FAST AND ACCURATE VISIBILITY PREPROCESSING

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE,
FACULTY OF SCIENCE
AT THE UNIVERSITY OF CAPE TOWN
IN FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

By
Shaun Nirenstein
October 2003

Supervised by
E.H. Blake

(© Copyright 2003

by
Shaun Nirenstein

Thisthesisis dedicated to my father Issadore Nirenstein, my mother Rosanne Nirenstein and to the
memories of Jack Nirenstein and Sidney Sapire.

Abstract

Visibility culling is a means of accelerating the graphical rendering of geometric models. Invisible
objects are efficiently culled to prevent their submission to the standard graphics pipeline. It is
advantageous to preprocess scenes in order to determine invisible objects from all possible camera
views. Thisinformation istypically saved to disk and may then be reused until the model geometry
changes. Such preprocessing algorithms are therefore used for scenes that are primarily static.

Currently, the standard approach to visibility preprocessing algorithms is to use a form of ap-
proximate solution, known as conservative culling. Such algorithms over-estimate the set of visible
polygons. This compromise has been considered necessary in order to perform visibility prepro-
cessing quickly. These algorithms attempt to satisfy the goals of both rapid preprocessing and rapid
run-time rendering.

We observe, however, that there is a need for algorithms with superior performance in prepro-
cessing, as well as for algorithms that are more accurate. For most applications these features are
not required simultaneously. In thisthesis we present two novel visibility preprocessing algorithms,
each of which is strongly biased toward one of these requirements.

The first algorithm has the advantage of performance. It executes quickly by exploiting graph-
ics hardware. The algorithm also has the features of output sensitivity (to what is visible), and a
logarithmic dependency in the size of the camera space partition. These advantages come at the cost
of image error. We present a heuristic guided adaptive sampling methodology that minimises this
error. We further show how this algorithm may be parallelised and also present a natural extension
of the algorithm to five dimensions for accelerating generalised ray shooting.

The second agorithm has the advantage of accuracy. No over-estimation is performed, nor
are any sacrifices made in terms of image quality. The cost is primarily that of time. Despite the
relatively long computation, the algorithm is till tractable and on average scales slightly super-
linearly with the input size. This algorithm also has the advantage of output sensitivity. Thisisthe
first known tractable exact solution to the general 3D from-region visibility problem.

In order to solve the exact from-region visibility problem, we had to first solve a more genera
form of the standard stabbing problem. An efficient solution to this problem is presented indepen-
dently.

Acknowledgements

| would like to thank my supervisor, Professor Edwin Blake. Without his unrelenting confidence in
my abilities and his guidance, my life would have taken avery different track. | aso wish to thank
Dr. James Gain for the immense amount of feedback | received while writing thisthesis. | can only
hope to achieve his standards of excellence.

| would also like to thank the National Research Foundation for funding my research.

| am indebted to my students, Adrian Sharpe and Matthew Hampton, who performed the im-
plementation and evaluation of the accelerated ray-tracer/preprocessor (see Section 4.4), and con-
tributed several key ideas. | would aso like to extend my gratitude to my students, John Lewis and
Gary Oberholster, who implemented the parallel preprocessor outlined in Section 4.5.

| am grateful to all those who have given input over the years. Thisincludes (in roughly chrono-
logical order) Gerhard van Wagenin, Nicholas Holzschuch, Ashton Mason, Fabian Nunez, Patrick
Marais, Yiorgos Chysanthou, Henri Laurie, Rudi Penne and Jiri Bittner. 1 would also like to thank
the crew at EM Software and Systems for the opportunity to work at such a dynamic company. In
particular, | would like to thank them for the understanding shown while this thesis was completed.
| also thank all members of the CV C lab, for the opportunity to work with such an incredible group
of people.

| would like to thank my grandparents, Myer and Thelma Saker, for providing me with endless
inspiration and valuable advice. | wish to thank my parents, Issy and Rosanne, my brother Grant,
Hilton and Leonie Saker, and Margaret and Bradley Bouwer for their encouragement, emotional
support and inspiration. Last, and certainly not least, | would like to thank my beautiful wife
Athena. Through her, | find myself truly aive.

vi

Preface

We adhere to certain conventions within this dissertation. In general, vectors are capped with arrows
(e.g., @), points, coordinate components and integers are referenced by the lower case letters of the
standard English aphabet (e.g., a). Differentiation between points and integers should be clear from
the context. Sets are denoted by the upper case letters of the standard English alphabet (e.g., A).
Scalars are represented by lower case Greek letters (e.g., «). The notation for polyhedra may vary,
depending on whether they are treated as sets of points explicitly (e.g., ... € P), or as elements of
aset themselves (e.g., p € ...). Other particulars are defined in context.

All proofs that we consider interesting, yet non-essential are included in Appendix A for the
reader.

Vil

Contents

Abstract

Acknowledgements

Preface

1

Introduction

1.1 Approach

12 Contributions
121 AggressiveTechniques e
122 SeectiveStabbing
123 ExactTechniques.,

13 OVEIVIEW . . . o e e

Background

2.1 From-pointvs. From-region Visibility
211 ACCUMBLY . . v v o o e e e e e e e e e e e
212 TimeBounded Visbility

2.2 From-point Visibility
221 Shadow FrustaCulling
2.2.2 AnlIncremental Aspect Graph Approximation
223 Occluder Trees o o o
224 OcclusionMaps
225 SUMMAY o e e e

2.3 From-region Visibility
2.3.1 From-Region VishilityasalLightSource

viii

Vi

vii

N N o g o b~ B

©

232 StrongOccluders e e 19

233 Cdl-Portal Visbility 19
234 Extended Projections 22
235 VolumetricVisibility 23
236 SamplingTechniques. i i 25
2.3.7 5D Spatia Subdivision 25
238 HOOPS 26
239 Tempora BoundingVolumes. 26
2310 23D Visibility Solutions 26
24 Ray SpaceFactorisation 27
2.5 Andytic Vishility Techniques 28
251 Isotopy Classesand Arrangements oo oL 28
252 VishilityEvents 29
253 TheVishilityComplex 31
254 TheVishility Skeleton 32
255 TheAspectGraph e 32
25.6 Polygon Stabbing and Anti-penumbra Computation 33
257 Discontinuity Meshing 34
25.8 AnalyticVisbilityinPractice 35
2.6 Compression of Visibility Information 36
Geometric Preliminaries 38
31 ProjectiveSpaceso e e 38
3.11 TheClassicProjectivePlane 38
3.1.2 Oriented ProjectiveGeometry 40
3.1.3 ddimensional ProjectiveSpaces 40
314 ProjectiveDuality 40
315 Pllickerspace e e 42
3.2 d-Dimensional Polytope Representation 43
321 TheFacelattice 45
322 FaceEnumeration 45
3.3 Splitting a Polytope Complex ind Dimensions. 46
34 Amangements e e e 49

35 Miscdlaneous e 50

351 TheGenerdisedCrossProduct. 50
3.5.2 Determining theLines Through Four Lines 51
Aggressive Visibility Preprocessing 53
4.1 Vidhility FromaSurface e 54
411 TheVishilityCube. 54
412 UniformSampling e 57
413 AdaptiveSampling 57
4.2 Algorithm Framework e 61
4.2.1 Visbility FromaVolumetricRegion 61
4.2.2 Hierarchical Subdivision 61
423 AlgorithmAnaysis. e 65
43 ResUItS. 66
431 Performance 66
432 EIMOr . . . e 71
44 PreprocessingRay Space 76
441 BriefBackground 77
442 O5DPreproCesSiNg v v v o e 78
443 PreiminaryResults. 85
444 Conclusion (5D Subdivision) 88
45 Peardlelising Hardware Accelerated Visibility 88
4.6 HardwareExtensions 88
46.1 AcceeaingRendering L 88
4.6.2 AcceleratingBuffer Feedback o o o 0oL 89
47 Conclusion 89
The Selective Stabbing Problem 91
5.1 Phasel: Congtructing the Set of StabbingLines 93
51.1 Computing the Set of Stabbing Linesfor [S|>2 93
5.1.2 Unboundednessin the Set of Lines Through OnePolygon 96
52 TheSetof LinesThoughTwoPolygons 96
521 Proof Outline 96
522 Detals e 97

523 Implications e 100
524 Constructing the Stabbing Polyhedron in Worst Case Optimal O(nm) Time 101

525 Cappingthe Stabbing Polyhedron 102

526 ThePolytope-PlaneintersectionCase 104

5.3 Phase2: Incorporating Misses 107
531 CSGinPluckerSpace i 107

532 OptimisingtheCSGProcesS v v v v v v v v i e e e e e e e 110

54 Conclusion 116

6 Exact Visibility Pre-Processing 117
6.1 TheVighility Query e 118
6.1.1 Casting Visibility as Selective Stabbing 118

6.1.2 Selecting aGood Order of Subtraction. 120

6.1.3 TheQuery AlgorithminContext 124

6.2 ExactVishilityfroma3D Region 126
6.2.1 Querying Clustersof Geometry 126

6.2.2 Reuseof ParentLine-space. 127

6.23 Virtual Occluders 127

6.24 TheFrameworkinContext 129

6.3 ResultsandDiscussion 130
6.4 Conclusion 134

7 Conclusion 136
7.1 FutureWork e 138
7.1.1 Including From-point Acceleration Techniques 138

7.1.2 5D Ray SpacePartitioning 138

7.1.3 Feedback in SelectiveStabbing Lo 139

A Theorems 140
B Compression 143
B.1 Taking advantage of spatial coherence L. 143
B.2 Index-Spatial CoherenceCompression 145
Bibliography 147

Xi

List of Tables

© 00 N O O B WDN PP

Classification of Visibility Techniques 2
Aliasing: Ray-Casting vs. Rasterisation 55
Aggressive Preprocess— PerformanceResults 70
Aggressive Algorithm/Preprocess—Error Results 70
5D Preprocessinginput parameters 86
5D Ray-space pre-processingresults o o 86
Error rate statisticsfor ray tracedimages 87
Ray shooting acceleration statistics 87
Experimental Resultsummary e 132

Xii

List of Figures

© 00 N O O B WDN PP

NN NNNNRRRRRRER R R B
O 5 O NP O © 0N O o b WN R O

Shadow Frustum 12
Hierarchical Z-Buffer 15
Extended Projection. 22
Shadow Volume/Shaft Volumetric Occlusion. 24
VEandEEEevents 30
LineOrientationand Plickerspace 43
FacelLatticeof aTetrahedron 45
Example—Triangle Splitting 48
Bajgj and Pascucci [BP96] — Polytope Splitting Algorithm 49
2D Arrangements e e 49
Stabbing FourLines. e 52
TheVisbilityCube 55
Uniformvs. AdaptiveSampling 58
Hierarchical Subdivision 62
Test Scene—5m TriangleForest 67
Test Scene—2m TriangleForest 68
Test Scene—Durand'sForest L 68
TestScene—TOWNSCENE e 69
Test Scene— Aggressive Culling of Durand’'sForest 71
Aggressively Culled Scenes — Large Forest, Small Forestand Town 72
Aggressive Algorithm — Scalabilityby Cell 72
Error Measure e 73
Errorvs. Threshold e 74
Average Connected Regionvs. Threshold 75
Maximum Connected Regionvs. Threshold 75

Xiii

26
27
28
29
30
31
32
33

35
36
37
38
39
40
M
42
43

45
46
47
48
49
50
51

CandidateSet Beam e 78

Ray-space Subdivision Algorithm oL 79
BDPointSample 82
Un-sampledSpace e 85
Selective Stabbing — Problem statement L 92
Orientation Based Stabbing Constraints 9
Plicker-complex Construction 95
Plane-Polygon IntersectionCase i 106
Improved Polytope Splitting Algorithm, 109
Maodified triangle splitting 111
PolytopeRemoval e 111
Modified Approach—PolytopeRemoval 112
Polytopeinan Arrangement e 113
Polyhedral ComplexinanArrangement 114
Subtractionawarestepland2 o 115
Optimised Splitting e 116
Castingto Visibility—Problem 119
Cagting to Visibility —Solution 119
Areaangle MEtric e e e e 122
Order of Subtraction 123
Selectionof Cases. 124
Virtual Occluders 128
AlgorithmResults e 131
Linear Scalabilityof Query 134
Extended Projections (fusionandplanes) 141
LosslessCompressionExample 145

Xiv

Chapter 1

Introduction

When viewing 3D scenes of high depth complexity, only a small proportion of scene primitives are
visible from any given view-point. It is desirable to remove these invisible primitives as early in the
graphics pipeline as possible. This prevents unnecessary wastage of system resources. The principal
advantage of such output sensitive rendering, is that the resulting rendering time is proportional to
the visible primitive count. This feature allows rendering time to become invariant with the overall
complexity of the scene and, in practice, allows for higher frame rates and/or more complex scenes.

The class of algorithms that perform such a partitioning of a scene into visible and invisible
primitives (polygons for the purposes of this dissertation), are known asvisibility culling algorithms.
It isimportant to differentiate between hidden surface removal [SSS74] algorithms, that determine
which fragments of the scene geometry are visible, and visibility culling algorithms that remove
invisible primitives from the graphics pipe-line before they are even transformed from object space.
Hidden surface removal is mandatory and is still applied, but only to those primitives considered
visible by the culling algorithm.

Visihility culling algorithms may be categorised according to their accuracy in differentiating
between visible and invisible primitives. We augment the taxonomy of Cohen-Or et al. [COCSDO03]
and discriminate between conservative, approximate, exact, and additionally, aggressive visibility
algorithms (Table 1).

Conservative techniques consistently overestimate and incur what we term false visibility errors.
These occur when primitives that are not visible are considered visible. This results in sub-optimal
run-time performance, due to the unnecessary submission of invisible primitives to the rendering
pipelinet.

YIn this context, the term “optimal” refers to rendering time only. We acknowledge that practical concerns, such as

CHAPTER 1. INTRODUCTION 2

Run-Time Performance
Image Quality | Optimal | Sub-optimal

Correct Exact Conservative
Errors Aggressive | Approximate
Table 1:

Classification of visibility culling algorithms.

In contrast, aggressive methods always underestimate the set of visible geometry and exhibit
false invisibility, where visible primitives are excluded erroneously. Aggressive visibility causes
image error, but can be useful in practice if: (a) the perceptual impact of the error is acceptably
small for the application, (b) the algorithm is computationally efficient or (c) it handles scenes that
cannot be solved effectively with conservative alternatives, due to excessive overestimation.

Approximate visibility techniques incur both false visibility and false invisibility errors. For
some applications such algorithms may offer a desirable compromise between the advantages and
disadvantages of conservative and aggressive techniques.

Exact visibility solutions provide both accurate images and optimal rendering performance. An
exact visibility query will produce a set containing no more or less than the set of visible primitives.

