance on large and

realistic models.

In the process of developing this algorithm, we have also contributed the following:

• Visibility query. We detail how an output sensitive, exact polygon-to-polygon visibility query

may be cast as a special case of the selective stabbing problem. Using our efficient solution

to this problem, we attain an efficient algorithm for rapdily querying the mutual visibility

between two polygons.

• Occluder ordering. We have developed effective heuristics for selecting good orders of oc-

cluder processing.

• Framework. We develop a novel framework for the visibility query algorithm. The framework

effectively utilises the query, in order to prevent redundant computation. Virtual occluder gen-

eration, and the reuse of line space structures are used to ensure that previous computations

are exploited whenever possible.

1.3 Overview

We begin with a broad survey of visibility culling and exact global visibility techniques in Chapter 2.

Chapter 3 then presents certain mathematical preliminaries that are required to fully understand this

thesis, but typically are not covered in undergraduate studies.

We begin the presentation of our work in Chapter 4, where we detail our aggressive visibility

algorithm in its entirety. Accompanying results are included in the chapter.

We then present our solution to the selective stabbing problem in Chapter 5. This includes

detailed descriptions of the extensions we make to existing algorithms and the new algorithms de-

veloped in order to achieve a solution.
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In Chapter 6 we cast the polygon to polygon visibility query problem as a selective stabbing

problem. We show how this query may be used to solve efficiently for the exact visibility set of a

region. Results illustrating the performance of our technique are presented at the end of this chapter.

Finally, we finish with a brief conclusion and a description of future work.



Chapter 2

Background

In this chapter the relevant background literature in the field of visibility culling is discussed. We

classify visibility culling algorithms into two classes: from-region and from-point visibility in ad-

dition to the classification presented in Table 1. This is because, geometrically speaking, these are

two very different problems.

We discuss the most significant visibility culling techniques for both of these classes. We do

not however discuss hidden surface removal algorithms. Sutherland et al. [SSS74] have published

a survey of such techniques.

Examples from both classes are reviewed, although most emphasis is placed on from-region

techniques, since it is in this class of algorithm that the contributions of this thesis lie. We also

include a detailed discussion of analytic visibility methods since our solution is strongly related.

Notable alternative background reading for visibility includes the excellent in depth survey of

visibility for walkthrough applications by Cohen-Or et al. [COCSD03] and the multi-disciplinary

survey by Durand [Dur99].

2.1 From-point vs. From-region Visibility

The geometric differences between from-point and from-region visibility have several implications

on their use in practice. We discuss some of these implications briefly, since they govern the method-

ologies used in the background literature.

9
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2.1.1 Accuracy

From-point techniques have the potential to compute exactly the visible subset of geometry from

a given view-point [WA77]. For real-time applications, however, this is infeasible, since the time

taken to compute such a subset is typically greater than that taken to render the whole scene using

a z-buffer, and is certainly greater than the time required to render an efficiently computed conser-

vative estimation of the visible scene geometry. For this reason, most of the literature focuses on

conservative estimations for run-time from-point visibility.

From-region techniques, in contrast, do not in general possess the potential to compute the exact

set of visible geometry from a view-point. This results from the definition of a region. Namely, that

it contains many view-points that may see different geometric primitives. It is possible to subdivide

the view-point space into regions of constant visibility, however, such subdivision quickly becomes

combinatorially complex and is infeasible in practice. The result being, that in practice, from-region

visibility is in general, a conservative estimate of from-point visibility. This relative conservativity

can be reduced, by reducing the size of the viewing regions.

The advantage of from-region techniques is that the visibility computations can be performed

offline, as a preprocess. When sufficient preprocessing time is available, it is possible to preprocess

scenes heavily enough, such that the estimates become less conservative. This is achieved by more

sophisticated algorithms that account for complex occluder interactions and the visibility of fine

geometry (e.g., per triangle).

2.1.2 Time Bounded Visibility

It is often desirable to compute a lower bound on the amount of time before a set of geometric

primitives can become visible. Such a time bound has many uses in practice, and is an effective

tool for handling complexity. The most common application is to define priorities on geometry and

textures (also light, bump, normal maps, etc.), such that the priority is highest for currently visible

geometry (and associated mappings), and lowest for geometry/mappings with the longest lower time

bounds.

The layout of geometry and mappings in memory can be structured such that highest priority

elements are in the highest performance memory (i.e., video card or AGP), and the lower priority

elements are in the lower performance memory (i.e., main memory, secondary storage, or even on a

remote host [COZ98, TL01]). This allows from-region visibility to optimise not just the rendering

pipeline, but all the resources of the system. Effectively, this process can be considered to be a form
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of predictive cache management.

In order to obtain these lower bounds on “time till visibility”, it is necessary to constrain the

movement of the camera to some degree. Shortest path finding algorithms [FST92] and bounds

on camera movement speed can be used to bound the time until a camera leaves a region, or can

possibly reach another given region. Wonka et al. [WWS01], use this concept to remove the pre-

processing time and storage requirements for their solution to from-region visibility. They compute

from-region visibility at run-time, concurrently on another machine. The visibility of the surround-

ing view-point space is computed before the camera can cross over into them.

Correa et al. [CKS02] use predictive heuristics to look ahead for potentially visible objects.

Overestimation results in inefficiency, while under estimation results in popping artefacts. A com-

plete out-of-core solution is implemented.

From-point visibility techniques cannot provide such management, since they are not, by defi-

nition, aware of the camera locale. We believe that from-region and from-point visibility algorithms

may be combined to achieve both a higher degree of culling and complexity management.

2.2 From-point Visibility

Run-time visibility algorithms have a non-trivial run-time component but often also a small pre-

processing component. In this section we survey the various run-time visibility culling techniques

proposed in the literature1.

2.2.1 Shadow Frusta Culling

Hudson et al. [HMC+97] describe a visibility algorithm based on the construction of shadow frusta.

A spatial subdivision is generated to partition the view-point space. A set of occluders is chosen

for each partition or cell. These occluders are selected as a pre-process, and selection is based on a

heuristic that attempts to maximise occlusion.

At run-time, a shadow frustum is created for each selected occluder (see Figure 1) with respect

to the view-point. If an object falls completely inside a single shadow frustum it is considered to

be occluded (shadowed if you consider the view-point to be a light source). If an object intersects

the boundary of one of these frusta it is said to be partially visible. Since this algorithm is conser-

vative, it treats all partially visible objects as visible and lets the depth buffer determine the visible

fragments in image-space.

1We discuss from-point cell-portal rendering in Section 2.3.3 for clarity.
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Figure 1: Shadow Frustum The shadow frustum cast by occluder b with respect to view point v. Any object
falling completely inside this frustum is considered invisible. Respectively, objects a, c and d are partially
visible, occluded and fully visible.

A hierarchy of bounding volumes is created over the model geometry to enable efficient con-

tainment tests on the shadow frusta. The test is only refined to the level of cells. Individual polygons

are not treated. This results in a tradeoff, namely an increase in rendering time for a decrease in

algorithm execution time.

This algorithm is conservative because:

1. Only a subset of potential occluders are considered

2. Objects that are necessarily occluded by more than one occluder are always considered visible

3. All geometry within a visible (by criteria 1 and 2) leaf bounding box is considered visible

As the size of the bounding boxes increase, they becomes less likely to be occluded by a single

object. This algorithm performs best for scenes consisting of a combination of large and small

polygons, where the large polygons can be used as occluders for clusters of small polygons.
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2.2.2 An Incremental Aspect Graph Approximation

Coorg and Teller [CT96, CT97], show how a tractable approximation (subset) of an aspect graph

(detailed in Section 2.5.5) can be generated using a predetermined subset of occluders that implicitly

represent a coarse approximation of the graph. This approximation is evaluated lazily as the camera

crosses the boundaries of the approximate aspect graph cells.

Where the complete aspect graph subdivides the view-point space into regions of constant as-

pect, a considerably more coarse representation may be generated using only a small subset of the

full spatial subdivision. This subdivision is that defined precisely by the set of relevant planes.

These account for a small subset of visibility events (see Section 2.5.2).

The relevant planes implicitly define a view-cell for the current position of the camera. When

one of the relevant planes bounding this cell is crossed, the maintained set of visible objects is

updated with the associated event. As the camera moves, occluders are incrementally added and

subtracted to a set of active occluders. As this occurs, relevant planes are dynamically added to

and subtracted from a maintained plane set. In order to determine visibility events, queries are

preformed to determine the event associated with each relevant plane. To perform these queries

efficiently, an octree bounding box hierarchy is generated over the model. The visibility of the cells

is evaluated hierarchically.

Despite the different nature of the implementation, the relevant planes are chosen such that the

handled events are equivalent to that of an object moving completely interior a shadow volume

(or equivalently, become partially exterior to a shadow volume). Thus the conservativity of this

technique is equivalent to the shadow frustum technique of Section 2.2.1

2.2.3 Occluder Trees

Bittner et al. [BHS98] describe a similar algorithm to the two discussed above. However, where the

above algorithm considers each shadow frustum individually, Bittner et al. implement a modification

to account for occluder collusion/fusion. In a similar manner to Hudson et al. [HMC+97], a set of

potential occluders is determined in a pre-process and a subset of these is selected at run-time.

BSP trees are commonly used as a mechanism to perform set operations on polyhedra [TN87,

NAT90]. In the context of occluder fusion, the desired operation is the union of shadow frusta. A

shadow volume BSP structure is built from the selected occluders. Using this, the shadow frusta

are merged implicitly. A containment test is performed by traversing the BSP tree and determining

whether or not the object in question (a node in a bounding volume hierarchy) falls into the union of
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the shadow frusta. This check is more complex, and thus more computationally intensive than the

one described in the original shadow frusta algorithm, however, considerably more culling is likely

to be achieved.

2.2.4 Occlusion Maps

There is a set of techniques that use image based methods to compute whether or not an object is

occluded. The general approach is to render a small subset of the scene from the current view-

point. From this rendering, an occlusion map is synthesised. Each presently un-rendered object is

tested against the occlusion map. If an object is deemed occluded (i.e., behind the occlusion map),

then it is omitted, otherwise it is rendered. The rendered object may be integrated into the existing

occlusion map in order to account for what it may further occlude. Temporal coherence is exploited,

by rendering the visible object from the previous rendering first.

The techniques that follow this general pattern differ in various ways:

1. The method used to decide the order of in which the objects are rendered

2. The method for testing objects against the occlusion map

3. Whether or not rendered objects can be integrated into the occlusion map

The particular techniques we consider are the hierarchical Z-buffer/tiling [GK93, Gre96], hier-

archical occlusion maps [ZMHI97, Zha98], a conservative augmentation of the prioritised-layered

projection algorithm [KS01] and new hardware based approaches [BMH98, BMH99, SOG98, Reg02].

Hierarchical Z-buffering/Tiling

Greene and Kass [GK93] present the hierarchical Z-buffering algorithm. The algorithm begins with

a pre-process: an octree bounding box structure is built over an existing scene. A Z-pyramid is used

as an occlusion map. The base of the Z-pyramid is a Z-buffer in the traditional sense. The buffers

above this base are each a quarter the size of the buffer directly below them and are generated

recursively from the level below in a technique similar to bilinear filtering. Instead of taking the

average, from each group of four adjacent buffer elements, the farthest Z value is extracted. This is

illustrated in Figure 2.

The visibility test begins at the root node2. If the bounding box of the node is visible, the

visibility of its children are evaluated. If the bounding box of the node is occluded then it and its

2In practice the root node cannot be occluded.
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Figure 2: Hierarchical Z-Buffer. An example of the three top levels of a Z-pyramid. The 4x4 grid on the left
is transformed to the apex on the right.

descendents are culled. This process is recursively applied to all visible nodes. If a leaf node is

determined to be visible, the contained geometry is rendered.

The visibility test for a node begins by testing the front facing polygons of its bounding box

against the tip/root of the Z-pyramid. For each node it is possible to test whether the nearest vertex

of an octree node is further than the furthest pixel in the Z-pyramid. If this is true, all polygons

associated with the octree node are culled. If the nearest vertex is closer than this value at the

root/tip, then the depth of the octree node is compared to the values in the lower level in the same

way. This continues recursively, until the comparison is done at the leaf level. If the object is visible,

it is rendered and integrated into the Z-pyramid.

When testing the children of a potentially visible octree node, the children are visited in a front-

to-back order (easily determined from the relative orientation between the camera and the octree),

since drawing the closest nodes first increases the probability of the occluded far nodes quickly

being classified as occluded.

Hierarchical Occlusion Maps

Zhang presents an algorithm [ZMHI97, Zha98] that exploits standard graphics rasterisation hard-

ware. A preselected3 set of occluders are rendered onto the screen. The image is then read back.

This gives a bitmap containing the aggregate renderings of the occluders. An opacity value is used

as the bitmap elements. Each bitmap element is either opaque (it has been rendered to) or fully

transparent. In general, however, the opacity of a rectangular set of pixels is defined as the ratio of

the sum of opaque pixels to the total area of the block.

A hierarchical occlusion map is derived from this bitmap by recursively averaging the bitmap

values in order to create parent levels (also achieved by the efficient utilisation of texture hardware).

3The criterion is that these occluders are located nearer to the viewer, than the geometry they can be considered to
occlude.
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The projections of the bounding volume representations of the scene objects are tested for visibility

against the hierarchical occlusion map. The occlusion map hierarchy allows for efficient overlap

querying. Should the bounding volume of some object be completely covered by the occlusion

map, then it can be said to be invisible.

An opacity threshold may be set to allow for approximate culling. This implies that if a bounding

box is visible through an area of the occlusion map that is largely opaque, the geometry inside it

may be culled even though it is potentially visible. Coherence factors generally make the resulting

image acceptable. This is a typical tradeoff between quality and performance.

Prioritised Layered-Projections

The techniques of Section 2.2.4 try to build up good occlusion maps by rendering the fewest possible

objects. The heuristic used is a front to back ordering. This heuristic fails in certain cases, namely

in those cases where most geometry is nearby, yet occluded. In such cases, those invisible occluders

rendered into the occlusion map are redundant.

Klosowski and Silva [KS00, KS99] present an algorithm known as the Prioritised Layered Pro-

jection (PLP) algorithm. This algorithm presents a better heuristic that attempts to render visible

geometry first. The scene is tesseletated into cells, and rendered in approximate layer by layer or-

der. The first layer consists of geometry that is most likely to be visible, the second layer consists

of geometry that is likely to be occluded by the first layer, etc. Geometry in the n-th layer is more

likely to be visible than that of the (n + 1)-th layer. Given a triangle budget of k polygons, the

first k elements under this ordering gives a good approximation to the visible set. Such rendering

is useful for rendering complex scenes at a set frame-rate, while still attempting to maximise the

visual quality, even if not all visible geometry is drawn.

Klosowski and Silva [KS01] use the PLP algorithm to render better occlusion maps. They also

consider several hardware extensions to enhance from-point visibility techniques.

Hardware Techniques

A significant problem with the techniques discussed so far, is that they require either the mainte-

nance of a distinct occlusion map (Hierarchical Z-Buffer), or the reading of the frame-buffer (Hier-

archical Occlusion Maps) at run-time. Ideally, it is desirable to maintain every rendered object (i.e.,

the occlusion map is updated as each object is rendered) and still avoid the overhead of auxiliary

structures in main memory.
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Bartz et al. [BMH98, BMH99] take a very similar approach to that of Zhang et al., using a

stencil buffer. They also however, suggest the usage of an occlusion bit (first proposed by Scott et

al. [SOG98]) that can be integrated into hardware. The purpose of this bit is to return whether or

not the frame buffer had changed between the setting and testing of the bit.

This functionality has been integrated into current consumer level hardware. It provides the

functionality to test whether or not the rendering of some object would modify the contents of

the frame-buffer. This is accomplished by determining whether or not any rendered geometry will

pass the Z-buffer test. In typical usage, Z-buffer and frame-buffer writes are disabled. Next, the

bounding box of a complex set of geometry is rendered. If this bounding box does not alter the

occlusion bit, then the bounding box, and hence the geometry inside, cannot be seen. This test

may be performed on a bounding box hierarchy in order to reduce the number of tests performed.

These tests are non-trivial since they require the rendering of large bounding volumes, thus adding

potentially expensive (fill-rate dependent) costs. Secondly, this visibility query requires a round trip

to and from the graphics hardware before feedback is given. This introduces latency. Thirdly, for

those visible objects, the bounding box renderings are wasted. As noted by Bartz et al., better fitting

bounding boxes will reduce such conservatism.

In addition to the suggestions of Scott et al., Bartz et al. suggest the addition of extensions

that will give further information, such as the number of visible pixels, the number of projected

pixels and the furthest Z-value. The extension that gives the number of visible pixels has been

implemented on current hardware [Reg02]. Having the number of visible pixels allows a non-trivial

upper bound to be placed on the pixel error resulting from not-rendering an object. This allows for

what is known as approximate [Zha98] or contribution [Reg02] culling to be performed. This is

when an error tolerance (a set number of pixels) is set. If the number of visible pixels are below

this tolerance, then the object is not rendered. This saves resources that would otherwise have been

spent rendering geometry that does not contribute significantly to the image.

2.2.5 Summary

The goal of practical from-point visibility is to seek an efficient means to determine which geometry

is occluded by a given subset of occluders. These technique may compute shadow frusta explicitly.

More advanced techniques will seek to fuse the frusta together to achieve more culling.

Many techniques exploit graphics hardware to build some form of occlusion map. This is effec-

tively a discretisation of the shadow frusta. One advantages of the occlusion map approach is that

complex computations on the CPU are avoided. Most of the work reduces to simple rendering that is
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very efficient on graphics hardware. Another advantage is that accurate occluder fusion is implicit.

The cost of such a technique comes in the form of latency, due to the necessary communication

between the graphics hardware and the CPU.

2.3 From-region Visibility

In this section we examine from-region techniques. We reserve any discussion on analytical from-

region techniques until Section 2.5.

2.3.1 From-Region Visibility as a Light Source

A useful analogy for from-region visibility, is to treat the view region as a (direct) volumetric light

source. The geometry that is fully illuminated is the geometry that can see the lightsource fully.

Geometry that is partially lit (in penumbra) can only see part of the light source, and geometry that

is in shadow (umbra) cannot see the light source at all.

The goal of from-region visibility, is to compute which primitives lie completely in umbra (as

efficiently as possible). In order to achieve this, many solutions have been presented. Typically,

these are either sample based, or they are analytic techniques that seek to evaluate the umbra volume

explicitly.

Building the umbra volume is a difficult task. It is not sufficient to fuse the umbra of a selection

of occluders. Indeed, it is often the case that the penumbra of distinct occluders interact with each

other, and form a significant extension to the umbra volume. In other words, the umbra of a set of

occluders, encompasses and extends the joint umbra of the individual occluders.

Computing only a subset of occluder interactions results in a smaller umbra volume, and is thus

a conservative overestimate of what is visible. Computing a volume larger than the exact joint umbra

would result in an aggressive algorithm where some visible primitives are considered invisible. Re-

searchers of accurate illumination techniques, explicitly compute the boundaries on a surface where

discontinuities in illumination take place. These discontinuities account for transitions between um-

bra, penumbra and full illumination. This is discussed further in more detail in Section 2.5.7. In

what follows in this section, we discuss those techniques that are designed as practical means to

compute from-region visibility.



CHAPTER 2. BACKGROUND 19

2.3.2 Strong Occluders

Cohen-Or et al. [COFHZ98] define what is referred to as a strong occluder. A strong occluder is

a convex polygon that by itself blocks all sight lines from one region to another. The algorithm

subdivides the scene into a grid of cells (regions). The algorithm proceeds by iterating through all

regions. The visible subset of the scene is computed for the region of the current iteration. The

visible set is conservative, and an object O is considered visible from a region R if and only if no

strong occluder exists between O and R.

Cohen-Or et al. [COKT02] have developed a technique that generates a partition of large con-

vex regions that cover a simple non-convex polygon. This allows this technique (and indeed any

technique that requires convex occluders) to be applied to scenes with simple non-convex occluder

polygons.

The authors produce a statistical model (see Nadler et al. [NFLYCO99] for more details) for

scene geometry. They show that in a scene with a certain object distribution (an approximate

minimum-distance Poisson distribution) and a view region/cell smaller than the average object size,

it becomes exponentially more likely for an object to be strongly occluded as its distance from the

view-point increases.

This provides good motivation for using strong occluders for such scenes. These scenes are,

however, becoming less and less common. The trend is towards detailed scenes with very small

primitives. It is infeasible to build cells that are smaller than these small scene polygons, since the

number of cells required would be excessive .

Both the algorithms of Cohen-Or et al. and Saona-Vásquez et al. [SVNB99] use this type of

conservative visibility. We continue by investigating those techniques that utilise occluder fusion to

generate better approximations of the exact visible set.

2.3.3 Cell-Portal Visibility

Airey et al. [ARJ90] developed a cell-portal system founded on the following observation: In a

model, the contents of a cell/region (resulting from some form of spatial partitioning) is potentially

visible only if a portal (convex connected sub-region of the cell boundary) of that cell is visible.

Cells relate roughly to the concept of rooms, and portals roughly to the concept of doors or windows.

As a pre-process, portals and cells are determined, and the mutual visibility relationships between

all cells are computed. At run-time this may be refined by determining the visible set from a single

view-point and the view frustum.
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Airey et al. determine visibility (approximately) using a ray casting approach. Airey et al.

were also the first to propose a hardware assisted visibility pre-process. Teller et al. [TS91] and

Teller [Tel92a] show how an exact solution to cell-to-cell and cell-object visibility can be accom-

plished.

Cell-portal techniques rely on the scene having a roughly architectural structure. The worst case

for such algorithms are scenes that consist predominantly of detailed objects. In such cases, the

algorithm breaks down due to the complexity of the BSP tree subdivision, and the further complexity

of computing the existence of stabbing lines (see Section 2.5.6) through many long portal sequences.

Cell-portal based algorithms have traditionally not been thought of as “occluder fusion” type

algorithms. Although no occluder fusion is performed explicitly, we consider the explicit treatment

of the holes through occluders (opaque parts of cells) as implicit occluder fusion.

Pre-process

In the pre-processing phase of a cell-portal algorithm, the view-point space is partitioned into convex

cells separated by portals. This is usually achieved using a BSP. Other partitioning systems have

been developed to generate a cell structure that relates more closely to the structural abstraction of

the scene. One example is the partitioning scheme of Meneveaux et al. [MMB98] for architectural

environments. Haumont et al. [HDS03], Lerner et al. [LCCO03] and Chrystanthou et al. [CCOZ98]

present more general schemes for cell-portal partitioning.

Once the cell structure has been determined, it is necessary to find portals. This process is

called portal enumeration and involves a search for polygons shared by cells that do not correspond

to (opaque) scene geometry.

A set of visible cells4 is computed for each cell. Teller determines whether a sightline exists

from one cell to another by searching for the existence of a portal sequence to the cell in question. A

portal sequence is a set of portals, all intersected by a common un-obstructed sight-line and ordered

by position of intersection. Teller [Tel92a] presents solutions to the stabbing problem for 2D floor

plans, axially aligned 3D environments, and arbitrary oriented polygons. The stabbing problem is

discussed in detail Section 2.5.6.

In practice, not all scene geometry is treated during the visibility pre-process. It is impractical to

partition the scene around highly detailed objects, since this would result in a combinatorial explo-

sion in the size of the BSP tree. Rather, detail objects (typically defined as such by the modeller) are

4A visible cell is commonly called a Potentially Visible Sets (PVS)
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omitted from the visibility pre-process. Conservatively, detail objects are considered to be visible if

the cell containing them is visible.

Teller did however provide one higher degree of refinement. By computing the visible volume,

or anti-penumbra [Tel92b, Tel92a] from a portal, it is possible to compute exactly which parts of

the visible cells are visible. Only objects within the anti-penumbra volume are considered to be

visible. This technique was considered insufficiently robust for complex scenes. Teller and Hanra-

han [TH93a] later developed a relatively robust, but conservative, test that generates an overestima-

tion of the anti-penumbra by pivoting separating tangent planes over the edges of a portal sequence.

For the purposes of global illumination, this volume is refined to account for the required polygon

to polygon visibility query. A line space test is used to achieve this refinement (we utilise a similar

test in Section 6.2.2).

Run-time

The run-time phase can be broken down into two refinement stages. First the coarse phase occurs,

where cell-to-cell visibility is extracted from a pre-computed visibility structure. Secondly the

precise phase occurs, where eye to object visibility is determined.

The first phase finds the cell containing the view-point. When determined, a set of visible cells

is extracted (from the stored pre-processed output data) and for each cell a set of visible objects

is extracted (also from the stored output data resulting from the pre-process). The second phase

involves determining visibility from a single view-point. This is effectively a clipping operation

that determines those portals visible within the view frustum.

From-point Cells and Portals

Luebke and Georges [LG95] have developed an algorithm that determines at run-time which cells

are visible. This is accomplished by the recursive clipping of the bounding boxes of projected

portals against each other, in front to back order, to determine (conservatively) which portals are

visible and hence which cells are visible.

At present, this is one of the most commonly used approaches to visibility culling in practice.

As discussed in Section 2.1, this is still no replacement for from-region techniques.
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2.3.4 Extended Projections

Durand et al. [DDTP00, Dur99] present a from-region visibility technique that seeks to fuse occlud-

ers in order to process complex scenes effectively. Their technique works by transforming occluders

such that their shadow volumes are valid, not for just a single point, but rather the entire cell (or at

least one side of the cell, since the sides are treated separately and then combined). They call this

transformation an extended projection (EP ).

The extended projection for an occluder with respect to a particular cell and chosen plane is

defined as the intersection of all possible projections of the occluder onto the chosen plane, where

the center of projection is with respect to all view-points within the cell. Effectively, the extended

projection is a cross-section of the umbra region of the occluder, with respect to the view cell

(lightsource). This is illustrated in Figure 3a.

The extended projection for an “occludee” with respect to a cell and a plane is defined as the

union of the projections of the occluder onto the chosen plane. Once again, the center of projection is

with respect to all view-points within the cell. In terms of the light analogy, the extended projection

is a cross section through the anti-penumbra cast through the occludee. An example of this is

illustrated in Figure 3b.

(a) (b) (c)

Figure 3: Extended Projection.(a) The extended projection of an occluder. (b) The extended projection of an
occludee. (c) The extended projection of the occludee falls inside the extended projection of the occluder.

With respect to a given plane, if the extended projection of an occludee polygon is a subset of the

extended projection of an occluder, then the polygon is occluded. This is also shown in Figure 3c.

Durand et al. define viewA
V to be the planar projection of A, with respect to view-point V . In his

thesis Durand summarises this by the following relations: For any view-point V in a view-cell:

viewoccludee
V︸ ︷︷ ︸

projection of occludee

⊆
⋃

W∈cell

viewoccludee
W︸ ︷︷ ︸

EP of occludee

⊆
⋂

W∈cell

viewoccluder
W︸ ︷︷ ︸

EP of occluder

⊆ viewoccluder
V︸ ︷︷ ︸

projection of occluder

(1)
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Durand et al. show that extended projections can be fused by taking the union of extended

projections on the projection plane. The validity of this can be seen in the following:

viewoccludee
V︸ ︷︷ ︸

projection of occludee

⊆
⋃

W∈cell

viewoccluder
W︸ ︷︷ ︸

EP of occludee

⊆
⋃

occ∈occluders

EP of occ︷ ︸︸ ︷⋂
W∈cell

viewocc
W︸ ︷︷ ︸

union of occluder EPs

⊆
⋃

occ∈occluders

viewocc
V︸ ︷︷ ︸

union of projected occluders
(2)

The extended projection algorithm iterates through several planes. In order to use extended

projections accumulated on a previous plane, they can be reprojected onto successive planes.

The extended projection algorithm is conservative. Consider the case where the scene consists

of primitives that are significantly smaller than the view cells. When a set of small occluders are

projected onto a plane, the umbra cast by the extended projections is significantly smaller than the

umbra that would result from the original polygon set. Indeed, if the projection plane is too far

away, the extended projections may not exist.

Cohen-Or et al. [COFHZ98] show that strong occlusion is most effective when the view cell is

smaller than the scene objects. A similar consideration can be used to analyse the culling efficiency

of the extended projection algorithm. Indeed, it is only when the accumulated extended projections

and reprojections thereof grow larger than the view cell, that significant culling is achieved.

Durand et al. generalise reprojection into a technique known as the occlusion sweep. Hardware

rendering is used to perform the fusion and reprojection of extended projections efficiently. This is

necessary to handle large scenes consisting of many small occluders.

As an informal comparison, Durand et al, implement the technique of Cohen-Or et al. [COFHZ98]

and attain results for their scenes showing that their routine culls out approximately four times more

geometry and is 150 times faster.

2.3.5 Volumetric Visibility

Schaufler et al. [SDDS00] present a visibility technique similar to that of Yagel and Ray [YR96].

Both of these techniques discretise space into cells and both classify the cells based on whether they

are opaque (interior to occluding objects), contain polygons or are empty. In their paper Schaufler

et al. show how such a discretisation and classification can be generated from a reasonably general

polygonal model: the model must consist of objects that have a solid volume (i.e., the surface

representation for objects must be manifold meshes).
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Yagel and Ray calculate the visibility sets for their cells by generating shafts between each

pair of view-point cells and searching for interference by opaque cells. Similarly, Schaufler et al.

calculate visibility by generating a shadow volume from each cell. Occluder fusion is realised by

joining a subset of opaque cells together to form an extended blocker. Finally, they classify cells as

being partially inside the shaft, completely in the shaft or completely outside the shaft. The cells

completely inside are in the umbra of the view-cell and are therefore culled from the visibility set.

They show how this can be determined efficiently in both two and three dimensions. An illustration

of the discretisation and shadow frustum/shaft can be seen in Figure 4a.

B

D

C

A

(a)

C

A

B

(b)

Figure 4: Shadow Volume/Shaft Volumetric Occlusion.(a) shows the shadow frustum/shaft C generated from
cell A by object B. Note that the grid need not be uniform. (b) all cells intersecting area D cannot be seen
from A, however, they would be marked as visible, since they do not fall entirely inside at least one of the
shadow volumes cast by the volume occluders B or C.

The degree of conservativity for the algorithm of Schaufler et al. depends greatly on the type

of scene to which it is applied. It performs best for scenes consisting of objects which have large

volumes and are nearly convex (e.g., urban models, where building interiors are considered opaque).

The algorithm fuses together the occluding cells where possible. Complex fusions, such as those

resulting in a non-convex volume occluders and the fusion of disjoint cells are not performed.
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2.3.6 Sampling Techniques

Gotsman et al. [GSF99] present a novel sample-based visibility solution. They use a 5D sub-division

of ray space (three spatial and two angular dimensions). Each 5D cell maps to a beam in 3D

space [AK87]. The use of two angular divisions is intended to accelerate frustum culling at run-

time. To determine from-region visibility, rays are cast from a random point in the cell to random

points on an object’s bounding box. A statistical model based on whether the rays hit the target

object, is then used to decide if the object is visible, invisible or whether more rays need to be cast.

Error thresholding allows a trade-off between pre-processing time and accuracy.

This technique may admit both false visibility errors and false invisibility errors. Neither per-

formance, nor error rates are evaluated in this paper. We have ascertained that the largest model

tested (450k polygons) took “in the order of hours” to pre-process [Sud].

2.3.7 5D Spatial Subdivision

Wang et al. [WBP98] propose a visibility culling scheme based on a point-angle 5D subdivision

(x, y, z, θ, φ). In order to determine cell-to-polygon visibility they generate an outer rectangular

volume (ORV) around each spatial cell. They then proceed to subdivide this ORV adaptively into

rectangular patches. A beam is the convex hull of the union the vertices of an ORV patch and the

spatial cell. Visibility is computed using a standard shaft interference algorithm [Hai00]: if a single

occluder blocks the beam, then all polygons behind it (and completely contained) in the beam are

not visible. If the number of visible polygons for a beam is above a set minimum, the beam is further

subdivided. If a beam exceeds this minimum and is very small, the average colour of its contained

polygons is used as an approximation for the beam.

The rendering process works in a similar fashion to a cubic environment map. The ORV of the

view-cell containing the current view-point is mapped onto the view-plane. This occurs directly if

the beam corresponding to a pixel or group of pixels is a single representative colour (as described

above). If the beam contains a PVS, then this PVS is rendered as per usual onto the view-plane.

Polygons in the PVS are tagged to prevent a polygon that may be in more than one PVS being

rendered. The beams that do not project into the view-frustum are culled.
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2.3.8 Hoops

Brunet et al. [BNRSV01] present a technique for finding virtual occluders (i.e., occluders that are

not actually a part of the scene)5 within a scene. In this case the virtual occluders are defined by

hoops. A hoop is a closed polyline that denotes a region that appears to be both convex and simple

from a given region. A convex umbra can then be extracted from each hoop. All geometry within the

umbra (or within the union of several umbra) is occluded. The algorithm is tested on a conservative

volumetric approximation of the interior of the model.

Various sufficiency conditions are presented in the paper for defining these hoops. In particular,

the polygons within the mesh region bounded by the hoop define a cap polyhedron to be the inter-

section of all the positive half-spaces embedding the polygons. That the view-region falls within

this polyhedron is one criterion for sufficiency.

The conditions for the sufficiency of a polyline are relaxed in [NR03]. A topological condition

is presented that allows the above mentioned capping condition to be relaxed.

2.3.9 Temporal Bounding Volumes

Surdarsky [Sud98] and Sudarsky and Gotsman [SG99] present a technique for integrating dynamic

objects into from-region visibility pre-computations. This is achieved by creating a temporal bound-

ing volume around a moving object. This is only possible if the motion of the object is somehow

constrained. The temporal bounding volume is the swath of space traversed by the motion of the

object.

Conservative bounding volumes may be put around the whole motion swath. If a temporal

bounding volume is occluded, then so is the moving object it bounds. Using this technique, moving

objects can be occluded, but moving objects cannot occlude.

2.3.10 21
2
D Visibility Solutions

Koltun et al. [KCCO00] make use of separating lines to build larger more effective virtual (i.e.,

not part of the scene geometry) occluders to represent the aggregate occlusion of many smaller

occluders. They note that by building their virtual occluders as a pre-process and performing the

occlusion culling at run-time (on a per cell basis), the cost of storing the visibility sets for each

5Many techniques (e.g. Schaufler et al. [SDDS00], Bernardini et al. [BKES00] and Durand et al. [DDTP00]) use a
similar concept to that of virtual occluders. Where the algorithms differ, is in how the virtual occluders are constructed.
For Durand et al., the virtual occluders are the fused extended projections. Similarly, for Schaufler et al. and Bernadrini
et al., the virtual occluders are opaque cells within the volumetric objects.
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cell is removed. They implement a 21
2D (height field) solution. While the theory extends to 3D

separating planes, the general method is far more complex and may not be tractable.

Wonka et al. [WWS00] have another conservative 21
2D solution. They shrink a subset of occlud-

ers and then sample visibility (effectively fusing occluders). Occluder shrinking allows the sampling

process to remain conservative. There is a trade-off between the number of samples required (and

hence time) and the degree of“shrinkage”. This algorithm tends towards an exact solution as the

number of samples, and hence the amount of time required, tends towards infinity. The shrinking

process has been improved by Décoret et al. [DDS03]. Where Wonka et al. shrink using a sphere

(optimal only for spherical cells), Décoret et al. generalise the technique to allow shrinking by any

convex object.

This algorithm can be extended to a general 3D solutions, by tessellating and shrinking volu-

metric occluders. This has not yet been implemented or evaluated. The scenes best suited, are those

with large volumetric objects. Scenes consisting predominantly of small volumetric objects can be

treated effectively only if minimal shrinking occurs. This requires an excessive number of samples

to maintain conservativity. The sampling process exploits graphics hardware for efficiency.

Wonka et al. intended for this technique to be applied to urban scenes. A facade of building faces

is generated and used to greatly decreases the complexity of the environment. This is necessary for

acceptable preprocessing time.

This work has been further extended by Wonka et al. [WWS01]. The shrinking factor allows

for a conservative visibility estimate to be made within a specified locus (further shrinking implies

a greater locus and higher overestimation) of the sample point. Rather than pre-processing by

sampling the surfaces of cells/regions, a separate server is used to compute what is visible in the

region around the camera. As long as the camera speed is sufficiently bounded, the server can

generate visibility information before the camera moves out of the currently evaluated region. The

general idea is to amortise the cost of from-region visibility over the several frames, in which the

camera must remain in the computed region.

2.4 Ray Space Factorisation

Leyvand et al. [LSCO03] observe that the 3D from-region visibility problem is coupled with the

intrinsic complexity of the four dimensionality of the space of lines in 3D [MO88]. They decompose

the from-region problem into a series of 2D visibility problems resulting from the factorisation of ray

space into horizontal and vertical components. These components are then conservatively merged



CHAPTER 2. BACKGROUND 28

using an algorithm implemented efficiently using graphics hardware.

The vertical components are treated more conservatively than the horizontal components. This

is motivated by the fact that many scenes have low vertical complexity. Where many techniques

treat 21
2DD visibility solutions, they assume the lowest possible vertical complexity6 this approach

may be extended to handle more general models, with low, but non-trivial vertical complexity.

2.5 Analytic Visibility Techniques

In this section, we discuss the most pervasive ideas in analytic visibility. We recommend that the

non-expert reader first read our geometric preliminaries chapter (Chapter 3).

It is important to note that although there is a strong relation between the analytic visibility tech-

niques presented in this section and from-region visibility culling, the purpose of these algorithms

is to generate a dual structure that can answer generalised visibility queries rapidly. E.g., polygon-

polygon visibility queries, discontinuity meshing, etc. The cost of this is high run-time and space

complexity.

2.5.1 Isotopy Classes and Arrangements

In the context of line-spaces, an isotopy class refers to a set of lines. Consider a set of blue lines S

and two red lines �1 and �2. If it is possible to continuously transform �1 into �2 without crossing

any blue lines (elements of S), then �1 and �2 are said to belong to the same isotopy class.

In a 3D scene, an important property of an isotopy class (defined by extending polygon edges

to lines), is that all lines within an isotopy class must intersect the same set of polygons.

Pellegrini [Pel93] presents a structure that can be built as a pre-process that then allows for ray

shooting in logarithmic worst case time. The pre-process involves the construction of the arrange-

ment of Plücker dual hyperplanes in the zone of the Plücker hypersurface [APS93].

The 5D cells of this subset of this arrangement are bijective to the set of isotopy classes for the

scene. To see this, consider two lines corresponding to two points on the Plücker hypersurface, in

the same 5D cell. These two points relate to two lines that both pass all the lines (extended from

edges) in the scene in the same way. If one line should cross into an adjacent 5D cell, it would lie

on the opposite side of one hyperplane. This is equivalent to crossing the line represented by the

inverse dual of the crossed hyperplane. Conversely, should a line cross another line in 3D space, the

dual behaviour is to cross a hyperplane in the Plücker arrangement.

6They assume that any vertical ray passing through the scene will intersect the surface only once.
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By constructing the Plücker arrangement, Pellegerini effectively enumerates the isotopy classes.

The intersected triangles for each isotopy classes are found and sorted. A binary search may then

be used to find a triangle first intersected by a ray in O(log n) time. The pre-process takes O(n4+ε)

time, and is infeasible in practice. Pellegrini [Pel97] has published a comprehensive survey on com-

binatorial and computational complexity of stabbing and ray-shooting problems using line spaces.

Pellegrini is not the first to enumerate these isotopy classes. McKenna and O’Rourke [MO88]

use an (implicit) arrangement of quadric surfaces in four dimensions to represent the isotopy classes.

We have discussed the work of Pellegrini in more depth, since we too use Plücker coordinates to

generate a subset of isotopy classes.

2.5.2 Visibility Events

The concept of a visibility event [KvD79, PD90] is used by most researchers of analytic visibility.

When a camera crosses a particular visibility event, a qualitative change in visibility takes place

(e.g., a new vertex, edge or polygon becomes visible or occluded).

It is possible to enumerate all these visibility events. In order to do this, the structure of a

visibility event surface needs to be understood. A visibility event surface has an associated event

that will occur when crossed. Every visibility event has an associated event surface. It is possible

for multiple events to occur when a single surface is crossed.

A visibility event surface is defined by the interactions of edges and vertices within the scene.

Without loss of generality, we assume all scene polygons to be convex. A vertex-edge (VE) event

surface is defined by a vertex of a polygon and the edge of another distinct polygon. The surface

is a wedge in the plane of the vertex and the edge. When the event surface is crossed, the polygon

containing the vertex becomes visible or invisible. This is depicted in Figure 5a. An edge-edge-

edge(EEE) event is defined by three edges. Three edges in space define a ruled quadric surface.

When this surface is crossed, an edge may become visible or invisible. This is depicted in Figure 5b.

These events are strongly related to the “lines through four lines” problem (see Section 3.5.2). It

is noted that there are exactly two lines determined by four lines (in general position). By relaxing

the four line constraint to three lines, the set of incident lines becomes a ruled quadric. Should

two of these lines intersect (i.e., at a “vertex”), then this surface degenerates into a planar wedge.

A representation for the general quadric event surface (also referred to as an event swath) can be

computed explicitly [Pla92].

Truncating these lines to edges results involve a clipping of the original surfaces. It is important

to observe that a vertex is always defined by the intersection of two lines (i.e., a vertex is always
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(a) (b)

Figure 5: VE and EEE events. (a) A vertex-edge(VE) event. At v1 the camera cannot see neither vertex v nor
the triangle associated with it. At v2, vertex v becomes visible over edge e (v2 is on the event swath s). At v3

vertex v and the triangle associated with it is visible. (b) An edge-edge-edge(EEE) event. At v1 the camera
cannot see the triangle associated with e1. At v2 (on the event swatch) a small piece of e1 becomes visible
over the (view apparent) intersection point of e2 and e3. At v3, the triangle associated with e1 is visible.

the meeting point of two adjacent edges). When considering an EV event, the planar wedge is

bounded by the vertices on either sides of the edge. At these boundaries, there is an interaction

of four edges/lines (two edges defined by the original VE vertex, and another defined by an edge

terminus). Returning the “lines through four lines” problem, we note that the four edges define a

single line at each boundary. Such lines are known as extremal stabbing lines. Depending on the

type of edge/vertex interactions, these lines may be referred to as VV, VEE or EEEE lines.

In theory, the number of VE events is O(n2), since each vertex and each edge (linear in the

number of vertices) can be paired. Similarly, there can be as many as O(n3) EEE events. Finally,

there can be as many as O(n4) extremal stabbing lines, since they are potentially generated by any

combination of four edges. These combinatorial bounds define a worst case of high complexity

for any algorithm attempting to enumerate visibility events, however these bounds are pessimistic

in practice [DDP97b]. For further discussion and illustration, we recommend the PhD. thesis of

Durand [Dur99].
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Returning to the Plücker hyperplane arrangement of Pellegrini [Pel93], we relate the concept of

visibility events to this arrangement. Three edges define an event surface. These three edges corre-

spond to three lines (embedding the edges). These three lines may be mapped to Plücker hyperplanes.

When intersected, these hyperplanes define a 2D surface in P
5. This 2D surface can then be inter-

sected with the Plücker hypersurface to give a 1D trace [Tel92b, Tel92a] on the hypersurface. This

1D trace maps back to a set of lines in R
3. This set of lines defines a ruled quadric. The event

surface is embedded within this quadric. In order to find the correctly clipped surface, terminal

points need to be found for each end of the trace. These points can be found by finding the extremal

stabbing lines and mapping them to P
5.

Relating the complexity of arrangements to the number of extremal stabbing lines, we note that

the Plücker hyperplane arrangement can be constructed in O(n4 log n) time that is only slightly

greater than the combinatorial worst case of O(n4). At present, the visibility complex provides a

somewhat better solution, since it supports output sensitive construction.

2.5.3 The Visibility Complex

In Section 2.5.1 we define an isotopy classes to be the set of lines that pass each line in another

set of lines in the same way (i.e., they have consistent orientation). The visibility complex [PV93,

DDP96, DDP97c, DDP97a, Dur99, DDP02] is a similar structure to that of the Plücker hyperplane

arrangement, however the sets that it tries to group are not lines, but maximal free segments. These

are subsegments of those lines in each isotopy class that see the same geometry (i.e., they share

the same terminus polygons). In order to account for this segmented view of line space, a discrete

“pseudo-dimension” is defined. Effectively, this associates a list of segments with each point in the

dual line space. The definition of the visibility complex supports both piecewise linear and smooth

objects.

Durand et al. [DDP96, DDP96, DDP02] describes the 3D visibility complex in terms of a 4D

parameterisation of line space. In particular a parameterisation in terms of spherical angles (for di-

rection) and two other coordinates (translations in the plane through the origin, whose normal is the

direction associated with the spherical angles). As noted by Durand, the particular parameterisation

is of little import, but is used for illustration purposes.

Durand et al. give an output sensitive (hyper)plane sweep algorithm to construct the 3D visibility

complex. The algorithm is of order O((k+n3) log n) for n, where n is the complexity of the scene,

and k is the number7 of extremal stabbing lines. To date, the visibility complex has not been

7k can be of O(n4), but this is unlikely in practice.
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implemented due to its extreme sensitivity to small error, and difficulty of implementation. For

practical purposes, a simplification of the visibility complex has been developed. This is known as

the visibility skeleton.

2.5.4 The Visibility Skeleton

The set of zero and one dimensional faces (vertices and edges) of a polyhedral structure is known as

the skeleton. The visibility skeleton [DDP97b, Dur99] is the skeleton of the 3D visibility complex.

Each zero dimensional face corresponds to an extremal stabbing line, and each one dimensional

face corresponds to a swath of lines which define an event surface. A skeleton is naturally repre-

sented as a graph. In terms of visibility events and surfaces, one can observe that each event surface

terminates at extremal stabbing lines. Also, many event surfaces may terminate on the same ex-

tremal stabbing line. Dually, this is equivalent to many edges (of the skeleton) meeting at a single

vertex (of the skeleton).

Durand et al. give a reasonably robust algorithm that builds the visibility skeleton. The algo-

rithm is somewhat different to the sweep algorithm used to build the complex. The zero and one

dimensional faces are built directly, through a combinatorial selection of edges/vertices and ray-

shooting. This algorithm has been implemented, and has been used to drive various visibility depen-

dent techniques such as discontinuity meshing [Dur99] and hierarchical radiosity [DDP99, DDP98].

Duguet and Drettakis [DD02] observe that there are, however, certain cases where the con-

struction of the visibility skeleton will fail. Using epsilon geometry [SSG89] Duguet and Drettakis

implement a robust version of the visibility skeleton.

Ultimately, the visibility skeleton represents all relevant event surfaces and extremal stabbing

lines. However, there is certain topological information lost through the omission of the higher

dimensional elements of the complex, that makes is less suited for from-region visibility in practice.

We discuss this in context in Section 6.1.3.

2.5.5 The Aspect Graph

The aspect graph is a structure developed in the field of computer vision [KvD79, KvD76]. The

key idea is to determine all possible aspects/views of an object (or a database of objects). From an

image, edge features may be extracted in order to determine a view. These views are then matched

up with the computed aspects. If a match is found, then the associated object is “recognised”.

The nodes of the aspect graph correspond to aspects. The arcs between the nodes correspond to
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visual events that change the aspect. The graph is a dual structure, much akin to the visibility skele-

ton. One important difference, however, is that the aspect graph is view centered. This introduces

additional complexity, as events relating to all possible positions (usually restricted to positions out-

side of the object’s convex hull) of an orthographic or perspective camera are also incorporated.

The size of the aspect graph can be as large as O(n6) for the case of an orthographic camera, while

for a perspective camera, the aspect graph may have complexity O(n9). It should be noted, that a

change in aspect does not necessarily imply a change in the set of visible polygons. This set is a

much smaller subset of the aspect graph.

Gigus et al. [GM90, GCS91] detail an algorithm for computing the aspect graph. Plantinga [Pla98]

and Plantinga and Dyer [PD90, PD87] present another algorithm for building the aspect graph. Their

algorithm uses an auxiliary structure known as the ASP that defines the set of lines through a poly-

gon. The ASPs of two polygons can be composed and subtracted to account for occlusion of one by

the other. This is a concept used extensively in Chapters 5 and 6.

An extensive discussion of the aspect graph literature (in the context of visibility) can be found

in the survey by Durand [Dur99].

2.5.6 Polygon Stabbing and Anti-penumbra Computation

Given a set of polygons S, the general polygon stabbing problem seeks to determine the existence

of any straight line s that intersects all polygons in S. For the general case it is possible to determine

this in O(n4α(n)) time [MO88]8.

By making assumptions about S, it is possible to find lower bounds. For stabbing a set of axially

aligned (isothetic) rectangles, a deterministic algorithm of O(n log n) exists [HT92]. A randomised

algorithm with an expected running time of O(n) has also been found [Ame92].

Pellegrini [Pel90] gives an O(g2n2 log n) algorithm for n triangles with of g distinct normals.

Teller and Hohmeyer [TH93b] give an algorithm for the case where S consists of oriented polygons.

The algorithm runs in O(n2) expected time.

This algorithms builds a representation of the set of lines stabbing S, by applying constraints

in Plücker line space. The solution space is represented as a dual polyhedron. If this polyhedron

intersects the Plücker hypersurface, a stabbing line must exist. This stabbing solution is used to find

portal sequences for from-region visibility [Tel92a]. The anti-penumbra can also be extracted from

a sequence of such polytopes [Tel92b]

8Where α(n) is the functional inverse of Ackermann’s function.
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Further stabbing results may be found in the survey by Pellegrini [Pel97]. We revisit the algo-

rithm of Teller and Hohmeyer in Chapter 5, since it forms an integral part of our solution to the

general selective stabbing problem.

2.5.7 Discontinuity Meshing

Discontinuity meshing is a technique for accurately representing the illumination discontinuities on

a surface. For area light-sources, discontinuities in the first and second derivatives can exist.

Reversing our light-region analogy, let us consider the view of a light source from the perspec-

tive of a point moving along a line embedded in a receiving surface. Where the whole light source is

visible, the surface is fully lit. When an object appears to move in front of the light source, the sur-

face falls into penumbra and discontinuity occurs. Depending on the configuration of the occluding

geometry and the light source, illumination will begin to change at a constant or linear rate. This

determines whether or not the discontinuity is of the first or second order. When the light source

appears to disappear behind one or more occluders, the surface point falls into umbra.

The interaction between blockers and a light source are visibility events. When relating this to

a receiving surface of a light source, this implies that all discontinuities can be associated with he

intersection of the receiving surface and the event surfaces defined by edges of the light source and

associated blockers. By partitioning the target surface into a mesh along these intersections, the

discontinuity mesh is computed.

In order to determine the associated luminance with each mesh element and the discontinuities

associated with each edge of the mesh, the back projection of the light source is computed for each

mesh element9. The back projection is in essence the aspect of the light source from a viewpoint on

the receiving mesh. The aspects are topologically indistinct for viewpoints within a discontinuity

mesh element.

Heckbert [Hec92] introduced discontinuity meshing in the context of radiosity10, as a means to

accurately represent shadow boundaries. Stewart and Ghali [SG93, SG94] solve a slightly different

problem to that of Heckbert, but they also treat EEE events. Drettakis and Fiume [DF94] present a

similar solution that achieves better performance in practice, but does not have asymptotic bounds

that are as tight as those of Stewart and Ghali. Durand et al. [DDP99] apply global visibility to

hierarchical radiosity to achieve faster and/or more accurate results. Dugeuet and Drettakis [DD02]

9The back projection can be maintained incrementally, allowing for efficient implementation.
10At the time, other authors had developed discontinuity meshing for point light sources, and for a significantly smaller

subset of events for area light sources.
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present an algorithm that computes shadow boundaries robustly, using the principles of epsilon

geometry [SSG89].

2.5.8 Analytic Visibility in Practice

The high (four) dimensionality of line space in 3D has made the analytic solution to from-region

visibility determination a difficult task11. Some authors have turned to a simplified version of the

problem, namely visibility in 2D. Since the space of lines in 2D is effectively two dimensional, 2D

problems are not as combinatorially explosive as their 3D counterparts. See Ghosh [AGS00] for an

excellent survey of the extensive literature on in-plane visibility.

The motivation for solving for 2D from-region visibility, is that many real scenes are fundamen-

tally 2D or 21
2D (i.e., height fields) in nature.

Koltun et al. [KCCO01] build a representation of the rays between segments in a dual ray-

space. Occlusion is computed by determining whether the space of occluded rays contains all rays

between the view-cell and the object in question. This 2D exact visibility solution is approximated

efficiently via a conservative discretisation through rendering hardware. Independently, Bittner et

al. [BWW01] also developed an exact visibility solution in the plane, based on similar principles.

Plantinga [Pla93] considers an application of the aspect graph to achieve rapid occlusion culling.

Only a subset of interactions are accounted for and only a very limited camera model has been

implemented (rotation around one axis).

The Plücker Space Occlusion Tree

Shortly after the publication of our exact algorithm [NBG02], Jiřı́ Bittner published an alternative

solution in his doctoral thesis [Bit02]. The approach is similar to that taken by Pu [Pu98], in that

a BSP in Plücker space is the primary data structure. Pu empirically evaluates the average case

complexity of his approach to be O(n4.31343)12. Pu’s algorithm is not attempted on scenes larger

than 15 triangles, due to the excessive computational and memory requirements.

Where Pu gives an intractable algorithm to compute a global visibility map, Bittner presents

various techniques to localise visibility computations, yielding a considerably more practical so-

lution. Visibility is computed from a region, thus constraining the line set to only those exiting a

polygonal region. Furthermore, the set of directions exiting such a region is partitioned so that each

subdivision (shaft) can be treated separately. This provides better memory management.

11With the notable exception of Teller [Tel92a], although even here the scene requires special structure.
12Pu believes this to be related to the O(n4α(n)) bound of McKenna and O’Rourke [MO88].
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For each shaft, the algorithm proceeds by processing the polygons in a front to back order (or

occlusion sweep). As each polygon is processed, it is tested for visibility against the BSP as follows:

At any one time, the BSP represents the set of lines blocked thus far, and by which polygon each

line (or rather, isotopy class) is blocked. A polygon is discarded if it is determined to be invisible

(i.e., all lines between the source region and the polygon are already blocked by polygons inserted

before it). Should the polygon be visible, then it (or rather, the Plücker polytope representing the

set of lines that go through both the source region and the polygon) is merged into the BSP tree.

The merging process requires a 5-dimensional polytope splitting operation. Such algorithms ex-

ist (see Section 3.3), however, due to implementation problems, a less efficient algorithm is used13.

This algorithm performs a local construction of the 3D visibility complex. Only those com-

plex elements representing the maximal free segments with one terminus on the source region are

constructed14.

Since this algorithm enumerates all the isotopy classes of lines going through a region, its per-

formance is tightly coupled with the combinatorial complexity of visibility events in 3D line space.

Bittner notes that the size of the occlusion tree is bounded above by O(n5) and that the worst case

running time of the algorithm is O(n4 log n).

We revisit and contrast our algorithm to that of Bittners in Section 6.2.4.

2.6 Compression of Visibility Information

All visibility pre-processing systems result in a block of data organised as some form of spatial

structure. In order for culling to take place, this structure (or at least part of it) needs to be in

memory. Typically, this structure also has to be stored on disk, although it might also have to be

transmitted over a network [COZ98].

Visibility data may become large. It is therefore desirable to compress this visibility data.

In order to achieve this, both lossy and lossless techniques have been proposed by Cohen-or et

al. [COFHZ98], Nadler et al. [NFLYCO99], Gotsman et al. [GSF99] and Yagel and Ray [YR96].

Panne and Stewart [vdPS99] are the first to focus on this problem and present both a lossy and a

lossless compression algorithm.

In the context of visibility compression, the term lossy refers to increasing the conservativity of

the visibility solution in order to save space. Panne and Stewart achieve this by using the union of

13The H-Representation (see Section 3.2) of the polyhedron is augmented with the splitting plane. Two vertex enumer-
ations (see Section 3.2.2)) are performed: one with this plane positively oriented and one with it negatively oriented.

14To be precise, even this may be subdivided due to the partition of directional space
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similar visibility sets as an aggregate visibility set. Effectively, the visibility sets of multiple existing

cells are collapsed into a single larger one. Panne and Stewart perform this implicitly by using a

table representation. The table consists of boolean values relating each cell to each primitive. Yagel

and Ray suggest a similar compression algorithm, however the table structure of Panne and Stewart

allows for the visibility sets of disjoint cells to be combined where beneficial.

Lossless compression implies that the visibility structure is transformed such that less space is

required to store it without the introduction of additional conservativity. To achieve this Panne and

Stewart search for coherence in their table. When a cluster of cells have similar visibility, their

similarities are grouped together and stored once. Similarly, if a cluster of polygons have the same

visibility status, they too are grouped together and stored once.

Note that lossy compression implies the creation of a refined structure that is later collapsed

into a coarse structure. As we shall see in Section 4.2.2, unlike Panne and Stewarts bottom-up

approach, our top-down approach can obviate this redundancy. Panne and Stewart propose a “top-

down, divide-and-conquer” extension to their work that allows for the pre-processing of larger mod-

els. Although developed independently, our work (Section 4.2) represents an efficient solution to

their proposed problem. We discuss our methods for visibility compression in Appendix B.



Chapter 3

Geometric Preliminaries

In this chapter we cover a collection of mathematical tools that are used to manipulate lines in space

efficiently. We also discuss various issues relating to the representation of polyhedra of general

dimension. A selection of mathematical topics that are relevant to this dissertation, are presented at

the end of this chapter.

3.1 Projective Spaces

We briefly discuss projective spaces and motivate their use. We also cover the concept of projective

duality. Most importantly, we present all the requisite information on Plücker coordinate systems,

a fundamental tool used throughout this dissertation.

3.1.1 The Classic Projective Plane

Ostensibly, the standard Euclidean spaces are consistent with intuition. However, in a sense they

are also incomplete. Consider two lines in R
2. These lines necessarily intersect, with the exception

of parallel lines. Projective geometries seek a uniform methodology for handling such exceptions.

They attempt to construct a space, P
2, where such exceptions do not occur.

Unlike R
2, projective spaces cannot be represented explicitly, but rather implicitly through a

projection operation. Points in a d dimensional projective space are typically represented using

some form of model [Sto91]. In his book, Stolfi presents four models, they are the straight, the

spherical, the analytic and the vector space models. The differences between these models are

purely superficial, and they can be equated through isomorphism.

38
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We choose a natural hybrid of the analytic and vector space models to give an intuitive descrip-

tion of the classic projective plane P
2. A “point” in this space is represented by a homogenous

3-tuple, (x, y, w). 3-tuples usually represent points in R
3, however, in P

2, all 3-tuples refer to an

equivalence class, < x, y, w >, where any point (x, y, w) ≡ (λx, λy, λw) for any λ ∈ R, where

λ �= 0. The principal idea is that the points of P
2, are exactly the set of such equivalence classes in

R
3. Equivalently, P

2 can be said to be the set of all one dimensional vector spaces of R
3.

To see how the classic projective plane corresponds to the standard plane, R
2, an arbitrary plane

in R
3 that does not contain the origin is chosen. Without loss of generality, we choose the plane

w = 1. We observe that each point on w = 1, can trivially be mapped to a unique point in R
2.

Namely, a point (x, y, 1) ∈ R
3 may be mapped to (x, y) ∈ R

2. This also shows that each point

< x, y, 1 >∈ P
2 may be mapped to a unique point in R

2 and vice versa.

However, there are points in, P
2 that do not correspond to points in R

2. With respect to our

chosen plane w = 1, these points correspond to those equivalence classes of the form < x, y, 0 >.

These points are referred to as points at infinity or ideal points. We prefer to use the latter terminol-

ogy, since the former is intuitive only for certain models of P
2.

As a natural extension of points, lines in P
2 correspond to two dimensional vector spaces, or

equivalently, planes containing the origin in R
3. Where such a plane intersects w = 1, a one-

dimensional set is formed. This corresponds to a unique line in R
2. Similarly, every line in R

2

corresponds to a unique plane going through the origin in R
3, and hence to a line in P

2.