Another dimension in the classification of visibility culling algorithmsisthe distinction between
from-point and from-region visibility. The terminology introduced so far has been with reference
to from-point visibility, which is simply the determination of visibility from a single camera view-
point. Thisterminology can be extended naturally to from-region visihility.

The set of primitives visible from aregion is defined as those that can be seen from at least one
view-point within that region. Equivalently, from-region visibility can be defined as the union of
the visible primitive sets from every point within the region. If this visibility set is overestimated,
the from-region visibility algorithm is conservative, if it is underestimated, then it is aggressive. If
both visible and invisible primitives are incorrectly classified, then the algorithm is approximate.
Finally, if the set of primitives reported visible by an algorithm is exactly the set of primitives that
are visible, then the algorithm is exact.

There are several advantages to using from-region visibility. The most commonly cited, is that
the overhead of visibility culling can be relegated to a pre-process. The camera view-point space
is partitioned into a finite set of regions and the set of visible primitives for each region can then

the additional time taken to query visibility itself, could outweigh the benefits of using a more accurate visibility set.
However, since this dissertation is concerned primarily with preprocessed visibility, this run-time query timeistrivial.

CHAPTER 1. INTRODUCTION 3

be computed and stored. At run-time, only the set of primitives visible from the region containing
the current camera view-point is rendered. This saves the often expensive cost of run-time visibility
determination. Pre-processing is best suited for scenesthat are largely static, and so, this dissertation
focuses primarily on handling static scenes. Since from-point visibility may be applied at run-time,
such algorithms are usually well suited to dynamic scenes.

From-point visibility has the advantage of only ever having to solve visibility from a single
point. A point may be considered to be a degenerate region, implying that the from-point problem
may be considered a specia case of the from-region problem. From-point solutions take advantage
of special structure, often applying optimisations that cannot be applied to the general from-region
case. Thisis critical, since the application of from-point visibility algorithms occurs at run-time
on a per-frame basis. To be effective, from-point techniques have to execute in significantly less
time than it would take for the graphics hardware simply to render all scene primitives. To date, all
from-point algorithms have been either conservative or approximate in nature.

By contrast, the pre-processing stage of from-region technigues occurs once only, and is usually
computed offline. This alows more time to be allocated to solving for more accurate visibility.
Exact quantification of thistime, however, depends on the nature of the application.

It should also be noted that for many applications the final pre-process is generally performed
not by the end user, but rather the producers of the scene model. In such scenarios, computing
facilities such as high-end machines, or even machine clusters are often readily available.

During the development of the scene model, however, it is often desirable to pre-process the
scene many times for the purposes of previewing or prototyping. For this type of application it is
necessary to perform the pre-processes rapidly.

At present, conservativity is the industry standard for culling as a pre-process. Typically, con-
servative algorithms are used both during development and as a final pre-process.

We recognise two opposing problems. Firstly, we note that for some applications, very fast
visibility pre-processing is required — often faster than what is available. Indeed, for large models,
state of the art techniques may take several hours to pre-process. Secondly, after this pre-process,
there is the undesirable consegquence that the result is still an overestimation of what istruly visible
from the pre-processed regions.

Yet another issue isthe lack of consistency in this overestimation. Different algorithms respond
differently to the characteristics of different models. Some combinations of algorithm and model
may allow very accurate results to be obtained, while other combinations may be completely inef-
fectua. It isinconvenient and difficult to manage this inconsistency. Many applications are limited

CHAPTER 1. INTRODUCTION 4

to certain types of modelsin order to accommodate the visibility subsystem. The fact that the output
of any exact algorithm is unique, removes such inconsistency and unpredictability. Furthermore, the
existence of an exact algorithm defines ayard stick, against which the output of non-exact visibility
algorithms can be measured for evaluation.

In this dissertation we present two new visibility pre-processing algorithms. The first is an
aggressive algorithm that solves for visibility more rapidly than any previous solution. It also has
the advantage that it is not prone to the overestimation of approximate or conservative solutions.
Our algorithm exploits standard graphics hardware and use adaptive sampling guided by heuristics
in order to minimise error.

The second algorithm is atractable exact visibility algorithm. We consider this to be our major
contribution, since finding such a solution has been considered an important open problem. Indeed,
even the existence of a tractable solution has been doubted [Pla92]. The pre-processing time of
our exact algorithm is longer than most conservative techniques, but it does maintain near-linear
scalability. In order to solve the problem we have had to extend existing algorithms and develop
new ones. We detail our approach and list our contributions in the next two sections.

1.1 Approach

For our aggressive algorithm, our primary aim is performance. In order to achieve fast preprocess-
ing, we generalise a graphics hardware technique known as item buffer? rendering to aregion. This
is accomplished by aggregating item buffer samples over the surface of the region.

To minimise the error resulting from aliasing while sampling the surface, we use adaptive sam-
pling. We develop several heuristic error measures that guide the sampling and provide user control
over a performance/error tradeoff.

The adaptive sampling also increases performance, since over-sampling is avoided. To exploit
the reuse of samples, and to alow a progressive construction of the cell partition efficiently, we
introduce a sophisticated sampling scheme that only maintains samples that will definitely be re-
quired again. By integrating the visibility information available during the preprocess with rapid
from-point rendering techniques, we are able to accelerate the item buffer evaluation significantly.

We observe that one of the advantages of the sampling process, is that the item buffer encodes
directional information. We consider this to have many potential advantages for ray-tracing. By
subdividing the item buffer into several directiona strata, we are able to compute a subdivision of

2|tem buffer rendering is an efficient method for computing the set of visible primitives from a point [HAQ0].

CHAPTER 1. INTRODUCTION 5

ray-space, that allows the fast lookup of ray intersections, while also accounting for occlusion.

When solving the exact from-region visibility problem, our aims are both tractability and accu-
racy. Our first step is to determine the type of processes required to compute the mutual visibility
between two polygons. Since visibility is defined in terms of sight-lines, we turn to a direct repre-
sentation of line space. We use a formalism, known as Plicker coordinates, that allows lines to be
represented as points on a hypersurface in afive dimensional projective space.

The advantage of this parameterisation is that it conveniently represents the set of lines through
aset of polygons as asingle polyhedral volume. We develop several mathematical results that allow
for a closed form computation of this polyhedron in the important case where only the set of lines
through two polygons are required.

Similarly, the occluders between a pair of polygons can each be represented as a polyhedral
volume. Performing polyhedral set subtraction in Plicker space allows us to compute the the set of
lines that do not intersect a particular set of occluders. This solves the selective stabbing problem?,
of which the mutual visibility problem isa special case.

To achieve efficient polyhedra set subtraction in five dimensions, we improve on an existing
polyhedral complex splitting algorithm and adapt it to become a context aware polyhedral subtrac-
tion algorithm.

Given that we can now compute a representation of the set of lines visible between two poly-
gons, we integrate this query algorithm into a framework that uses it selectively and effectively.
Experimentally, we verify that the resulting technique is scalable and tractable in nature.

1.2 Contributions

We divide our contributions into three sections. Aggressive Techniques, Selective Stabbing and
Exact Technigues. Selective stabbing is not related to visibility exclusively, but is an important
geometric problem that required a solution in order for us to solve the exact from-region visibility
problem. The theoretical results arising from this research should contribute greatly to any work
requiring geometric manipulationsin Pliicker line space.

1.2.1 Aggressive Techniques

We have contributed a new aggressive algorithm that may be used to preprocess very large, very
complex models rapdily. We present the results of analysis and experiments that quantify both the

3Compute a representation for those lines that intersect a set of polygons S, but do not intersect a set of polygons M.

CHAPTER 1. INTRODUCTION 6

performance and the accuracy of this algorithm.
In the process of developing this algorithm, we have also contributed the following:

e From-surface visibility. We have developed a new aggressive visibility algorithm that deter-
minesthe set of polygons visible from asurface. The algorithm exploits hardware accel erated
rendering to sample visibility rapidly. A novel adaptive subdivision heuristic is used to min-
imise the error.

e Framework. We present, implement and verify agenera divide and conquer strategy for sam-
ple based visibility. Our strategy provides a novel method for effective sample cache man-
agement, allowing us to process the scene progressively at no additiona cost. This ensures
that our aggressive from-surface visibility algorithm is used effectively.

e Aggressive ray tracing. We present, implement and experimentally verify an extension to
the classic 5D Ray Classification algorithm [AK87], that makes it more suited for interactive
rendering. The algorithm is implemented as a natural extension of our aggressive visibility
algorithmto 5D. Thevisibility algorithm efficiently solvesthe occlusion problem encountered
by Arvo and Kirk.

1.2.2 Selective Stabbing

Thisproblemisanatural generalisation of the well researched polygon stabbing problem from com-
putational geometry. The problem is cast as a constructive solid geometry problem in Plicker space.
We present and experimentally analyse our efficient solution to this problem.

Apart from the solution to this problem, we have made the following contributions:

e Two polygon case. We give a best and worst case optimal O(nm) agorithm for directly
constructing the 5D polytope representing the set of lines through two polygons. Our solution
is more efficient than the general solution, and takes advantage of novel results specific to
the two polygon case. In particular, we prove that the 5D polytope has the structure of a
4D polyhedron extruded along a particular direction. We give a closed form solution for
computing this direction and this polytope.

¢ Polytope Splitting. Animprovement of the polytope-complex splitting algorithm of Bajaj and
Pascucci [BP96] that yields an efficient splitting algorithm, fully sensitive to the zone of the
splitting hyperplane.

CHAPTER 1. INTRODUCTION 7

e CSG in general dimension. We present an optimised polyhedral set subtraction algorithm
that allows for the rapid subtraction of a polyhedron from a polyhedral complex, using our
improved polytope splitting algorithm.

1.2.3 Exact Techniques

We present the first tractable exact from-region visibility algorithm. We present empirical evidence
addressing the scalability of this algorithm. We experimentally verify its performance on large and
realistic models.

In the process of developing this algorithm, we have also contributed the following:

¢ \isihility query. We detail how an output sensitive, exact polygon-to-polygon visibility query
may be cast as a special case of the selective stabbing problem. Using our efficient solution
to this problem, we attain an efficient algorithm for rapdily querying the mutual visibility
between two polygons.

e Occluder ordering. We have developed effective heuristics for selecting good orders of oc-
cluder processing.

e Framework. We develop anovel framework for the visibility query algorithm. The framework
effectively utilisesthe query, in order to prevent redundant computation. Virtual occluder gen-
eration, and the reuse of line space structures are used to ensure that previous computations
are exploited whenever possible.

1.3 Overview

We begin with abroad survey of visibility culling and exact global visibility techniquesin Chapter 2.
Chapter 3 then presents certain mathematical preliminariesthat are required to fully understand this
thesis, but typically are not covered in undergraduate studies.

We begin the presentation of our work in Chapter 4, where we detail our aggressive visibility
algorithm in its entirety. Accompanying results are included in the chapter.

We then present our solution to the selective stabbing problem in Chapter 5. This includes
detailed descriptions of the extensions we make to existing algorithms and the new algorithms de-
veloped in order to achieve a solution.

CHAPTER 1. INTRODUCTION 8

In Chapter 6 we cast the polygon to polygon visibility query problem as a selective stabbing
problem. We show how this query may be used to solve efficiently for the exact visibility set of a
region. Resultsillustrating the performance of our technique are presented at the end of this chapter.

Finally, we finish with a brief conclusion and a description of future work.

Chapter 2

Background

In this chapter the relevant background literature in the field of visibility culling is discussed. We
classify visihility culling algorithms into two classes: from-region and from-point visibility in ad-
dition to the classification presented in Table 1. Thisis because, geometrically speaking, these are
two very different problems.

We discuss the most significant visibility culling techniques for both of these classes. We do
not however discuss hidden surface removal agorithms. Sutherland et al. [SSS74] have published
asurvey of such techniques.

Examples from both classes are reviewed, although most emphasis is placed on from-region
technigues, since it is in this class of agorithm that the contributions of this thesis lie. We also
include a detailed discussion of analytic visibility methods since our solution is strongly related.

Notable aternative background reading for visibility includes the excellent in depth survey of
visibility for walkthrough applications by Cohen-Or et al. [COCSDO03] and the multi-disciplinary
survey by Durand [Dur99].

2.1 From-point vs. From-region Visibility

The geometric differences between from-point and from-region visibility have severa implications
ontheir usein practice. We discuss some of theseimplications briefly, sincethey govern the method-

ologies used in the background literature.

CHAPTER 2. BACKGROUND 10

2.1.1 Accuracy

From-point techniques have the potential to compute exactly the visible subset of geometry from
a given view-point [WA77]. For rea-time applications, however, this is infeasible, since the time
taken to compute such a subset is typically greater than that taken to render the whole scene using
az-buffer, and is certainly greater than the time required to render an efficiently computed conser-
vative estimation of the visible scene geometry. For this reason, most of the literature focuses on
conservative estimations for run-time from-point visibility.

From-region techniques, in contrast, do not in general possess the potential to compute the exact
set of visible geometry from aview-point. This results from the definition of aregion. Namely, that
it contains many view-points that may see different geometric primitives. It is possible to subdivide
the view-point space into regions of constant visibility, however, such subdivision quickly becomes
combinatorially complex and isinfeasiblein practice. Theresult being, that in practice, from-region
visibility isin general, a conservative estimate of from-point visibility. This relative conservativity
can be reduced, by reducing the size of the viewing regions.

The advantage of from-region techniques is that the visibility computations can be performed
offline, as a preprocess. When sufficient preprocessing timeis available, it is possible to preprocess
scenes heavily enough, such that the estimates become less conservative. Thisis achieved by more
sophisticated algorithms that account for complex occluder interactions and the visibility of fine
geometry (e.g., per triangle).

2.1.2 Time Bounded Visibility

It is often desirable to compute a lower bound on the amount of time before a set of geometric
primitives can become visible. Such a time bound has many uses in practice, and is an effective
tool for handling complexity. The most common application is to define priorities on geometry and
textures (also light, bump, normal maps, etc.), such that the priority is highest for currently visible
geometry (and associated mappings), and lowest for geometry/mappings with thelongest lower time
bounds.

The layout of geometry and mappings in memory can be structured such that highest priority
elements are in the highest performance memory (i.e., video card or AGP), and the lower priority
elements arein the lower performance memory (i.e., main memory, secondary storage, or even on a
remote host [COZ98, TLO1]). This allows from-region visibility to optimise not just the rendering
pipeline, but al the resources of the system. Effectively, this process can be considered to be aform

CHAPTER 2. BACKGROUND 11

of predictive cache management.

In order to obtain these lower bounds on “time till visibility”, it is hecessary to constrain the
movement of the camera to some degree. Shortest path finding algorithms [FST92] and bounds
on camera movement speed can be used to bound the time until a camera leaves a region, or can
possibly reach another given region. Wonka et al. [WWS01], use this concept to remove the pre-
processing time and storage requirements for their solution to from-region visibility. They compute
from-region visibility at run-time, concurrently on another machine. The visibility of the surround-
ing view-point space is computed before the camera can cross over into them.