There is, however, one special line that exists in P
2, but not in R

2, this is the ideal line, and with

our choice of projection plane, corresponds to the plane w = 0. This line is exactly the set of ideal

points. This ideal line is the sole difference between R
2 and P

2. We will now consider an example

that illustrates how this augmentation of R
2 aids our motivation. Let us choose any two distinct

lines in P
2. These lines correspond to planes containing the origin in R

3. The intersection of the

two lines in R
2 is isometric to the homogenous point that is the intersection of the corresponding

planes in R
3. However, since, all distinct planes that go through the origin intersect in a line going

through the origin, all lines in P
2 intersect at a point in P

2.

Next we give a concrete example showing how the case of parallel lines are handled. Consider

two lines, y = 1 and y = 2 in R
2. These lines are both horizontal and do not intersect. In P

2,

these lines correspond to the planes y − w = 0 (when w = 1, then y = 1), and y − 2w = 0 (when

w = 1, then y = 2) respectively. The intersection of these planes is the vector space corresponding

to < 1, 0, 0 >∈ P
2. In general, any two parallel lines will intersect at an ideal point in P

2.
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3.1.2 Oriented Projective Geometry

The focus of [Sto91] is on oriented projective geometry. Whereas the classic projective plane is an

augmentation of R
2 by an ideal hyperplane, the oriented projective plane maintains two copies of

the plane, one with positive, and one with negative orientation, as well as an ideal hyperplane.

This allows the association of an orientation with geometric structures and is necessary to define

properties such as convexity to remove certain ambiguities. Even more fundamentally, the Jordan

Curve theorem does not hold in the classic projective plane, but does hold in oriented projective

geometries.

3.1.3 d dimensional Projective Spaces

Both the classic and the oriented projective planes may be generalised to d dimensions. The ho-

mogeneous coordinates for P
d are always represnted as points in R

d+1. A k dimensional affine

subspace in P
d may be represented as a k+1 dimensional vectorspace in R

d+1. Also, the projective

hyperplane is always an arbitrary, but fixed, hyperplane in R
d+1. A d dimensional projective space

always contains exactly one ideal hyperplane.

3.1.4 Projective Duality

A duality mapping or duomorphism is an isomorphism between structures in one space and other

structures in the same or another space. Typically, a duality mapping preserves certain dualistic

properties.

For example, consider a line in R
2. We can define a duality mapping d(�) that takes a (non-

vertical) line � of the form � := {(x, y) ∈ R
2 : y = ax + b} to the point (a, b) ∈ R

2. Similary we

can define d−1(a, b) that takes a point (a, b) ∈ R
2 to the line defined by y = ax + b.

d and d−1 have the property that they preserve incidence. The duals of all points on a given line

all intersect at a single point. The duals of all lines incident at a particular point must lie on the same

line in the dual space.

Consider any two distinct points points (a, b) ∈ R
2 and (c, d) ∈ R

2. Since these points are

distinct they both lie on some unique line. Now let us consider the duals d−1(a, b) := {(x, y) ∈
R

2 : y = ax + b} and d−1(c, d) := {(x, y) ∈ R
2 : y = cx + d}. These lines are incident

where ax + b = cx + d ⇒ x = d−b
a−c and y = ad−b

a−c + b, thereby giving the point of incidence:

(d−b
a−c , a

d−b
a−c + b). Now let us consider a third point (e, f) on the line generated by (a, b) and (c, d).

Any point on this line may be expressed in terms of (a, b) and (c, d), namely (e, f) = (λ(c −
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a) + a, λ(d − b) + b) for some fixed λ ∈ R. Next we consider the dual of (e, f). d−1(e, f) :=

{(x, y) ∈ R
2 : y = (λ(c− a)+ a)x+λ(d− b)+ b}. This and the line d−1(a, b) are incident where

ax+ b = (λ(c−a)−a)x+λ(d− b)+ b⇒ λ(ax− cx) = λ(d− b)⇒ x = d−b
a−c and y = ad−b

a−c + b,

thereby giving the point of incidence: (d−b
a−c , a

d−b
a−c + b), that is precisely the same point of incidence

as d−1(a, b) and d−1(c, d).

The example of duomorphism d illustrates point-line duality. There are numerous advantages

to such duality. Using such a mapping it is possible to prove a geometric theorem in some primal

(original) space, and then have a dual theorem proved in a dual space (an image of the original

space under a duality mapping). A formal approach to this is described by Stolfi [Sto91]. This

feature translates into the ability to create dual algorithms. The principal advantage being that

certain theorems and algorithms are more intuitive in the dual space. In terms of implementation, it

is possible to use an existing solution to an algorithm to solve the algorithm’s dual problem, thereby

saving on implementation difficulties.

As an example, let us consider the halfspace intersection problem: Given a set of halfspaces in

R
2, find the convex polygon representing their intersection. Each halfspace is represented by an ori-

ented line. The halfspace intersection problem dualises to the convex hull problem. By transforming

the oriented lines to points in a dual-space, the convex hull of these points can then be computed

using an existing code base. The lines embedding the edges of the convex hull can then be dualised

to points in the primal plane. These points are exactly the vertices of the polygon resulting from

the halfspace intersection. There is one additional subtlety: the duality mapping is defined in terms

of an arbitrary point whose only condition is that it falls in the interior of the halfspace intersec-

tion. For details on this algorithm we refer the reader to Edelsbrunner [Ede87] and Preparata and

Shamos [PS85].

The duality mapping we have described so far has one serious flaw: it does not handle all lines

in R
2. Vertical lines are not treated since they cannot be represented by functions of the form

y = mx + h. To account for this, an alternative representation for lines is imposed. We use the

equation form ax + by + c = 0. This form can represent any line in R
2. We note that since the line

is an equation, any non-zero constant multiplication of all a, b and c represents the same line. This

is no coincidence. The space of all lines is duomorphic to the projective plane. The most obvious

mapping is to that of a homogenous coordinate system.

Consider a mapping d′(�) that takes any line in R
2 of the form � := {(x, y) ∈ R

2 : ax+by+c =

0} to the point < a, b, c >∈ P
2. The same properties are preserved, and no exceptions result from

this mapping.
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Duality can be generalised to R
d. It is always possible to define a duomorphism between the

points in P
d and the hyperplanes of R

d+1.

3.1.5 Plücker space

Plücker space [Plü65] is a special case of a Grassmann coordinate system [Som59, CEG+96, Sto91].

Grassmann coordinates allow for the parameterisation of a k dimensional affine sub-space embed-

ded in an n dimensional space as a point in a projective
(
n+1
k+1

) − 1 dimensional space. Plücker

space in particular corresponds to lines (k = 1) in R
3 (n = 3). This results in a projective five

dimensional space P
5. This parameterisation exposes a natural and elegant means of dealing with

directed lines in R
3. The Plücker mapping of a directed line � passing through the point (px, py, pz)

and then through (qx, qy, qz), is defined as Π(�) = (π0, π1, π2, π3, π4, π5), where:

π0 = qx − px π1 = qy − py π2 = qz − pz

π3 = qzpy − qypz π4 = qxpz − qzpx π5 = qypx − qxpy

This homogeneous six-tuple of P
5 is a unique representation of � to within multiplication by a

positive scale factor. Negating the scale factor flips the orientation of the line.

We next consider a duality mapping within P
5. Given π, x ∈ P

5, we define Dπ(x) : P
5 → R to

be the quantity π0x3 + π1x4 + π2x5 + π3x0 + π4x1 + π5x2. This is a permuted inner product1 of

π and x. The set of solutions x ∈ P
5 of Dπ(x) = 0 gives rise to the so-called dual hyperplane of π

in P
5.

Given lines �1 and �2, let π1 = Π(�1) and π2 = Π(�2); �1 and �2 are incident if and only if

π1 lies on the dual hyperplane of π2 (and vice versa). Formally, they are incident if and only if

Dπ1(π2) = 0. If Dπ1(π2) is not equal to zero, then the relative orientation of �1 and �2 is directly

specified by the sign of Dπ1(π2). See Figure 6 for an illustration.

Although all lines in R
3 map to points in P

5, not all points in P
5 map to lines in R

3. Rather, Π is

a bijection between the lines in R
3 and a particular four-dimensional quadric surface embedded in

P
5, known as the Grassmann manifold, the Klein quadric or the Plücker hypersurface. This surface

is described by following set of points:

G = {Dx(x) = 0 : x ∈ P
5} \ {0} (3)

Since, at least for the purposes of this dissertation, we are predominantly interested in real lines,

this surface is used extensively.

1Although, this in itself is not an inner product. See Lemma A.1 in Appendix A.
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Figure 6: Line Orientation and Plücker space. The three diagrams on the left show the three qualitatively
different ways for one directed line to pass another. The figure on the right is a visualisation of how these
lines relate in the dual Plücker space. The surface G is a visualisation of the Plücker hypersurface embedded
in P

5. Lines b and d pass by line a on the right and left respectively. Line c is incident on a. If lines b, c and
d are mapped to P

5 via Π (visualised as the three dots), then respectively they will lie above, on and below
the plane defined by DΠ(a)(x) = 0.

3.2 d-Dimensional Polytope Representation

There are many conflicting definitions for the terms polytope and polyhedron. To avoid confusion,

we define the following:

Definition 3.1 Given k distinct points p1, p2, . . . , pk in R
d, the set of points p = α1p1 + α2p2 +

. . . + αkpk, (αj ∈ R, α1 + α2 + . . . + αk = 1) is the affine set generated by p1, p2, . . . , pk, and p

is an affine combination of p1, p2, . . . , pk.

Definition 3.2 Given a subset L of R
d, the affine hull of L is the smallest affine set containing L.

Definition 3.3 Given k points p1, p2, . . . , pk, they are said to be affinely independent if the k − 1

vectors p2 − p1, . . . , pk − p1 are linearly independent. An affine hull generated from k affinely
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independent points is said to be of dimension k − 1.

Definition 3.4 A polyhedron is a connected region of space consisting of a piecewise linear bound-

ary. It is said to be of d dimensions if its affine hull is of d dimensions.

Definition 3.5 A polytope of d dimensions is a convex, bounded, d dimensional polyhedron.

Definition 3.6 The boundary of a polyhedral set consists of faces. Faces are lower dimensional

convex polyhedra. A k-face is a face of dimension k. We further define a d dimensional polyhedron

to have exactly one d-face, which is itself. We also define a (−1)-face to be incident on everything.

Definition 3.7 A facet of a d dimensional polyhedron L is a d− 1-face of L.

Polytopes of dimensions 0, 1, 2 and 3 are familiar constructs. They correspond to vertices,

segments, bounded polygons and 3 dimensional polytopes. There are two distinct ways to represent

polytopes. It is sufficient to represent a polytope as a set of vertices, where the vertices are chosen

such that their convex hull is the original polytope. Every polytope may be decomposed into such a

set.

Definition 3.8 The extreme points of a polytope L are those points belonging to the smallest set of

vertices whose convex hull gives L.

The set of extreme points is always finite. This set is a compact representation of a polytope.

Such a representation is possible due to the convexity constraint. This representation is referred to

as follows:

Definition 3.9 The V-representation (or Vertex representation) of a polytope is its set of extreme

points.

Another common representation is:

Definition 3.10 The H-representation (or Halfspace representation) of a polytope is a set of halfs-

paces whose intersection gives the polytope.

It should be noted that the H-representation can also represent unbounded convex polyhedra.

Once again we see an important duality. One representation is through points, while the other

is through halfspaces (defined by hyperplanes). In the case of polytopes, it is possible to switch

between representations using a transformation algorithm [AF92, FP96, AF96].
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3.2.1 The Face Lattice

The face lattice is a directed graph representing the incidence relationship between the faces of a

polytope. Each face of the polytope is a node of the lattice. If a face of dimension k is contained

within a k + 1 dimensional face, a directed arc exists from the k dimensional face to the k + 1

dimensional face (see Figure 7 for an example).

Figure 7: Face Lattice of a Tetrahedron. (a) A tetrahedron, with annotated faces. The tetrahedron is defined
by four planes, h1, h2, h3 and h4. Each face is identified, by the subset of planes in which it is embedded.
(b) The face lattice of the tetrahedron. The faces are connected by an upwards containment relationship. The
bottom row refers to 0 dimensional elements, the row above to 1 dimensional elements, etc. Note how a row
of k dimensional elements is defined by the intersection of 3− k planes.

Similarly, Face lattices may be defined for general polyhedra and polytope/polyhedral com-

plexes (see Section 3.3).

3.2.2 Face Enumeration

For all polytopes, the face lattice is implicit within its vertex information. This is due to the known

property of convexity. Given the set of extreme points for any polytope, the face lattice may be

recovered. This process is known as face enumeration [FR94].

It is possible to define any vertex in a d dimensional space as the intersection of a set of hyper-

planes. Algebraically, a set of hyperplanes may be considered as a system of linear equation, where

the vertex at the intersection is the solution to such a system. In order to define a unique solution (a

vertex) the hyperplanes need to define at least d linearly independent constraints.
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Definition 3.11 A simple polytope of d dimensions embedded in a d dimensional space is a d

dimensional polytope whose vertices are incident on exactly d hyperplanes (facets) of it’s H-

representation.

Given the set of extreme points E of a d dimensional simple polytope P , it is possible to find a

set of oriented hyperplanes H whose associated half space intersections results in the convex hull

of E (see Section 3.2).

Each extreme vertex is therefore incident on a subset of H , of cardinality d. If we enumerate

each hyperplane, we can represent each vertex uniquely by the subset of H on which it is incident.

We refer to this subset as the enumeration set of the vertex. See Figure 7 for an example.

Through vertex enumeration, we see that it is possible to enumerate every face as the intersection

of a set of hyperplanes. Indeed, every k dimensional face is the intersection of d− k hyperplanes in

H . From this, we observe that in general it is possible to enumerate every k dimensional face as a

subset of hyperplanes in H of cardinality d− k.

This definition of face enumeration supports certain properties:

1. Given two faces f1 and f2 (of dimensionality k), these faces are incident at a face f3 (of

dimensionality k − 1) , whose enumeration set is the union of enumeration sets f1 and f2.

2. The intersection of the enumeration sets of two faces f1 and f2 gives the enumeration set of

the face of lowest dimensionality containing both f1 and f2.

As an example, consider Figure 7. Facets {h3} and {h2} intersect at {h3, h2}. Similarly, edges

{h3, h2} and {h3, h4} intersect at vertex {h3, h2, h4}. Should the face resulting from the union not

belong to the polytope, then no intersection exists.

To illustrate the second property, consider edges {h3, h4} and {h2, h3}, these intersect at facet

{h3}. Consider also, vertex {h2, h3, h4} and edge {h1, h3}. These intersect at {h3}. Should edge

{h3, h4} be used instead, the intersection is the same edge {h3, h4}. The latter results in a two

dimensional face, since the vertex lies on the edge. If the intersection is the empty set, then the

largest face containing the specified faces is the polytope itself.

3.3 Splitting a Polytope Complex in d Dimensions

Definition 3.12 A polytope complex of dimension k is a set of k dimensional polytopes that in-

tersect only where they share sub-faces. Additionally, each sub-face of any of these polytopes is

considered to be part of the polytope complex.
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Definition 3.13 A top level polytope is a d dimensional polytope of a d dimensional polytope com-

plex.

A Polytope complex is useful in that it allows for the representation of a bounded non-convex

polyhedron, as the union of a set of polytopes. Using the properties of polytopes that we have

discussed in earlier sections, we observe that a polytope complex may be used to represent general

d dimensional non-convex bounded polyhedra.

The face lattice of a polytope complex may be defined similarly to that of general polytopes.

The difference being that polytopes that share boundary faces, will share the associated nodes in the

face lattice.

Bajaj and Pascucci [BP96] present an algorithm that splits a polytope complex with a hyper-

plane. Splitting in this context implies that each polytope of the complex that is incident on the

hyperplane is split in two, such that the new facets of each new polytope are embedded within the

splitting hyperplane. A figure depicting the desired changes in the face lattice is shown in Figure 8.

This operation does not alter the set of points represented by the complex, only it’s structure.

Such alteration facilitates certain common operations, such as CSG (constructive solid geometry)

and clipping (a special case of CSG).

For the readers convenience, we provide the algorithm of Bajaj and Pascucci verbatim in Fig-

ure 9.

This algorithm requires that every vertex be classified (as below( − ) or above( + )) with respect

to the splitting hyperplane. A naı̈ve algorithm would require visiting O(n) vertices (where n is the

number of vertices). Bajaj and Pascucci observe that a half space range searching algorithm would

be more efficient, since clusters of vertices can be classified simultaneously.

Similarly, the algorithm uses the classified vertices to classify each face against the splitting

hyperplane. The algorithm assumes that no existing faces are embedded within the hyperplane.

Those faces that cross the hyperplane are classified as incident on the hyperplane. Starting with

the 1 dimensional faces (edges) of the complex, the incident edges are intersected with the splitting

hyperplane to generate new vertices that are classified as being on( = ) the hyperplane.

As the algorithm iterates through the dimensions of the complex, the connectivity of those faces

classified as = is established. Those faces that are incident on the splitting hyperplane are all split

by the hyperplane. This splitting is performed by adjusting the connectivity of the facets of each

face, such that those faces on the negative side of the hyperplane are only connected to faces that

are either � or = . Similarly, those faces on the positive side of the hyperplane are adjusted such

that they only connect to faces that are � or = .
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Figure 8: Example – Triangle Splitting. (a) A triangle in the plane. A hyperplane (a line in 2D), cuts the
triangle in three, one part embedded in the halfplane h+, one part embedded in the halfplane h−, and the
remaining part is embeded in the actual splitting line. (b) The face lattice of the triangle depicted in (a). (c)
The triangle of (a), now split into a quadrilateral (f−) and a triangle (f+), sharing a new edge (e4 =) and
two new vertices (v4 = and v5 =). (d) The face lattice representing the structure of (c).

To evaluate those factors governing the performance of this algorithm we note the following:

the algorithm iterates through the faces of every polytope, for every dimension, starting with faces

of dimension 1 and ending with those of dimension d (where d is the dimensionality of the polytope

complex). At each face f , all the children (d− 1 dimensional boundary elements) of f are visited.

Ignoring the possible addition of new faces (since this augmentation is typically insignificant), the

order of this traversal is O(pm), where p is the total number of faces and m is the average number

of children per face.

In Chapter 5, Section 5.3.1 we present a series of improvements on this algorithm that result in

output sensitivity to those polytopes that are split.
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Begin
Step 1 (primary numerical) Classify all the vertices of c either � or �. Then set k = 1.
Step 2 (symbolic computation) For each c ∈ Nk do:

– If none of its facets is �(�) then classify c � (�) and goto Step 3;
– Create a new (k − 1)-polytope f (classified as = ) and connect it to each

(k − 2)-polytope in c classified as = . Create two polytopes
c+ and c− connected both (down) to f and (up) to all the k + 1
polytopes connected with c. Connect each (k − 1)-polytope in c classified as
� to c+, and each one classified as � to c−. Remove
c from Nk.

Step 3 If k < d then k = k + 1 and goto Step 2. Else continue to Step 4.
Step 4 (Secondary numerical) For each vertex v classified = , compute its coordinates by

geometrically intersecting the hyperplane h with the edge divided in two parts by v.
End

Figure 9: Bajaj and Pascucci – Polytope Splitting Algorithm. The algorithm uses the following terminology:
d is the dimension, h is the hyperplane, Nk is the set of all faces of dimension k.

3.4 Arrangements

A set of n hyperplanes in R
d define an arrangement. An arrangement is a partition of the space into

cells. In this context, a cell refers to a subset of any dimension. A d-dimensional cell refers to the

set of points lying on the same side of the same hyper planes. A d − k dimensional cell is a set of

points that lie on the same k hyperplanes.

Consider the case of d = 2. In this case, the hyperplanes are lines. In Figure 10 we show an

example. Note that the number of 0, 1 and 2 dimensional cells are exactly 9, 23 and 15 respectively.

(a) (b) (c) (d)

Figure 10: 2D Arrangements. (a) 5 lines (hyperplanes) (b) 15 2D cells (bounded/unbounded polygons) (c)
23 1D cells (segments and half-lines) (d) 9 0D cells (vertices)

Definition 3.14 The zone of a surface in an arrangement is the set of cells incident on the surface.
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In general, the combinatorial complexity of an arrangement of n hyperplanes in a d dimensional

space is O(nd) [EOS86]. Any given d dimensional cell (polyhedron) is bounded by O(n[d/2]) cells

of any dimension [Ede87]. Edlesbrunner also gives formulae for computing exactly the number of

k dimensional cells in a simple arrangment (i.e., an arrangment where exactly d−k hyperplanes are

incident on any k dimensional cell). These are therefore upper bounds for non-simple arrangements.

Furthermore, an algorithm is given for computing hyperplane arrangments in worst case optimal

time. We recommend Edelsbrunner [Ede87], if further reading on arrangements is desired.

3.5 Miscellaneous

In this section various advanced topics relevant to this dissertation, are discussed. Namely, the

generalisation of the cross product to general dimension and the determination of the set of lines

through four lines.

3.5.1 The Generalised Cross Product

The two-dimensional cross product is a familiar construct. In this section we will generalise the

concept of the cross product to d dimensions.

In general, the d-dimensional crossproduct is a function of the form f(�v1, �v2, . . . , �vd−1) :

(Rd)d−1 → R
d. That is, it takes a set of d − 1 vectors of dimension d, to another vector of di-

mension d. For d = 3 we get, as expected, a function that takes a pair of 3-vectors, to another

3-vector. A property of the cross product is that the vector produced is orthogonal to each of the

input vectors. The magnitude of the resulting vector is twice the d − 1 dimensional volume of the

hyper-parallelepiped defined by the basis vectors in the standard way2.

The resulting vector may also be interpreted as a basis vector for the space of vectors orthogonal

to the input vectors. This implies that the input vectors need to be linearly independent for a valid

basis. Linear dependence implies that that the space of orthogonal vectors is of more than one

dimension. A general kernel finding technique (such as a Singular Value Decomposition), may be

used to compute the basis vectors for the entire set of orthogonal vectors.

The general cross product may be computed as follows: Let�b1,�b2, . . . ,�bd be the standard basis

of a d-dimensional space (i.e., �bi = (δ1i, δ2i, . . . , δdi) where δ is the Kronecker Delta). Let input

vector j be of the form (αj,1, αj,2, . . . , αj,d). From this, we get the following general formula for

the cross product:

2Consider a kite in 2D, or the corner of a parallelepiped in 3D.
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�r =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b1 b2 . . . bd

α1,1 α1,2 . . . α1,d

α2,1 α2,2 . . . α2,d

...
...

. . .
...

α(d−1),1 α(d−1),2 . . . α(d−1),d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4)

Where �r becomes a vector orthogonal to all input vectors. Further reading and explanation can

be found in Hanson [Han94].

3.5.2 Determining the Lines Through Four Lines

In this small subsection we briefly present a method that determines the set of lines through four

given lines. The solution presented here is a summary of the paper by Teller and Hohmeyer [TH99].

The purpose of this summary is twofold. Firstly, we wish to present certain information that is

used later in this dissertation. Secondly, we consider this topic an excellent exercise in developing

intuition for Plücker coordinates.

There are many ways to represent lines in 3D implicitly. The most common, is as a set of

any two distinct points on the line: a unique line intersects both points (the join operation [Sto91]).

Another approach that is less frequently used is the representation of a unique line as the intersection

of two given planes (the meet operation [Sto91]).

It is possible to define a set of lines implicitly through incidence, by using four lines. The set of

lines that are incident on or stab these four lines may have cardinality 0, 1, 2, or∞.

In the case of four mutually skew lines, there are exactly two lines incident on the given lines.

Degeneracies may occur due to various configurations of parallel or intersecting lines. In this short

summary, we only consider the general case (an example is depicted in Figure 11).

Section 3.1.5 shows how a line may be parameterised as a point using Plücker coordinates. Two

lines x and y (in R
3) are incident iff DΠ(x)(y) = 0. This property can be used to construct the set of

lines incident on x: {� ∈ G : DΠ(x)(�) = 0}. Informally, the set of lines incident on x correspond

to those points that are both on the dual hyperplane of Π(x), and on the Plücker hypersurface (G).

Therefore, in order to find the set of lines incident on four lines, we need to compute the inter-

section of the set of lines incident on each one of the given four lines. This can be computed by

finding the intersection of the four dual hyperplanes of each line, and then intersecting what remains

with the Plücker hypersurface.
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Figure 11: Stabbing four lines. Four lines specifying two lines by incidence.

The intersection of d − 1 hyperplanes in a d dimensional space, will result in a one dimen-

sional space (assuming the hyperplane constraints to be linearly independent). This one dimen-

sional space can then be intersected with the Plücker hypersurface to give two solutions (since the

Plücker hypersurface is a quadric). These two solutions correspond to the two real lines incident on

the four lines. Mapping these points back to lines in 3-space gives the desired result.

The intersection of k hyperplanes may be computed elegantly, using a null-space computation.

Teller and Hohmeyer [TH99] use a singular value decomposition (SVD) to compute the basis vec-

tors of the null space. This affine set may then be intersected with the Plücker hypersurface. One of

the basis vectors is fixed in order to account for projectivity.

It should be noted that the addition of another line would over specify the problem, leading to

no incident lines. Symmetrically, the subtraction of one line (to three) would result in an under

specification. The result would be a two dimensional null space, that when intersected with the

Plücker hypersurface gives an infinite set of lines that form a ruled surface in R
3, that is incident on

the remaining three lines.

If the dual hyperplanes of the given four lines form linearly dependent constants, then the selec-

tion of lines are degenerate in terms of being mutually parallel or collinear.



Chapter 4

Aggressive Visibility Preprocessing

In this chapter we present our approach to rapid visibility computation. The algorithm is aggressive

(as described in Chapter 1). We also extend the algorithm to creates a 5D subdivision in ray-space.

This 5D subdivision is used as a means of accelerating ray-shooting.

Aggressive algorithms are not necessarily suited to all applications. Such an algorithm can be

applied effectively when any of the following are met : (a) the perceptual impact of the error is

acceptably low, (b) it handle scenes that cannot be solved effectively with a conservative alternative

due to excessive overestimation, or (c) the time-frame allowed for preprocessing is less than that of

a conservative or exact solution.

The technique presented here solves (b) and (c) effectively. However, (a) is difficult to show

since acceptability is subjective and usually depends on the nature and context of the application.

We provide evidence quantifying this error in practice. We also present error minimisation

heuristics that are exploited by adaptive sampling

We begin with a discussion on computing visibility from a surface in 3D space. Our adaptive

technique is presented in this context. We then present the divide-and-conquer approach of our

algorithm framework and we show how surface visibility can be integrated hierarchically, in order

to greatly accelerate computation. We then discuss our cache management strategy that allows for a

logarithmic dependency on the number of cells. Results exploring efficiency and accuracy are then

presented.

Finally, we present our scheme for efficiently sampling 5D ray space. This is a natural extension

to the visibility preprocessing technique presented here. We present experimental results from a

preliminary implementation, demonstrating the utility of this algorithm as a means of accelerating

ray-shooting. Since this is still a hardware based extension of our visibility algorithm, error may

53
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result. Area sampling, a natural complement of point sampling, is introduced to further reduce error

during the 5D processing.

4.1 Visibility From a Surface

In this section our novel sampling approach to “from-region” visibility is presented. We describe

a sampling method that is based on the hemi-cube [CG85, HA00] and exploits the performance of

common graphics rendering hardware. We demonstrate its application in deriving an aggressive

visibility set from a rectangular surface in 3D space. Finally, adaptive sub-sampling is introduced

as a means to increase performance, while decreasing error.

4.1.1 The Visibility Cube

A point sample is defined to be the set of polygons visible from a given point. A visibility cube

(strongly related to a radiosity hemi-cube [CG85]) is used to generate such samples (see Figure 12).

This is created by treating each of the six sides of a tiny cube enclosing the sample point as in-

dependent depth and frame buffers onto which the scene is rendered. Depth buffers are supported

by all modern consumer level graphics hardware and ensure that only the pixels of these polygons

visible from the point in question are rendered. Each polygon is assigned a distinct 32 bit colour.

This allows a given pixel to be mapped back to the polygon responsible for its generation. Any

polygon associated with a pixel is considered visible. The set of polygons that are mapped to by at

least one pixel from any of the six frame buffers is considered to be the set of polygons visible from

the sample point. The visibility cube can be considered a high density sampling over the angular

domain, for a fixed spatial position.

The rendering process is not a traditional sampling mechanism, and is, in many ways, different

from ray-casting through pixels. We give highlight of these differences in Table 2.

The intended application is for visibility culling in a rasterisation engine. A useful heuristic for

obtaining good accuracy for point samples in practice is to set parameters (frame buffer resolution,

bit depth of depth buffer and near and far planes) similar to that of the desired output parameters.

For maximum accuracy, these factors should be set in accordance with the Nyquist limit.

Sub-sampling the intended rendering resolution is beneficial, however, since it enhances perfor-

mance by minimising frame buffer reads and reducing the required fill rate, this allows accuracy to

be traded for speed. We have found sub-sampling to be necessary when trying to achieve the opti-

mal combination of accuracy and performance. Although accuracy is reduced, sub-sampling results
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Figure 12: The Visibility Cube. A sample of several visibility cubes over a surface. The visible geometry (of
several teapots) has been projected onto the cubes.

Ray Casting Rasterization

Geometry Infinitely thin half-line Sheared frustum. Size depends on
sample resolution (pixel size).

Z-Fighting – Aliasing in the Z-buffer results in
visual interlacing of polygons
of similar depth.

Near/Far Clipping – Near and far planes may cause near
or far geometry to be omitted.

Small Polygons In the traditional sense of sampling, Small polygons are never “missed”,
insufficient sampling results in rather only the nearest polygon
polygons being omitted. intersecting a pixel frustum is

selected.

Table 2: Aliasing: Ray-Casting vs. Rasterisation. Ray-casting and rasterisation do not produce identical
results. We list several differences and catalogue the different types of aliasing artefacts that affect visibility.

only in the occasional omission of small polygons (with little perceptual impact). This is known as

approximate culling or equivalently contribution culling [ASVNB00, BMH98, Zha98].

The concept of a “from-region” visibility set can be defined in terms of point samples. This

is simply the union of the visible sets of all possible point samples taken within the rectangular

region. Since there are an infinite number of these points, an exact evaluation via point sampling is

impossible. Instead, we form the union of a finite subset of point samples.

Insufficient sampling leads to aliasing artefacts that manifest as the exclusion of visible polygons

(false invisibility error) when rendering.
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Performance

The computation of a visibility cube consists of six renderings of scene geometry from a single

point. For each render, the frame buffer needs to be read in order to obtain the visible polygon

indices. In this section we examine the performance issues and propose several optimisations.

Firstly, we consider the rendering process. The generation of one side of a visibility cube is

similar to that of standard rendering, however several simplifications can be exploited:

1. Mapping is not required (texture maps, bump maps, environment maps, light maps)

2. Smooth shading (Gouraud/Phong) is not required

3. Lighting calculations are not required

4. All geometry in the preprocess is static

This implies that the rendering process can be achieved more efficiently than traditional rendering,

often approaching the peak efficiency of the graphics hardware. For further efficiency, our imple-

mentation incorporates the following:

1. High performance video/AGP memory is allocated for geometry when possible. Using (on

our hardware) 230mb of such memory allows for 8 million triangles to be stored.

2. Triangle stripping enhances performance, and allows more geometry to be inserted into high

performance memory.

3. Geometry could be uploaded to video/AGP while rendering using synchronisation extensions

to exploit CPU-GPU parallelism. We have not implemented this since we have not found the

amount of high performance memory to be a limitation. The large quantities of available high

performance memory is a consequence of unused texture memory.

Current hardware (we use an NVidia GeForce4 Ti 4600) claims to be able to transform 136

million vertices per second. Already, top end hardware, such as the ATI Radeon 9700, claims to be

able to double or even triple this. In practice, we achieve 17 million triangles per second throughput.

Since our samples are taken within the scene bounding box, the slow-down is due mainly to an

insufficient fill rate, since nearby triangles consist of many pixels.

Any acceleration technique that can be applied to traditional point rendering can also be applied

to visibility cube rendering. We implement frustum culling using bounding spheres. This acceler-

ates our throughput by a factor of 4.2. We optimise the process by noting that six views (partitioning
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the full angular domain) need to be computed from the same point. We note that each of these six

(infinite) frusta are bounded by four planes from a shared set of six. These six planes are well de-

fined, and are those six that intersect the center and embed any two edges of the visibility cube. We

classify the bounding spheres with respect to the six planes once, and use this classification for all

six sides.

We consider the utilisation of point-based occlusion techniques as an area of future investigation.

It should be noted that during our preprocess, visibility information that has already been computed

is exploited (see Section 4.2.2).

The second main issue is that of frame-buffer reading. This is often a bottle neck. Wonka et

al. [WWS00] claim that this accounts for approximately 54% of their run-time. This is most likely

due to the fact that they only render simplified scenes (their 8 million triangle scene is represented

by a much smaller building “facade”), and thus may exaggerate the frame buffer read times for more

general scenes. Frame buffer reading consists of a considerably smaller part (20%) of our run-times.

The performance of frame buffer reads has not improved at the same rate as triangle render-

ing. The read bottleneck is due to limitations on bus technology. Older UMA (Unified Memory

Architecture) hardware such as the SGI Visual Workstation are on par with current hardware (Intel

Pentium 4 with GeForce 2/3/4). Frame buffer reads (RGBA channels) occur at approximately 46

million pixels per second (for 512x512 pixel blocks). Much older UMA hardware such as the SGI

O2 only read at 11 million pixels per second.

In Section 4.6 we give several suggestions on how specialised hardware could be engineered in

order to enhance visibility cube rendering and frame-buffer processing.

4.1.2 Uniform Sampling

For our purposes, uniform sampling is a naı̈ve solution to the sampling problem (see Figure 13a).

With this approach, under-sampling may result in unacceptable error, while over-sampling may lead

to prohibitive execution costs. An adaptive sampling method is necessary.

4.1.3 Adaptive Sampling

We assume a rectangular sample domain embedded in 3-space. To begin with, point samples are

evaluated at the corners of the rectangle. Then a decision is made whether or not to refine the

rectangle into four subregions based on an error minimisation heuristic. The user specifies an error

threshold (covered in this section). The subdivision proceeds recursively, in a manner equivalent



CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 58

to the depth first generation of a quad-tree. A rectangular subregion, with point samples at its four

corners, is treated as a node in the quad-tree. Corners are shared between parents and children and

among siblings in the quadtree. It is important to cache shared point samples in order to prevent

redundant computation. A typical adaptive subdivision is illustrated in Figure 13b.

(a) (b)

Figure 13: Uniform vs. Adaptive Sampling. (a) A uniform distribution of visibility cubes on a 2D sur-
face. (b) A non-uniform distribution of visibility cubes generated by an adaptive subdivision. The adaptive
sub-division attempts to minimise both error, and the number of samples required. Effectively, a quad-tree
structure is built on the surface.

Basic Error Metric

Adaptive subdivision requires a decision at each quad-tree node (rectangular subregion) whether

or not to continue subdividing. This decision is based on a heuristic that employs a sample-error

metric to establish, given four corner point samples, if any interior view points are likely to contain

additional polygons.

Ideally, areas with high frequency changes in visibility should be sampled more densely. Our

first attempt is to explicitly encode the normalised difference between visibility samples. Given four

point samples, s0, s1, s2, s3, we define:

Err(s0..3) = 1−min3
i=0

(
|⋂3

j=0 sj |
|si|

)
(5)

Err() returns 1 iff there are no elements common to all the visibility samples and 0 iff they are

identical.

This metric admits an efficient implementation and works well in practice. However, it does

not account for the angular distribution of error across the field of view. If error does occur, a

more uniform distribution of this error has perceptual merit, in contrast to a (potentially) clustered
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distribution.

Strict Error Metric

Before we detail our stratified error metric, we would like the reader to consider an alternative. Let

us define a new heuristic as follows:

diff(x1, x2, x3, x4) =

{
1 if x1 = x2 = x3 = x4

0 otherwise
(6)

Err′(s0..3) = 1−
∑N

i=1 diff(s0(i), s1(i), s2(i), s3(i))
N

(7)

We assume that the pixels of each visibility cube are enumerated consistently from 1 to N . We

define sj(i) as pixel i of sample j. Where Err returns 0 iff every sample sees the same polygons,

Err′ return 0 iff each sample generates the same visibility cube. This adds an extra constraint: it is

not sufficient for a polygon to simply be seen by all samples, it must be visible in exactly the same

directions/pixels.

The heuristic defines a measure of image based similarity. It is even possible for each sample

to see exactly the same set of polygons, but for Err′ to still return 1. It should be clear that if four

samples see the same polygons, at the same pixels (i.e., they see the same images), then it is highly

improbable that further refinement is necessary.

This measure is infeasible in practice, since 0 error will only occur when samples are very near

each other. It is also likely that the error heuristic will increase excessively as the distance between

sample points grows. In the next section we present a stratified metric that provides a compromise

between Err and Err′.

Stratified Error Metric

The error distribution problem can be solved by partitioning each visibility cube into a fixed number

of angular sub-regions or strata1. To ensure a reasonably uniform error distribution, the error among

corresponding sub-regions must fall below a certain threshold. Let sab be the visibility set of point

sample a in angular sub-region b. The revised error metric over d sub-regions is defined as:

Err′′(s0..3) = maxd
k=0

(
1−min3

i=0

(
|⋂3

j=0 sjk|
|sik|

))
(8)

1An angular sub-region/stratum is the direct analog of a (generally convex) region of the pixelated surface of the
visibility cube. We use only rectilinear partitions.
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If d = 1, then this metric is equivalent to that defined by Err. Similarly, if d = N (for N pixels

on the visibility cube), then this metric is equivalent to that defined by Err′.

In practice, a minimum distance constraint is necessary to enforce termination, where an ar-

bitrarily small movement in the view-point results in a large change in visibility. Without this,

excessive subdivision may result. Although this implies that we may not refine areas of very high

change, we take the union of these samples when calculating the visibility set for the cell thereby

aggregating these differences, i.e., it is only those objects that are invisible at the corners, yet be-

come visible within the approximated surface that will be erroneously omitted. Given that the size

of this surface is small (as determined by the minimum distance constraint), the magnitude of the

error and the (temporal) duration of the error tends to be small, although we have not yet found a

theoretical bound on the maximum error.

Treating and Exploiting Manifold Meshes

Another approach that improves the error heuristic is the exploitation of specific scene properties.

For instance, many scenes consist of manifold objects with interiors that do not represent valid

view-points. In this case, each of the four point samples can be classified as interior or exterior.

Equation 8 is applied to each case independently. We denote the set of exterior and interior samples

as E and I , respectively. Some simple properties are: |E|+ |I| = 4 and E ∩ I = ∅. Two thresholds

te and ti are defined. We subdivide iff any of the following conditions hold:

• |E| = 1 Single exterior point does not provide sufficient information for a final decision.

• |E| > 1 and Err′′(E) > te. This is the difference between samples, considered only at valid

camera positions.

• |I| > 1 and Err′′(I) > ti. If the interior difference is high, then there is a good chance

that intermediate point samples will be external. For example, the interior samples might lie

inside different objects.

To classify sample points as internal or external, a half-space comparison is made against the

plane of any polygon in the visible set. A point in the same half-space as the normal of a visible

polygon is considered exterior. Caveat: in practice, discretisation errors typically cause a few pixels

from backfacing polygons to be visible along the silhouette of an object. To counter this, the polygon

that contributes the most pixels is chosen as the half-space classifier. This classifier selection can be

efficiently integrated into the processing of the visibility cube buffers.
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4.2 Algorithm Framework

We have shown how an adaptive algorithm may be used to sample visibility from a rectangular

surface. In this section, we detail how this algorithm can be applied to traditional cell partitioning.

4.2.1 Visibility From a Volumetric Region

Consider a scene bounding box, P . This can be partitioned by a single rectangle R, orthogonal to an

axis of P . The partition can be situated anywhere along this axis. We refer to the two partitions as

P− and P+. Observe that all sight lines from P+ to P− must intersect R. A polygon visible at the

end of a sight segment is visible from all points along it. It follows that any polygon that intersects

P− and is visible from a point in P+, must be visible from R. Now, the set of visible polygons

V (P+) from cell P+, can be expressed as:

V (P+) = V (R) ∪ I(P+) (9)

V (R) represents the visibility from the rectangle R, and can be evaluated with the method discussed

in Section 4.1.3. The set I(P+) is simply those polygons that intersect P+, and can be computed

with a simple polygon-cuboid intersection algorithm. Similarly, V (P−) may be expressed as:

V (P−) = V (R) ∪ I(P−) (10)

In general, the visibility set, V (C), of a cell, C, is the union of those polygons that intersect C

and those polygons visible from the surface of C.

4.2.2 Hierarchical Subdivision

A hierarchy of cells is generated in a top down fashion by starting at the scene bounding box and

alternating the axis of subdivision. Deeper levels of recursion repeat the process on these sub-cells.

This is effectively equivalent to building a kd-tree (for k = 3), where only the leaf nodes are main-

tained. The subdivision process of a cell is illustrated in Figure 14. Our method for maintaining,

reusing and distributing cells is also discussed in this section.

The grid of cells is generally non-uniform, since subdivision is terminated when the number of

visible polygons falls below a set threshold, or triangle budget [KS99]. We adopted this threshold

technique, from Saona-Vásquez et al. [SVNB99], since this is a straightforward solution to enforce

upper bounds on rendering computations (and hence frame rates).
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(a) (b)

(c) (d)

Figure 14: Hierarchical Subdivision. (a) A typical cell within the hierarchy. (b) The chosen splitting plane
within the cell. (c) New samples are generated on the sub-division. (d) The original cell is now partitioned.
Note, that when a cell is subdivided, only those samples on the partition plane need to be evaluated. The
samples shown in (a) need to be cached. Should both cells terminate subdivision after (d), then the samples
shown in (c) would be obsolete and can then be deleted from the cache.

Infinite subdivision could occur if the number of polygons visible from some point is greater

than the triangle budget. This is prevented by setting a maximum depth for the implicit binary

hierarchy. In practice, this event is unlikely since the polygon throughput required for acceptable

frame-rates is generally much greater than the number of polygons visible from any single point (or

small neighbourhood around a point). For certain applications (e.g., flight simulators), a worst case

situation can occur. A level of detail approach is often more suited for this type of scene.

When the subdivision of a cell ceases, all samples on the surface of the cell are aggregated. The
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union of the set of visible polygons for all samples is computed and stored with the cell.

An advantage of top-down hierarchical subdivision is that smaller sub-cells that do not con-

tribute significantly to culling, are never evaluated in contrast to the bottom-up subdivision of van

de Panne and Stewart [vdPS99].

A second advantage is that previously computed information in the upper levels of the hierarchy

may be exploited to accelerate the evaluation of the lower levels.

Superset Simplification

In theory, the set of polygons visible from a cell, C, is a superset (allowing for potential omissions

due to aggressive sampling), of those visible from any view-point, q, within C: V (q) ⊆ V (C)

∀q ∈ C. This allows the process of splitting a view cell to be optimised. When generating samples

on the splitting rectangle of a cell, only polygons known to be visible (V (C)), need be rendered.

This implies that the cost of building a point sample decreases as its depth in the binary hierarchy

increases.

Although this optimisation can be applied to any from-region technique, the rate of decay for the

size of the superset is maximal only for exact and aggressive algorithms. Indeed, many conservative

algorithms perform poorly when applied to large view cells.

Cache Management

Using a top-down approach for many existing algorithms is a non-trivial optimisation problem.

Firstly, it is necessary to consider the efficiency of the algorithm with respect to the size of view

cells in the upper level of the hierarchy since these tend to be rather large. Secondly, it is important

to consider whether or not sufficient benefit is gained by evaluating a given cell, rather than simply

evaluating its child cells directly.

Typical implementations result in a set of cells being generated on a uniform grid. Each grid

element can then be expanded into a hierarchy. Cohen-Or et al. [COFHZ98, NFLYCO99] use a

fixed two level hierarchy. Durand et al. [DDTP00] also use an initial grid.

Our approach, however, has an interesting property that allows us to evaluate a parent cell, and

then split the parent (if so desired) into two child cells, at the same cost as generating the child

cells initially. This requires the ability to partition an existing rectangular region, while being able

to disseminate the correct visibility information to the partitions, without (significant) additional

computation. Since we use a sample based approach, all the samples belonging to the parent region
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are distributed to their associated partitions. In order to keep the cost low, we cache all samples

until they are no longer required.

The process proceeds as follows (illustrated in Figure 14): First, we assume that the visibility

(surface samples) from some cell C has been computed (Figure 14a). Second, if subdivision is

indicated (depending on subdivision criteria), a splitting plane is chosen (by a heuristic) that splits

the cell into C− and C+ (Figure 14b). Third, the required samples on the shared boundary of C−

and C+ are computed (subject to the visibility set V (C)) (Figure 14c). Fourth, the cells in the

negative and positive half-spaces (as defined by the splitting plane) are propagated to C− and C+,

respectively (Figure 14d). Finally, cell C is deleted.

Removing Redundant Samples

Samples are considered redundant if they cannot possibly be used again. During sub-division of the

cell hierarchy, parent cells are split into child cells. At this point, cached samples are fetched and

distributed to the correct cells. When a cell has terminated its sub-division process, its aggregate

visibility is computed as the union of the point sample visibility.

In order to save memory resources, it is necessary to compute which of the samples associated

with the current (now finalised) cell are redundant, and that will be used again. Any given sample

can be shared among a maximum of eight cells, and a minimum of two. In the former case, the

sample must exist as a shared corner of eight cells, in the latter case, the sample must be interior to

a shared side of two adjacent cells. It is also possible for a sample cell to lie along the edges of a

cell.

We associate a counter with each sample. When subdivision terminates for a cell, the counter of

each sample on the cell is updated. Samples interior to the cell wall are incremented by four, samples

interior to a cell edge are incremented by two, and samples on a cell corner are incremented by one.

When the counter reaches eight (and eventually, the counter of every sample will reach eight), the

sample is deleted, since it must fall interior to a set of cells that will no longer be subdivided.

For most samples, the initial counter values are set to zero. Samples interior to a side of the

initial scene bounding box are set to four, those on an edge are set to six, and on a corner are set to

seven.

The depth first traversal that builds the hierarchical subdivision thus allows for the early removal

of samples.
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4.2.3 Algorithm Analysis

The adaptive nature of the algorithm makes it difficult to obtain a useful upper bound. So, in order to

obtain a useful complexity estimate, we make several simplifying2 assumptions. First, we note that

the core operation is generating samples on surfaces. We let ω be the surface area of the splitting

surface at the first level of the hierarchy (i.e., the area of the surface that splits the bounding box in

two). We let k be the number of samples on this surface. Our first assumption is that the sampling

rate of k
ω samples per unit area applies globally. Secondly, we assume that the bounding box is a

cube. Thirdly, we make the assumption that the computed spatial hierarchy is balanced, and is of

depth d. From this, we determine the number of cells, c, to be 2d.

Since the volume is a cube, the total new sampling surface area at any level in the hierarchy is

equal to ω. This implies that the total sampling surface area is dω. kd samples are therefore required

to sample all the required area. This can also be expressed as k log c samples.

In terms of triangles rendered, we select a scene size n. Assuming exactly 6n polygons are

rendered at each point (ignoring frustum culling), we deduce that 6nk log c polygons are rendered

in total.

If we account for superset simplification, however (Section 4.2.2), the situation is markedly

different. The current upper bound O(nk log c) is only tight if every polygon is visible from every

cell. This is an unrealistic case, and is certainly not one to which any occlusion algorithm should be

applied.

To account for superset simplification we define a rate of decay α that is assumed to be constant.

This is the factor by which the size of the visibility set decays per level, on a parent to child basis.

For example, if α = 0.6, the size of the visible set of some cell is 0.6 times the size of the visible

set of its parent. In practice, α remains fairly constant, however it can grow towards 1 in the deeper

levels of the hierarchy. It becomes 1 when the child cell sees exactly the same as its parent. This is

clearly a condition for terminating subdivision, although in practice the rapid changes in visibility

exhibited by most real scenes prevents most cells ever getting close to 1. As the depth complexity

of the scene increases, the average value of α tends towards 0.5.

Using this rate of decay, the actual number of polygons per sample rendered at depth q can be

expressed as nαq−1. The total number of polygons rendered P can be refined to:

P = kn + knα + knα2 + . . . + knαd−1 (11)

⇒ P = kn(α + α2 + . . . + αd−1) (12)

2Simplified, but typically true in practice.
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Asymptotically, this implies that P is of O(kn log d) that becomes O(kn log(log c)). The series

converges if α < 1, and this is witnessed in practice. Each additional level, requires a similar

number of samples to the previous level. However, each sample can exploit the visibility information

from the parent, thus becoming less expensive to compute. Similarly, the addition of an individual

cell within the new level (by subdivision), is less expensive than a cell in the previous level, since:

a) the splitting planes are, on average, half the surface area and b) the cost of rendering the samples

on this reduced surface is decreased by the decay. It should be noted that asymptotically, the cost of

a sample tends to become “free”. This is not quite true, since frame buffer read times always add a

(non-zero) constant per sample. For all practical cases, though, it is unlikely that frame reads will

dominate (currently reads comprise 20% of the preprocess). Should this occur (due to an unlikely

advance in rendering performance), the algorithm will run in O(kd) time.

The final consideration is that of k. In most cases it is likely that k is some function of n.

However, it is also a function of the geometric scene distribution and general configuration, the

error threshold and the subdivision heuristic. The way k relates to n is thus dependent on the nature

of the scene. We have found that in practice, k is considerably smaller than n, usually around four

orders of magnitude smaller.

4.3 Results

In this section we present empirical results illustrating the practicality of our aggressive algorithm.

We present results to quantify the performance of our technique and this is contrasted with several

existing techniques. We also consider it necessary to quantify the error produced, and we give

empirical evidence showing that for the scenes tested, the error can be suppressed in order to give

acceptable image quality.

4.3.1 Performance

We begin by showing that the algorithm can be used to preprocess scenes3 that cannot be processed

effectively by existing solutions. We use a large forest scene consisting of 5 million polygons (see

Figure 15). Nearly 200 trees, each highly detailed, consisting of 25 000 polygons each. A “small”

forest scene, consisting of 2 million polygons is also tested. This scene consists of 80 trees, also of

25 000 polygons each (see Figure 16). Note: internally, we make no use or assumption of instanced

geometry.

3Videos of the aggressive algorithm are available at: http://www.cs.uct.ac.za/s̃nirenst/Vis
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Figure 15: Test Scene – Forest Model. A very complex forest model consisting of 5 million polygons. Each
tree consists of 25 thousand polygons. The image shows the output of our algorithm. 11.9% of the scene is
rendered from the region containing the view point.

For reference, we pre-process the forest scene used by Durand [Dur99]. This scene consists of

approximately 1450 trees4, at 1000 polygons each (see Figure 17). The scene is far more densely

occluded than our large forest scene, implying that more culling can be performed.

We also test a large, complex town scene comprising 1.35 million triangles (see Figure 18a).

This scene is realistic, and consists of a mix of simple and detailed objects (see Figure 18b).

First, we consider the visible set size. Being an aggressive algorithm, it is to be expected that

the visible subset is less than or equal to the results of an exact solution. Durand et al. [DDTP00]

cull 75% of their scene, resulting in a visible set of 25%. In comparison, we are able to cull 99.21%

from the model (see Figure 19). Where the extended projection algorithm took 17 seconds per cell,

our technique takes 2.57 seconds per cell.

Second, we consider the effectiveness of the algorithm when applied to our large forest scene.

91.32% of the scene is culled on average (see Figure 20a). This allows for an acceleration of 11.5

times that of naı̈ve rendering. We have no knowledge of any existing alternative algorithm capable

of preprocessing this scene to a significant degree. Indeed, although the exact algorithm presented in

4And several flamingoes.
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Figure 16: Test Scene – Forest Model. A complex forest model consisting of 2 million polygons. Each tree
consists of 25 thousand polygons. The image shows the output of our algorithm. 11% of the scene is rendered
from the region containing the view point.

Figure 17: Test Scene – Durand’s Forest. The forest scene used by Durand et al. [DDTP00]. This flat forest
consists of 1450 trees of 1000 polygons each.

Chapter 6 is capable of processing it, without the possibility of error, the time required is excessive

for a single workstation. The large forest model is processed at a rate of 9.23 seconds per cell for a

total time of 1 hour and 19 minutes.
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(a)

(b) (c)

Figure 18: Test Scene – Town Model. (a) A complex town model consisting of 1.45 million polygons. The
detail objects within this scene consist of up to 40 thousand polygons each. The image shows the output of
our algorithm. 1.4% of the scene is rendered from the region containing the view point. (b) A highly detailed
object (rope) within the scene. (c) The buildings are honeycombed, allowing sight lines right through them.

The town scene is processed at 2.5 seconds per cell for a total time of 21 minutes and 20 seconds.

An average of 1.45% of the scene was determined to be visible (see Figure 20c).

Using the error threshold, we see that it is possible to trade quality for performance. Using the

2 million polygon forest scene we see that a 32% performance increase was gained by increasing

the threshold. This tradeoff was less effective for the town scene. We discuss the reasons for this
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Exp. Scene Size Threshold Time/Cell No. Cells Visible Set

1 Forest 5m 0.2 9.23s 512 8.68%
2 Forest 2m 0 5.48s 512 14.84%
3 Forest 2m 0.999 4.17s 512 13.63%
4 Durand et al. [DDTP00] 1.45m 0.99 2.57 400 0.79%
5 Town 1.35m 0 2.5s 512 1.45%
6 Town 1.35m 0.999 2.46s 512 1.35%

Table 3: Aggressive Algorithm/Preprocess – Performance Results. The Experiment column is the experiment
reference number. Each experiment number corresponds to one preprocess and analysis. They may be used
to cross-reference the error results in Table 4. The Scene column indicates the type of scene. The Size column
gives the size of the scene (in triangles (m = millions)). The Threshold column indicates the error threshold
used in the preprocess (see Section 4.1.3). The Time/Cell column gives the time taken per cell. The Number
of Cells column shows the number of cells into which the bounding box was subdivided (512 = 8 × 8 × 8
and 400 = 20 × 20). The Visible Set column provides the percentage of visible geometry averaged through
all cells. The scenes were all sampled using 512× 512 pixel item buffers.

Exp Avg. Error Max. Error CR Count Avg. Max. CR Tot. Max. CR

1 0.338% (886) 6.293 % (16497) 267.27 0.032% (84) 0.607% (1591)
2 0.315% (826) 1.3 % (3408) 453.42 0.016% (42) 0.09% (236)
3 0.888% (2328) 5.88 % (15414) 605.91 0.083% (218) 0.66% (1730)
4 - - - - -
5 0.116% (304) 1.034% (2711) 14.2 0.107% (80) 0.745% (1953)
6 0.117% (307) 1.034% (2711) 14.97 0.105% (275) 0.745% (1953)

Table 4: Aggressive Algorithm/Preprocess – Error Results. The Experiment column is the experiment ref-
erence number. Each experiment number corresponds to one preprocess and analysis. They may be used to
cross-reference the performance results in Table 3. The Average Error column gives the average image error
for a sampled camera path (details in Section 4.3.2). The values in parentheses are the absolute number of
pixels corresponding to the percentage (a 512 × 512 pixel view is used for our tests). The Maximum Error
column is the image error for the frame with the largest error. The CR Count column gives the minimum
number of connected regions (CR) into which the erroneous pixels may be partitioned. The CRs are averaged
over the frames in our test path. The Average Maximum CR column is the average size of the largest CR
in each frame. The Total Maximum CR column is the size of the maximum CR over all frames of the walk
through. The scenes were all sampled using 512× 512 pixel item buffers.

in Section 4.3.2. We also discuss the quality implications of the tradeoff in the next section. Given

the exponential shape of this sensitivity, end user application (i.e., a person wishing to preprocess a

model) should use a logarithmic scale to manipulate the threshold scale.
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Figure 19: Test Scene – Aggressive Culling of Durand’s Forest. The forest scene used by Durand et
al. [DDTP00]. From the cell of the given view point (yellow sphere), 0.8% of the scene is visible. Visi-
ble polygons are shown in green, while invisible polygons are drawn in red.

In order to ascertain scalability with respect to the number of cells, we have executed the prepro-

cess for our 2 million polygon forest scene using a varying number of cells. The results are shown

in Figure 21.

This demonstrates the logarithmic dependence of time on the number of cells (see Section 4.2.3).

There is a horizontal asymptote, that is offset by a positive non-zero value from the origin. This limit

is approached when the rate of decay (see Section 4.2.3), converges to 1.

4.3.2 Error

We present error results for the various models in Table 4. The error results are found by replaying

a walkthrough of several hundred frames. For each frame, the visible geometry is rendered in green

(flat shaded and unlit). Similarly, the “invisible” geometry is rendered in red. We count those pixels

that are red, and consider this to be the number of erroneous pixels or error in the frame. See

Figure 22 for an example.

We were unable to obtain error results for Durand’s scene using this evaluation method, since

there is no reasonable path through the scene. Without such a path, geometry gets clipped to the
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(a) (b) (c)

Figure 20: Aggressively Culled Scenes – Large Forest, Small Forest and Town. Sample output from our
aggressive algorithm. Green polygons are visible and red polygons are invisible. The view point used is that
of the yellow sphere. (a) 4 million polygons are culled (21.6% of the scene is visible) from the given view
point. (b) 1.9 million polygons are culled (10.3% of the scene is visible) from the given view point. (c) 1.1
million polygons are culled (2.5% of the scene is visible) from the given view point.
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Figure 21: Scalability by Cell. The average time taken per cell (vertical) is plotted against the number of
cells by which the bounding box is subdivided. As evidenced, there is exponential decay in the time taken
per cell. The model used is our 2 million polygon forest model.

near-clipping plane, allowing invisible geometry to show through. When comparing our results to

those of the exact algorithm developed in Chapter 6, we find that the aggressive result is 10.2%

smaller than the exact result. We do not use this method for comparison in the other scenes, since it
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Figure 22: Error Measure. A 1600×1200 screen shot from a walk through. Green polygons are those deter-
mined to be visible by our aggressive algorithm, while the red polygons are determined to be invisible. The
appearance of red pixels mark erroneous rendering. Shading and lighting are used for this image, although
our automated error evaluator uses constant colouring.

has little bearing on the actual image error.

We also utilise several connected region (CR) metrics. The CR count is the number of connected

regions of erroneous pixels (found per frame, by recursive search). Given a number of erroneous

pixels, the CR count constitutes information about the distribution of the error on the display. A

high CR count (with respect to error) implies that the error is fairly scattered, and will most likely

manifest as noise (more easily filtered by our visual system than coherent artefacts [Coo86]). A low

CR count (with respect to error) implies that the errors are clustered together, and are more likely

to be noticeable. We present the average error and the average CR count over all frames. We also

include the largest connected region in the walkthrough.

Consider the five million triangle forest model. An average of 8.68% of the geometry is visible.

This is a subset of the “truly” visible geometry. When evaluating the results of a walk through, we

found that 0.337% of the average frame comprised erroneous pixels. In isolation, this appears to be

very little, however the distribution of error is also important. Indeed, the largest error on any frame

was a significantly higher 6.293%. Our experiments have shown the error to comprise, of an average

of 267.27 disjoint connected regions. Indeed, on average, the largest connected region in each frame

(only those frames with error are considered), is only 0.016% of the frame. The largest connected

region in any frame in the walkthrough (consisting of several thousand frames), is 0.607%.

The other experiments show how our technique fared for other scenes, using small and large
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thresholds. The town scene resulted in lower average and maximum error, while the forest scene

resulted in more fragmented errors.
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Figure 23: Error vs. Threshold. The average pixel error for a walk through as a function of threshold.

We show how error is affected by error thresholding. The forest scene is particularly sensitive to

this threshold, as depicted in the graph of Figure 23, while the town scene is not. The reason for this

disparity, is that the forest allows for gradual changes in visibility as a view sample moves through a

region. In contrast, the town scene can have a very large change in visibility from one nearby view

sample to another (e.g., if an adjacent view sample crosses a wall). This large change in visibility

will force any reasonable threshold to continue subdividing, thus resulting in the consistent, low

image error shown in the figure.