Correa et al. [CKS02] use predictive heuristics to look ahead for potentially visible objects.
Overestimation results in inefficiency, while under estimation results in popping artefacts. A com-
plete out-of-core solution is implemented.

From-point visibility techniques cannot provide such management, since they are not, by defi-
nition, aware of the cameralocale. We believe that from-region and from-point visibility algorithms
may be combined to achieve both a higher degree of culling and complexity management.

2.2 From-point Visibility

Run-time visibility algorithms have a non-trivial run-time component but often also a small pre-
processing component. In this section we survey the various run-time visibility culling techniques
proposed in the literature?!.

2.2.1 Shadow Frusta Culling

Hudson et al. [HM C*97] describe avisibility algorithm based on the construction of shadow frusta.
A spatial subdivision is generated to partition the view-point space. A set of occluders is chosen
for each partition or cell. These occluders are selected as a pre-process, and selection is based on a
heuristic that attempts to maximise occlusion.

At run-time, a shadow frustum is created for each selected occluder (see Figure 1) with respect
to the view-point. If an object falls completely inside a single shadow frustum it is considered to
be occluded (shadowed if you consider the view-point to be alight source). If an object intersects
the boundary of one of these frustait is said to be partially visible. Since this algorithm is conser-
vative, it treats all partialy visible objects as visible and lets the depth buffer determine the visible
fragments in image-space.

We discuss from-point cell-portal rendering in Section 2.3.3 for clarity.

CHAPTER 2. BACKGROUND 12

Figure 1: Shadow Frustum The shadow frustum cast by occluder b with respect to view point v. Any object
falling completely inside this frustum is considered invisible. Respectively, objects a, ¢ and d are partially
visible, occluded and fully visible.

A hierarchy of bounding volumes is created over the model geometry to enable efficient con-
tainment tests on the shadow frusta. Thetest isonly refined to thelevel of cells. Individua polygons
are not treated. This results in a tradeoff, namely an increase in rendering time for a decrease in
algorithm execution time.

This algorithm is conservative because:

1. Only asubset of potential occluders are considered
2. Objectsthat are necessarily occluded by more than one occluder are always considered visible
3. All geometry within avisible (by criteria 1l and 2) leaf bounding box is considered visible

As the size of the bounding boxes increase, they becomes less likely to be occluded by asingle
object. This algorithm performs best for scenes consisting of a combination of large and small
polygons, where the large polygons can be used as occluders for clusters of small polygons.

CHAPTER 2. BACKGROUND 13

2.2.2 An Incremental Aspect Graph Approximation

Coorg and Teller [CT96, CT97], show how a tractable approximation (subset) of an aspect graph
(detailed in Section 2.5.5) can be generated using a predetermined subset of occludersthat implicitly
represent a coarse approximation of the graph. This approximation is evaluated lazily asthe camera
crosses the boundaries of the approximate aspect graph cells.

Where the complete aspect graph subdivides the view-point space into regions of constant as-
pect, a considerably more coarse representation may be generated using only a small subset of the
full spatial subdivision. This subdivision is that defined precisely by the set of relevant planes.
These account for asmall subset of visibility events (see Section 2.5.2).

The relevant planes implicitly define a view-cell for the current position of the camera. When
one of the relevant planes bounding this cell is crossed, the maintained set of visible objects is
updated with the associated event. As the camera moves, occluders are incrementally added and
subtracted to a set of active occluders. As this occurs, relevant planes are dynamically added to
and subtracted from a maintained plane set. In order to determine visibility events, queries are
preformed to determine the event associated with each relevant plane. To perform these queries
efficiently, an octree bounding box hierarchy is generated over the model. The visibility of the cells
isevaluated hierarchically.

Despite the different nature of the implementation, the relevant planes are chosen such that the
handled events are equivalent to that of an object moving completely interior a shadow volume
(or equivalently, become partially exterior to a shadow volume). Thus the conservativity of this
techniqueis equivalent to the shadow frustum technique of Section 2.2.1

2.2.3 Occluder Trees

Bittner et al. [BHS98] describe asimilar algorithm to the two discussed above. However, where the
above algorithm considers each shadow frustum individually, Bittner et al. implement amodification
to account for occluder collusion/fusion. In a similar manner to Hudson et al. [HMC197], a set of
potential occludersis determined in a pre-process and a subset of these is selected at run-time.

BSP trees are commonly used as a mechanism to perform set operations on polyhedra [TN87,
NAT90]. In the context of occluder fusion, the desired operation is the union of shadow frusta. A
shadow volume BSP structure is built from the selected occluders. Using this, the shadow frusta
are merged implicitly. A containment test is performed by traversing the BSP tree and determining
whether or not the object in question (a node in abounding volume hierarchy) fallsinto the union of

CHAPTER 2. BACKGROUND 14

the shadow frusta. This check is more complex, and thus more computationally intensive than the
one described in the original shadow frusta algorithm, however, considerably more culling is likely
to be achieved.

2.2.4 Occlusion Maps

There is a set of techniques that use image based methods to compute whether or not an object is
occluded. The general approach is to render a small subset of the scene from the current view-
point. From this rendering, an occlusion map is synthesised. Each presently un-rendered object is
tested against the occlusion map. If an object is deemed occluded (i.e., behind the occlusion map),
then it is omitted, otherwise it is rendered. The rendered object may be integrated into the existing
occlusion map in order to account for what it may further occlude. Temporal coherenceis exploited,
by rendering the visible object from the previous rendering first.
The techniques that follow this general pattern differ in various ways:

1. The method used to decide the order of in which the objects are rendered
2. The method for testing objects against the occlusion map
3. Whether or not rendered objects can be integrated into the occlusion map

The particular techniques we consider are the hierarchical Z-buffer/tiling [GK93, Gre96], hier-
archical occlusion maps [ZMHI97, Zha98], a conservative augmentation of the prioritised-layered
proj ection a gorithm [K S01] and new hardware based approaches[BMH98, BMH99, SOG98, Reg02].

Hierarchical Z-buffering/Tiling

Greene and Kass [GK 93] present the hierarchical Z-buffering algorithm. The algorithm begins with
apre-process. an octree bounding box structure is built over an existing scene. A Z-pyramid is used
as an occlusion map. The base of the Z-pyramid is a Z-buffer in the traditional sense. The buffers
above this base are each a quarter the size of the buffer directly below them and are generated
recursively from the level below in a technique similar to bilinear filtering. Instead of taking the
average, from each group of four adjacent buffer elements, the farthest Z value is extracted. Thisis
illustrated in Figure 2.

The visibility test begins at the root node?. If the bounding box of the node is visible, the
visibility of its children are evaluated. If the bounding box of the node is occluded then it and its

2In practice the root node cannot be occluded.

CHAPTER 2. BACKGROUND 15

14121316

417 |3 [12|_[14]13]
>4 T8 10~ 1210 14
203 |1 5

Figure 2: Hierarchical Z-Buffer. An example of the three top levels of a Z-pyramid. The 4x4 grid on the left
is transformed to the apex on the right.

descendents are culled. This process is recursively applied to al visible nodes. If aleaf node is
determined to be visible, the contained geometry is rendered.

The visibility test for a node begins by testing the front facing polygons of its bounding box
against the tip/root of the Z-pyramid. For each node it is possible to test whether the nearest vertex
of an octree node is further than the furthest pixel in the Z-pyramid. If thisistrue, al polygons
associated with the octree node are culled. If the nearest vertex is closer than this value at the
root/tip, then the depth of the octree node is compared to the values in the lower level in the same
way. Thiscontinuesrecursively, until the comparison isdone at the leaf level. |f the object isvisible,
it isrendered and integrated into the Z-pyramid.

When testing the children of apotentialy visible octree node, the children are visited in afront-
to-back order (easily determined from the relative orientation between the camera and the octree),
since drawing the closest nodes first increases the probability of the occluded far nodes quickly
being classified as occluded.

Hierarchical Occlusion Maps

Zhang presents an algorithm [ZMHI97, Zha98] that exploits standard graphics rasterisation hard-
ware. A preselected® set of occluders are rendered onto the screen. The image is then read back.
This gives a bitmap containing the aggregate renderings of the occluders. An opacity value is used
as the bitmap elements. Each bitmap element is either opague (it has been rendered to) or fully
transparent. In general, however, the opacity of arectangular set of pixelsis defined as the ratio of
the sum of opaque pixels to the total area of the block.

A hierarchical occlusion map is derived from this bitmap by recursively averaging the bitmap
valuesin order to create parent levels (also achieved by the efficient utilisation of texture hardware).

3The criterion is that these occluders are located nearer to the viewer, than the geometry they can be considered to
occlude.

CHAPTER 2. BACKGROUND 16

The projections of the bounding volume representations of the scene objects are tested for visibility
against the hierarchical occlusion map. The occlusion map hierarchy alows for efficient overlap
guerying. Should the bounding volume of some object be completely covered by the occlusion
map, then it can be said to be invisible.

An opacity threshold may be set to allow for approximate culling. Thisimpliesthat if abounding
box is visible through an area of the occlusion map that is largely opaque, the geometry inside it
may be culled even though it is potentially visible. Coherence factors generally make the resulting
image acceptable. Thisisatypical tradeoff between quality and performance.

Prioritised Layered-Projections

Thetechniques of Section 2.2.4 try to build up good occlusion maps by rendering the fewest possible
objects. The heuristic used is afront to back ordering. This heuristic fails in certain cases, namely
in those cases where most geometry is nearby, yet occluded. In such cases, those invisible occluders
rendered into the occlusion map are redundant.

Klosowski and Silva[K S00, KS99] present an algorithm known as the Prioritised Layered Pro-
jection (PLP) agorithm. This algorithm presents a better heuristic that attempts to render visible
geometry first. The scene is tesseletated into cells, and rendered in approximate layer by layer or-
der. Thefirst layer consists of geometry that is most likely to be visible, the second layer consists
of geometry that is likely to be occluded by the first layer, etc. Geometry in the n-th layer is more
likely to be visible than that of the (n + 1)-th layer. Given a triangle budget of % polygons, the
first & elements under this ordering gives a good approximation to the visible set. Such rendering
is useful for rendering complex scenes at a set frame-rate, while still attempting to maximise the
visual quality, even if not all visible geometry is drawn.

Klosowski and Silva [KS01] use the PLP algorithm to render better occlusion maps. They aso
consider several hardware extensions to enhance from-point visibility techniques.

Hardware Techniques

A significant problem with the techniques discussed so far, is that they require either the mainte-
nance of a distinct occlusion map (Hierarchical Z-Buffer), or the reading of the frame-buffer (Hier-
archical Occlusion Maps) at run-time. Idedly, it is desirable to maintain every rendered object (i.e.,
the occlusion map is updated as each aobject is rendered) and still avoid the overhead of auxiliary
structuresin main memory.

CHAPTER 2. BACKGROUND 17

Bartz et al. [BMH98, BMH99] take a very similar approach to that of Zhang et al., using a
stencil buffer. They also however, suggest the usage of an occlusion bit (first proposed by Scott et
al. [SOG98]) that can be integrated into hardware. The purpose of this bit is to return whether or
not the frame buffer had changed between the setting and testing of the bit.

This functionality has been integrated into current consumer level hardware. It provides the
functionality to test whether or not the rendering of some object would modify the contents of
the frame-buffer. Thisis accomplished by determining whether or not any rendered geometry will
pass the Z-buffer test. In typical usage, Z-buffer and frame-buffer writes are disabled. Next, the
bounding box of a complex set of geometry is rendered. If this bounding box does not ater the
occlusion bit, then the bounding box, and hence the geometry inside, cannot be seen. This test
may be performed on a bounding box hierarchy in order to reduce the number of tests performed.
These tests are non-trivial since they require the rendering of large bounding volumes, thus adding
potentially expensive (fill-rate dependent) costs. Secondly, thisvisibility query requiresaround trip
to and from the graphics hardware before feedback is given. This introduces latency. Thirdly, for
those visible objects, the bounding box renderings are wasted. As noted by Bartz et al., better fitting
bounding boxes will reduce such conservatism.

In addition to the suggestions of Scott et al., Bartz et al. suggest the addition of extensions
that will give further information, such as the number of visible pixels, the number of projected
pixels and the furthest Z-value. The extension that gives the number of visible pixels has been
implemented on current hardware [Reg02]. Having the number of visible pixelsallows anon-trivial
upper bound to be placed on the pixel error resulting from not-rendering an object. This allows for
what is known as approximate [Zha98] or contribution [Reg02] culling to be performed. Thisis
when an error tolerance (a set number of pixels) is set. If the number of visible pixels are below
this tolerance, then the object is not rendered. This saves resources that would otherwise have been
spent rendering geometry that does not contribute significantly to the image.

2.2.5 Summary

The goal of practical from-point visibility isto seek an efficient means to determine which geometry
is occluded by agiven subset of occluders. These technique may compute shadow frusta explicitly.
More advanced techniques will seek to fuse the frusta together to achieve more culling.

Many techniques exploit graphics hardware to build some form of occlusion map. Thisis effec-
tively a discretisation of the shadow frusta. One advantages of the occlusion map approach is that
complex computations on the CPU are avoided. Most of the work reducesto simplerendering that is

CHAPTER 2. BACKGROUND 18

very efficient on graphics hardware. Another advantage is that accurate occluder fusion isimplicit.
The cost of such a technique comes in the form of latency, due to the necessary communication
between the graphics hardware and the CPU.

2.3 From-region Visibility

In this section we examine from-region techniques. We reserve any discussion on analytical from-
region techniques until Section 2.5.

2.3.1 From-Region Visibility as a Light Source

A useful analogy for from-region visibility, is to treat the view region as a (direct) volumetric light
source. The geometry that is fully illuminated is the geometry that can see the lightsource fully.
Geometry that is partiadly lit (in penumbra) can only see part of the light source, and geometry that
isin shadow (umbra) cannot see the light source at all.

The goal of from-region visihility, is to compute which primitives lie completely in umbra (as
efficiently as possible). In order to achieve this, many solutions have been presented. Typically,
these are either sample based, or they are anal ytic techniques that seek to evaluate the umbravolume
explicitly.

Building the umbravolume is a difficult task. It is not sufficient to fuse the umbra of a selection
of occluders. Indeed, it is often the case that the penumbra of distinct occluders interact with each
other, and form a significant extension to the umbra volume. In other words, the umbra of a set of
occluders, encompasses and extends the joint umbra of the individual occluders.