Similarly, we show how the threshold relates to the average size of the connected regions in

Figure 24, and the maximum size of the connected regions in Figure 25. Despite the fact that the

average error is lower, the town scene results in a larger average connected region error, since when

an error does occur, it tends to be larger, because the town scene contains larger triangles than the

forest. The maximum connected region error is larger for the forest scene, although this is because

several viewpoints of the test path contain clusters of sub-pixel size polygons. Such regions are

usually perceived as noise and do not impact significantly on image quality.
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Figure 24: Average Connected Region vs. Threshold. The average size of the connected error regions (in
pixels) for a walk through as a function of threshold.
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Figure 25: Maximum Connected Region vs. Threshold.
The largest connected error region (in pixels) for a walk through as a function of threshold.
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4.4 Preprocessing Ray Space

In this section we 5 present an extension to the aggressive visibility algorithm presented earlier in

this chapter. This section covers the work of Sharpe et al. [SHN+03] in context.

Ray shooting is a simple yet computationally expensive task that is fundamental to many al-

gorithms in computer graphics and computational geometry [Aga92, AS93]. The “ray-shooting

problem” is to find the nearest intersection of a ray with a set of geometric objects, with respect to

the ray origin. Ray shooting is used to calculate form factors for radiosity, to create photon maps,

and is, of course, the central component of both classic and Monte-Carlo ray tracing. In this section

we present a new approach to accelerating ray shooting.

A naı̈ve approach requires that every ray is tested against every geometric primitive in the scene.

In order to reduce the number of ray-primitive intersection tests required, researchers have devel-

oped a range of acceleration schemes. The most popular schemes use spatial subdivisions, such as

binary space partition trees or uniform grids. We refer the interested reader to the thesis of Vlastimil

Havran for a critical survey [Hav00]. The goal of such schemes, is to reject trivially those parts of

the scene that cannot be intersected first by a given ray.

With the same objective in mind, we propose an approach based on Arvo and Kirk’s ray classi-

fication [AK87] technique. The original algorithm subdivides the scene using a 5D partition of ray

space. The algorithm classifies the query ray into a 5D cell and returns a candidate set of primitives

associated with this cell. Our key contributions are:

1. An algorithm that fully pre-processes the scene6, effectively pre-computing all candidate sets.

This allows for more efficient ray shooting after a once-off pre-process.

2. An upper bound on the candidate set size at run-time. This may be used to obtain upper time

bounds for run-time rendering.

3. A new technique for computing the candidate sets. Graphics hardware is exploited to accel-

erate the pre-process. Adaptive sampling is used to minimise error.

4. We present a method that accounts for occlusion within the candidate sets. This increases the

performance of the ray shooting by trivially rejecting all hidden primitives, while simultane-

ously decreasing the memory requirements (to feasible levels) for a full pre-process.

5The implementation of the proposed algorithm formed an Honours (4th year) project. The project team consisted
of Adrian Sharpe and Matthew Hampton. The project was proposed and supervised by Shaun Nirenstein. Additional
supervision was performed by James Gain and Edwin Blake.

6As opposed to the lazy evaluation used by Arvo and Kirk.
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In terms of application, this algorithm may be used to preview ray-traced scenes rapidly. The

aggressive nature of the algorithm may make the resulting images unsuitable for production re-

lease, although as a (possibly interactive) preview, this technique presents an excellent compromise

between quality and performance.

4.4.1 Brief Background

Since Rubin and Whitted [RW80], there has been much research devoted to ray-shooting acceler-

ation schemes. Most methods use 3D spatial subdivision in conjunction with a ray traversal algo-

rithm. Each cell or voxel contains a list of the primitives that are fully or partially contained within

it. The ray traversal algorithm traverses the cells along a ray in order. The list of the nearest cell is

tested first, so that if an intersection point is found within the boundary of the cell, no further cells

need be tested. However, if no intersection is found, or the intersection point is outside the cell’s

boundary, the primitive list within the next cell must be tested.

These schemes perform reasonably well in the average case (since a ray is more likely to first

intersect the near primitives that are tested first). However, a ray may still be tested against a number

of cells (and their contained primitives) before an intersection is found.

Arvo and Kirk [AK87] describe a subdivision of 5D ray space, that eliminates this costly traver-

sal of cells. A 5D cell is defined by a parallelepiped of ray origins in 3D (that we will call the origin

box) and a range of ray directions. It has a natural manifestation in 3D as a beam. If a beam does not

intersect a primitive then no ray in the 5D cell can either. This property is used to find a relatively

small candidate set for each cell.

A ray need only be tested against the candidate set of the cell that contains it. Classifying a ray

requires at most one tree traversal (this is reduced further in practice by using a caching scheme). In

the context of Arvo and Kirk [AK87], the purpose of the 5D subdivision is to function as a caching

mechanism. The candidate sets are evaluated lazily, the premise being that the cost of the candidate

set computation would be amortised over successive “cache hits” (i.e., successive rays with the same

classification).

This method is very memory intensive due to the deep level of subdivision required before

candidate sets are sufficiently small [SD94]. This is further exacerbated by the highly conservative

nature of these candidate sets7. The implementation presented by Arvo and Kirk is conservative.

Firstly, occluded primitives are not culled from the candidate sets see Figure 26), and secondly, the

7In the context of offline ray-tracing, this is the most cost-effective solution.
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Figure 26: Candidate Set Beam. A beam that intersects many polygons, but few are possibly visible from
the origin box due to occlusion. The polygons in the candidate set are solid, while polygons that are occluded
or are outside the beam are shown in wire frame.

beam used is a conservative overestimate of the optimal beam. This results in primitives outside of

the beam, being included as candidates.

Arvo and Kirk compensate for their conservative approach by truncating the candidate sets.

Primitives that are further than a specified distance from the origin box are omitted. The beam is

capped by a truncation plane and if a ray does not intersect any primitives in the candidate set, it

is projected onto the truncation plane and reclassified. This can be effective in many cases, but the

initial advantage of a single tree traversal and candidate set per ray is lost. It would be better to

evaluate which primitives are occluded and remove them.

Our technique is similar to that of Gotsman and Sudarsky [GSF99], however, their subdivision

scheme is optimised for visibility culling, rather than ray shooting8. Furthermore, their sampling

does not exploit graphics hardware (potentially leading to greater compromises in either time or

accuracy), nor does it effectively use the information of previously cast rays to minimise error.

4.4.2 5D Pre-processing

Our solution to the ray shooting problem is an adaptation of the aggressive visibility presented

earlier in this chapter, that allows us to generate candidate sets for a 5D subdivision similar, to that

of Arvo and Kirk. Using an aggressive technique results in an optimum candidate set being chosen

8Gotsman and Sudarsky subdivide directional space into only 8 components. Also, this subdivision only occurs
around the azimuth.
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for each 5D cell (with minimal false exclusion). All visibility determination is performed offline as

a pre-process. The algorithm is summarised in Figure 27.

Generate initial set of cells V
Set primitive budget to threshold
for each c ∈ V do

Subdivide( c )
next c

procedure Subdivide( c )
Compute Candidate Set of c
if ElementsIn(c) ≥ threshold then
{c−, c+} ← Split(c)
Subdivide( c− )
Subdivide( c+ )

end if
end procedure

procedure {c−, c+} ← Split(c)
Choose 5D splitting hyperplane for c such that:

ElementsIn(c−) + ElementsIn(c+) is minimised
Return {c−, c+}

end procedure

Figure 27: Ray-space Subdivision Algorithm. The subdivision algorithm begins by generating an initial set
of cells. These cells are then recursively subdivided until a threshold has been reached. The splitting routine
attempts to maximise the separation of the two subcells.

The Initial Classification

Only those cells whose origins lie within the 3D bounding volume of the scene need be evaluated.

For those rays with origins lying outside, but still intersecting the bounding volume, the origin can

be moved to the point of intersection and reclassified.

We begin by constructing six cells. The origin box of these cells is the scene bounding box. To

specify the angular bounds we note that the direction of any ray can be associated with its dominant

axis, denoted +X , −X , +Y , −Y , +Z or −Z. Using this association, Arvo and Kirk [AK87]

define an isomorphism between the sphere of directions, and the surface of an axially aligned cube.

Initially, it is convenient to partition the direction space by the six dominant axes (discussed in

Section 4.4.2). This leads to the six initial cells.
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Adaptive Subdivision

A spatial subdivision of the 5D ray space is used to accelerate ray shooting. At each level of the

subdivision the size of the candidate set is reduced. At run-time, this reduces the computation cost

of finding the first ray-primitive intersection by reducing the total number of required intersection

tests.

Assuming a balanced hierarchy (roughly true in practice), the cost of ray intersection becomes

O(log n + c), where n is the number of cells, and c is the user set candidate set maximum. The

logarithmic traversal time, assumes that the tree has been balanced as a post-process. This is hugely

beneficial, considering that in practice, log n is very small, and c may be chosen to be arbitrarily

small. No other practical techniques limit the number of intersection tests prior to finding the first

ray-primitive intersection.

Separation and Effectiveness

Separation refers to how the primitives are split and shared between the child candidate sets. It is

used to measure the effectiveness of a subdivision. An effective subdivision will share very few

primitives between the child cell and thus have high separation. The effectiveness of a subdivision

is important for deciding how to subdivide a cell, and whether a given subdivision is beneficial.

Subdivision strategies

In this section we outline the heuristics that we used to guide our subdivision process.

• Naı̈ve subdivision A subdivision strategy in which each dimension is divided in turn at each

level, up to a specified maximum depth, is the simplest to implement and test. It produces a

complete k-D tree, where every branch has the same height.

• Maximum Candidate Set Size The naı̈ve subdivision strategy is improved by changing the

terminating criteria so that subdivision stops early when the candidate set size drops below

a specified user maximum. A maximum depth limit is also provided to stop subdivision

from continuing indefinitely. Assuming the maximum depth is never reached (true for a vast

majority of cells), this will bound candidate set size. This produces a k-D tree that is roughly

balanced in practice.

• Most Separated Dimension This strategy involves looking at the set of all possible subdi-

visions and choosing the one that gives the best separation. An optimal solution for this is



CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 81

extremely expensive. However, aggressive visibility sampling can also be used to perform

this process. A limited sampling of the five possible splitting hyperplanes is used to approxi-

mate the separation (a similar approach is used by Gotsman et al. [GSF99]). The subdivision

with the most separation is then chosen and fully sampled. This produces an axis aligned

binary space partition tree.

Optimisations

For a given scene the cost of the preprocess is largely related to the number of samples taken. We

employ a number of simple optimisations to decrease this overhead:

• The candidate set for a child cell is always a subset of the candidate set of its parent. There-

fore, to determine visibility for a child cell, only the primitives visible in the parent cell need

to be rendered while sampling. Fewer primitives results in faster rendering of visibility sam-

ples at deeper levels of the subdivision (see also Section 4.2.2).

• For any cell, the list of pertinent samples necessary for determining visibility is stored with

the cell. These samples are reused in child cells, if possible. A sample can only be reused

if the current subdivision does not cross its bounds (see Section 4.4.2 and 4.4.2). Reuse

can be increased by storing more that just a visibility list with each sample, for example,

by breaking the rendering into a grid of lists. The reuse of samples drastically reduces the

sampling cost, since only the splitting surface needs to be sampled for any subdivision (see

also Section 4.2.2).

• Caches are also implemented to facilitate the reuse of samples across subdivision branches.

This allows samples to be reused on neighbouring cells that do not share a parent (that are

in separate branches of the tree). All requests for samples are directed through the cache. A

sample is created if it does not already exist. Samples are eliminated from the cache when

they are no longer needed (see also Section 4.2.2).

Constructing Candidate Sets

The candidate set for a 5D cell is the union of the primitives that intersect the origin box and the

primitives visible by rays that originate from the surface of the origin box, with direction bounded

by the angular range of the cell.
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Figure 28: 5D Point Sample. A visibility cube with point-sample frustum restricted to the subset of angles
required (uv bounds (0, 0) to (0.6, 0.5)). The inset shows a typical rendering for a full face of a direction
cube. The shaded region is all that need be rendered for a restricted point-sample.

In order to determine what is visible from a surface we sample the set of rays that can origi-

nate from that surface. This is done using two complementary methods: point-samples and area-

samples. For a point-sample, we sample many rays originating from a single point on the surface

(see Section 4.1.1). Conversely, for an area-sample, all the rays sampled are parallel, but have a

differing origins (see Chrysanthou et al. [CCOL98]). Both can be created using graphics hardware.

The details are as follows:

Point-samples

Within the context of ray space, the desired point-sample is a restricted visibility cube. The initial

six way subdivision of ray space means that only one face of the visibility cube need be rendered

for any sample. Furthermore, the two angular bounds restrict the portion of the face that has valid

samples. To ensure that the entire rendering is useful, the point-sample is created by rendering the

scene using a perspective projection, where the frustum reflects the angular bounds of the 5D cell.

This is illustrated in Figure 28.

In our implementation, each point-sample reveals what is visible from a point over the full range

of the angular bounds of a 5D cell. If this set of visible primitives is manipulated as a single set of

items, one cannot determine in which direction a particular primitive in the set is visible, but merely
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that it is visible in some direction from the point-sample origin. This has efficiency implications,

since a subdivision of one of the angular dimensions requires that all existing point-samples must

be discarded. One cannot reuse the sample in this case because the direction information has not

been preserved.

The reuse of samples greatly accelerates the performance of this technique, especially for large

scenes. Having to discard a sample is an expensive operation. We reduce the effect of this by break-

ing up a point-sample into a number of sets, each representing an angular region of the rendering.

This is done by splitting the rendering into a grid of separate samples on the visibility cube. When

an angular subdivision takes place the relevant lists are copied into a new sample. Although this

reduces the problem to a certain degree, it does not remove it. The only way to do so, is to store the

entire rendering for each point-sample. Even with image compression, the memory requirements

for this would be excessive.

Point-sampling results in a large number of directional samples for a small number of origins.

Improving the coverage of sampled origins, involves the evaluation of more point-samples. An

adaptive sampling of the surface is used to achieve this. The four corners of the surface are sampled

and then further samples are taken recursively in the manner of a quad-tree. Termination is governed

by an error minimising heuristic.

We use a heuristic similar to that described in Section 4.1.3. Although this heuristic was de-

veloped for full directional visibility cubes for determining from-region visibility, we use it with

almost no adaptation for our point-samples9. This heuristic uses an image based similarity measure

between adjacent samples. The user defines the error threshold. When the number of common items

is above the threshold then subdivision stops.

The angular restriction to the visibility cube introduces a number of sampling problems, illus-

trated in Figure 29. Sampling can leave significant portions of the scene un-sampled. Primitives

in these portions will be categorised falsely as invisible if the terminating condition is satisfied for

the outer samples. This problem arises because all of the rays sampled by the point-samples are

clustered around a few key origins. The problem is further exacerbated when the angular bounds

are small, since the resulting gaps become larger. It is particularly significant since the un-sampled

regions are near the origin box surface.

In order to improve the coverage of the ray samples and to avoid the sampling gaps that are

created by point-sampling, an alternative sampling methodology, termed area-sampling is also used.

9The contribution that each polygon makes to the error measure is scaled by the number of sample rays that intersect
it.
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Area-samples

Rather than sampling a range of ray directions from a single origin, an area-sample shoots parallel

rays from a range of origins across the surface. This is achieved through a generalisation of the

restricted visibility cube used for point-samples. Point-sampling uses perspective projection, with

the centre of projection on the surface and the front clipping plane very near to the surface. The

area-samples use an orthographic projection in the specified direction with the sampling surface

itself as the front clipping plane.

We adaptively sample visibility from the surface starting with four samples at the four angular

extents. However, the original termination heuristic leads to unnecessary oversampling on the four

surfaces of the origin box that are orthogonal to the dominant direction. This is because the or-

thographic projection includes a shearing operation used to achieve the desired ray direction. This

shearing is particularly significant for area-samples taken from these surfaces and can stretch in-

significant polygons such that they contribute too much to the error measure. Scaling the polygons

contribution by the shearing factor produces a better weighted sampling.

Area-samples and point-samples have complementary properties. Where point-samples cannot

be reused after splitting an angular dimension, area-samples cannot be reused after splitting the x,

y or z dimension. The reason is the same: the only information kept with a sample is the list of

visible primitives.

There are also sampling problems with area-samples (see Figure 29). Where point-samples

have un-sampled regions close to the origin box surface, area-samples leave more remote regions

un-sampled. It is also evident that point-sample gaps are larger in scene volume, when the sampling

surface is large, whereas area-sample gaps are larger when the sampling surface is small.

Because of their complementary nature, the best solution uses a combination of point-samples

and area-samples. The nature of the sampling problems of each sample type suggests that more

area-samples should be used in the early stages of subdivision when the sampled cell surfaces are

large. More point-samples should be used deeper in the hierarchy, when the cell surfaces are smaller.

Uniform sampling of origin box surfaces is required for efficiency. Since child cell samples

are based on their parent cell’s visibility, it does not prove useful to adaptively sample a surface

to further depth than the parent did. No extra information can be recovered. Similarly, it is not

useful to render the item buffers at the same or higher resolution for the child cells. Instead, the

maximum adaptive sampling depth and the sampling resolution can be reduced as the subdivision

takes place. This ensures that no time is spent rendering more samples than are absolutely necessary

for visibility determination.



CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 85

(a) (b)

Figure 29: Un-sampled Space. Sampling problems with both point-samples (a) and area-samples
(b). The polygons in the un-sampled regions (U) will be classified as invisible (rendered in wire
frame).

4.4.3 Preliminary Results

The techniques presented in this section have been fully implemented. A number of scenes were

processed using a dual Pentium 4 1.7Ghz with 1.2GB of RAM and an NVidia G-Force 4 Ti 4600

graphics card. We have evaluated the performance of the preprocessor, the accuracy of the visibility

information and the degree of ray shooting acceleration.

Performance

The length of the preprocess depends mainly on the total number of samples that are rendered. This

number is directly related to the user specified maximum cell depth and maximum sample depth

parameters. We use both the Maximum Candidate Set Size (A) and the Most Separated Dimension

(B) strategies (see Section 4.4.2). Table 5 and 6 give the preprocessing parameters and results,

respectively, for a number of trials using three different scenes.

Both subdivision strategies effectively reduce the average and maximum number of triangles for
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Scene Size Cell Sample Sub.
Depth Depth Strategy

1 roomsbig 45k 10 6 A
2 roomsbig 45k 15 6 A
3 rooms 5k 10 6 B
4 roomsbig 45k 15 6 B
5 hilltop 485k 12 6 B

Table 5: 5D Preprocessing input parameters. A is the Maximum Candidate Set Size subdivision
strategy while B is the Most Separated Dimension strategy (see Section 4.4.2).

Time Cells Tri/Cell Cell Depth Sample Depth File Size
h:mm Ave. Max. Ave. Max. Ave. Max. (MB)

1 0:25 5263 625 4944 9.9 10 4.7 6 29
2 1:51 82192 318 2312 14.5 15 5.0 6 143
3 4:37 1514 402 1122 9.0 10 5.6 6 2.4
4 27:25 12172 695 2348 13.0 15 5.1 6 29.8
5 38:43 17972 535 14267 11.9 12 5 6 93.0

Table 6: 5D Ray-space Pre-processing results.

each candidate set. Trial 5 successfully processed a large scene and reduced the average number of

triangles per cell to 0.11% of the original scene size. The maximum number of triangles for a cell

was 2.94% of the scene size.

Subdivision strategy B took significantly longer because of the extra processing involved in

choosing the splitting hyperplane. However, this increased pre-processing time is balanced by a

reduction in pre-processed data file size. The maximum file size was 93Mb, only 2.5 times larger

than the scene file. This is compared to Strategy A, whose maximum file size was 50 times bigger

than the scene file. We have yet to integrate an effective compression scheme [vdPS99].

Accuracy

The accuracy of the preprocessor is evaluated by comparing images produced using the pre-processed

visibility files against images produced using a reference renderer. For our evaluation the reference

renderer used a bounding volume hierarchy (BVH) [Hav00] to find the closest intersection. The

reference ray tracer produces an exact image. We calculate the number of incorrect intersections

using our 5D visibility information. Table 7 shows the accuracy statistics of the trials.

Trial 1 and 2 produce acceptable rates of error. Trial 5 had a higher average error rate of 3.65%,

but this is acceptable considering the size of the scene and the depth of the pre-process. The max-

imum error rate was 82.19%, a substantial proportion of the image. This image, and most of the
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Min. Max. Ave. St. Dev.

1 0.00% 1.79% 0.03% 0.17%
2 0.00% 9.58% 0.22% 0.98%
5 0.00% 82.19% 3.65% 10.78%

Table 7: Error rate statistics for ray traced images.

5D BVH
Size Ave. Int/Ray × Speedup Ave. Int/Ray × Speedup

1 45k 594.94 75.51 40.46 1112.21
2 45k 126.20 356.57 40.46 1112.21
4 45k 200.59 224.33 40.46 1112.21
5 485k 290.34 1670.45 61.96 7827.63

Table 8:
Ray shooting acceleration statistics.

others with error rates above the average, had view-points near a falsely excluded polygon. This

polygon counted for the majority of the error. It should be noted that this type of error is very

infrequent. The maximum error for this scene is nearly 7.3 standard deviations from the mean.

Ray Shooting Acceleration

The success of the technique for accelerating ray tracing depends directly on its ability to reduce the

number of intersection tests required. Table 8 highlights the performance of the technique. The ×
Speedup column is relative to the naı̈ve approach (intersecting every ray with every primitive). The

speedup using our technique is also compared to the speedup using a bounding volume hierarchy

(BVH) column.

For all scenes the number of intersections per ray was vastly reduced compared to a naı̈ve

approach to ray shooting. 5D pre-processing successfully reduced the size of the candidate set to a

manageable level.

The traversal of the 5D tree requires one comparison per node, thus with a maximum overhead

of 15 floating point comparisons, the candidate size can be reduced to as little as 0.1% of the total

scene size and consequently reduce the number of required intersections to as little as 0.03% of the

total scene size. These are promising results, considering that a hybrid of this technique with a BSP

tree or bounding volume hierarchy offers the potential for substantial further reductions.
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4.4.4 Conclusion (5D Subdivision)

We have presented a novel approach to accelerate ray shooting. An offline 5D subdivision pre-

process reduces the candidate set for a ray to a manageable size based on both visibility and occlu-

sion. The results (in Table 6) reflect success in bounding both maximum and average ray intersec-

tions per ray.

Indeed, we effectively limit the number of intersections per ray to at most 2.5% of the scene

size (but on average, less than 1%). This is at the cost of a small error: on average, less than 4%

of rays return the incorrect primitive on very large scenes. For the smaller scenes, the average error

rate is closer to 0.3% (Table 7). Furthermore, our technique completes in practical time, even for

large scenes.

4.5 Parallelising Hardware Accelerated Visibility

We have investigated the parallelisation of the visibility algorithm presented in this chapter on a

cluster of machines. The key idea is to distribute the pre-process onto multiple machines in order to

benefit from the graphics hardware on each machine.

Parallelising this algorithm presents a challenge. Effectively utilising the sample cache in such

an environment is non-trivial. We have considered various models: a supervisor-worker architec-

ture, a distributed supervisor architecture, and a brute-force sweep architecture (most suited to a

cluster of low-end machines). Each have their own benefits and costs.

For a full account, see Oberholster et al. [OLBN01a] and Oberholster and Lewis [OLBN01b].

4.6 Hardware Extensions

There are two groups of hardware extensions that we propose to accelerate our visibility algorithm.

The first group focuses on improving rendering performance, while the second group focuses on

solving the frame-buffer read bottleneck.

4.6.1 Accelerating Rendering

For the purposes of our algorithm, we list the following features that are required for maximum

performance:

• A 24 or 32 bit Z-buffer
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• A 24 or 32 bit frame-buffer

• The fastest rasterisation possible

• Occlusion/contribution testing should also be included

• Fast hardware vertex transformations

• Support for storing geometry on the video card (preferably) or AGP memory

Contemporary graphics hardware has many feature (programmable pipelines, anti-aliasing, etc.)

that are not required by our technique. All aspects relating to improved image quality can be stripped

from the hardware. This can save on die space, heat maintenance and cost.

Unlike standard rendering, the visibility algorithm is roughly predictive. It is possible to build

a queue of camera positions and directions that will need to be rendered. This implies that multiple

graphics pipelines can be used to parallelise the algorithm. Given the simplicity of the required

hardware, it may be possible to integrate these pipelines on a single graphics card, where each

graphics processing unit (GPU) shares the same geometric data for efficiency.

4.6.2 Accelerating Buffer Feedback

The maximum rate that pixels can be read from a graphics card on standard PC hardware is approxi-

mately 46 million pixels per second. This limitation is due to the current bus architecture standards,

not the graphics hardware.

The bus architecture required to achieve accelerated item buffer reads is already in a prototyping

phase. Intel Corporation have developed a technology called PCI Express [Int03]. This architecture

will replace the Advanced Graphics Port (AGP). The first iteration of the new PCI architecture is

faster than the AGP 8× standard. More importantly, however, is that unlike its AGP counterpart,

this high bandwidth is bidirectional.

4.7 Conclusion

We have presented an novel aggressive visibility algorithm that efficiently preprocesses difficult

scenes at the cost of possible image error. The algorithm exploits graphics hardware for additional

performance.

A kd-tree is constructed in a top down fashion. Adaptive sampling is performed on the surfaces

of the kd-tree nodes to obtain the set of visible geometry. This sampling exploits graphics hardware
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to enhance performance. An efficient scheme is used to share samples between cells and to minimise

the memory resident lifespan of these samples. We have developed an efficient heuristic to guide

the sampling process with the goal of minimising error.

Results show this technique to be significantly faster than existing techniques. Also, we show

that this technique can be used to preprocess even the most complex of scenes effectively. Image

error is minimal.

We extend this technique to a 5D sampling of ray-space. A 5D kd-tree is built in a top-down

fashion, attempting to limit the number of triangles in each node. At run-time this information can

be used to accelerate the shooting of rays for general scenes.

Preliminary results show the 5D version of the algorithm to be more prone to errors than its

3D counterpart. In most cases though, the error is small. The number of ray-triangle intersections

required per ray is between 1% and 2.5% of those required by a naı̈ve algorithm.



Chapter 5

The Selective Stabbing Problem

A difficult problem that we have encountered in our research is that of determining exactly whether

or not one polygon can be seen from some viewpoint on another polygon. In the next Chapter we

show how that such a solution can be used as a tool to solve for the exact set of polygons visible

from a region.

A natural generalisation of the stabbing problem [TH93b] is a problem we term the selective

stabbing problem. In Chapter 6 we show how this generalisation may be cast as an exact polygon

to polygon visibility query.

The general problem asks one, or both, of the following questions:

1. Given two sets S and M of convex polygons. Does there exist a line that stabs all polygons

in S and misses all polygons in M .

2. Given two sets S and M of convex polygons. Compute a representation of the set of lines

that stab all polygons in S and miss all polygons in M .

In this chapter we present an efficient solution to the selective stabbing problem. The general

problem and solution can be expressed outside the context of visibility. We discuss it in such a

manner. In the paper by Nirenstein et al. [NBG02], the exact visibility algorithm is presented

without the generalisation of the selective stabbing algorithm. The work in this chapter supersedes

the theory component of this paper.

The term stab refers to incidence and miss refers to non-incidence. An answer to Question 2

implicitly answers Question 1, in that such a line must exist if and only if the set of lines requiring

representation is non-empty. We refer to lines in the solution set of Question 2 as stab-miss lines.

Figure 30 illustrates the principle of selective stabbing.

91
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Figure 30: Selective Stabbing. The cyan polygons correspond to those elements in the S (“must hit”) set,
while the magenta polygons correspond to those in the M (“must miss”) set. The problem is to show the
existence of a line that stabs all elements of S, and misses all elements of M . (a) shows a case where (by
example), a stab-miss line (s) must exist. (b) shows a case where clearly no stab-miss line can exist.

The classical stabbing problem can be cast as the special case where M = ∅. Teller and

Hohmeyer [TH93b] present a solution for stabbing oriented convex polygons. We too make the

assumption that all the polygons in S are oriented, thereby admitting stabbing lines oriented in only

one direction. Blocker polygons may be used to block stabbing lines in one or both directions. To

achieve the latter, each blocker polygon can be treated as two blockers that are identical, except for

their orientations.

Our solution consists of two major phases. The first being the construction of the set of stab-

bing lines for the set S. These stabbing lines are represented as a polytope in Plücker space (see

Section 3.1.5).

In the second phase, the set of stabbing lines is “trimmed” by the set of blockers M . Using the

Plücker space polytope representation, we show how constructive solid geometry may be used to

achieve this trimming.

Finally, if the whole polygon is trimmed away, then the stab-miss line set is empty. If the whole

polytope is not trimmed away, then the remaining structure is intersected with the Plücker hypersurface.

If no intersection exists, then again the stab-miss line set is empty. If an intersection does exist, then

the intersection points can be mapped to the (non-empty) stab-miss set.
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5.1 Phase 1: Constructing the Set of Stabbing Lines

The existence of a stabbing line through a single (non-degenerate) polygon is clearly the affirmative.

Similarly, a stabbing line through two (oriented) polygons must exist, unless the angle between the

normals of the two polygons is obtuse. For the case of S = ∅, the result is true or false depending

on the problem definition.

The computation of the set of stabbing lines in the case where |S| < 3 is a special case. For

completeness, in this section we present a general solution for |S| ≥ 3 similar to that of Teller and

Hohmeyer [TH93b]. We also give a brief discussion of the reasons for the cases |S| < 3 creating

such difficulties.

We are most interested in |S| = 2, since in Chapter 6 we shall see that visibility queries always

involve selective stabbing where |S| = 2. We therefore provide a rigorous exposition of the prob-

lems encountered in this case and show how they can be solved efficiently. We present a specialised

algorithm for the computation of a line-space representation for this case that is simpler, and more

efficient than for the general case. In order to achieve this, we derive and exploit several novel

mathematical results for the two-polygon case.

The notation used in this chapter adheres to that of Chapter 3.

5.1.1 Computing the Set of Stabbing Lines for |S| > 2

Ideally, we would like a generic representation of the set of stabbing lines for a set S. This

set should be both easy to represent and to manipulate. Working directly on the surface of the

Plücker hypersurface is difficult due to its curvature. Instead, we build a polyhedral representation

of this line set. The intersection of this polyhedron with the Plücker hypersurface gives the desired

set of points. This polyhedron may be constructed as follows:

For a line s to stab a set S, it is necessary and sufficient that all edges from the polygons of S pass

by a directed version of s with the same relative orientation. This is illustrated in Figure 31. Given

the (appropriately directed) set of edges of these two polygons e1, e2, . . . , en, verifying whether s

is a stabber is equivalent to testing whether:

Dπ(Π(s)) ≥ 0,∀π ∈ {Π(e1), Π(e2), . . . ,Π(en)} (13)

We call each one of these constraints, an edge constraint of the set of polygons S.

The projective space P
5 is an augmentation of R

5 by two additional hyperplanes at positive and

negative infinity (see Section 3.1). These additional hyperplanes are useful as an elegant means to
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Figure 31: Stabbing constraints. Directed lines e1 to e8 correspond to the edges of two quadrilaterals (the set
S). Note that the stabbing line s passes all e1 to e8 to the left. This condition is both necessary and sufficient
for stabbing.

handle uniformly those cases that appear as singularities in other parameterisations. Recall that the

Plücker six-tuples are unique to within a positive scale factor. It is therefore possible to normalise a

projective six-tuple by dividing through by one of its components, and then excluding that compo-

nent (normalised to one). This, of course, assumes that the normalisation component is non-zero. It

is trivial to pre-rotate the scene geometry so as to prevent this from occurring (i.e., to ensure that all

stabbing lines can still be represented). This process is equivalent to projecting down to R
5. This

approach was also taken by Teller and Hohmeyer [TH93b].

After this projection, the function Dπ(x) : P
5 → R becomes D′

π(x) : R
5 → R where D′

π(x) =

π0x3 + π1x4 + π2x5 + π3 + π4x1 + π5x2. In this case, the first element has been selected as

the normalisation component, and thus x0 = 1 and may be omitted. The six tuple that was x =

(1, x1, x2, x3, x4, x5) becomes the tuple x = (x1, x2, x3, x4, x5) in R
5. Where the old form of

the equation Dπ(x) = 0 (x ∈ R
6) defined a hyperplane through the origin in R

6, D′
π(x) = 0
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(x ∈ R
5) defines a less restricted hyperplane in R

5. Using D′ rather than D, the solution space for

the constraints of a stabbing line s given in Equation 13 may be used to define a volume in R
5. This

volume completely represents the set of stabbing lines for the set S. This construction and mapping

is depicted in Figure 32a and Figure 32c.

Figure 32: Plücker-complex Construction. (a) A typical setup between two polygons (the quadrilaterals),
and one occluder (the triangle). (b) A visualisation of the mapping of the edges of the triangle occluder to
a volume in R

5. Again, G is a visualisation of the Plücker hypersurface. (c) A visualisation of the mapping
of each edge of the quadrilaterals to form a volume in R

5. (d) The subtraction of the occluder volume from
the initial volume. The remainder fully represents the set of lines between the quadrilaterals that miss the
occluding triangle.

Definition 5.1 The stabbing polyhedron of a set of convex polygons S, is the set of points (in

Plücker coordinates) satisfying the set of constraints in Equation 13, where e1, e2, . . . , en are the

edges of the polygons in S.

There are various techniques that may be used to extract a polyhedral representation from several

half-space intersections. We used a version of the double description method [AF92] to extract the
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extreme points. With this and the hyperplane information, we construct the full face lattice/graph

of the polyhedron using a combinatorial face enumeration algorithm similar to that presented by

Fukuda and Rosta [FR94].

The technique presented in this section is valid for any cardinality of S. What separates the

cases |S| < 3, is that the half-space intersections do not form a polytope, rather they define a

convex, necessarily unbounded polyhedron. We discuss this next.

5.1.2 Unboundedness in the Set of Lines Through One Polygon

The case where |S| = 1 results in an unbounded stabbing polyhedron in R
5. This can be shown eas-

ily: consider any (non-degenerate) polygon p. Now consider a stabbing line � of p, intersecting p at

a point q. � can be swivelled at q with two directions of freedom and still remain a stabber of p. This

implies that those components of Π(�) corresponding to direction (the first two/three components

depending on the nature of the projection to R
5) can be chosen arbitrarily. The constraints imposed

by p are therefore unable to bound Π(�) in line-space, thereby demonstrating the unboundedness of

the stabbing polyhedron of S.

5.2 The Set of Lines Though Two Polygons

In this section we investigate the structure of the Plücker polyhedron of a set S, where |S| = 2. We

have developed a method that obtains a bounded representation of this line set in worst case optimal

time.

5.2.1 Proof Outline

We begin by proving a lemma characterising those lines that are extremal stabbing lines. These

lines correspond to the intersection points of the boundary edges of the stabbing polyhedron of S

with the Plücker hypersurface.

These intersection points can be found by computing the dual of the (now characterised) ex-

tremal stabbing lines. In order to compute the complete stabbing polyhedron, it is sufficient to find

the extreme points of the polytope.

We prove that no such points exist by showing that each boundary edge of the stabbing poly-

hedron is in fact an infinite line. This is achieved by proving that all the polytope boundary edges

are parallel. This is true for all pairs of polygons, however, for simplicity we only show this for
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a special case. The special case suffices, since all configurations can be transformed to this case

(McKenna and O’Rourke [MO88] use a similar argument).

In order to prove parallelism, we show how the direction vectors of these boundary lines (in R
5)

can be computed explicitly. We then show that these directions are the same.

Next, we show that any point within the polytope may be expressed using the Minkowski-Weyl

theorem1. Using this representation, we characterise those points that lie on the Plücker hypersurface.

This leads to a bound on the intersection between the stabbing polyhedron and the Plücker hypersurface.

This bound may then be used to compute a Plücker polytope that has the same intersection with the

Plücker hypersurface as its unbounded superset.

Using these results, we give an O(mn) worst case optimal algorithm. m and n are the number

of vertices in the two respective input polygons. This enumerates the extreme rays of the stabbing

polyhedron and then caps it.

5.2.2 Details

Firstly, we assert that the general construction (as in Section 5.1.1) can indeed be unbounded (this is

evidenced for any pair of convex polygons that lie within distinct planes). This is counter-intuitive,

since the argument used for |S| = 1, in Section 5.1.2, does not hold. Given a set consisting of two

distinct polygons S where |S| = 2, it appears to be impossible to choose any of the components

of the Plücker mapping of a stabbing line arbitrarily, without violating one of the edge constraints.

This might, at first sight, hint at a consistently bounded representation for the set of stabbing lines of

S. However, solving for the solution space of the edge constraints of S always gives an unbounded

polyhedron.

We begin with a characterisation of the set of extremal stabbing lines (see Section 2.5.2) gener-

ated by two polygons.

Lemma 5.1 Given two convex polygons A and B, where A consists of n edges, and B of m edges,

(1) there are exactly n × m extremal stabbing lines between A and B, (2) these stabbing lines

correspond to every vertex-vertex combination between A and B.

Proof: A stabbing line is extremal iff it is constrained (incident) on four edges. Because A

and B are convex polygons, they can each contribute at most two edges. Since the edges of A are

coplanar, the intersection point of the two contributing edges must be a vertex of A. Similarly, the

intersection point on B must be a vertex of B.

1I.e., as a convex combination of extreme vertices and rays.
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We note that there are n vertices in A and m vertices in B. We also note that there are n ×m

possible combinations of A to B vertex-vertex pairs. Every such combination of vertices (equivalent

to a combination of four edges) gives an extremal stabbing line, and every extremal stabbing line

must be generated by a pair of vertices from A to B.

In Section 3.5.2, we see that four lines in general position generate exactly two lines by inci-

dence. Let us consider an extremal stabbing line of polygons A and B. This line is determined by

four edges, and is simply the line through the vertex defined by the intersection of one edge pair of

A, and the vertex defined by the intersection of another edge pair of B.

We note in passing, that by extending these edges to lines, we find a second line is incident on

the four lines, namely the line k, where the plane of A intersects the plane of B. This line is incident

on every line in the plane of A and every line of the plane of B (projectivity handles the incidence

of parallel lines arising from parallel edges).

Selective stabbing is by definition invariant under invertible affine transformation2. The exis-

tence of a stab-miss line s, for a stab set S and miss set M is equivalent to that of the stab set T (S)

and miss set T (M), where T is comprised of only a rotation and a translation. Similarly, given the

stab-miss set P for stab set T (S) and miss set T (M), the stab-miss set for S and M , is simply the

pre-image T−1(P ).

We continue our proof for the case where exactly one of the two polygons of the stab set S is

embedded in the x = 0 plane. We note that any scenario can be transformed into this case using

a consistent translation and rotation of the geometry. It is therefore sufficient to prove consistent

unboundedness for this case.

Theorem 5.1 Given two distinct lines �1 and �2 in the primary plane x = 0 (in R
3) and two distinct

lines �3 and �4 in a different plane B (also in R
3), the direction �r of line p + λ�r in R

5 defined by

p + λ�r = {x ∈ R
5 : D′

�1
(x) = 0 and D′

�2
(x) = 0 and D′

�3
(x) = 0 and D′

�4
(x) = 0} is a function

only of the plane B.

Proof: Denote the intersection point of �1 and �2 as a, and denote the intersection point of �3

and �4 as d. Let b, c, e and f be points on �1, �2, �3 and �4 respectively, such that a �= b, a �= c,

e �= d and f �= d.

p+λ�r must lie within each of the four hyperplanes of it’s definition. This implies that the vector

2Since collinearity is preserved.
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�r must be orthogonal to the normals of the four defining hyperplanes. Using the generalised cross

product (see Section 3.5.1) and the plucker dual hyperplanes, we can express �r as follows:

�r =

∣∣∣∣∣∣∣∣∣∣∣∣∣

�i �j �k �l �m

0 0 0 by − ay bz − az

0 0 0 ay − cy az − cz

dzex − dxez dxey − dyex ex − dx ey − dy ez − dz

fzdx − fxdz fxdy − fydx dx − fx dy − fy dz − fz

∣∣∣∣∣∣∣∣∣∣∣∣∣
(14)

Where rows n = 2, 3, 4 and 5 correspond to the coefficients of D′
Π(�n−1)(x) = 0. The constant is

ignored, since it is only the hyperplane normals that are required to define �r. Vectors�i,�j, �k,�l and �m

correspond to the standard 5D Euclidean basis. The zeros in the top left of the determinant matrix
are due to the assumption that �1 and �2 are in the plane x = 0. This results in ax = bx = cx = 0.

Two levels of cofactor expansion gives the following for �r:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(dxey − dyex)(dx − fx)

∣∣∣∣∣ by − ay bz − az

ay − cy az − cz

∣∣∣∣∣− (fxdy − fydx)(ex − dx)

∣∣∣∣∣ by − ay bz − az

ay − cy az − cz

∣∣∣∣∣
(dzex − dxez)(dx − fx)

∣∣∣∣∣ by − ay bz − az

ay − cy az − cz

∣∣∣∣∣− (fzdx − fxdz)(ex − dx)

∣∣∣∣∣ by − ay bz − az

ay − cy az − cz

∣∣∣∣∣
(dzex − dxez)(fxdy − fydx)

∣∣∣∣∣ by − ay bz − az

ay − cy az − cz

∣∣∣∣∣− (fzdx − fxdz)(dxey − dyex)

∣∣∣∣∣ by − ay bz − az

ay − cy az − cz

∣∣∣∣∣
(dzex − dxez)(fxdy − fydx)

∣∣∣∣∣ 0 bz − az

0 az − cz

∣∣∣∣∣− (fzdx − fxdz)(dxey − dyex)

∣∣∣∣∣ 0 bz − az

0 az − cz

∣∣∣∣∣
(dzex − dxez)(fxdy − fydx)

∣∣∣∣∣ 0 by − ay

0 ay − cy

∣∣∣∣∣− (fzdx − fxdx)(dxey − dyex)

∣∣∣∣∣ 0 by − ay

0 ay − cy

∣∣∣∣∣

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)

By factoring and expanding, we obtain the following:

�r = dx

∣∣∣∣∣ by − ay bz − az

ay − cy az − cz

∣∣∣∣∣

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

fxdy + fyex − fydx − eyfx − dyex + dxey

ezfx − dxez − fxdz − exfz + dzex + fzdx

dxeyfz − dxezfy + dyezfx − dyexfz + dzfyex − dzeyfx

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(16)

We digress to consider the structure of plane B. This plane can be identified by a unit normal �n,

where �n = (nx, ny, nz) and a constant q in the standard way. Since point d lies on �3 and �4 and e

lies on �3 and f on �4, these three points must lie in plane B. �n may therefore be expressed in terms

of these points:

�n = (nx, ny, nz) (17)



CHAPTER 5. THE SELECTIVE STABBING PROBLEM 100

�n = γ((e− d)× (f − d)) (18)

⇒ �n = γ

⎛
⎜⎜⎝

(ey − dy)(fz − dz)− (ez − dz)(fy − dy)

(ez − dz)(fx − dx)− (ex − dx)(fz − dz)

(ex − dx)(fy − dy)− (ey − dy)(fx − dx)

⎞
⎟⎟⎠ (19)

⇒ �n = γ

⎛
⎜⎜⎝

eyfz − eydz − dyfz − ezfy + ezdy + dzfy

ezfx − dxez − fxdz − exfz + dzex + fzdx

fxdy + fyex − fydx − eyfx − dyex + dxey

⎞
⎟⎟⎠ (20)

Where γ is a normalisation constant. Similarly, it is possible to express q in terms of these

points, by substituting in any of d, e or f into the plane equation of B. We choose point d:

q = nxdx + nydy + nzdz (21)

⇒ q = γ(dxeyfz − dxezfy + dyezfx − dyexfz + dzfyex − dzeyfx) (22)

Returning to our derivation of �r (Equation 16), through substitution we can further simplify the

expression to:

�r =
dx

γ

∣∣∣∣∣ by − ay bz − az

ay − cy az − cz

∣∣∣∣∣

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

nz

ny

q

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(23)

The direction of �r is clearly dependent only on plane B since we fixed plane A. The scalar∣∣∣∣∣ by − ay bz − az

ay − cy az − cz

∣∣∣∣∣ is the x component of the cross product between two distinct vectors in the

direction of lines �1 and �2 respectively. Since these lines are embedded in x = 0 and distinct, the

normal must be non-zero. The special case where dx = 0 can cause problems. This is addressed in

Section 5.2.6.

5.2.3 Implications

We consider each extremal stabbing line. As shown in Lemma 5.1, each extremal line generated

by two polygons A and B originates from a vertex of A and terminates on a vertex of B. Each

such extremal line is associated with a vertex pair and each vertex is associated with two edges.

Since these are the two edges that meet at the vertex, each vertex pair is associated with four edges.

Extending these edges gives four lines, two in the plane of A, and two in the plane of B.



CHAPTER 5. THE SELECTIVE STABBING PROBLEM 101

As shown, the entire scene can be transformed by an affine function T such that polygon A lies

within x = 0. Using Theorem 5.1, we see that the direction of each extremal line in Plücker space

is the same, since this is a function of the plane of T (B), and all edges of T (B) lie within this

plane. Given that the extremal rays are all parallel, we deduce that the volume defined by the dual

Plücker half-space intersections is unbounded. Furthermore, we can deduce that the structure of the

stabbing polyhedron is that of a 4D polyhedron, extruded in direction �r.

5.2.4 Constructing the Stabbing Polyhedron in Worst Case Optimal O(nm) Time

In this section we present an efficient algorithm for constructing the stabbing polyhedron between

two polygons. By construction, we refer to the explicit determination of the skeleton (0 and 1

dimensional elements) of the polyhedron.

General algorithms that enumerate vertices from a half-space description may also be used.

Teller [Tel92a, TH93b] use the fact that the half-space intersection test is the dual problem of the

convex hull problem, and solve the dual problem. Vertex enumeration may also be performed

directly using the reverse search algorithm [AF92, AF96] or the double description method [FP96].

Our method uses the special structure of the stabbing polyhedron to perform enumeration more

efficiently.

Additional enumeration of the higher dimensional faces may be performed to construct the full

face lattice if desired (see Section 3.2.2). We use the full face lattice in Phase 2.

Given two polygons A and B, transform them using the affine transform T that rotates and

translates A onto the x = 0 plane. Let V be the set of lines, where each line corresponds to a T (A)

to T (B) vertex-vertex pair. If the number of vertices/edges in A and B are n and m respectively,

then the cardinality of V is exactly nm (best and worst case).

Each line in V can then be mapped to Plücker coordinates. The points where the edges of the

stabbing polyhedron intersect the Plücker hypersurface, is exactly the set Π(V )3. The direction �r

can be computed from any vertex-vertex pair within V (Theorem 5.1). Finally, the skeleton of the

Plücker polytope is the set of lines e1, e2, . . . enm, where ei = pi + λ�r, and pi is the i-th point in

Π(V ). Since this is a constant time operation on the elements of a set with cardinality nm, the

algorithm has the worst case optimal complexity of O(nm).

This result has the potential to accelerate the technique of Bittner [Bit02]. For each region,

Bittner needs to construct a stabbing polyhedron for every occluder inserted into, or tested against,

his occlusion tree. His current system uses an implementation of the general reverse search method.

3Since all lines in V are extremal stabbing lines.



CHAPTER 5. THE SELECTIVE STABBING PROBLEM 102

Our experiments using Komei Fukuda’s implementation of the double description method [FP96],

shows the general approach to take approximately 4ms to enumerate for a quadrilateral and a triangle

as input. Our direct construction is at least three orders of magnitude faster.

5.2.5 Capping the Stabbing Polyhedron

In order to cap the polyhedron we choose two capping planes (one for each open side of the poly-

hedron) with normal vector r̂. What remains is to find two constants h+ and h− for the hyperplane

constraints:

r̂ � (x1, x2, x3, x4, x5)
T ≤ h+ (24)

r̂ � (x1, x2, x3, x4, x5)
T ≥ h− (25)

such that these two constants result in hyperplane bounds for all those points that are incident on

both the stabbing polyhedron and the Plücker hypersurface.

For convenience we define the coefficients of the normalised vector r̂ as follows:

r̂ =
1
||�r||

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

nz

ny

q

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r1

r2

r3

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(26)

Let us consider a point a in polygon A, and a point b on polygon B. It is possible to represent

any point on A by a convex combination of the n vertices of A:

a =
n∑

i=1

αiai

n∑
i=1

αi = 1, αi ≥ 0 (27)

Similarly, it is possible to represent any point on B by a convex combination of the m vertices of

B:

b =
m∑

i=1

βibi

n∑
i=1

βi = 1, βi ≥ 0 (28)

This implies that the line ab has Plücker coordinates of the form:

Π(a, b) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑m
i=1 βibxi

−∑n
i=1 αiaxi∑m

i=1 βibyi
−∑n

i=1 αiayi∑m
i=1 βibzi

−∑n
i=1 αiazi∑m

i=1 βibzi

∑n
i=1 αiayi

−∑m
i=1 βibyi

∑n
i=1 αiazi∑m

i=1 βibxi

∑n
i=1 αiazi

−∑m
i=1 βibzi

∑n
i=1 αiaxi∑m

i=1 βibyi

∑n
i=1 αiaxi

−∑m
i=1 βibxi

∑n
i=1 αiayi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(29)
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Normalising this expression, and mapping the result from P
5 to R

5 gives 4:

Π′(a, b) =
1∑m

i=1 βibxi

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑m
i=1 βibyi

−∑n
i=1 αiayi∑m

i=1 βibzi
−∑n

i=1 αiazi∑m
i=1 βibzi

∑n
i=1 αiayi

−∑m
i=1 βibyi

∑n
i=1 αiazi∑m

i=1 βibxi

∑n
i=1 αiazi

−∑m
i=1 βibxi

∑n
i=1 αiayi

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(30)

In order to find an h+ and h− that will bound the Plücker dual of this arbitrary stabbing line, we

substitute Π′(a, b) into Equation 24:

Π(a, b) � r̂ =
1∑m

i=1 βibxi

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑m
i=1 βibyi −

∑n
i=1 αiayi∑m

i=1 βibzi −
∑n

i=1 αiazi∑m
i=1 βibzi

∑n
i=1 αiayi −

∑m
i=1 βibyi

∑n
i=1 αiazi∑m

i=1 βibxi

∑n
i=1 αiazi

−∑m
i=1 βibxi

∑n
i=1 αiayi

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r1

r2

r3

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(31)

=
1∑m

i=1 βibxi

r1

(
m∑

i=1

βibyi −
n∑

i=1

αiayi

)
+

1∑m
i=1 βibxi

r2

(
m∑

i=1

βibzi −
n∑

i=1

αiazi

)
+

1∑m
i=1 βibxi

r3

(
m∑

i=1

βibzi

n∑
i=1

αiayi −
m∑

i=1

βibyi

n∑
i=1

αiazi

)
(32)

≤ 1∑m
i=1 βibxi

|r1|
(

m∑
i=1

βi|byi | +
n∑

i=1

αi|ayi |
)

+

1∑m
i=1 βibxi

|r2|
(

m∑
i=1

βi|bzi | +
n∑

i=1

αi|azi |
)

+

1∑m
i=1 βibxi

|r3|
(

m∑
i=1

βi|bzi |
n∑

i=1

αi|ayi | +
m∑

i=1

βi|byi |
n∑

i=1

αi|azi |
)

(33)

<
1∑m

i=1 βibxi

|r1|
(

m∑
i=1

|byi | +
n∑

i=1

|ayi |
)

+

1∑m
i=1 βibxi

|r2|
(

m∑
i=1

|bzi | +
n∑

i=1

|azi |
)

+

1∑m
i=1 βibxi

|r3|
(

m∑
i=1

|bzi |
n∑

i=1

|ayi | +
m∑

i=1

|byi |
n∑

i=1

|azi |
)

(34)

<
1

minm
i=1bxi

|r1|
(

m∑
i=1

|byi | +
n∑

i=1

|ayi |
)

+

4We note that
∑n

i=1 αiaxi = 0, since all points of A are assumed to exist in the x = 0 plane.
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1

minm
i=1bxi

|r2|
(

m∑
i=1

|bzi | +
n∑

i=1

|azi |
)

+

1

minm
i=1bxi

|r3|
(

m∑
i=1

|bzi |
n∑

i=1

|ayi | +
m∑

i=1

|byi |
n∑

i=1

|azi |
)

(35)

Similarly, it can be shown that:

Π(a, b) � r̂ > − 1

minm
i=1bxi

|r1|
(

m∑
i=1

|byi | +
n∑

i=1

|ayi |
)

−

1

minm
i=1bxi

|r2|
(

m∑
i=1

|bzi | +
n∑

i=1

|azi |
)

−

1

minm
i=1bxi

|r3|
(

m∑
i=1

|bzi |
n∑

i=1

|ayi | +
m∑

i=1

|byi |
n∑

i=1

|azi |
)

(36)

Inequalities 35 and 36 are independent of scalars α and β. This implies that they are not func-

tions of the line ab, but rather are functions only of the vertices of A and B. Since a and b are

arbitrarily chosen points of A and B (respectively), this implies that they bound the Plücker duals

of all stabbing lines through A and B. Thus giving acceptable values for h+ (Equation 35) and h−

(Equation 36).

These bounds are not necessarily optimal. We consider the determination of tighter bounds

(or the proof that those bounds presented here are optimal) to be an area of future research. The

implication of loose bounds on these caps is that the bounding spheres used for accelerating CSG

(see Section 5.3.1) become more conservative, resulting in less trivial rejection.

Since the polytope exists in R
5 and not P

5, the coefficients of the capping planes are not subject

to geometric distortion. Distortion due to projectivity occurs at the stage where P
5 is projected down

to R
5. The projective plane that is chosen determines the size of the capped polytope in R

5.

With our current selection of a projective plane5 a singularity does occur, but this can be treated

(see Section 5.2.6). Using an alternative plane removes this problem, however, the formal proof

becomes more complex6. In particular, since the two polygons are disjoint convex sets, there must

exist a separating plane. It is this plane that should be transformed to be parallel to the Y Z plane.

The advantage is that no stabbing line can become parallel to this plane.

5.2.6 The Polytope-Plane Intersection Case

In Section 5.1.1, we show that the set of stabbing lines for a set S can be represented by a set of

constraints using a dual mapping of edges to half-spaces in Plücker coordinates. These constraints
5We orient the plane of one polygon to be parallel to the Y Z plane.
6We intend this as future work.
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(Equation 13) are depicted in Figure 32.

There is one case where these constraints may not fully constrain the set of lines to only those

stabbing S. This is the case where the plane of at least one polygon intersects another polygon in

the stabbing set. Experiments have shown that this case occurs frequently in practice.

For illustration purposes, we consider the case with two polygons. Let A and B be two convex

polygons, where the plane embedding B intersects A. Denote the set of points of this intersection

as the set I (see Figure 33). The only lines incident on I that should be part of the set of stabbing

lines, are those that stab B. Decomposing the set of constraints we obtain the following:

Constraints of A:

Dα(Π(s)) ≥ 0,∀α ∈ {Π(a1), Π(a2), . . . ,Π(an)} (37)

Constraints of B:

Dβ(Π(s)) ≥ 0,∀β ∈ {Π(b1), Π(b2), . . . ,Π(bm)} (38)

Where a1, a2, . . . , an and b1, b2, . . . , bm are the edges of A and B respectively. We note that

since constraints of B are defined using a greater or equal to relation, then all lines incident on I

and embedded in the plane B satisfy the constraints of B. Furthermore, any one of these lines are

incident on every edge to line extension of the edges of B. Indeed, each one of these lines � satisfies:

Dβ(Π(�)) = 0,∀β ∈ {Π(b1), Π(b2), . . . ,Π(bm)}.
One way to prevent this problem is to clip the polygon A against the plane of B at a distance of

ε, where ε is very small. This should work in practice, since the only error introduced is the possible

omission of those polygons stabbed only from the ε strip of A. Once again, this ε strip is a very

small area.

A better alternative, however, is to further constrain the set of lines. We introduce two additional

constraints (defined by two lines c1 and c2) that limit the lines on the plane of B to those lines

incident on B.

Lines c1 and c2 are defined as follows: Let p1 and p2 be the endpoints of the line segment I

(intersection of the plane of B with A). Let ap1 and ap2 be the edges of A incident on p1 and p2,

respectively. Define the plane P to have the normal vector p2 − p1, and to go through p1. Next, the

vertices of B are sorted by their signed Hausdorff distance from P . The vertex with the smallest

distance v1 is associated with p1, and the vertex with the largest distance v2 is associated with p2.

These two pairs of vertices define two lines, namely the supporting lines of I and B. Finally, c1

is defined to be the line with the same direction as ap1 , but translated so that it is incident on v1.

Similarly, c2 is defined to be the line with the same direction as ap2 , but translated so that it is

incident on v2.
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(a) (b)

(c)

Figure 33: Plane-Polygon Intersection Case. (a) A two polygon scene, where the plane of polygon B
intersects polygon A at line segment I . All directed lines in the plane of B that intersect I in the correct
direction through A will satisfy the edge constraints of these two polygons. This includes non-stabbers (b)
The supporting lines of I and polygon B. (c) The addition of two more constraints, defined by c1 and c2 will
constrain the set of lines in the plane of B to only those that intersect B.
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Adding the following constraints allows for an exact solution to this case:

Dπ(Π(s)) ≥ 0,∀π ∈ {Π(c1), Π(c2)} (39)

The general half-space intersection routine must be used in this case.

5.3 Phase 2: Incorporating Misses

In Phase 1, the set of lines stabbing the set of polygons S are computed and represented as a polytope

in R
5 using a Plücker parameterisation. In Phase 2, polyhedral set subtraction operations are used

to trim this polytope in order to remove those points corresponding to lines blocked by a second set

of polygons M .

5.3.1 CSG in Plücker Space

To remove those lines blocked by an element of M from the polyhedron, we have to find a more

explicit representation for the set of lines blocked. As for the stabbing polytope, we map the edges

of the occluder to hyperplanes in R
5 using the Π and D′ operators. The volume enclosed by the

intersection of the half-spaces described by these hyperplanes is used. We maintain the volume as

a set of oriented hyperplanes, O. This volume is necessarily unbounded. We depict the mapping of

an occluder to R
5 in Figure 32b, and the subtraction of this volume from the stabbing polytope in

Figure 32d.

Subtraction of one polyhedron from a polytope in five dimensions is a non-trivial task. Given an

algorithm that splits any polytope into two, each half falling on either side of a specified hyperplane,

it is possible to partition a polytope volume into a set, or complex (see Section 3.3), of polytopes

that have no faces crossing any hyperplane ofO. The polytopes that fall within the volume enclosed

by O can then easily be identified and removed. An intersection of the remaining complex with the

Plücker hypersurface would therefore provide the remaining set of lines (those unblocked by the

occluder).

This approach is applied iteratively, until either there are no polytopes left in the complex, or

there are no occluder volumes left to subtract. The former implies that the query polygons are

mutually occluded, the latter implies that they are mutually visible if and only if at least one of the

polytopes, within the complex, intersects the Plücker hypersurface.
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Splitting a Complex by a Hyper-plane

We develop an algorithm similar to the multi-dimensional polytope splitting algorithm of Bajaj and

Pascucci [BP96]. The original algorithm (discussed in detail in Section 3.3) maintains the whole

polytope-complex as a single face graph structure. Their algorithm has to traverse each face of each

dimension. For each of these faces, its children (k − 1 dimensional boundary elements) need to

be visited. This results in an O(pm) time algorithm for p faces and an average of m children per

face. Bajaj and Pascucci do suggest the use of a half-space range reporting algorithm to classify the

vertices more efficiently. We present an alternative that allows all faces to be classified efficiently.

The basis of our improvement is that for each top level polytope of the complex, we construct

two notationally disjoint7 top level polytopes when splitting, one on either side of the hyperplane.