Computing only asubset of occluder interactions resultsin a smaller umbravolume, and isthus
aconservative overestimate of what isvisible. Computing avolume larger than the exact joint umbra
would result in an aggressive algorithm where some visible primitives are considered invisible. Re-
searchers of accurate illumination techniques, explicitly compute the boundaries on a surface where
discontinuitiesin illumination take place. These discontinuities account for transitions between um-
bra, penumbra and full illumination. This is discussed further in more detail in Section 2.5.7. In
what follows in this section, we discuss those techniques that are designed as practical means to
compute from-region visibility.

CHAPTER 2. BACKGROUND 19

2.3.2 Strong Occluders

Cohen-Or et al. [COFHZ98] define what is referred to as a strong occluder. A strong occluder is
a convex polygon that by itself blocks all sight lines from one region to another. The algorithm
subdivides the scene into a grid of cells (regions). The agorithm proceeds by iterating through all
regions. The visible subset of the scene is computed for the region of the current iteration. The
visible set is conservative, and an object O is considered visible from aregion R if and only if no
strong occluder exists between O and R.

Cohen-Or et al. [COKTO02] have developed a technique that generates a partition of large con-
vex regions that cover a simple non-convex polygon. This allows this technique (and indeed any
technique that requires convex occluders) to be applied to scenes with simple non-convex occluder
polygons.

The authors produce a statistical model (see Nadler et al. [NFLY CO99] for more details) for
scene geometry. They show that in a scene with a certain object distribution (an approximate
minimum-distance Poisson distribution) and a view region/cell smaller than the average object size,
it becomes exponentially more likely for an object to be strongly occluded as its distance from the
view-point increases.

This provides good motivation for using strong occluders for such scenes. These scenes are,
however, becoming less and less common. The trend is towards detailed scenes with very small
primitives. It isinfeasible to build cells that are smaller than these small scene polygons, since the
number of cells required would be excessive .

Bath the algorithms of Cohen-Or et al. and Saona-Vasquez et al. [SYNB99] use this type of
conservative visibility. We continue by investigating those techniques that utilise occluder fusion to
generate better approximations of the exact visible set.

2.3.3 Cell-Portal Visibility

Airey et al. [ARJ90] developed a cell-portal system founded on the following observation: In a
model, the contents of a cell/region (resulting from some form of spatial partitioning) is potentialy
visible only if a portal (convex connected sub-region of the cell boundary) of that cell is visible.
Cellsrelate roughly to the concept of rooms, and portals roughly to the concept of doors or windows.
As a pre-process, portals and cells are determined, and the mutual visibility relationships between
all cells are computed. At run-time this may be refined by determining the visible set from asingle
view-point and the view frustum.

CHAPTER 2. BACKGROUND 20

Airey et al. determine visibility (approximately) using a ray casting approach. Airey et al.
were also the first to propose a hardware assisted visibility pre-process. Teller et al. [TS91] and
Teller [Tel92a] show how an exact solution to cell-to-cell and cell-object visibility can be accom-
plished.

Cdll-portal techniques rely on the scene having aroughly architectural structure. The worst case
for such algorithms are scenes that consist predominantly of detailed objects. In such cases, the
algorithm breaks down dueto the complexity of the BSP tree subdivision, and the further complexity
of computing the existence of stabbing lines (see Section 2.5.6) through many long portal sequences.

Cell-portal based algorithms have traditionally not been thought of as “occluder fusion” type
algorithms. Although no occluder fusion is performed explicitly, we consider the explicit treatment
of the holes through occluders (opaque parts of cells) asimplicit occluder fusion.

Pre-process

Inthe pre-processing phase of acell-portal algorithm, the view-point spaceis partitioned into convex
cells separated by portals. This is usually achieved using a BSP. Other partitioning systems have
been developed to generate a cell structure that relates more closely to the structural abstraction of
the scene. One example is the partitioning scheme of Meneveaux et al. [MMB98] for architectural
environments. Haumont et al. [HDS03], Lerner et al. [LCCOO03] and Chrystanthou et al. [CCOZ98]
present more general schemes for cell-portal partitioning.

Once the cell structure has been determined, it is necessary to find portals. This process is
called portal enumeration and involves a search for polygons shared by cellsthat do not correspond
to (opague) scene geometry.

A set of visible cells* is computed for each cell. Teller determines whether a sightline exists
from one cell to another by searching for the existence of aportal sequenceto thecell in question. A
portal sequenceisaset of portals, all intersected by acommon un-obstructed sight-line and ordered
by position of intersection. Teller [Tel92a] presents solutions to the stabbing problem for 2D floor
plans, axialy aligned 3D environments, and arbitrary oriented polygons. The stabbing problem is
discussed in detail Section 2.5.6.

In practice, not all scene geometry istreated during the visibility pre-process. It isimpractical to
partition the scene around highly detailed objects, since this would result in a combinatorial explo-
sioninthe size of the BSP tree. Rather, detail objects (typically defined as such by the modeller) are

4A visible cell is commonly called a Potentially Visible Sets (PVS)

CHAPTER 2. BACKGROUND 21

omitted from the visibility pre-process. Conservatively, detail objects are considered to be visible if
the cell containing them isvisible.

Teller did however provide one higher degree of refinement. By computing the visible volume,
or anti-penumbra [Tel92b, Tel92a] from a porta, it is possible to compute exactly which parts of
the visible cells are visible. Only objects within the anti-penumbra volume are considered to be
visible. This technique was considered insufficiently robust for complex scenes. Teller and Hanra-
han [TH934] later developed arelatively robust, but conservative, test that generates an overestima-
tion of the anti-penumbra by pivoting separating tangent planes over the edges of a portal sequence.
For the purposes of global illumination, this volume is refined to account for the required polygon
to polygon visibility query. A line space test is used to achieve this refinement (we utilise asimilar
test in Section 6.2.2).

Run-time

The run-time phase can be broken down into two refinement stages. First the coarse phase occurs,
where cell-to-cell visibility is extracted from a pre-computed visibility structure. Secondly the
precise phase occurs, where eye to object visibility is determined.

The first phase finds the cell containing the view-point. When determined, a set of visible cells
is extracted (from the stored pre-processed output data) and for each cell a set of visible objects
is extracted (also from the stored output data resulting from the pre-process). The second phase
involves determining visibility from a single view-point. This is effectively a clipping operation
that determines those portals visible within the view frustum.

From-point Cells and Portals

Luebke and Georges [LG95] have developed an agorithm that determines at run-time which cells
are visible. This is accomplished by the recursive clipping of the bounding boxes of projected
portals against each other, in front to back order, to determine (conservatively) which portals are
visible and hence which cells are visible.

At present, this is one of the most commonly used approaches to visibility culling in practice.
Asdiscussed in Section 2.1, thisis still no replacement for from-region techniques.

CHAPTER 2. BACKGROUND 22

2.3.4 Extended Projections

Durand et al. [DDTPQO, Dur99] present afrom-region visibility technique that seeksto fuse occlud-
ersin order to process complex scenes effectively. Their technigque works by transforming occluders
such that their shadow volumes are valid, not for just a single point, but rather the entire cell (or at
least one side of the cell, since the sides are treated separately and then combined). They call this
transformation an extended projection (E P).

The extended projection for an occluder with respect to a particular cell and chosen plane is
defined as the intersection of all possible projections of the occluder onto the chosen plane, where
the center of projection is with respect to all view-points within the cell. Effectively, the extended
projection is a cross-section of the umbra region of the occluder, with respect to the view cell
(lightsource). Thisisillustrated in Figure 3a.

The extended projection for an “occludee” with respect to a cell and a plane is defined as the
union of the projections of the occluder onto the chosen plane. Once again, the center of projectionis
with respect to al view-points within the cell. In terms of the light anal ogy, the extended projection
is a cross section through the anti-penumbra cast through the occludee. An example of this is
illustrated in Figure 3b.

(a) (b) (©)

Figure 3: Extended Projection.(a) The extended projection of an occluder. (b) The extended projection of an
occludee. (c) The extended projection of the occludee falls inside the extended projection of the occluder.

With respect to agiven plane, if the extended projection of an occludee polygon isasubset of the
extended projection of an occluder, then the polygon is occluded. Thisis also shown in Figure 3c.
Durand et al. define m‘ew(} to be the planar projection of A, with respect to view-point V. In his
thesis Durand summarises this by the following relations: For any view-point V' in aview-cdll:

viewgretudee - U viewdgedee C ﬂ viewgeder C viewgFetuder €))
" —_—
Wecell Wecell

projection of occludee projection of occluder

EP of occludee EP of occluder

CHAPTER 2. BACKGROUND 23

Durand et al. show that extended projections can be fused by taking the union of extended
projections on the projection plane. The validity of this can be seen in the following:

EP of occ
/_/%
viewi’/cd“dee - U view%ﬁd“der - U ﬂ viewy, C U viewy *
N————
. . Wecell occ€occluders W ecell occ€occluders
projection of occludee
EP of occludee union of occluder EPs union of projected occluders

@)

The extended projection algorithm iterates through several planes. In order to use extended
proj ections accumulated on a previous plane, they can be reprojected onto successive planes.

The extended projection algorithm is conservative. Consider the case where the scene consists
of primitives that are significantly smaller than the view cells. When a set of small occluders are
projected onto a plane, the umbra cast by the extended projections is significantly smaller than the
umbra that would result from the original polygon set. Indeed, if the projection plane is too far
away, the extended projections may not exist.

Cohen-Or et al. [COFHZ98] show that strong occlusion is most effective when the view cell is
smaller than the scene objects. A similar consideration can be used to analyse the culling efficiency
of the extended projection algorithm. Indeed, it is only when the accumulated extended projections
and reprojections thereof grow larger than the view cell, that significant culling is achieved.

Durand et al. generalise reprojection into a technique known as the occlusion sweep. Hardware
rendering is used to perform the fusion and reprojection of extended projections efficiently. Thisis
necessary to handle large scenes consisting of many small occluders.

Asaninformal comparison, Durand et al, implement the technique of Cohen-Or et al. [COFHZ98]
and attain resultsfor their scenes showing that their routine culls out approximately four times more
geometry and is 150 times faster.

2.3.5 Volumetric Visibility

Schaufler et al. [SDDS00] present a visibility technique similar to that of Yagel and Ray [YR96].
Both of these techniques discretise spaceinto cells and both classify the cells based on whether they
are opague (interior to occluding objects), contain polygons or are empty. In their paper Schaufler
et al. show how such a discretisation and classification can be generated from a reasonably general
polygonal model: the model must consist of objects that have a solid volume (i.e., the surface
representation for objects must be manifold meshes).

CHAPTER 2. BACKGROUND 24

Yagel and Ray calculate the visibility sets for their cells by generating shafts between each
pair of view-point cells and searching for interference by opaque cells. Similarly, Schaufler et al.
calculate visibility by generating a shadow volume from each cell. Occluder fusion is realised by
joining a subset of opaque cells together to form an extended blocker. Finally, they classify cells as
being partially inside the shaft, completely in the shaft or completely outside the shaft. The cells
completely inside are in the umbra of the view-cell and are therefore culled from the visibility set.
They show how this can be determined efficiently in both two and three dimensions. Anillustration
of the discretisation and shadow frustum/shaft can be seen in Figure 4a.

/// A
|7
A \ // 7 =7
B ////
-
B // ‘\ 7
\%N P P -7 |C

(a) (b)

Figure 4: Shadow Volume/Shaft Volumetric Occlusion.(a) shows the shadow frustum/shaft C generated from
cell A by object B. Note that the grid need not be uniform. (b) al cells intersecting area D cannot be seen
from A, however, they would be marked as visible, since they do not fall entirely inside at least one of the
shadow volumes cast by the volume occluders B or C.

The degree of conservativity for the algorithm of Schaufler et al. depends greatly on the type
of scene to which it is applied. It performs best for scenes consisting of objects which have large
volumes and are nearly convex (e.g., urban models, where building interiors are considered opague).
The agorithm fuses together the occluding cells where possible. Complex fusions, such as those
resulting in a non-convex volume occluders and the fusion of disjoint cells are not performed.

CHAPTER 2. BACKGROUND 25

2.3.6 Sampling Techniques

Gotsman et al. [GSF99] present anovel sample-based visibility solution. They usea5D sub-division
of ray space (three spatial and two angular dimensions). Each 5D cell maps to a beam in 3D
space [AK87]. The use of two angular divisions is intended to accelerate frustum culling at run-
time. To determine from-region visibility, rays are cast from arandom point in the cell to random
points on an object’s bounding box. A statistical model based on whether the rays hit the target
object, isthen used to decide if the object isvisible, invisible or whether more rays need to be cast.
Error thresholding allows a trade-off between pre-processing time and accuracy.

This technique may admit both false visibility errors and false invisibility errors. Neither per-
formance, nor error rates are evaluated in this paper. We have ascertained that the largest model
tested (450k polygons) took “in the order of hours’ to pre-process [Sud].

2.3.7 5D Spatial Subdivision

Wang et al. [WBP98] propose a visihility culling scheme based on a point-angle 5D subdivision
(z, y, z, 6, ¢). In order to determine cell-to-polygon visibility they generate an outer rectangular
volume (ORV) around each spatial cell. They then proceed to subdivide this ORV adaptively into
rectangular patches. A beam is the convex hull of the union the vertices of an ORV patch and the
gpatial cell. Visibility is computed using a standard shaft interference algorithm [Hai00]: if asingle
occluder blocks the beam, then al polygons behind it (and completely contained) in the beam are
not visible. If the number of visible polygons for abeam is above a set minimum, the beam isfurther
subdivided. If a beam exceeds this minimum and is very small, the average colour of its contained
polygonsis used as an approximation for the beam.

The rendering process works in a similar fashion to a cubic environment map. The ORV of the
view-cell containing the current view-point is mapped onto the view-plane. This occurs directly if
the beam corresponding to a pixel or group of pixelsis asingle representative colour (as described
above). If the beam contains a PVS, then this PVS is rendered as per usua onto the view-plane.
Polygons in the PVS are tagged to prevent a polygon that may be in more than one PVS being
rendered. The beams that do not project into the view-frustum are culled.

CHAPTER 2. BACKGROUND 26

2.3.8 Hoops

Brunet et al. [BNRSV01] present a technique for finding virtual occluders (i.e., occluders that are
not actually a part of the scene)® within a scene. In this case the virtua occluders are defined by
hoops. A hoop is aclosed polyline that denotes a region that appears to be both convex and simple
from agiven region. A convex umbracan then be extracted from each hoop. All geometry within the
umbra (or within the union of several umbra) is occluded. The algorithm istested on a conservative
volumetric approximation of the interior of the model.

Various sufficiency conditions are presented in the paper for defining these hoops. In particular,
the polygons within the mesh region bounded by the hoop define a cap polyhedron to be the inter-
section of all the positive half-spaces embedding the polygons. That the view-region falls within
this polyhedron is one criterion for sufficiency.

The conditions for the sufficiency of a polyline are relaxed in [NRO3]. A topological condition
is presented that allows the above mentioned capping condition to be relaxed.

2.3.9 Temporal Bounding Volumes

Surdarsky [Sud98] and Sudarsky and Gotsman [SG99] present a technique for integrating dynamic
objectsinto from-region visibility pre-computations. Thisisachieved by creating atemporal bound-
ing volume around a moving object. Thisis only possible if the motion of the object is somehow
constrained. The tempora bounding volume is the swath of space traversed by the motion of the
object.

Conservative bounding volumes may be put around the whole motion swath. If a temporal
bounding volume is occluded, then so is the moving object it bounds. Using this technique, moving
objects can be occluded, but moving objects cannot occlude.

2.3.10 21D Visibility Solutions

Koltun et al. [KCCO00] make use of separating lines to build larger more effective virtual (i.e.,
not part of the scene geometry) occluders to represent the aggregate occlusion of many smaller
occluders. They note that by building their virtual occluders as a pre-process and performing the
occlusion culling at run-time (on a per cell basis), the cost of storing the visibility sets for each

SMany techniques (e.g. Schaufler et al. [SDDS00], Bernardini et al. [BKES00] and Durand et al. [DDTPOQ]) use a
similar concept to that of virtual occluders. Where the algorithms differ, isin how the virtual occluders are constructed.
For Durand et al., the virtual occluders are the fused extended projections. Similarly, for Schaufler et al. and Bernadrini
et al., the virtual occluders are opague cells within the volumetric objects.

CHAPTER 2. BACKGROUND 27

cell isremoved. They implement a Z%D (height field) solution. While the theory extends to 3D
separating planes, the general method is far more complex and may not be tractable.

Wonkaet al. [WWS00] have another conservative 2% D solution. They shrink asubset of occlud-
ersand then samplevisibility (effectively fusing occluders). Occluder shrinking allowsthe sampling
process to remain conservative. There is a trade-off between the number of samples required (and
hence time) and the degree of“shrinkage’. This algorithm tends towards an exact solution as the
number of samples, and hence the amount of time required, tends towards infinity. The shrinking
process has been improved by Décoret et al. [DDS03]. Where Wonka et al. shrink using a sphere
(optimal only for spherical cells), Décoret et al. generalise the technique to alow shrinking by any
convex object.

This algorithm can be extended to a general 3D solutions, by tessellating and shrinking volu-
metric occluders. This has not yet been implemented or evaluated. The scenes best suited, are those
with large volumetric objects. Scenes consisting predominantly of small volumetric objects can be
treated effectively only if minimal shrinking occurs. This requires an excessive number of samples
to maintain conservativity. The sampling process exploits graphics hardware for efficiency.

Wonkaet al. intended for thistechniqueto be applied to urban scenes. A facade of building faces
is generated and used to greatly decreases the complexity of the environment. Thisis necessary for
acceptabl e preprocessing time.

This work has been further extended by Wonka et al. [WWS01]. The shrinking factor allows
for a conservative visibility estimate to be made within a specified locus (further shrinking implies
a greater locus and higher overestimation) of the sample point. Rather than pre-processing by
sampling the surfaces of cellgregions, a separate server is used to compute what is visible in the
region around the camera. As long as the camera speed is sufficiently bounded, the server can
generate visibility information before the camera moves out of the currently evaluated region. The
general idea is to amortise the cost of from-region visibility over the several frames, in which the
camera must remain in the computed region.

2.4 Ray Space Factorisation

Leyvand et al. [LSCOO03] observe that the 3D from-region visibility problem is coupled with the
intrinsic complexity of the four dimensionality of the space of linesin 3D [MO88]. They decompose
the from-region problem into aseries of 2D visibility problems resulting from the factorisation of ray
space into horizontal and vertical components. These components are then conservatively merged

CHAPTER 2. BACKGROUND 28

using an algorithm implemented efficiently using graphics hardware.

The vertical components are treated more conservatively than the horizontal components. This
is motivated by the fact that many scenes have low vertical complexity. Where many techniques
treat 24 DD visibility solutions, they assume the lowest possible vertical complexity® this approach
may be extended to handle more general models, with low, but non-trivial vertical complexity.

2.5 Analytic Visibility Techniques

In this section, we discuss the most pervasive ideas in anaytic visibility. We recommend that the
non-expert reader first read our geometric preliminaries chapter (Chapter 3).

It isimportant to note that although there is a strong rel ation between the analytic visibility tech-
niques presented in this section and from-region visibility culling, the purpose of these algorithms
isto generate adual structure that can answer generalised visibility queriesrapidly. E.g., polygon-
polygon visibility queries, discontinuity meshing, etc. The cost of thisis high run-time and space
complexity.

2.5.1 Isotopy Classes and Arrangements

In the context of line-spaces, an isotopy class refers to a set of lines. Consider a set of bluelines S
and two red lines ¢ and /5. If it is possible to continuously transform ¢; into ¢ without crossing
any blue lines (elements of .S), then ¢, and ¢, are said to belong to the same isotopy class.

In a 3D scene, an important property of an isotopy class (defined by extending polygon edges
tolines), isthat al lines within an isotopy class must intersect the same set of polygons.

Pellegrini [Pel93] presents a structure that can be built as a pre-process that then allows for ray
shooting in logarithmic worst case time. The pre-process involves the construction of the arrange-
ment of Plicker dual hyperplanes in the zone of the Plicker hypersurface [APS93].

The 5D cells of this subset of this arrangement are bijective to the set of isotopy classes for the
scene. To see this, consider two lines corresponding to two points on the Pliicker hypersurface, in
the same 5D cell. These two points relate to two lines that both pass all the lines (extended from
edges) in the scene in the same way. If one line should cross into an adjacent 5D cell, it would lie
on the opposite side of one hyperplane. Thisis equivalent to crossing the line represented by the
inverse dua of the crossed hyperplane. Conversely, should aline cross another linein 3D space, the
dual behaviour isto cross a hyperplane in the Plicker arrangement.

5They assume that any vertical ray passing through the scene will intersect the surface only once.

CHAPTER 2. BACKGROUND 29

By constructing the Pliicker arrangement, Pellegerini effectively enumerates theisotopy classes.
The intersected triangles for each isotopy classes are found and sorted. A binary search may then
be used to find atriangle first intersected by aray in O(log n) time. The pre-process takes O (n**<)
time, and isinfeasiblein practice. Pellegrini [Pel97] has published a comprehensive survey on com-
binatorial and computational complexity of stabbing and ray-shooting problems using line spaces.

Pellegrini is not the first to enumerate these isotopy classes. McKenna and O’ Rourke [MO8§]
use an (implicit) arrangement of quadric surfacesin four dimensionsto represent theisotopy classes.
We have discussed the work of Pellegrini in more depth, since we too use Pliicker coordinates to
generate a subset of isotopy classes.

2.5.2 Visibility Events

The concept of avisibility event [KvD79, PD90] is used by most researchers of analytic visibility.
When a camera crosses a particular visibility event, a qualitative change in visibility takes place
(e.g., anew vertex, edge or polygon becomes visible or occluded).

It is possible to enumerate al these visibility events. In order to do this, the structure of a
visibility event surface needs to be understood. A visibility event surface has an associated event
that will occur when crossed. Every visibility event has an associated event surface. It is possible
for multiple events to occur when a single surface is crossed.

A visihility event surface is defined by the interactions of edges and vertices within the scene.
Without loss of generality, we assume all scene polygons to be convex. A vertex-edge (VE) event
surface is defined by a vertex of a polygon and the edge of another distinct polygon. The surface
is awedge in the plane of the vertex and the edge. When the event surface is crossed, the polygon
containing the vertex becomes visible or invisible. Thisis depicted in Figure 5a. An edge-edge-
edge(EEE) event is defined by three edges. Three edges in space define a ruled quadric surface.
When thissurfaceis crossed, an edge may become visible or invisible. Thisisdepicted in Figure 5b.

These events are strongly related to the “lines through four lines” problem (see Section 3.5.2). It
is noted that there are exactly two lines determined by four lines (in general position). By relaxing
the four line constraint to three lines, the set of incident lines becomes a ruled quadric. Should
two of these lines intersect (i.e., at a “vertex”), then this surface degenerates into a planar wedge.
A representation for the general quadric event surface (also referred to as an event swath) can be
computed explicitly [Pla92].

Truncating these lines to edges results involve a clipping of the original surfaces. It isimportant
to observe that a vertex is always defined by the intersection of two lines (i.e., a vertex is aways

CHAPTER 2. BACKGROUND 30

@ (b)

Figure5: VE and EEE events. (a) A vertex-edge(VE) event. At v; the cameracannot see neither vertex v nor
the triangle associated with it. At vy, vertex v becomes visible over edge e (vy ison the event swath s). At v
vertex v and the triangle associated with it is visible. (b) An edge-edge-edge(EEE) event. At v; the camera
cannot see the triangle associated with e;. At v (on the event swatch) a small piece of e; becomes visible
over the (view apparent) intersection point of e, and e3. At v, the triangle associated with e; isvisible.

the meeting point of two adjacent edges). When considering an EV event, the planar wedge is
bounded by the vertices on either sides of the edge. At these boundaries, there is an interaction
of four edges/lines (two edges defined by the original VE vertex, and ancther defined by an edge
terminus). Returning the “lines through four lines’ problem, we note that the four edges define a
single line at each boundary. Such lines are known as extremal stabbing lines. Depending on the
type of edge/vertex interactions, these lines may be referred to as VV, VEE or EEEE lines.

In theory, the number of VE events is O(n?), since each vertex and each edge (linear in the
number of vertices) can be paired. Similarly, there can be as many as O(n?) EEE events. Finally,
there can be as many as O(n*) extremal stabbing lines, since they are potentially generated by any
combination of four edges. These combinatorial bounds define a worst case of high complexity
for any algorithm attempting to enumerate visibility events, however these bounds are pessimistic
in practice [DDP97b]. For further discussion and illustration, we recommend the PhD. thesis of
Durand [Dur99].

CHAPTER 2. BACKGROUND 31

Returning to the Pliicker hyperplane arrangement of Pellegrini [Pel93], we relate the concept of
visibility events to this arrangement. Three edges define an event surface. These three edges corre-
spond to threelines (embedding the edges). Thesethreelines may be mapped to Pliicker hyperplanes.
When intersected, these hyperplanes define a 2D surface in P5. This 2D surface can then be inter-
sected with the Plicker hypersurface to give a 1D trace [Tel92b, Tel92a] on the hypersurface. This
1D trace maps back to a set of linesin R®. This set of lines defines a ruled quadric. The event
surface is embedded within this quadric. In order to find the correctly clipped surface, terminal
points need to be found for each end of the trace. These points can be found by finding the extremal
stabbing lines and mapping them to P,

Relating the complexity of arrangements to the number of extremal stabbing lines, we note that
the Pliicker hyperplane arrangement can be constructed in O(n* logn) time that is only dlightly
greater than the combinatorial worst case of O(n?). At present, the visibility complex provides a
somewhat better solution, since it supports output sensitive construction.

2.5.3 The Visibility Complex

In Section 2.5.1 we define an isotopy classes to be the set of lines that pass each line in another
set of lines in the same way (i.e., they have consistent orientation). The visibility complex [PV 93,
DDP96, DDP97c, DDP97a, Dur99, DDP02] isasimilar structure to that of the Pliicker hyperplane
arrangement, however the sets that it tries to group are not lines, but maximal free segments. These
are subsegments of those lines in each isotopy class that see the same geometry (i.e., they share
the same terminus polygons). In order to account for this segmented view of line space, a discrete
“pseudo-dimension” is defined. Effectively, this associates alist of segments with each point in the
dual line space. The definition of the visibility complex supports both piecewise linear and smooth
objects.

Durand et al. [DDP96, DDP96, DDP02] describes the 3D visibility complex in terms of a 4D
parameterisation of line space. In particular a parameterisation in terms of spherical angles (for di-
rection) and two other coordinates (tranglations in the plane through the origin, whose normal isthe
direction associated with the spherical angles). Asnoted by Durand, the particular parameterisation
isof littleimport, but is used for illustration purposes.

Durand et al. give an output sensitive (hyper)plane sweep algorithm to construct the 3D visibility
complex. The algorithmisof order O((k +n?)log n) for n, where n isthe complexity of the scene,
and k is the number’ of extremal stabbing lines. To date, the visibility complex has not been

"k can be of O(n?), but thisis unlikely in practice.

CHAPTER 2. BACKGROUND 32

implemented due to its extreme sensitivity to small error, and difficulty of implementation. For
practical purposes, a simplification of the visibility complex has been developed. Thisis known as
the visibility skeleton.

2.5.4 The Visibility Skeleton

The set of zero and one dimensional faces (vertices and edges) of apolyhedral structureis known as
the skeleton. The visibility skeleton [DDP97b, Dur99] is the skeleton of the 3D visibility complex.

Each zero dimensional face corresponds to an extremal stabbing line, and each one dimensional
face corresponds to a swath of lines which define an event surface. A skeleton is naturally repre-
sented as agraph. In terms of visibility events and surfaces, one can observe that each event surface
terminates at extremal stabbing lines. Also, many event surfaces may terminate on the same ex-
tremal stabbing line. Dually, thisis equivalent to many edges (of the skeleton) meeting at a single
vertex (of the skeleton).

Durand et al. give a reasonably robust algorithm that builds the visibility skeleton. The algo-
rithm is somewhat different to the sweep algorithm used to build the complex. The zero and one
dimensional faces are built directly, through a combinatorial selection of edges/vertices and ray-
shooting. Thisalgorithm has been implemented, and has been used to drive various visibility depen-
dent techniques such as discontinuity meshing [Dur99] and hierarchical radiosity [DDP99, DDP98].

Duguet and Drettakis [DD02] observe that there are, however, certain cases where the con-
struction of the visibility skeleton will fail. Using epsilon geometry [SSG89] Duguet and Drettakis
implement arobust version of the visibility skeleton.

Ultimately, the visibility skeleton represents all relevant event surfaces and extremal stabbing
lines. However, there is certain topologica information lost through the omission of the higher
dimensional elements of the complex, that makesisless suited for from-region visibility in practice.
We discussthisin context in Section 6.1.3.

2.5.5 The Aspect Graph

The aspect graph is a structure developed in the field of computer vision [KvD79, KvD76]. The
key ideaisto determine al possible aspects/views of an object (or a database of objects). From an
image, edge features may be extracted in order to determine aview. These views are then matched
up with the computed aspects. If a match isfound, then the associated object is “recognised”.