This introduces redundancy into the representation, since shared faces are duplicated, but we gain

the performance advantage of rapidly isolating those polytopes that are split, thereby reducing the

set of polytopes traversed to those incident on the hyperplane. That is, the traversal is sensitive to

the number of polytopes in the zone of the hyperplane.

To query whether a polytope intersects a hyperplane, we use a 5D bounding sphere for a conser-

vative test. If this conservative test indicates a potential intersection, an accurate vertex-hyperplane

sidedness test is used to determine whether any two vertices lie on opposite sides (or on) the hyper-

plane. If and only if this proves true, will the polytope intersect the hyperplane.

Figure 34 gives pseudo-code for our algorithm (cf original in Figure 9). There are several

important differences between our algorithm and the original: In the first step the algorithm begins

with a conservative computation of those polytopes incident on the splitting hyperplane. In the

second step, the algorithm computes exactly which polytopes are split by the given hyperplane.

By the third step, all the primary numerical calculations have been performed. In the third step

all the split faces are traversed. The splitting occurs in a similar manner to the original algorithm.

Unlike the original algorithm, we have moved the secondary numerical calculation into the splitting

algorithm, so that the vertices arising from hyperplane-edge splits are evaluated when they are

determined. The advantage of this is that all the required information (i.e., the children vertices of

the split edge) are readily available. The original algorithm requires auxiliary data be to refer to the

two vertices of each split edge.

Another modification, required for a notationally disjoint complex, is the maintenance of a list

of those faces synthesised from the splitting operation. These are exactly those faces marked as

7Disconnected face lattices.
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Step 1 (Conservative intersection test)
S ← ∅
for each c ∈ C do

if boundingSphere( c ) intersects H then
S ← S ∪ c

endif
next c

Step 2 (Accurate intersection test)
for each s ∈ S do

Classify all the vertices of s either + or − .
if allVertices( s ) = − or allVertices( s ) = + then

S ← S \ s
endif

next s
Step 3 (Split zone of H)

for each polytope s ∈ S do
E ← ∅
for k = 1 to d do

for each c ∈ sk do:
if not allFacets( c ) = − and not allFacets( c ) = + then

- Create a new (k − 1)-polytope f (classified as = ) and connect it to each
(k − 2)-polytope in c classified as = .

- If k = 1, then compute the vertex associated with f by intersecting H with c.
- Create two polytopes c+ and c− connected both (down) to f and (up) to all

the k + 1 polytopes connected with c.
- Connect each (k − 1)-polytope in c classified as + to c+, and each one

classified as − to c−.
- Remove c from sk.
- E ← E ∪ f .

endif
next c

next k
- E′ ← E
- removePositiveConnectivity( E )
- removeNegativeConnectivity( E′ )
- s+ ← postiveFaces( s )
- s− ← detachPositiveFaces( s )
- s+ ← s+ ∪ E′

- C ← C \ s
- C ← C ∪ s+

- C ← C ∪ s−

next s

Figure 34: Improved Polytope Splitting Algorithm. The algorithm uses the following terminology: d is the
dimension, H is the hyperplane, sk is the set of all faces of polytope s of dimension k. C is the polytope
complex. Final optimisations are given in Figure 40.
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= . One can visualise this set E, as the face lattice of the polytope resulting from a cross section

through the complex by the given hyperplane.

Using E (computed per polytope), it is possible to sunder each polytope into two disjoint face

lattices. Firstly, the faces marked positive are removed and inserted in a new face lattice. Secondly,

a cloned version of the E set is attached to the new face lattice. In the representation of Bajaj and

Pascucci, the set E is shared. The redundancy introduced by our approach is exactly the cost of

storing those faces in the E set twice. It should be noted though, that the connectivity information

is not duplicated, as the set E is attached only to the negative complex, while the set E′ is attached

only to the positive complex. We illustrate this principle in Figure 35. Note that when we refer

to face lattice “unions” we mean the union of both the set of faces and the reconstitution of the

connectivity.

Removing a Polytope from a Complex

Bajaj and Pascucci do not describe an algorithm that will allow a polytope to be removed from

the complex. Using the original representation of the complex, we have derived a simple recursive

polytope subtraction algorithm. See Figure 36. A similar algorithm for our symbolically disjoint

representation is presented in Figure 37. The difference, is that when using the disjoint approach,

connectivity with other polytopes does not have be checked before deletion.

5.3.2 Optimising the CSG process

In order to achieve the most efficient CSG, we attempt to minimise the number of split operations

performed on the complex. We begin by considering a naı̈ve algorithm for solving the selective

stabbing problem. We use the notion of a hyperplane arrangement in line space as a way of deriving

our algorithm from first principles. This has two purposes: Firstly, we show how optimisations

can be applied successively, until our algorithm is found. Using some of the concepts resulting

from the arrangement derivation below, an algorithm that is more efficient than the one presented

in Section 5.3.1 is found. Secondly, the consideration of our algorithm in this context makes the

qualities that differentiate it from global visibility algorithms [DDP96, Pel93] explicit.

By inserting the hyperplanes of the stabbing polytope, along with the hyperplanes defined by

the Plücker duals of all occluder edges into a 5D arrangement, all isotopy classes are enumerated.

What remains, is to inspect each isotopy class (5D faces of the arrangement).

If one such class corresponds to a set of stab-miss lines, then the result of Question 1 (see Page
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(a) (b)
f- f+

e1- e2- e1+e4=e3 e2+

v2 v3 v4= v5= v1

f- f+

e1- e2- e1+e4=e3 e2+

v2 v3 v4= v5= v1

e'4=

v'4= v'5=

(c) (d)

Figure 35: Modified triangle splitting. (a) A triangle split by a hyperplane (see also Figure 8). (b) The face
lattice of the split triangle depicted in (a). (c) A reordering of (b) to show the shared faces E (highlighted set).
(d) The separating of E to generate a disjoint face lattice. Note that the face representations (e=

4 , v=
4 , v=

5 ) are
duplicated, but that the connectivity (the six edges crossing the boundary of E in (c)) remains the same (the
six (3+3) edges leaving the two regions in (d)).

procedure RemovePolytope( P )
for each child k of P do

if NumParents(k) = 1 then
RemovePolytope( k )

next k
delete( P )

Figure 36: Original Approach – Polytope Removal. An algorithm for removing a polytope from the original
polytope complex representation of Bajaj and Pascucci.
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procedure RemovePolytope( P )
for each child k of P do

RemovePolytope( k )
next k
delete( P )

Figure 37: Modified Approach– Polytope Removal. An algorithm for removing a polytope using our repre-
sentation.

91) is true, otherwise it is false. Question 2 (see chapter start) may be answered by reporting a list

of all isotopy classes corresponding to stab-miss lines8. Care must be taken not to include those 5D

faces of the arrangement that do not correspond to isotopy classes of real lines (i.e., those faces of

the arrangement that do not intersect the Plücker hypersurface).

As it stands, this algorithm runs in O(n5) time, since this is the complexity for constructing a

5D arrangement [EOS86, Ede87]. By constructing only those parts of the arrangement in the zone

of the Plücker hypersurface, this time may be reduced to O(n4 log n) [APS93].

The first optimisation is to compute only those isotopy classes that correspond to stabbing lines

of S. In a direct construction of an arrangement, determining this subset would be prohibitively

expensive. However, since the set of such isotopy classes can be computed explicitly (i.e., they

have the same intersection with the Plücker hypersurface as the stabbing polytope of Section 5.1),

we begin a priori with the single isotopy class of lines that stab all of S (to be refined later by the

inclusion of M ).

If we consider the polygon in Figure 38a to be a visualisation of the 5D stabbing polytope, we

see how it can be embedded into an arrangement of its defining hyperplanes (Figure 38b).

In general, we do not have to compute the whole subset of the arrangement that falls within the

stabbing polytope. It is more efficient to construct and inspect progressively, in a hierarchical fash-

ion: let the total number of edges in S and M be n. Let H be an ordered set of the dual hyperplanes

of the n edges in both S and M respectively. Let Ak refer to the arrangement constructed from

the insertion of the first k elements of H . By this definition, A|S| will then partition line space into

those elements that stab S and those that do not (see Figure 38b). The sequence A0,A1, . . . ,An

defines a spatial hierarchy: for any 0 < i < n, the arrangement Ai+1 is always a refinement of the

arrangement Ai. A cell c ∈ Ai is a parent of a cell d ∈ Ai+1 iff d ⊆ c.

8The reader should note that if a given isotopy class contains one stab-miss line, then all lines within the class will
also be stab-miss lines.
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(a) (b)

Figure 38: Polytope in an Arrangement. (a) A polytope. (b) An arrangement embedding the polytope of (a).
Recall that lines are hyperplanes in 2D.

Should a cell c ∈ Ak correspond to an isotopy class (defined only by the first k edges) that

is blocked/occluded, then all descendants of c in the hierarchy will also be blocked. Further in-

formation could be gained by continued refinement, although this information (e.g. knowledge of

additional occluders) is unnecessary for our application. In terms of implementation, the cells that

are determined to be blocked are removed or rather subtracted from the complex, and are thus no

longer represented explicitly.

To illustrate this last concept, we depict a stabbing polytope that has had an occluder subtracted

from it (in Figure 39a). Figure 39b shows the complex of this object, and Figure 39c shows the

arrangement in which it is embedded. Let us call the arrangement of Figure 38b, A5. Then the

arrangement of Figure 39c is A7. It is unnecessary to compute the blue polytopes in Figure 39e,

since they correspond to an already blocked (subtracted) polytope in Figure 39c.

By removing all “blocked cells” progressively, large branches of the hierarchy are pruned (i.e.,

refined isotopy classes). In most cases this provides greatly improved performance. The problem of

choosing a good ordering, in order so as to maximise performance is discussed in Chapter 6.

Further optimisation is still possible. The number of isotopy classes are sensitive to the number

of lines (one line is extended from each edge). Accounting for the boundedness of the edges, allows

us to collapse many isotopy classes into a considerably coarser, yet sufficiently refined superset.

Simply put, it is unnecessary to refine an isotopy class according to whether subsets of it lie on
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(a) (b) (c)

(d) (e) (f)

Figure 39: Polyhedral Complex in an Arrangement. (a) A polyhedron. (b) A polyhedral complex represent-
ing the polyhedron in (a) as the union of convex polytopes. (c) An arrangement embedding the polyhedron
and complex of (a) and (b), respectively. (d) An object is to be subtracted. (e) Complex after the hyperplanes
of the object in (d) have been used for further refinement. The blue polytopes correspond to isotopy classes
that are occluded/blocked, but fall within a region previously determined to be blocked. The green polytope
refines the stabbing polytope to define a newly occluded isotopy class. (f) The resulting polytope complex
(i.e., the subset of the arrangement that is yet unblocked).

one side or another of some edge of x, if it can be shown that the set of lines it represents cannot be

blocked by x. This is illustrated in Figure 41.

To achieve this, our occluder subtraction routine will split only those parts of the polytope

complex that lie on the boundary of the polyhedron to be subtracted O. When splitting the complex,

this is a simple matter of removing those polytopes that lie completely in the “outside” half-space

of any of the hyperplanes defining O. We give a modified Step 1 and 2 in Figure 40. The key

concept is that this splitting algorithm is “aware” of the subtraction being performed, thus preventing

unnecessary refinement within the complex.

In summary, the algorithm begins with the construction of the stabbing polytope. Next, blocked

polyhedra are subtracted from the complex using our augmented polytope complex splitting algo-

rithm. These splits are invoked on a given polytope of the complex iff the polytope lies on the
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Step 1’ (Conservative intersection test)
L← all hyperplanes belonging to occluder polyhedron
L← L \H
S ← ∅
for each c ∈ C do

if boundingSphere( c ) intersects H then
for each l ∈ L do

splitC← true
if boundingSphere( c ) lies outside l then

splitC← false
breakFromLoop( l )

endif
next l
if splitC then

S ← S ∪ c
endif

endif
next c

Step 2’ (Accurate intersection test)
for each s ∈ S do

Classify all the vertices of s either + or − with respect to H .
if allVertices( s ) = − or allVertices( s ) = + then

S ← S \ s
else

for each l ∈ L do
Classify all the vertices of s either + or − with respect to l.

if allVertices( s ) = − then
S ← S \ s
breakFromLoop( l )

endif
next l

endif
next s

Figure 40: Subtraction aware step 1 and 2. This is a modification of the algorithm presented in Figure 34.
This algorithm is aware that the split operation is part of a subtraction operation, and therefore avoids extra-
neous splitting. This includes all optimisations.

boundary of the polyhedron to be subtracted. At any time, the only data that is persistent in memory

is the face lattices and vertices of the set of polytopes corresponding to unblocked lines space.
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e1

e2
e3

P3

P2

P1

(a) (b)

Figure 41: Optimised Splitting. (a) The same subtraction is being performed, as per Figure 39d. However,
P1 is not split by e2, since P1 lies entirely on the “outside” half-space of e1 (the inside half-spaces of e1, e2

and e3 intersect in the blue triangle). Similarly, P2 lies wholly in the outside half-space of e2 and therefore
P2 is not split by e1. (b) A polyhedral complex representing the polyhedron in (a). Note that the structure of
the complex is much simpler than that in Figure 39f.

5.4 Conclusion

In this chapter, we have presented a solution to the selective stabbing algorithm. The solution

algorithm executes in two phases. First a stabbing polytope is built that represents all lines in the

stabbing set. Such solutions do exist, however, the case where the stabbing set consists of exactly

two polygons requires special treatment. We discover that the form of the polyhedron is that of

an extruded 4D polytope. We prove a theorem showing how the axis of extrusion can be derived

explicitly. This is then used to build the stabbing polytope efficiently, without the usage of a less

efficient general vertex enumeration algorithm. The general form of the required bounds for a pair

of planes capping the polyhedron are also computed.

The second phase of the algorithm describes our 5D polyhedral constructive solid geometry

algorithm. This algorithm incrementally trims away the unoccluded line space from the stabbing

polytope. Should the whole stabbing polytope be trimmed away, no stab-miss lines can exist. Oth-

erwise, the remaining parts of the polytope can map directly to all the existing stab-miss lines. We

augment an existing polytope complex splitting algorithm to achieve this. The new version is sen-

sitive to those polytopes in the zone of they hyperplane. We also show how a subtraction operation

can be implemented efficiently using such a splitting algorithm.



Chapter 6

Exact Visibility Pre-Processing

“How many trees make up the forest? How many houses a city?...as

the German proverb goes, one cannot see the forest for the trees.

Forest and city are two things essentially deep, and depth is

fatally condemned to become a surface if it wants to be visible.”

– Jose Ortega y Gasset, “The Forest”, Meditations on Quixote, pg. 59.

This chapter details our exact from-region visibility algorithm. This consists of two parts. The

first part is a visibility query engine, which queries exactly whether or not one polygon can see

another within a 3D scene. The query algorithm can be cast as a specialised selective stabbing

problem. We detail this in Section 6.1.

Our visibility query algorithm is, in essence, a direct construction of a localised subset of the

visibility complex [DDP96]. It is more suited to queries, since the construction is local to the

pair of polygons in question, and is sensitive only to the smallest number of occluders necessary

for occlusion, as opposed to sensitivity in the number of visibility interrelationships between all

occluders.

We use the visibility query as a means of experimentally verifying the performance of the selec-

tive stabbing algorithm of Chapter 5. In particular, we present and evaluate heuristics for choosing

an efficient order of occluder/blocker subtraction.

The second part is the global framework. The goal of our framework is to utilise the visibility

query effectively, in order to compute from-region visibility efficiently. This is detailed in Sec-

tion 6.2. Our general approach is to prevent the unnecessary recomputation of visibility results. We

generate and use virtual occluders to disregard line sets already determined to be occluded. This

results in an output sensitive algorithm. We also use a two tiered spatial hierarchy for clustering

117
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occlusion queries. The computations used in the parent nodes (bounding boxes) are reused when

evaluating the children (primitives).

Another objective of the framework is to perform only those computations necessary to deter-

mine exact from-region visibility. Integrating the exact query algorithm into a framework where the

visibility of a majority of polygons can be determined trivially, allows processing time to be spent

only on those queries that require an exact algorithm to be evaluated accurately.

Results are given which demonstrate the effectiveness of our approach. This includes an empir-

ical analysis of the scalability of the whole system and the visibility query in context.

6.1 The Visibility Query

In this section we describe our exact visibility engine, based on an implementation of the selective

stabbing solution presented in Chapter 5. We begin by casting the visibility problem as a selective

stabbing problem. We then investigate the most important performance factor: choosing a good

order for occluder subtraction. Finally, we discuss the visibility algorithm in the context of other

analytic visibility techniques.

6.1.1 Casting Visibility as Selective Stabbing

Visibility can be defined formally in terms of line segments. Namely:

Definition 6.1 A set of points Y is said to be visible from a set of points X if there exists a closed

line segment s whose two end points lie in X and Y respectively. Additionally, s cannot intersect

another set M , where M is the set of points representing all occluding geometry.

Definition 6.2 We refer to a segment s with the properties described in Definition 6.1 as a sight

segment.

We wish to cast the visibility problem as a selective stabbing problem, where the stab set S is

comprised of two query polygons, and the miss set M , consists of all occluding geometry.

A selective stabbing scenario cast this way, is sufficient to prove or disprove visibility, if and only

if, the supporting line of any potential sight segment only intersects M if the sight segment does.

Indeed, if this condition is met, it is clear that there is a bijection between the set of sight segments

and the set of stab-miss lines. Examples illustrating this principle may be found in Figure 42.

It is always possible to derive a set M ′ from M which guarantees that the above condition is

met. The approach which involves the smallest change from M , is to clip M to the union of two
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(a) (b)

Figure 42: Casting to Visibility – Problem. The above figures show a plan view of a typical query scenario.
(a) A scene where at least one sight line (s) does exist between the query polygons (p1 and p2). m1 to m6

are occluders. Note that as a selective stabbing problem, no stab-miss line exists. (b) A similar scene to that
of (a). However, every sight line between p1 and p2 is supported by a stab-miss line.

anti-penumbra: one cast by the first stabbing polygon through the second, and the other cast by the

second stabbing polygon through the first. This is illustrated in Figure 43a.

(a) (b)

Figure 43: Casting to Visibility – Solution. The above figures show a plan view of a typical query scenario.
(a) C depicts the convex hull of the query polygons. a1 represents the anti-penumbra cast through p1 by
p2. Similarly, a2 represents the anti-penumbra cast through p2 by p1. All occluder geometry within the
regions a1 and a2 must be removed in order to ensure sight segment to stab-miss line bijectivity. (b) A faster
conservative approach. All geometry on the one side of the planes embedding p1 and p2 are clipped (all
geometry in regions a1 and a2). The geometry clipped is on the side which does not contain the convex hull
C.
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There are, however, more conservative techniques which also allow for this condition to be met.

Let C be the convex hull of S. It is sufficient to clip all polygons against two planes: the first plane

being the plane embedding the first polygon of S, the second being the plane embedding the second

polygon of S. The parts of M discarded, are those on the opposite sides of the plane from C. This is

illustrated in Figure 43b. In general though, it is advantageous to remove those parts of M which do

not intersect C, since they cannot affect the existence of sight segments. This is simply an efficiency

consideration.

In Chapter 5, two questions were proposed and solved, one being the existence of a stabbing

line, and the other being the computation of the set of stabbing lines. In the context of visibility, the

question of existence is equivalent to the question of mutual visibility. Similarly, the computation

of the set of stab-miss lines is equivalent to determining those parts of one polygon which fall into

the anti-penumbra cast by another.

One clear extension of this technique is to that of cell-portal rendering. Where Teller [Tel92b]

compute the anti-penumbra through a set of portals, our technique allows for the inclusion of oc-

cluders which block the anti-penumbra.

6.1.2 Selecting a Good Order of Subtraction

The focus of Chapter 5 is on solving the selective stabbing problem. Choosing a good order for

subtracting occluders (elements of the miss set) is critical for good performance in practice.

The most important consideration, is that of early termination. When subtracting dual occluder

polyhedra from the Plücker polytope (see Section 5.3.1), it is sufficient to terminate early when oc-

clusion has been established. This is equivalent to terminating once the remaining polytope complex

(which at all times represents the unoccluded line space) is empty1.

During the subtraction process we have noted the following: initially, the number of polytopes

in the complex typically grows as a function of the number of subtractions. This is due to the

split operations performed during subtraction. Next, a turning point is reached, and the number of

polytopes then begin to decrease rapidly. This is a direct result of the increase of the granularity

of the complex: the finer it is subdivided, the more likely it is that more polytope elements will be

removed during each subtraction.

1Those complex elements that do not intersect he Plücker hypersurface are removed implicity during the subtraction
process
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Naı̈ve Ordering

Our first choice of order was a naı̈ve ordering. We simply subtracted the occluders in the order in

which they occurred in the mesh. We have found this to be a pathological case. Adjacent mesh

elements are typically spatially coherent. Since spatial coherence translates to line space coher-

ence2, successive subtractions are performed in the same spatial locality (in Plücker space) as their

recent predecessors. This generates subdivision upon subdivision, resulting in a near linear initial

growth in the number of elements in the complex as a function of the number of subtractions. This

linear growth in the number of complex elements results in a near quadratic run-time, since each

successive subtraction is tested or applied to a growing number of polytopes that cannot be trivially

rejected due to the Plücker space coherence.

We have developed several heuristics that improve greatly on this naı̈ve subtraction order (i.e.,

they result in earlier termination). These include prioritising by occluder size (weighted by angle),

randomising the subtraction order, as well as a novel line space sampling methodology. All of these

heuristics avoid the pathological case described above, since there is little or no coupling of the

ordering to spatial coherence. In Section 6.3 we see that slightly super-linear growth is achievable.

Area-angle Measure

The solid angle refers to the projected area (in steradians) of an object onto a unit sphere surrounding

some reference point. This area can be approximated (see Coorg and Teller [CT97]) as a function

of distance, area and angle. The situation is somewhat different in the context of a visibility query,

since we are dealing with visibility from a region, not a single point. Also, the situation is different

from typical from-region visibility [KCO00], since we are dealing with visibility from a bounded

region, to a bounded region. Koltun and Cohen-Or [KCO00] use an umbra-volume approximation

as a heuristic. Ideally, we should be able to determine the area of the umbra on one polygon cast

by a source polygon. We have used the following metric (see Figure 44 for an explanation of the

terms):

AreaAngle = a
(r1 − r2).�n
||r1 − r2|| (40)

2The set of lines intersecting one triangle, will typically lie next to the set of lines of an adjacent triangle sharing an
edge. Since the Plücker mapping is isomorphic (and in particular, continuous), this is reflected as spatial coherence in
Plücker space.
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Figure 44: Area-angle Metric. A plan view. The area of the polygon is referred to as a, the reference points
r1 and r2 are chosen to be the respective centroids of p1 and p2. �n is the normal of the polygon o.

Effective Occluders

Undoubtedly, however, the most effective technique we have implemented is a direct sampling of

line-space. This does not consider each occluder independently, but actually accounts for potential

occluder fusion. The algorithm proceeds as follows: First, rays are cast between the two query

polygons3. Next, the polygon intersecting the most rays is subtracted. Next, the polygon intersecting

the most rays excluding those rays already accounted for is subtracted. This last step continues until

either occlusion is established, or all the rays are accounted for. In the latter case, we relegate the

choice of priority among the remaining polygons to another heuristic. We illustrate this ordering by

the example in Figure 45.

We define an effective occluder to be a member of the set containing the minimum number of

occluders required to block the total occluded line space. The ordering defined by the direct line

sampling defines both an order of subtraction, as well as a set of occluders that approximates this

smallest possible set of occluders.

3We cast two rays for every triangle within the convex hull of the query polygons. We consider the determination of
a better casting strategy to be an area of future research.
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Step o1 o2 o3 o4

1 4 9 8 7
2 0 - 1 3
3 0 - 0 -

Figure 45: Order of Subtraction. A plan view of a typical scenario is shown. 12 segments are generated
between the query polygon pair p1 and p2. The table illustrates the number of segment samples incident on
the occluders o1 to o4. The polygon with the highest priority is o2. Since the sampling (9 hits) indicates
probabilistically that it blocks the largest volume of line space. Next in the ordering is o4, since the sampling
indicates that it blocks the largest volume of remaining/unoccluded line space (3 hits, since 4 of the original
7 hits also intersect o2). The remaining occluders o1 and o3 have no remaining hits, since all the incident
samples are accounted for by o2 and o4. The ordering of these two defaults to an alternative mechanism (e.g.
an area-angle metric).

The number of effective occluders is at most as large as the set of visible polygons within the

query shaft. Using this approach we observe that since each effective occluder blocks at least one

ray that is unblocked by another effective occluder, that every subtraction will reduce the volume of

the polytope complex to some degree.

It should be noted that we do not perform standard ray-casting, since our priority is not based on

a “first hit” result. Our technique would be more aptly named segment intersection testing. Our ray

casting solution is a greedy algorithm, and does not guarantee that the computed set of occluders

is the smallest. However, most important wasteful cases are avoided. These are catalogued in

Figure 46.

A very important side effect of this approach is that it seamlessly integrates an efficient means to

determine trivial acceptance: if any ray should not intersect any occluder, then the query polygons

can be considered to be mutually visible. A vast majority of visible polygons are found in this way.

This makes it far more likely that those queries on which the selective stabbing algorithm is actually
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executed, are occluded. This further establishes the performance benefit of having a query algorithm

that has a run time complexity that is sensitive to the number of effective occluders.

(a) (b)

(c)

Figure 46: Selection of Cases. We assume that many segments have been cast. (a) A solid angle based
priority would iterate through occluders o7 to o1, and then establish occlusion only when o8 is subtracted.
Our line space sampling approach will immediately isolate o7 and o8 and subtract them to establish occlusion.
(b) If a first-hit ray cast was performed, the segments o1 through o5 would be the first subtracted. The line
space sampling would immediately prioritise o6. (c) An example of sub-optimality. o3 is prioritised first,
however only the combination of o1 and o2 is necessary to establish occlusion.

6.1.3 The Query Algorithm in Context

Both the visibility complex [DDP96] and skeleton [DDP97b] have been designed as tools for per-

forming exact visibility queries rapidly between scene objects, as opposed to queries between cells
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and objects. Furthermore, these approaches attempt to extract not just the qualitative states of visi-

ble or invisible, but also an exact description of which parts of each primitive are visible. Their goal

is to use visibility primarily for accurate illumination simulations.

In contrast, our goal is from-region qualitative per-polygon visibility. Our visibility query al-

gorithm is a direct construction of a localised subset of the visibility complex. It is more suited to

queries, since the construction is local to the pair of polygons in question, and is sensitive only to

the smallest number of occluders necessary for occlusion, as opposed to sensitivity in the number of

visibility interrelationships between all occluders. Furthermore, at any point of execution, only the

parts of the complex representing the currently unblocked set of lines between the query polygons

is resident in memory.

Durand et al. [DDP97b] present an on-demand construction of a subset of the visibility skeleton.

The construction of this subset involves an explicit combinatorial iteration through the various ele-

ments of the scene geometry, in order to construct the lower dimensional elements of the complex.

Just as for the visibility complex, this computes more than is required for our purposes, namely

the visibility relationships between all geometry (i.e., the query polygons and all occluders). The

skeleton construction algorithm can also be adapted to terminate early when an object is found to be

visible. As we have shown, this is generally unlikely4 for the scenes in which we are most interested.

The lack of topological information in the skeleton (due to the omission of the higher dimensional

elements) makes it impossible to gauge whether an object is invisible during construction. Invisi-

bility may only be ascertained when the whole skeleton (relative to the query polygons) has been

constructed.

As for the visibility complex, the Plücker hyper-plane arrangement [Pel90] is a superstructure

of the structure computed by our query algorithm. The respective combinatorial complexities of

this hyper-plane arrangement and the visibility-complex are O(n4 log n) and O(n4). Two lines are

defined to be in qualitatively distinct (isotopy) regions if they are both passed by the directed lines

extended from the scene polygon edges in the same way. The Plücker hyper-plane arrangement

encodes all qualitatively distinct regions of line space (the visibility-complex accounts for line seg-

ments). A necessary implication of this, is that if two lines fall in the same isotopy class, then they

must stab the same polygons. Theoretically, this structure can therefore be used to perform a query

by searching for an isotopy class that meets our stab-miss criteria.

To put our algorithm into context, we only compute the subset of these qualitatively distinct

regions relating to those lines intersecting our query pair of polygons. This is explicit in our initial

4Primarily due to the numerous test rays cast to each polygon beforehand.
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polytope construction. For our purposes it is also irrelevant how a region of line space is blocked

(i.e., by which occluders). We are only interested in whether it is blocked. By subtracting blocked

regions, rather than enumerating them, we avoid the computation and internal representation of

further refinements.

The first advantage of our algorithm is that it terminates early in the most common case. Sec-

ondly, for all but the most contrived of scenes, the combinatorial complexity of the information that

we are interested in is very much smaller than that of global visibility techniques. Our algorithm

exploits this fact, and is sensitive to this lower complexity. Experimentally, Durand noted that the

average time complexity for the construction of the visibility skeleton appears to be O(n2.4). Since

we compute significantly less information, we expect the average-case time complexity of the query

algorithm to be somewhat lower. We have demonstrated this experimentally (see Section 6.3).

6.2 Exact Visibility from a 3D Region

The objective of our framework is to group polygons together effectively, so that clusters of poly-

gons may be classified using the fewest possible queries. We also wish to take advantage of previ-

ously computed results.

Our approach is most similar to that of Koltun et al. [KCCO01]. Once again, their solution

is for the much simpler 21
2D problem. Unlike Koltun et al. we do not make use of a multi-tiered

hierarchy since the combinatorial complexity of line space in 3D is such that efficiency is gained

by querying many small objects, rather than a single large object. Our framework is also different

in that it takes advantage of previously computed results. We believe this last technique would also

further enhance the algorithm of Koltun et al.

6.2.1 Querying Clusters of Geometry

There are many ways to order a scene hierarchically. We take advantage of natural scene coherence

and use a simple two level hierarchy, where the scene consists of a set of objects, which in turn

consist of individual polygons. If objects are very large (based on a volume and polygon count

threshold), we split them into separate objects.

From a source view cell (an element of a partitioned 3-dimensional camera space), we first

query the bounding box of an object. If the bounding box is invisible, then clearly, all its contained

geometry is also invisible. If, however, the box is determined to be visible, then the geometry
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contained may be considered potentially visible from the source cell. The true visibility status of

each child may then be queried individually (from each surface of the source cell).

The source cell to bounding box query is effectively the combination of the queries between all

pairs of faces of the two boxes. There are 36 possible pairings; however, back-face removal will

quickly reject most of these as mutually invisible. If all side to side queries return “invisible”, then

the object bounding box is invisible. If one such pairing returns “visible”, then the object bounding

box is considered visible. It is sufficient to terminate the pair querying early if visibility between

any one pair is shown. However, in the next section we will see the advantage of completing this

query.

6.2.2 Reuse of Parent Line-space

If the bounding box of a target object is visible, and we allow the completion of all side to side query

pairs, we effectively have a representation of all un-obstructed line segments originating from the

source cell and terminating on the target box. This may be visualised as a similar structure to Teller’s

anti-penumbra [Tel92b]5.

The unobstructed line segments can be extended through the bounding box to form a set of lines.

Then, a necessary but not sufficient test of visibility for objects within the bounding box is that they

intersect (at least partially) this set of lines.

This allows a fast, conservative, but relatively accurate rejection test to be applied6: Each poly-

gon within the bounding box is transformed to its hyper-plane representation in the Plücker coordinate

system, and if each stabbing polytope of the previously computed complex (for the bounding box)

does not intersect the polyhedron defined by this transformation, then the object is necessarily invis-

ible. This can be computed efficiently, but conservatively, by testing to see whether every stabbing

polytope falls exterior to at least one half-space defining the polyhedron. Any objects which pass

this test will have to be queried individually.

6.2.3 Virtual Occluders

During the process of computing the visibility status of bounding boxes, opportunities to extract

“virtual occluders” arise. As coined by Koltun et al. [KCCO00], virtual occluders are occluders that

are not part of the geometry, but still represent a set of blocked lines. We observe that if the side

5More precisely, it is the subset of the union between the anti-umbra and anti-penumbra that illuminates only the
target polygon

6This test is similar to the tube interference test used by Teller and Hanrahan [TH93a] for blocker maintenance.
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of a bounding box is determined to be invisible from a source view cell, it may then be used as an

occluder for any object behind it. In fact, if the whole bounding box of an object is invisible, then

none of the polygon geometry within need be incorporated as occluders, since the bounding box is

sufficient. In truth, the bounding box is more than sufficient, since a bounding box occludes at least

as large a volume of line-space as the geometry it contains.

By processing the scene objects in an approximate front to back order, it is possible to fully

exploit this feature. This, in conjunction with the sensitivity of the query algorithm on only the

number of effective occluders, is key to our algorithm’s output sensitive nature. Geometry behind

the nearest occluded “layer” (with a similar connotation to that of Klosowski and Silva [KS00]),

is quickly rejected since the relatively large size of the virtual occluders imply that only very few

occluders are necessary to confirm invisibility. A screen-shot of our algorithm output, along with

various visualisations illustrating this process, is depicted in Figure 47.

Figure 47: Virtual Occluders. Visibility is computed from the cuboid highlighted in yellow. Green polygons
are visible, red ones are invisible. Many of the red polygons are surrounded by blue bounding boxes. These
are those boxes that were queried and found to be invisible. Those bounding boxes which are trivially visible
(found via ray casting), are not displayed. The red bounding boxes are those determined to be occluded by
the blue bounding boxes (virtual occluders).
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6.2.4 The Framework in Context

Since the publication of the algorithm presented here [NBG02], one other technique by Bittner [Bit02]

has been published that computes exact from-region visibility (see Section 2.5.8).

An advantage of the approach taken by Bittner, is that the algorithm computes exactly those

fragments of each visible polygon that are visible. This can be applied to the generation of disconti-

nuity meshes. The cost of this flexibility is that it is less scalable than our approach. Our experiments

successfully use models that are significantly7 more complex than those used by Bittner.

One reason for this is the uniform treatment of polygons by Bittner. As a visible polygon is

added to the occlusion tree, its dual polytope is tested against the tree, splitting nodes as it is inserted.

This process is computationally expensive (see Section 2.5.8). Our framework trivially accepts a

vast majority of visible polygons due to our line space sampling heuristic (see Section 6.1.2). This

allows computational effort to be concentrated on those objects that are not trivially visible. This,

of course, precludes the use of our algorithm for determining the visible fragments of objects.

A second benefit of our approach, is that we use effective occluders (see Section 6.1.2) to de-

termine the occlusion of objects, whereas Bittner always uses the (larger, and thus more inefficient)

set of visible polygons as occluders. A similar issue, is that during our front to back traversal of

the scene, our technique eventually integrates large virtual occluders (see Section 6.2.3) into the

effective set, aggregating the effect of several smaller polygon occluders efficiently. In contrast, the

occlusion tree requires that all objects are tested against the visible polygon set. This is somewhat

ameliorated by the persistency of the occluder tree, since splitting operations are only required on

insertion, where we perform splitting for every non-trivial query. Polytope-hyperplane sidedness

tests are still required.

One must take into consideration that a direct theoretical comparison should not be made, be-

tween our query algorithm and Bittner’s visibility algorithm since the query algorithm exists in a

visibility framework where it may be executed many times per polygonal region, whereas Bittner’s

algorithm is executed once per directional stratum, per polygonal region, and returns a list of visible

polygons for that stratum. It is of key importance to realise that non-trivial visibility queries are

executed very selectively, and that when they are executed, they proceed very rapidly8.

To contrast the difference between our query algorithm, and Bittner’s full visibility algorithm,

consider the following: Our algorithm incrementally refines the set of unoccluded lines. This is

7Our scenes are two orders of magnitude larger, and are more likely to generate many visibility events. Also, the
average visible set size is approximately two orders of magnitude larger.

8We will show experimentally, that the query is only slightly super-linearly dependent on the number of effective
occluders.
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advantageous, since at any one time, only a representation of the unoccluded line set is resident in

memory. Bittner incrementally maintains both the unoccluded line set and the currently occluded

line set. For the latter, a leaf node exists for every connected set of lines that terminate at (or “see”)

the same polygon. As noted by Bittner, the algorithm execution time may be as large as O(n4 log n),

and the tree size is bounded above by O(n5) (see Section 2.5.8). This leads to heavy computational

and memory requirements. The memory requirements are managed by subdividing the set of lines

leaving the source region into directional strata.

Effectively, where Bittner’s algorithm is coupled to the combinatorial complexity of visibility

events in line space, our algorithm is coupled to the complexity of the set of lines representing the

gaps though which a target polygon may be seen from a region. In most cases these gaps are few,

and tend to be simple9.

For those cases where large gaps do appear, the target polygon is rapidly determined to be

visible by ray shooting. It is possible to construct a scenario where a large polygon is visible only

through many small holes. This type of scene is rare, but not necessarily contrived. E.g., a forest

scene. Such a scene also represents a bad case for Bittner’s occlusion tree algorithm, since all the

gaps have to represented, along with all the possible interactions of the visible polygons with each

other. We have, however, developed a technique that allows for fast and accurate evaluations for

even these cases (see Section 7.1.3).

6.3 Results and Discussion

We have implemented the exact visibility query algorithm of Section 6.1.1 and integrated it into the

framework proposed in Section 6.2. Our implementation has been tested on two different represen-

tative scenes.

Firstly, we tested the algorithm on a town scene depicting the geometry of a small 16th century

town. The scene consists of 1.33 million triangles and includes several highly detailed component

objects which are visible through doors and windows. This scene is fully 3-dimensional in nature10.

Our second scene is the forest scene used by Durand [Dur99]. This scene consists of 1.45 million

triangles, organised into 1450 trees each with 1000 triangles. This represents a much more difficult

scene to cull. In terms of the algorithm presented here, it is an extreme case, since occlusion

only occurs as the aggregate of a large number of triangles and consequently subtractions on the

9Requiring only one polytope for representation.
10It has a high vertical complexity.
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Figure 48: Algorithm results. The top image shows a view of our town scene, while the bottom shows a
view of the forest. In both images, the yellow block corresponds to a view-cell. The geometry visible from
the view cell is rendered in green, while occluded geometry is rendered in red.
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Plücker dual polytope. See Figure 48 for screen-shots of these scenes showing the output of our

implementation.

For the town scene we choose a uniform subdivision of cells. The base grid is a 32x32 partition

of the base of the bounding box, and we consider two such levels, for a total of 2048 cells. This

selection of cells should cover the camera view-space used in any reasonable walk-through applica-

tion. 16384 such cells would fully partition the scene bounding box. For the forest scene, we apply

a 20x20 partition for compatibility with Durand.

We executed the tests on a dual Pentium 4 1.7Ghz with 1.2GB RAM, and solved for distinct

cells in parallel. For both scenes we have culled and timed the visibility of a random selection of

100 cells. These timings on a per-cell basis are presented in Table 9.

Scene Time/Cell Culling Full solution

Town 2min 33sec 99.45% 3 days 15hrs
Forest 10min 30sec 99.12% 2 days 22hrs

Table 9: Experimental result summary.

To solve for the whole town scene adequately, would require 3 days and 15 hours on our PC.

Similarly, the forest scene, would take 2 days and 22 hours. Such requirements are high by the

standards of most existing approximate or conservative algorithms, but the pre-process is a once-

only cost, and is more than offset by the advantages of our approach. Note the large degree of culling

achieved (Table 9). We note that our technique determined that the extended projections algorithm

of Durand [Dur99, DDTP00] overestimated the average visibility set by a factor of approximately

28.4.

When only a single workstation is available for pre-processing, this algorithm can be used as a

final and permanent visibility solution applied after a large model has been fully generated, as an

accurate solution for smaller models, or as the only possible acceptable solution for difficult models.

We advocate the use of this algorithm on machine clusters, which are often readily available. It

is easy to parallelise our technique, since each cell can be solved independently. The computation is

therefore very loosely coupled, making it suitable even for informal clusters with a low bandwidth

infrastructure.

Scalability of visibility pre-processing algorithms is of crucial importance. The run-time of our

algorithm is dependent on the particular scene in terms of the number of visibility queries performed,

and the time taken to solve these queries.
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The visibility query algorithm quickly rejects occluders which fall outside of the space of lines

between the query polygons. During line space subtraction, it also quickly rejects occluders which

have already been accounted for. Hence there is little correlation between the number of polygons

in the scene (or shaft), and the time complexity of the query algorithm. In order to quantify time

complexity, we measured the time taken by the algorithm as a function of our approximation to the

number of effective occluders (see Section 6.1.2).

We time approximately 48000 queries, running on a single processor. For each of these we

count the number of effective occluders m, and compute the average time taken to query this many

effective occluders. We use a least-squares fit, and find the growth to be in the order of O(m1.15).

This is depicted in Figure 49a. To increase the confidence of our fit, we exclude timings correspond-

ing to fewer than 5 samples. The data resulting from this noise reduction is plotted in Figure 49b.

We note that this excludes most of the larger queries, since they are infrequent. We further note a

distinct inflection where the number of effective occluders is 30. Further investigation has shown

this to be caused by our polytope complex becoming larger than the L2 cache of our test machine.

This behaviour is reproduced in both the town and the forest scene. Fitting two curves, one from 0

to 30, and one from 31 to 57, we observe the order to be O(m1.15) and O(m), respectively. Given

our justification for anticipating such a result (see Section 6.1.3) and the low variance, we do not

expect this complexity to vary significantly with any realistic scenes.

To estimate the global scalability of our approach, we consider first the complexity of a naı̈ve

solution, where visibility is computed for a single cell by simply querying every single polygon.

This would require n queries. At most, each query can be given n − 1 polygons as input, and

find each of these to be effective occluders. This gives a computation cost of O(n2.15). For a real

scene, n−1 effective occluders is highly unlikely. For our forest and town scenes, we have found the

maximum number of effective occluders to be 472 and 250 respectively, whereas the average number

of effective occluders are respectively 3.6 and 1.7 per query (recall that large virtual occluders are

extracted).

If we let m be the maximum number of effective occluders required in any query for a particular

scene, then we can expect a complexity of O(nm1.15), where in practice, m << n. This algorithm

is already scalable but by incorporating our general framework, the number of queries can typically

be greatly reduced (approx. 55000 queries per cell for the forest scene and approx. 42900 queries

per cell for the town scene). Furthermore, m is an upper bound. We cannot give an exact depiction

of our algorithm’s average case performance, since this would be a complex function of geometric

distribution, cell configuration and scene size. Such a statistical analysis is beyond the scope of this
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(a) (b)

Figure 49:
Time vs. Effective occluders. (a) The average time for queries consisting of varying numbers of
effective occluders. The fitting curve shows growth of the order O(m1.15). The average distance
from the fitting curve to the sample data is 1285(ms). (b) The same data set as for (a), however
those averages computed with less than 5 samples are excluded. A two curve fit is applied, showing
O(m1.15) growth up to 30 and O(m) to 57. The average distance from the fitting curve to the
sample data is 38(ms).

dissertation. It is clear however, that the average order is bounded above by O(nm1.15), which in

itself shows scalability.

The significant run-times of our experiments can be explained as a large constant factor in-

troduced due to the initial complexity of the exact query algorithm. Indeed, our initial polytope

typically consists of hundreds of faces.

Returning to the number of queries performed; for the forest scene, the output sensitivity of

our algorithm (see Section 6.2.3) results in approximately 97% of the pre-process computation time

being spent on the first, and therefore nearest, 8% of the scene. For general high depth complexity

scenes, we can expect the dominant component of the run-time complexity to be a function of what

is visible. This shows the output sensitivity of our algorithm.

6.4 Conclusion

We have presented a tractable exact visibility query algorithm and have effectively integrated it

into a framework that allows for the efficient, output sensitive computation of accurate from-region

visibility.
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The query algorithm is implemented as a special case of the selective stabbing problem we

presented and solved in Section 5.

Our solution to the visibility problem can be used to obtain the smallest possible set of visible

polygons (for the given partition), while making no sacrifice in image correctness. This is the first

general 3D solution that allows for both optimal run-time performance and correctness.

Since it is an exact solution, we can expect our solution to be slower than that of approxi-

mate/conservative solutions. Our tests confirm this. Fortunately, the algorithm is scalable, implying

that if the high constant cost of the algorithm is bypassed, either by simply accepting the run-time,

or through amortisation via a distributed solution, then an exact and practical solution to the from-

region visibility problem has been found.



Chapter 7

Conclusion

We have presented two from-region visibility culling algorithms. Existing techniques try to achieve

optimal results for the three goals of preprocessing speed, run-time performance and image accu-

racy. We recognise that the achievement of all these goals is seldom required simultaneously, and

that a better overall solution may be found by taking this into consideration.

We present one algorithm that minimises preprocessing time and maximises run-time perfor-

mance. The cost is a potential loss of image accuracy.

A core component of this algorithm is an aggressive from-surface visibility algorithm. We have

developed heuristic error measures that guide an adaptive sampling process in a successful attempt

to minimise this error. Experiments show the resulting error to be negligible in practice. However,

no non-trivial upper bound is placed on the error.

The from-surface aggressive algorithm is integrated into a sophisticated framework. The frame-

work effectively manages a sample cache, ensuring that only samples that will definitely be required

again are retained. The caching scheme allows for the progressive generation of cell partitions at

no additional computational cost. The algorithm is output sensitive and has only a logarithmic

dependence on the number of view cells.

This algorithm can be used while drafting models (where preprocessing speed is valued over ac-

curacy), or for the effective preprocessing of highly complex models (where run-time performance

and preprocessing speed are valued over accuracy). We demonstrate that we are able to process

very large, very complex scenes of up to 5 million polygons in less than 80 minutes on a standard

workstation, and achieve an average of 91.32% culling with very low error (0.338% on average).

We extend the aggressive algorithm to process 5D ray-space. The goal being a new method to

136
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accelerate ray shooting. Preliminary results show a great reduction in the number of ray-triangle in-

tersections per ray cast (less than 2.5% that of a naı̈ve algorithm). The algorithm is comparable with

existing techniques. Unlike these other techniques, however, the traversal stage is very inexpensive.

With further optimisation, we believe that this approach may perform better than the current state

of the art.

Our second algorithm solves the long standing problem of discovering a tractable solution to

exact from-region visibility. The algorithm consists of a novel polygon to polygon visibility query

algorithm that is integrated into a powerful framework.

The framework successfully avoids redundant computations by reusing previously computed

results whenever possible. This is achieved through the construction of large virtual occluders, and

the effective usage of the line space structures generated by prior queries. The query algorithm

uses a novel occluder order prioritisation algorithm to select an efficient order for the treatment of

occluders.

This algorithm maximises run-time performance and results in no image error. The cost is a

lengthy preprocess. Experiments have shown that this cost is due to a large constant computational

factor, and that the algorithm is bounded above by O(nm1.15), where m << n. This shows scala-

bility, however, the algorithm performs better in practice.

This algorithm is suited to computing optimal visibility for any model that has been finalised

(where run-time performance and image accuracy are valued over preprocessing time). Since the

per-region computations of the algorithm are independent, it may be distributed easily.

We test our algorithm using scenes of moderate to high depth complexity. We demonstrate that

our algorithm can solve for very complex scenes, as large as 1.45 million polygons in a time of 70

hours on a standard workstation. We are able to achieve as much as 99.12% culling. This is 28.4

times more effective than the conservative solution of Durand [Dur99, DDTP00].

In the process of solving the exact visibility problem, we have also solved the theoretical prob-

lem of selective stabbing. This problem is a generalisation of both the stabbing problem and (with

minor modification) the exact from-region visibility query. Our solution is efficient, as evidenced

by the success of our exact visibility algorithm.

We have proved several novel mathematical results that facilitate our solution to selective stab-

bing. We determine that the dual form of the set of lines through two polygons is a four dimensional

polytope extruded along a particular direction in Plücker space. We provide a closed form solution

that evaluates both this polytope and this direction.
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We have also improved and augmented an existing multi-dimensional polyhedral complex split-

ting algorithm. We have improved performance, making the algorithm fully sensitive to the zone of

the splitting hyperplane. We have further augmented it so that it can be used as an efficient, context

aware, multi-dimensional polyhedral subtraction algorithm.

7.1 Future Work

An important milestone in visibility research has been reached by developing an exact from-region

visibility solution. In terms of preprocessing for static scenes, we believe the future lies in develop-

ing faster exact visibility solutions, and the treatment of scenes with higher order primitives.

As a first step, we expect algorithms to be developed that are essentially conservative or ag-

gressive variants of exact algorithms. The purpose being the reduction of preprocessing time costs.

Although this may be seen as a step back towards using suboptimal, multipurpose algorithms, the

novelty is that, given sufficient, but finite, time, the solution will become exact. No existing algo-

rithms support this: either suboptimal results are reported, or infinite time is required. The goal of

this flexibility is that, given a particular time budget, the best possible solution is found.

7.1.1 Including From-point Acceleration Techniques

In our aggressive algorithm, point sample and area sample rendering contributes a major part of the

preprocess. Although we exploit occlusion data that has already been computed, it is possible to use

other rendering acceleration technique for further improvements1. We intend to use the occlusion

testing functionality of recent graphics cards to accelerate the rendering process and we expect this

to result in significant time savings.

7.1.2 5D Ray Space Partitioning

We believe that there are several ways in which the ray-space preprocessing can be improved. The

algorithm results are dependent on the particular spatial subdivision. An investigation into different

subdivision heuristics should result in far fewer ray-triangle intersection tests. In particular, we

believe that a ray-space subdivision that seeks to minimisie cell surface area while minimising the

subdivision depth, would be highly beneficial.

1Our current implementation uses frustum culling only.
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7.1.3 Feedback in Selective Stabbing

We intend to explore the possibility of a feedback loop within our exact visibility query algorithm.

Instead of precomputing an ordering for occluder subtractions, we believe that considerable im-

provement may be achieved by using the current state of the complex to sample unoccluded line

space.

The result of this, is that those occluders that are to small to be classified as potentially necessary

effective occluders, will be found directly. In the case where the sampling reveals that no occluders

exist, visibility is established. This is particularly useful for scenes where the query polygons are

visible only through small gaps, since the query will terminate when the first gap is encountered

(i.e., a sample ray will be generated through the gap, and visibility will be established).

We have demonstrated that our exact algorithm can handle such complex scenes. We believe,

however, that with the inclusion of this feedback process, we can still achieve a significant perfor-

mance increase.



Appendix A

Theorems

In this appendix we present a selection of theorems from within this thesis. The theorems in this sec-

tion are either non-original, or trivial, and are presented purely for the convenience of the rigorous

reader. All proofs in this section are referred to in context within the dissertation.

Theorem A.1 EP (A) ∪ EP (B) ⊆ EP (A ∪B)

Given an arbitrary point x such that x ∈ EP (A) ∪ EP (B), we have:

x ∈ EP (A) =
⋂

W∈cell viewW A or x ∈ EP (B) =
⋂

W∈cell viewW B (41)

by definition EP (A ∪B) =
⋂

W∈cell viewW (A ∪B) (42)

⇒ x ∈ ⋂W∈cell viewW A ⊆ ⋂W∈cell viewW (A ∪B) = EP (A ∪B) (43)

or x ∈ ⋂W∈cell viewW B ⊆ ⋂W∈cell viewW (A ∪B) = EP (A ∪B). (44)

⇒ x ∈ EP (A ∪B). (45)

⇒ EP (A) ∪ EP (B) ⊆ EP (A ∪B). (46)

To show that these two quantities are not necessarily equal we give a counter example in Fig-

ure 50b and Figure 50c.

�

Lemma A.1 We define < �x, �y >: R
6 × R

6 → R to be equivalent to D�x(�y). Only axioms 1, 2 and

3 of the standard inner product axioms are satisfied. These axioms are:
Axiom 1 Linearity in the first variable. ∀�x, �y, �z ∈ R

6, < �x + �y, �z >=< �x, �z > + < �y, �z >.
Axiom 2 Linearity in the second variable. ∀�x, �y, �z ∈ R

6, < �x, �y + �z >=< �x, �y > + < �x, �z >.
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Figure 50: a) shows how the extended projections of occluders A and B can be fused to create a larger
extended occluder. b) shows the unconnected union of the extended projections of A and B onto the planes
P1 and P2 (in which the fusion of the extended projections is the empty set). Note that the size of the
extended projections (and hence the union of the extended projections) become smaller as the projection
planes progress farther from the cell. Finally, c) shows the much larger extended projection of the union of A
and B. Note that extended projection of the unions would grow as P progresses farther from the cell. This is
because the extended occluder is larger than the cell (if projected).

Axiom 3 Commutativity. ∀�x, �y ∈ R
6, < �x, �y >=< �y, �x >.

Axiom 4 ∀�x ∈ R
6, < �x, �x >≥ 0.

Axiom 5 ∀�x ∈ R
6, < �x, �x >= 0 iff. �x = 0

Proof:
The first three axioms make use of the fact that these same axioms are true for the standard inner
product ( � ) of R

6.
Axiom 1:

< �x+�y, �z >=
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Axiom 2:
As for axiom 1.
Axiom 3:

< �x, �y >=
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Axiom 4:

This is clearly false, since every point which does not lie on the Plücker hypersurface will serve as
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a counterexample.

Axiom 5:

This is cleraly false, since every point on the Plücker hypersurface (indeed, every real line) will

serve as a counterexample.

We also prove distribution:

Lemma A.2 Given ∀�x, �y, < α�x, �y >= α < �x, �y >.
Proof:
We use the distributive property of the standard inner product ( � ) of R

6.
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Lemma A.3 Using the previous derivation of �r, < �r,�r >= 0.

Proof:
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Appendix B

Compression

Visibility preprocessing algorithms often generate a significant amount of data that needs to be

compressed. It is also often beneficial to compress data during the execution of the preprocess in

order to reduce the number of page faults, or even to prevent the possible overflow of address space.

This appendix covers the compression techniques that we have used in our various implementations.

These techniques were developed at the beginning of the research presented in this dissertation

(i.e., in 1999). Independently, during this time van de Panne and Stewart[vdPS99] developed and

later published similar ideas. Where we developed two techniques that take advantage of two types

of visibility coherence, van de Panne and Stewart have presented an elegant and uniform solution

that exploits both types of coherence simultaneously.

B.1 Taking advantage of spatial coherence

Lossless techniques seek to locate coherence in order to achieve compression. A technique where

the differences between the visibility of a group of neighbouring cells and the similarities of the

group of cells are evaluated, is presented by Nadler et al. [NFLYCO99]. Similarity is evaluated

simply as the intersection of the respective visibility sets, while the differences are exposed by those

elements that do not fall into the intersection.

The similarities are stored once in a parent cell, while the differences are stored in the child cells.

The original visibility set for a cell can be reconstructed simply by taking the union of the cell’s

visibility set and the visibility set of its parent. The lossless technique we present is a generalisation

of this approach that is equivalent to the technique proposed by Nadler et al. in the worst case.

The coherence exploited here, is the property that nearby viewpoints, and hence nearby cells,
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have a tendency to see a similar set of objects.

Viewpoint Coherence Compression Algorithm

Our algorithm works in a similar fashion to that of Nadler et al. [NFLYCO99]. Two differentiations

being that we do not limit the hierarchy to two levels and that we also take advantage of visibility

sets that are mostly similar with respect to the visibility of a particular polygon, rather than exactly

the same.

In a similar fashion to the filter-bank approach used by wavelet compression, we associate an

average set with each parent cell and difference sets with that cells children: A difference set of

polygons is associated with each cell. These sets are constructed such that the difference sets from

a leaf cell to the root (through traversing the leaf cell ancestors) can be decoded to give the set of

visible polygons from the cell. The decompression is simple: We begin with the current cell being

that of the desired leaf cell. If an object index exists in the current cell’s parents set and its own

set, it is considered invisible, if an index does not exist in either set it is invisible, and if an index

exists in only one of either sets, it is considered visible1. This process occurs recursively for each

ancestor of the leaf, the until the root node is reached. The current cell is promoted to its parent at

each iteration.

To build the difference sets we assume a bottom up approach. Given a set of adjacent leaf cells

(starting point), we let an average set be the set of polygons contained in at least half plus one2 of

the leaf selected leaf cells. The difference set is then calculated as being the exclusive-or3 of average

set and the visibility set.

It is the sharing of data in the parent set that gives the compression. If a polygon is visible from

most of the children it is stored only once in the parent. In the case where most, but not all of the

children sets contain a polygon, the polygon is inserted into the parent set as visible, but it is also

inserted into the child set. This indicates that the child differs from the parent set by that polygon.

As an example, consider the case where a polygon is visible from seven out of eight child cells

of a parent cell. Since seven is greater than half the number of sets plus one (four), the polygon is

stored in the parent set. To represent that it is not in one child set, that child set will also contain the

polygon. The presence of a polygon in a child set represents its difference from its parent set. An

example is shown in Figure 51.

1This is an exclusive-or relation.
2The “one” accounts for the storage of the polygon in the parent list.
3Since XOR is its own inverse.
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The algorithm often makes use of a tuple representation of visibility sets. These are simply lists

whose ith value is true if and only if i is in the original set. Since this relationship is bijective, a

visibility set or a tuple can always be reconstructed from the other.

S1 S2 S3 S4

1 1 0 1
2 3 3 4
3 4 4 7
4 7 6
7 7

=>

T1 T2 T3 T4 TA

0 0 0 1 0 0
1 1 1 0 1 1
2 1 0 0 0 0
3 1 1 1 0 1
4 1 1 1 1 1
5 0 0 0 0 0
6 0 0 1 0 0
7 1 1 1 1 1

=>

D1 D2 D3 D4 A

2 0 3 1
6 3
1 4

7

Figure 51: Example of our Lossless compression technique. 17 numbers are reduced to 9. The columns
(S1..4) in the first table represent the visibility sets to be compressed. The columns (T1..4 )in the middle row
are the same sets in their tuple form, except that the parent tuple (TA) is also appended. An element in this
latter tuple is true if three (4/2 + 1) or more of its associated children have a true value. Finally, the tuples
are converted back into sets (D1..4) after they are XORed with TA. Notice that D3 and D4 did not originally
contain 1 and 3 respectively. Decompression can be achieved by recombining the tuple form of any set D1..4

with TA (readily derived from A) using XOR.

Our compression technique can be applied either incrementally, during visibility calculation or

subsequently.

van de Panne and Stewart cluster by rows and columns. The clustering by rows is equivalent to

the clustering of view cells, and accounts for the same coherence we do. The algorithms differ in

the choice of cells and how the clusters are represented. van de Panne and Stewart also present a

lossy version of the algorithm that reduces space at the cost of conservativity4

B.2 Index-Spatial Coherence Compression

In Chapter 4, many samples of visibility are taken. We have applied the technique above and a 0-

based run length encoding (RLE) technique to compress the data. We have found the RLE technique

to perform considerably better. As mentioned above, these techniques take advantage of different

forms of coherence. The technique presented in Section B.1 takes advantage of the property that

view points near each other have a tendency to see similar objects, while the technique presented

4The potentially visible sets may be overestimated.
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here exploits the property that indices that are adjacent tend to be associated with spatially related5

primitives. Such primitives have a tendency to all be visible or invisible from most view points6.

The result of this coherence, is that in a visibility tuple7, the bits typically form in clusters.

A standard RLE compression algorithm that takes advantage of such runs would work very well.

However, we use a 0-based RLE algorithm that only encodes runs of zeros, but encodes them more

cheaply than other RLE algorithms. This is to take advantage of depth complexity, since high depth

complexity is usually a feature of scenes to which visibility algorithms are applied. Such scenes

result in tuples that are almost entirely zero.

Once again, the algorithm of van de Panne and Stewart capture this coherence in terms of their

column clustering. Their choice of clusters and actual compression technique (gzip) differ from

ours.

5For example, triangle n and triangle n + 1 usually share an edge or vertex, thereby implying that the two triangles
are near.

6For example, two triangles representing a window of a building will both be either visible of invisible from most
view points.

7A structure of n bits (for n primitives), where the nth bit is set iff the nth primitive is visible.
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