The nodes of the aspect graph correspond to aspects. The arcs between the nodes correspond to

CHAPTER 2. BACKGROUND 33

visual eventsthat change the aspect. The graph isadual structure, much akin to the visibility skele-
ton. One important difference, however, is that the aspect graph is view centered. This introduces
additional complexity, as eventsrelating to al possible positions (usually restricted to positions out-
side of the object’s convex hull) of an orthographic or perspective camera are also incorporated.
The size of the aspect graph can be aslarge as O(n) for the case of an orthographic camera, while
for a perspective camera, the aspect graph may have complexity O(n?). It should be noted, that a
change in aspect does not necessarily imply a change in the set of visible polygons. This set is a
much smaller subset of the aspect graph.

Giguset al. [GM90, GCS91] detail an algorithm for computing the aspect graph. Plantinga[Pla98]
and Plantingaand Dyer [PD90, PD87] present another algorithm for building the aspect graph. Their
algorithm uses an auxiliary structure known as the ASP that defines the set of lines through a poly-
gon. The ASPs of two polygons can be composed and subtracted to account for occlusion of one by
the other. Thisis aconcept used extensively in Chapters 5 and 6.

An extensive discussion of the aspect graph literature (in the context of visibility) can be found
in the survey by Durand [Dur99].

2.5.6 Polygon Stabbing and Anti-penumbra Computation

Given a set of polygons S, the general polygon stabbing problem seeks to determine the existence
of any straight line s that intersects all polygonsin S. For the general caseit is possible to determine
thisin O(n*a(n)) time [MO88]8.

By making assumptions about S, it is possible to find lower bounds. For stabbing a set of axially
aligned (isothetic) rectangles, a deterministic algorithm of O(nlogn) exists[HT92]. A randomised
agorithm with an expected running time of O(n) has also been found [Ame92].

Pellegrini [Pel90] gives an O(g*n? logn) agorithm for n triangles with of ¢ distinct normals.
Teller and Hohmeyer [TH93b] give an algorithm for the case where .S consists of oriented polygons.
The algorithm runsin O(n?) expected time.

This algorithms builds a representation of the set of lines stabbing .S, by applying constraints
in Plicker line space. The solution space is represented as a dua polyhedron. [f this polyhedron
intersects the Plicker hypersurface, a stabbing line must exist. This stabbing solution is used to find
portal sequences for from-region visibility [Tel92a]. The anti-penumbra can also be extracted from
a sequence of such polytopes [Tel92b]

8Where a(n) isthe functional inverse of Ackermann’s function.

CHAPTER 2. BACKGROUND 34

Further stabbing results may be found in the survey by Pdlegrini [Pel97]. We revisit the algo-
rithm of Teller and Hohmeyer in Chapter 5, since it forms an integral part of our solution to the
general selective stabbing problem.

2.5.7 Discontinuity Meshing

Discontinuity meshing is atechnique for accurately representing the illumination discontinuities on
asurface. For arealight-sources, discontinuitiesin the first and second derivatives can exist.

Reversing our light-region analogy, let us consider the view of alight source from the perspec-
tive of a point moving along aline embedded in areceiving surface. Where the whole light sourceis
visible, the surfaceis fully lit. When an object appears to move in front of the light source, the sur-
face falsinto penumbraand discontinuity occurs. Depending on the configuration of the occluding
geometry and the light source, illumination will begin to change at a constant or linear rate. This
determines whether or not the discontinuity is of the first or second order. When the light source
appears to disappear behind one or more occluders, the surface point falls into umbra.

The interaction between blockers and a light source are visibility events. When relating thisto
areceiving surface of alight source, thisimplies that all discontinuities can be associated with he
intersection of the receiving surface and the event surfaces defined by edges of the light source and
associated blockers. By partitioning the target surface into a mesh along these intersections, the
discontinuity mesh is computed.

In order to determine the associated luminance with each mesh element and the discontinuities
associated with each edge of the mesh, the back projection of the light source is computed for each
mesh element®. The back projection isin essence the aspect of the light source from aviewpoint on
the receiving mesh. The aspects are topologically indistinct for viewpoints within a discontinuity
mesh element.

Heckbert [Hec92] introduced discontinuity meshing in the context of radiosity'®, as a means to
accurately represent shadow boundaries. Stewart and Ghali [SG93, SG94] solve adlightly different
problem to that of Heckbert, but they also treat EEE events. Drettakis and Fiume [DF94] present a
similar solution that achieves better performance in practice, but does not have asymptotic bounds
that are as tight as those of Stewart and Ghali. Durand et al. [DDP99] apply global visibility to
hierarchical radiosity to achieve faster and/or more accurate results. Dugeuet and Drettakis [DD02]

9The back projection can be maintained incrementally, allowing for efficient implementation.
At the time, other authors had devel oped discontinuity meshing for point light sources, and for asignificantly smaller
subset of eventsfor arealight sources.

CHAPTER 2. BACKGROUND 35

present an algorithm that computes shadow boundaries robustly, using the principles of epsilon
geometry [SSG89].

2.5.8 Analytic Visibility in Practice

The high (four) dimensionality of line space in 3D has made the analytic solution to from-region
visibility determination a difficult taskl. Some authors have turned to a simplified version of the
problem, namely visibility in 2D. Since the space of linesin 2D is effectively two dimensional, 2D
problems are not as combinatorially explosive astheir 3D counterparts. See Ghosh [AGS00] for an
excellent survey of the extensive literature on in-plane visibility.

The motivation for solving for 2D from-region visibility, isthat many real scenes are fundamen-
tally 2D or Q%D (i.e., height fields) in nature.

Koltun et al. [KCCOO01] build a representation of the rays between segments in a dua ray-
space. Occlusion is computed by determining whether the space of occluded rays contains all rays
between the view-cell and the object in question. This 2D exact visibility solution is approximated
efficiently via a conservative discretisation through rendering hardware. Independently, Bittner et
al. [BWWO01] also developed an exact visibility solution in the plane, based on similar principles.

Plantinga[Pla93] considers an application of the aspect graph to achieve rapid occlusion culling.
Only a subset of interactions are accounted for and only a very limited camera model has been
implemented (rotation around one axis).

The Plicker Space Occlusion Tree

Shortly after the publication of our exact algorithm [NBGO02], Jifi Bittner published an alternative
solution in his doctoral thesis [Bit02]. The approach is similar to that taken by Pu [Pu98], in that
a BSP in Plucker space is the primary data structure. Pu empirically evaluates the average case
complexity of his approach to be O(n*31343)12, Pu's algorithm is not attempted on scenes larger
than 15 triangles, due to the excessive computational and memory requirements.

Where Pu gives an intractable algorithm to compute a global visibility map, Bittner presents
various techniques to localise visibility computations, yielding a considerably more practical so-
lution. Visibility is computed from a region, thus constraining the line set to only those exiting a
polygonal region. Furthermore, the set of directions exiting such aregion is partitioned so that each
subdivision (shaft) can be treated separately. This provides better memory management.

Wwith the notable exception of Teller [Tel92a], athough even here the scene requires special structure.
2py believes thisto be related to the O(n*a(n)) bound of McKenna and O’ Rourke [MO88].

CHAPTER 2. BACKGROUND 36

For each shaft, the algorithm proceeds by processing the polygons in a front to back order (or
occlusion sweep). Aseach polygon isprocessed, it istested for visibility against the BSP asfollows:
At any one time, the BSP represents the set of lines blocked thus far, and by which polygon each
line (or rather, isotopy class) is blocked. A polygon is discarded if it is determined to be invisible
(i.e., al lines between the source region and the polygon are aready blocked by polygons inserted
before it). Should the polygon be visible, then it (or rather, the Pliicker polytope representing the
set of lines that go through both the source region and the polygon) is merged into the BSP tree.

The merging process requires a5-dimensional polytope splitting operation. Such algorithms ex-
ist (see Section 3.3), however, due to implementation problems, a less efficient algorithm is used®3.

This algorithm performs a local construction of the 3D visibility complex. Only those com-
plex elements representing the maximal free segments with one terminus on the source region are
constructed4,

Since this algorithm enumerates all the isotopy classes of lines going through a region, its per-
formance is tightly coupled with the combinatorial complexity of visibility eventsin 3D line space.
Bittner notes that the size of the occlusion tree is bounded above by O(n%) and that the worst case
running time of the algorithm is O(n*log n).

We revisit and contrast our algorithm to that of Bittnersin Section 6.2.4.

2.6 Compression of Visibility Information

All visibility pre-processing systems result in a block of data organised as some form of spatial
structure. In order for culling to take place, this structure (or at least part of it) needs to be in
memory. Typically, this structure also has to be stored on disk, athough it might also have to be
transmitted over a network [COZ98].

Visibility data may become large. It is therefore desirable to compress this visibility data.
In order to achieve this, both lossy and lossless techniques have been proposed by Cohen-or et
al. [COFHZ98], Nadler et al. [NFLY CO99], Gotsman et al. [GSF99] and Yagel and Ray [YR96].
Panne and Stewart [vdPS99] are the first to focus on this problem and present both alossy and a
|ossless compression algorithm.

In the context of visibility compression, the term lossy refersto increasing the conservativity of
the visibility solution in order to save space. Panne and Stewart achieve this by using the union of

13The H-Representation (see Section 3.2) of the polyhedron is augmented with the splitting plane. Two vertex enumer-
ations (see Section 3.2.2)) are performed: one with this plane positively oriented and one with it negatively oriented.
14To be precise, even this may be subdivided due to the partition of directional space

CHAPTER 2. BACKGROUND 37

similar visibility setsasan aggregate visibility set. Effectively, the visibility sets of multiple existing
cells are collapsed into a single larger one. Panne and Stewart perform this implicitly by using a
table representation. The table consists of boolean values relating each cell to each primitive. Yagel
and Ray suggest a similar compression algorithm, however the table structure of Panne and Stewart
allowsfor the visibility sets of digjoint cells to be combined where beneficial.

Lossless compression implies that the visibility structure is transformed such that less space is
required to store it without the introduction of additional conservativity. To achieve this Panne and
Stewart search for coherence in their table. When a cluster of cells have similar visibility, their
similarities are grouped together and stored once. Similarly, if a cluster of polygons have the same
visibility status, they too are grouped together and stored once.

Note that lossy compression implies the creation of a refined structure that is later collapsed
into a coarse structure. As we shall see in Section 4.2.2, unlike Panne and Stewarts bottom-up
approach, our top-down approach can obviate this redundancy. Panne and Stewart propose a “top-
down, divide-and-conguer” extension to their work that allows for the pre-processing of larger mod-
els. Although developed independently, our work (Section 4.2) represents an efficient solution to
their proposed problem. We discuss our methods for visibility compression in Appendix B.

Chapter 3

Geometric Preliminaries

In this chapter we cover a collection of mathematical toolsthat are used to manipulate linesin space
efficiently. We also discuss various issues relating to the representation of polyhedra of general
dimension. A selection of mathematical topicsthat are relevant to this dissertation, are presented at
the end of this chapter.

3.1 Projective Spaces

We briefly discuss projective spaces and motivate their use. We also cover the concept of projective
duality. Most importantly, we present all the requisite information on Pliicker coordinate systems,
afundamental tool used throughout this dissertation.

3.1.1 The Classic Projective Plane

Ostensibly, the standard Euclidean spaces are consistent with intuition. However, in a sense they
are also incomplete. Consider two linesin R2. These lines necessarily intersect, with the exception
of paraléel lines. Projective geometries seek a uniform methodology for handling such exceptions.
They attempt to construct a space, P2, where such exceptions do not occur.

Unlike R?, projective spaces cannot be represented explicitly, but rather implicitly through a
projection operation. Points in a d dimensional projective space are typicaly represented using
some form of model [Sto91]. In his book, Stolfi presents four models, they are the straight, the
spherical, the analytic and the vector space models. The differences between these models are
purely superficial, and they can be equated through isomorphism.

38

CHAPTER 3. GEOMETRIC PRELIMINARIES 39

We choose a natural hybrid of the analytic and vector space models to give an intuitive descrip-
tion of the classic projective plane P2. A “point” in this space is represented by a homogenous
3-tuple, (z,y,w). 3-tuples usualy represent points in R3, however, in P2, all 3-tuples refer to an
equivalence class, < z,y,w >, where any point (x,y,w) = (Ax, Ay, \w) for any A\ € R, where
A # 0. The principal ideais that the points of P2, are exactly the set of such equivalence classesin
R3. Equivalently, P? can be said to be the set of all one dimensional vector spaces of R3.

To see how the classic projective plane corresponds to the standard plane, R?, an arbitrary plane
in R? that does not contain the origin is chosen. Without loss of generality, we choose the plane
w = 1. We observe that each point on w = 1, can trivially be mapped to a unique point in R2.
Namely, a point (z,y,1) € R® may be mapped to (z,y) € R?. This also shows that each point
< z,y,1 >¢€ P? may be mapped to a unique point in R? and vice versa.

However, there are points in, P? that do not correspond to points in R2. With respect to our
chosen plane w = 1, these points correspond to those equivalence classes of the form < =, 3,0 >.
These points are referred to as points at infinity or ideal points. We prefer to use the latter terminol-
ogy, since the former isintuitive only for certain models of P2.

As a natural extension of points, lines in P? correspond to two dimensional vector spaces, or
equivalently, planes containing the origin in R3. Where such a plane intersects w = 1, a one-
dimensional set is formed. This corresponds to a unique line in R%. Similarly, every line in R?
corresponds to a unique plane going through the origin in R3, and henceto alinein P2.

Thereis, however, one special linethat existsin P2, but not in R?, thisistheideal line, and with
our choice of projection plane, corresponds to the plane w = 0. Thislineis exactly the set of idea
points. Thisideal lineis the sole difference between R? and P2. We will now consider an example
that illustrates how this augmentation of R? aids our motivation. Let us choose any two distinct
lines in P2, These lines correspond to planes containing the origin in R3. The intersection of the
two lines in R? is isometric to the homogenous point that is the intersection of the corresponding
planesin R3. However, since, all distinct planes that go through the origin intersect in aline going
through the origin, all linesin P? intersect at a point in P2,

Next we give a concrete example showing how the case of parallel lines are handled. Consider
two lines, y = 1 and y = 2 in R2. These lines are both horizontal and do not intersect. In P2,
these lines correspond to the planesy — w = 0 (whenw = 1, theny = 1), and y — 2w = 0 (when
w = 1, theny = 2) respectively. Theintersection of these planesis the vector space corresponding
to < 1,0,0 > P2. In general, any two parallel lineswill intersect at an ideal point in P2,

CHAPTER 3. GEOMETRIC PRELIMINARIES 40

3.1.2 Oriented Projective Geometry

The focus of [Sto91] is on oriented projective geometry. Whereas the classic projective planeis an
augmentation of R? by an ideal hyperplane, the oriented projective plane maintains two copies of
the plane, one with positive, and one with negative orientation, as well as an ideal hyperplane.

This allowsthe association of an orientation with geometric structures and is necessary to define
properties such as convexity to remove certain ambiguities. Even more fundamentally, the Jordan
Curve theorem does not hold in the classic projective plane, but does hold in oriented projective
geometries.

3.1.3 ddimensional Projective Spaces

Both the classic and the oriented projective planes may be generalised to d dimensions. The ho-
mogeneous coordinates for P4 are always represnted as points in R%*t!. A k dimensiona affine
subspace in P? may be represented asa k + 1 dimensional vectorspacein R4+!. Also, the projective
hyperplane is always an arbitrary, but fixed, hyperplanein R4*+!. A d dimensional projective space
always contains exactly one ideal hyperplane.

3.1.4 Projective Duality

A duality mapping or duomorphism is an isomorphism between structures in one space and other
structures in the same or another space. Typically, a duality mapping preserves certain dualistic
properties.

For example, consider aline in R?. We can define a duality mapping d(¢) that takes a (non-
vertical) line ¢ of theform ¢ := {(x,y) € R? : y = ax + b} to the point (a,b) € R?. Similary we
can define d~'(a, b) that takes apoint (a, b) € R? to the line defined by y = ax + b.

d and d—! have the property that they preserve incidence. The duals of all points on agiven line
al intersect at asingle point. The dualsof all linesincident at a particular point must lie on the same
linein the dual space.

Consider any two distinct points points (a,b) € R? and (c,d) € R2. Since these points are
distinct they both lie on some unique line. Now let us consider the duals d=!(a, b) := {(z,y) €
R? : y = ax + b} and d(c,d) = {(z,y) € R? : y = cx + d}. These lines are incident
whereaz +b = cz+d = 2 = “L and y = a%=2 + b, thereby giving the point of incidence:
(4=t a% + b). Now let us consider athird point (e, f) on the line generated by (a, b) and (¢, d).

a—c’

Any point on this line may be expressed in terms of (a,b) and (c,d), namely (e, f) = (A(c —

CHAPTER 3. GEOMETRIC PRELIMINARIES 41

a) + a, \(d — b) + b) for some fixed A € R. Next we consider the dua of (e, f). d~1(e, f) =
{(z,y) €eR? :y = (\(c—a)+a)x+\(d—0b)+b}. Thisand theline d—*(a, b) areincident where
az+b=(Ac—a)—a)z+Ad—b)+b= Naz—cz) = MNd—b) = z = EL andy = a2=L +,
thereby giving the point of incidence: (42, a 2=t + b), that is precisely the same point of incidence
asd!(a,b) and d~!(c,d).

The example of duomorphism d illustrates point-line duality. There are numerous advantages
to such duality. Using such a mapping it is possible to prove a geometric theorem in some primal
(original) space, and then have a dual theorem proved in a dual space (an image of the original
gpace under a duality mapping). A forma approach to this is described by Stolfi [Sto91]. This
feature trandates into the ability to create dual algorithms. The principal advantage being that
certain theorems and algorithms are more intuitive in the dual space. In terms of implementation, it
is possible to use an existing solution to an a gorithm to solve the algorithm’s dual problem, thereby
saving on implementation difficulties.

As an example, let us consider the halfspace intersection problem: Given a set of halfspacesin
IR?, find the convex polygon representing their intersection. Each halfspace is represented by an ori-
ented line. The halfspace intersection problem dualisesto the convex hull problem. By transforming
the oriented lines to points in a dual-space, the convex hull of these points can then be computed
using an existing code base. The lines embedding the edges of the convex hull can then be dualised
to points in the primal plane. These points are exactly the vertices of the polygon resulting from
the halfspace intersection. There is one additional subtlety: the duality mapping is defined in terms
of an arbitrary point whose only condition is that it falls in the interior of the halfspace intersec-
tion. For details on this algorithm we refer the reader to Edelsbrunner [Ede87] and Preparata and
Shamos [PS85].

The duality mapping we have described so far has one serious flaw: it does not handle all lines
in R2. Vertical lines are not treated since they cannot be represented by functions of the form
y = mx + h. To account for this, an alternative representation for lines is imposed. We use the
equation form ax + by + ¢ = 0. Thisform can represent any linein R2. We note that since the line
iS an equation, any non-zero constant multiplication of al a, b and ¢ represents the same line. This
is no coincidence. The space of al lines is duomorphic to the projective plane. The most obvious
mapping isto that of a homogenous coordinate system.

Consider amapping d’(¢) that takesany linein R? of theform ¢ := {(z,y) € R? : ax+by+c =
0} to the point < a, b, ¢ > P2, The same properties are preserved, and no exceptions result from
this mapping.

CHAPTER 3. GEOMETRIC PRELIMINARIES 42

Duality can be generalised to R%. It is always possible to define a duomorphism between the
pointsin P4 and the hyperplanes of R4+1,

3.1.5 Plucker space

Plicker space[PlU65] isaspecial case of aGrassmann coordinate system [Som59, CEG™ 96, Sto91].

Grassmann coordinates allow for the parameterisation of a £ dimensional affine sub-space embed-

n+1
k+1

space in particular corresponds to lines (k = 1) in R3 (n = 3). This results in a projective five

ded in an n dimensional space as a point in a projective () — 1 dimensional space. Plicker
dimensional space P?. This parameterisation exposes a natural and elegant means of dealing with
directed linesin R3. The Pliicker mapping of adirected line ¢ passing through the point (p., py,)
and then through (g¢., gy, ¢), isdefined asI1(¢) = (mg, 1, w2, 73, T4, T5), Where:

0 = 4z — Px T =4y — Py T2 =(z — Pz

T3 = (qzPy — qyDPz T4 = (qzPz — qzPx T5 = QyPxz — qzPy

This homogeneous six-tuple of P® is a unique representation of ¢ to within multiplication by a
positive scale factor. Negating the scale factor flips the orientation of the line.

We next consider a duality mapping within P?. Given 7,z € P5, we define D (z) : P> — R to
be the quantity moz3 + w124 + moxs + T30 + Tz + T5T0. Thisisapermuted inner product! of
7 and z. The set of solutions » € P of D, (z) = 0 givesrise to the so-called dual hyperplane of
inPS.

Given lines /1 and /o, let 7! = TI(¢;) and 72 = TI(¢3); ¢1 and ¢ are incident if and only if
7! lies on the dual hyperplane of 72 (and vice versa). Formally, they are incident if and only if
D,1(7%) = 0. If D1(72) isnot equal to zero, then the relative orientation of ¢; and /5 is directly
specified by the sign of D1 (72). See Figure 6 for an illustration.

Although all linesin R? map to pointsin P°, not all pointsin P> map to linesin R3. Rather, IT is
a bijection between the linesin R3 and a particular four-dimensional quadric surface embedded in
IP°, known as the Grassmann manifold, the Klein quadric or the Pliicker hypersurface. This surface
is described by following set of points:

G ={D.(z) =0:z € P°}\ {0} (3)

Since, at least for the purposes of this dissertation, we are predominantly interested in real lines,
this surface is used extensively.

Although, thisin itself is not an inner product. See LemmaA.1 in Appendix A.

CHAPTER 3. GEOMETRIC PRELIMINARIES 43

b
a

+ve

Dixw(b)>0

11(c)

a
Driac)=0

a
Driad)<0 G

Figure 6: Line Orientation and Pliicker space. The three diagrams on the left show the three qualitatively
different ways for one directed line to pass another. The figure on the right is a visualisation of how these
linesrelatein the dual Plicker space. The surface G is avisualisation of the Plicker hypersurface embedded
inP°. Lines b and d pass by line a on the right and left respectively. Line ¢ isincident on a. If linesb, ¢ and
d are mapped to P? viaII (visualised as the three dots), then respectively they will lie above, on and below
the plane defined by Dry(q)(z) = 0.

3.2 d-Dimensional Polytope Representation

There are many conflicting definitions for the terms polytope and polyhedron. To avoid confusion,
we define the following:

Definition 3.1 Given k distinct points p1, po, . . ., pr in R%, the set of points p = ayp1 + asps +
oo agpr, (o € R,on + az + ... + o = 1) isthe affine set generated by p1, pa, ..., pr, and p
is an affine combination of p1, ps, .. ., pk.

Definition 3.2 Given a subset L of R, the affine hull of L is the smallest affine set containing L.

Definition 3.3 Given k points py, po, ..., px, they are said to be affinely independent if the k — 1
vectors po — p1,...,pr — p1 are linearly independent. An affine hull generated from k affinely

CHAPTER 3. GEOMETRIC PRELIMINARIES 44

independent pointsis said to be of dimension k£ — 1.

Definition 3.4 A polyhedron isa connected region of space consisting of a piecewise linear bound-
ary. It issaid to be of d dimensionsiif its affine hull is of d dimensions.

Definition 3.5 A polytope of d dimensionsis a convex, bounded, d dimensional polyhedron.

Definition 3.6 The boundary of a polyhedral set consists of faces. Faces are lower dimensional
convex polyhedra. A k-faceis a face of dimension k. We further define a d dimensional polyhedron
to have exactly one d-face, which isitself. We also define a (—1)-face to be incident on everything.

Definition 3.7 Afacet of a d dimensional polyhedron L isad — 1-faceof L.

Polytopes of dimensions 0, 1, 2 and 3 are familiar constructs. They correspond to vertices,
segments, bounded polygons and 3 dimensional polytopes. There are two distinct ways to represent
polytopes. It is sufficient to represent a polytope as a set of vertices, where the vertices are chosen
such that their convex hull isthe original polytope. Every polytope may be decomposed into such a
Set.

Definition 3.8 The extreme points of a polytope L are those points belonging to the smallest set of
vertices whose convex hull gives L.

The set of extreme points is always finite. This set is a compact representation of a polytope.
Such a representation is possible due to the convexity constraint. This representation is referred to
asfollows:

Definition 3.9 The V-representation (or Vertex representation) of a polytope is its set of extreme
points.

Anaother common representation is.

Definition 3.10 The H-representation (or Halfspace representation) of a polytope is a set of halfs-
paces whose inter section gives the polytope.

It should be noted that the H-representation can also represent unbounded convex polyhedra.
Once again we see an important duality. One representation is through points, while the other
is through halfspaces (defined by hyperplanes). In the case of polytopes, it is possible to switch
between representations using a transformation algorithm [AF92, FP96, AF96].

CHAPTER 3. GEOMETRIC PRELIMINARIES 45

3.2.1 The Face Lattice

The face lattice is a directed graph representing the incidence relationship between the faces of a
polytope. Each face of the polytope is a node of the lattice. If aface of dimension & is contained
within a £ + 1 dimensiona face, a directed arc exists from the k& dimensional face to the k + 1
dimensional face (see Figure 7 for an example).

fhihohe)

{Tetrahedron}

7/

thy (b thy (e
{hl,hS} he. {h1,h2}{h1,h3}{hz,h}}{hz,h4}{h3,h4}{h1,h4}

I8
b

{huhohe} {hohohed {hohohed (hohoh

fhilshet {hshe)

(2) (b)

Figure 7: Face Lattice of a Tetrahedron. (a) A tetrahedron, with annotated faces. The tetrahedron is defined
by four planes, ki, ho, hs and hy. Each face is identified, by the subset of planesin which it is embedded.
(b) The face lattice of the tetrahedron. The faces are connected by an upwards containment relationship. The
bottom row refersto 0 dimensiona elements, the row aboveto 1 dimensiona elements, etc. Note how arow
of k£ dimensiona elementsis defined by the intersection of 3 — & planes.

Similarly, Face lattices may be defined for general polyhedra and polytope/polyhedral conmt
plexes (see Section 3.3).

3.2.2 Face Enumeration

For all polytopes, the face lattice isimplicit within its vertex information. Thisis due to the known
property of convexity. Given the set of extreme points for any polytope, the face lattice may be
recovered. This process is known as face enumeration [FR94].

It is possible to define any vertex in ad dimensiona space as the intersection of a set of hyper-
planes. Algebraically, a set of hyperplanes may be considered as a system of linear equation, where
the vertex at the intersection is the solution to such a system. In order to define a unique solution (a
vertex) the hyperplanes need to define at least d linearly independent constraints.

CHAPTER 3. GEOMETRIC PRELIMINARIES 46

Definition 3.11 A simple polytope of d dimensions embedded in a d dimensional space is a d
dimensional polytope whose vertices are incident on exactly d hyperplanes (facets) of it's H-
representation.

Given the set of extreme points F of ad dimensional simple polytope P, it is possible to find a
set of oriented hyperplanes H whose associated half space intersections results in the convex hull
of F (see Section 3.2).

Each extreme vertex is therefore incident on a subset of H, of cardinaity d. If we enumerate
each hyperplane, we can represent each vertex uniquely by the subset of A on which it isincident.
We refer to this subset as the enumeration set of the vertex. See Figure 7 for an example.

Through vertex enumeration, we seethat it is possible to enumerate every face astheintersection
of aset of hyperplanes. Indeed, every k dimensional face isthe intersection of d — k hyperplanesin
H. From this, we observe that in general it is possible to enumerate every k dimensional face as a
subset of hyperplanesin H of cardinality d — k.

This definition of face enumeration supports certain properties:

1. Given two faces f; and f, (of dimensiondlity k), these faces are incident at a face f5 (of
dimensionality k — 1) , whose enumeration set is the union of enumeration sets f; and fs.

2. Theintersection of the enumeration sets of two faces f; and f5 gives the enumeration set of
the face of lowest dimensionality containing both f; and fs.

Asan example, consider Figure 7. Facets {h3} and {ho} intersect at {hs, ho}. Similarly, edges
{hs, ho} and {hs, hy} intersect at vertex { hs, ha, hq}. Should the face resulting from the union not
belong to the polytope, then no intersection exists.

To illustrate the second property, consider edges { hs, hs} and {ho, h3}, these intersect at facet
{hs}. Consider also, vertex {hq, h3, hs} and edge {hi, h3}. Theseintersect at {h3}. Should edge
{hs,hs} be used instead, the intersection is the same edge {hs, hs}. The latter results in a two
dimensional face, since the vertex lies on the edge. If the intersection is the empty set, then the
largest face containing the specified facesis the polytope itself.

3.3 Splitting a Polytope Complex in d Dimensions

Definition 3.12 A polytope complex of dimension k is a set of k£ dimensional polytopes that in-
tersect only where they share sub-faces. Additionally, each sub-face of any of these polytopes is
considered to be part of the polytope complex.

CHAPTER 3. GEOMETRIC PRELIMINARIES 47

Definition 3.13 Atop level polytopeisa d dimensional polytope of a d dimensional polytope com-
plex.

A Polytope complex is useful in that it allows for the representation of a bounded non-convex
polyhedron, as the union of a set of polytopes. Using the properties of polytopes that we have
discussed in earlier sections, we observe that a polytope complex may be used to represent general
d dimensional non-convex bounded polyhedra.

The face lattice of a polytope complex may be defined similarly to that of general polytopes.
The difference being that polytopes that share boundary faces, will share the associated nodesin the
face lattice.

Bajg) and Pascucci [BP96] present an algorithm that splits a polytope complex with a hyper-
plane. Splitting in this context implies that each polytope of the complex that is incident on the
hyperplane is split in two, such that the new facets of each new polytope are embedded within the
splitting hyperplane. A figure depicting the desired changes in the face lattice is shown in Figure 8.

This operation does not alter the set of points represented by the complex, only it's structure.
Such alteration facilitates certain common operations, such as CSG (constructive solid geometry)
and clipping (a special case of CSG).

For the readers convenience, we provide the algorithm of Bgjg and Pascucci verbatim in Fig-
ure9.

Thisalgorithm requiresthat every vertex be classified (asbelow(] —) or above(+)) with respect
to the splitting hyperplane. A naive algorithm would require visiting O(n) vertices (where n is the
number of vertices). Bajg and Pascucci observe that a half space range searching agorithm would
be more efficient, since clusters of vertices can be classified simultaneously.

Similarly, the algorithm uses the classified vertices to classify each face against the splitting
hyperplane. The algorithm assumes that no existing faces are embedded within the hyperplane.
Those faces that cross the hyperplane are classified as incident on the hyperplane. Starting with
the 1 dimensional faces (edges) of the complex, the incident edges are intersected with the splitting
hyperplane to generate new vertices that are classified as being on((=)) the hyperplane.

Asthe agorithm iterates through the dimensions of the complex, the connectivity of those faces
classified as[=] is established. Those faces that are incident on the splitting hyperplane are all split
by the hyperplane. This splitting is performed by adjusting the connectivity of the facets of each
face, such that those faces on the negative side of the hyperplane are only connected to faces that
are either 5 or [=]. Similarly, those faces on the positive side of the hyperplane are adjusted such
that they only connect to faces that are H or [=].

CHAPTER 3. GEOMETRIC PRELIMINARIES 48

f
RN
€1 €2 <3
Vi V2 Vs
(b)
f- f+

(d)

Figure 8. Example — Triangle Splitting. (a) A triangle in the plane. A hyperplane (aline in 2D), cuts the
triangle in three, one part embedded in the halfplane h ™, one part embedded in the halfplane 4~, and the
remaining part is embeded in the actual splitting line. (b) The face lattice of the triangle depicted in (a). (¢)
The triangle of (a), now split into a quadrilateral (f—) and atriangle (f-+), sharing a new edge (e4, =) and
two new vertices (v4 = and v =). (d) The face lattice representing the structure of (c).

To evaluate those factors governing the performance of this algorithm we note the following:
the algorithm iterates through the faces of every polytope, for every dimension, starting with faces
of dimension 1 and ending with those of dimension d (where d isthe dimensionality of the polytope
complex). At each face f, all the children (d — 1 dimensional boundary elements) of f are visited.
Ignoring the possible addition of new faces (since this augmentation is typically insignificant), the
order of thistraversal is O(pm), where p isthe total number of faces and m is the average number
of children per face.

In Chapter 5, Section 5.3.1 we present a series of improvements on this algorithm that result in
output sensitivity to those polytopes that are split.

CHAPTER 3. GEOMETRIC PRELIMINARIES 49

Begin
Step 1 (primary numerical) Classify all the vertices of ¢ either H or &. Thenset &k = 1.

Step 2 (symbolic computation) For each ¢ € Ny, do:
—If none of itsfacetsisEH(H) then classify ¢ B (H) and goto Step 3;
—Create anew (k — 1)-polytope f (classified as[=]) and connect it to each
(k — 2)-polytopein c classified as[=]. Create two polytopes
¢t and ¢~ connected both (down) to f and (up) to all the k + 1
polytopes connected with ¢. Connect each (k — 1)-polytopein ¢ classified as
H to ¢T, and each one classified as & to ¢—. Remove
c from N;.
Step 31f k < dthenk = k + 1 and goto Step 2. Else continue to Step 4.
Step 4 (Secondary numerical) For each vertex v classified [=], compute its coordinates by
geometrically intersecting the hyperplane h with the edge divided in two parts by v.

End

Figure 9: Bajaj and Pascucci — Polytope Splitting Algorithm. The algorithm uses the following terminology:
d isthe dimension, h isthe hyperplane, IV, isthe set of al faces of dimension k.

3.4 Arrangements

A set of n hyperplanesin R¢ define an arrangement. An arrangement is a partition of the spaceinto
cells. In this context, a cell refers to a subset of any dimension. A d-dimensional cell refers to the
set of points lying on the same side of the same hyper planes. A d — & dimensional cell is a set of

points that lie on the same & hyperplanes.
Consider the case of d = 2. In this case, the hyperplanes are lines. In Figure 10 we show an

example. Note that the number of 0, 1 and 2 dimensional cellsare exactly 9, 23 and 15 respectively.

/ N S

\ % W
B/{/\ ~ X B S

(@ (b) (© (d)

Figure 10: 2D Arrangements. (a) 5 lines (hyperplanes) (b) 15 2D cells (bounded/unbounded polygons) (c)
23 1D cells (segments and half-lines) (d) 9 OD cells (vertices)

Definition 3.14 The zone of a surfacein an arrangement is the set of cellsincident on the surface.

CHAPTER 3. GEOMETRIC PRELIMINARIES 50

In general, the combinatorial complexity of an arrangement of n hyperplanesin ad dimensional
spaceis O(n?) [EOS86]. Any given d dimensional cell (polyhedron) is bounded by O(nl?/?) cells
of any dimension [Ede87]. Edlesbrunner also gives formulae for computing exactly the number of
k dimensional cellsin asimple arrangment (i.e., an arrangment where exactly d — k hyperplanes are
incident on any & dimensional cell). These are therefore upper bounds for non-simple arrangements.
Furthermore, an algorithm is given for computing hyperplane arrangments in worst case optimal
time. We recommend Edelsbrunner [Ede87], if further reading on arrangementsis desired.

3.5 Miscellaneous

In this section various advanced topics relevant to this dissertation, are discussed. Namely, the
generalisation of the cross product to general dimension and the determination of the set of lines
through four lines.

3.5.1 The Generalised Cross Product

The two-dimensional cross product is a familiar construct. In this section we will generalise the
concept of the cross product to d dimensions.

In general, the d-dimensional crossproduct is a function of the form f(¥, s, ..., Uq-1) :
(RH)4=1 — R9, That is, it takes a set of d — 1 vectors of dimension d, to another vector of di-
mension d. For d = 3 we get, as expected, a function that takes a pair of 3-vectors, to another
3-vector. A property of the cross product is that the vector produced is orthogonal to each of the
input vectors. The magnitude of the resulting vector is twice the d — 1 dimensional volume of the
hyper-parallel epiped defined by the basis vectors in the standard way?.

The resulting vector may also beinterpreted as abasis vector for the space of vectors orthogonal
to the input vectors. This implies that the input vectors need to be linearly independent for a valid
basis. Linear dependence implies that that the space of orthogonal vectors is of more than one
dimension. A general kernel finding technique (such as a Singular Value Decomposition), may be
used to compute the basis vectors for the entire set of orthogonal vectors.

The general cross product may be computed as follows: Let by, b, . . . , by be the standard basis
of a d-dimensional space (i.e., bi = (014, 02;, - - ., 04;) Where § is the Kronecker Delta). Let input
vector j be of the form (a1, a2, . .., oj4). Fromthis, we get the following general formula for
the cross product:

2Consider akitein 2D, or the corner of aparallelepiped in 3D.

CHAPTER 3. GEOMETRIC PRELIMINARIES 51

by by ... by
i1 Q2 v aq.d
772 OZQJ 042’2 e 0127d (4)
Qg-1),1 ®d-1),2 -+ Xd-1)d

Where i~ becomes a vector orthogonal to all input vectors. Further reading and explanation can
be found in Hanson [Han94].

3.5.2 Determining the Lines Through Four Lines

In this small subsection we briefly present a method that determines the set of lines through four
given lines. The solution presented here is asummary of the paper by Teller and Hohmeyer [TH99].
The purpose of this summary is twofold. Firstly, we wish to present certain information that is
used later in this dissertation. Secondly, we consider this topic an excellent exercise in developing
intuition for Pliicker coordinates.

There are many ways to represent lines in 3D implicitly. The most common, is as a set of
any two distinct points on the line: a unique line intersects both points (the join operation [Sto91]).
Another approach that islessfrequently used isthe representation of aunique line asthe intersection
of two given planes (the meet operation [Sto91]).

It is possible to define aset of linesimplicitly through incidence, by using four lines. The set of
lines that are incident on or stab these four lines may have cardinality 0, 1, 2, or cc.

In the case of four mutually skew lines, there are exactly two lines incident on the given lines.
Degeneracies may occur due to various configurations of parallel or intersecting lines. In this short
summary, we only consider the general case (an example is depicted in Figure 11).

Section 3.1.5 shows how aline may be parameterised as a point using Plicker coordinates. Two
linesz and y (in R3) areincident iff Dri(2)(y) = 0. This property can be used to construct the set of
linesincident on z: {¢ € G : Dry(,(¢) = 0}. Informally, the set of linesincident on z correspond
to those points that are both on the dual hyperplane of II(x), and on the Plicker hypersurface (G).

Therefore, in order to find the set of lines incident on four lines, we need to compute the inter-
section of the set of lines incident on each one of the given four lines. This can be computed by
finding the intersection of the four dual hyperplanes of each line, and then intersecting what remains
with the Pliicker hypersurface.

CHAPTER 3. GEOMETRIC PRELIMINARIES 52

Figure 11: Stabbing four lines. Four lines specifying two lines by incidence.

The intersection of d — 1 hyperplanes in a d dimensiona space, will result in a one dimen-
siona space (assuming the hyperplane constraints to be linearly independent). This one dimen-
sional space can then be intersected with the Plicker hypersurface to give two solutions (since the
Plucker hypersurface is aquadric). These two solutions correspond to the two real linesincident on
the four lines. Mapping these points back to linesin 3-space gives the desired result.

The intersection of & hyperplanes may be computed el egantly, using a null-space computation.
Teller and Hohmeyer [TH99] use a singular value decomposition (SV D) to compute the basis vec-
tors of the null space. This affine set may then be intersected with the Pliicker hypersurface. One of
the basis vectorsis fixed in order to account for projectivity.

It should be noted that the addition of ancther line would over specify the problem, leading to
no incident lines. Symmetrically, the subtraction of one line (to three) would result in an under
specification. The result would be a two dimensional null space, that when intersected with the
Pliicker hypersurface gives an infinite set of lines that form aruled surfacein R3, that isincident on
the remaining three lines.

If the dual hyperplanes of the given four linesform linearly dependent constants, then the selec-
tion of lines are degenerate in terms of being mutually parallel or collinear.

Chapter 4
Aggressive Visibility Preprocessing

In this chapter we present our approach to rapid visibility computation. The algorithm is aggressive
(as described in Chapter 1). We also extend the algorithm to creates a 5D subdivision in ray-space.
This 5D subdivision is used as a means of accelerating ray-shooting.

Aggressive algorithms are not necessarily suited to all applications. Such an algorithm can be
applied effectively when any of the following are met : (a) the perceptual impact of the error is
acceptably low, (b) it handle scenes that cannot be solved effectively with a conservative alternative
due to excessive overestimation, or (c) the time-frame allowed for preprocessing is less than that of
aconservative or exact solution.

The technique presented here solves (b) and (c) effectively. However, (@) is difficult to show
since acceptability is subjective and usually depends on the nature and context of the application.

We provide evidence quantifying this error in practice. We aso present error minimisation
heuristics that are exploited by adaptive sampling

We begin with a discussion on computing visibility from a surface in 3D space. Our adaptive
technigue is presented in this context. We then present the divide-and-conquer approach of our
algorithm framework and we show how surface visibility can be integrated hierarchically, in order
to greatly accelerate computation. We then discuss our cache management strategy that allowsfor a
logarithmic dependency on the number of cells. Results exploring efficiency and accuracy are then
presented.

Finally, we present our scheme for efficiently sampling 5D ray space. Thisisanatural extension
to the visibility preprocessing technique presented here. We present experimental results from a
preliminary implementation, demonstrating the utility of this algorithm as a means of accelerating
ray-shooting. Since thisis still a hardware based extension of our visibility algorithm, error may

53

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 54

result. Area sampling, anatural complement of point sampling, isintroduced to further reduce error
during the 5D processing.

4.1 Visibility From a Surface

In this section our novel sampling approach to “from-region” visibility is presented. We describe
a sampling method that is based on the hemi-cube [CG85, HA0Q] and exploits the performance of
common graphics rendering hardware. We demonstrate its application in deriving an aggressive
visibility set from a rectangular surface in 3D space. Finally, adaptive sub-sampling is introduced
as ameans to increase performance, while decreasing error.

4.1.1 The Visibility Cube

A point sample is defined to be the set of polygons visible from a given point. A visibility cube
(strongly related to aradiosity hemi-cube [CG85]) is used to generate such samples (see Figure 12).
This is created by treating each of the six sides of atiny cube enclosing the sample point as in-
dependent depth and frame buffers onto which the scene is rendered. Depth buffers are supported
by all modern consumer level graphics hardware and ensure that only the pixels of these polygons
visible from the point in question are rendered. Each polygon is assigned a distinct 32 bit colour.
This allows a given pixel to be mapped back to the polygon responsible for its generation. Any
polygon associated with a pixel is considered visible. The set of polygons that are mapped to by at
least one pixel from any of the six frame buffersis considered to be the set of polygons visible from
the sample point. The visibility cube can be considered a high density sampling over the angular
domain, for afixed spatial position.

The rendering process is not a traditional sampling mechanism, and is, in many ways, different
from ray-casting through pixels. We give highlight of these differencesin Table 2.

Theintended application is for visibility culling in arasterisation engine. A useful heuristic for
obtaining good accuracy for point samplesin practice isto set parameters (frame buffer resolution,
bit depth of depth buffer and near and far planes) similar to that of the desired output parameters.
For maximum accuracy, these factors should be set in accordance with the Nyquist limit.

Sub-sampling the intended rendering resolution is beneficial, however, since it enhances perfor-
mance by minimising frame buffer reads and reducing the required fill rate, this allows accuracy to
be traded for speed. We have found sub-sampling to be necessary when trying to achieve the opti-
mal combination of accuracy and performance. Although accuracy is reduced, sub-sampling results

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 55

Figure 12; The Misibility Cube. A sample of several visibility cubes over asurface. The visible geometry (of
several teapots) has been projected onto the cubes.

\ | Ray Casting Rasterization |
Geometry Infinitely thin half-line Sheared frustum. Size depends on
sample resolution (pixel size).
Z-Fighting - Aliasing in the Z-buffer resultsin
visual interlacing of polygons

of similar depth.

Near/Far Clipping | — Near and far planes may cause near
or far geometry to be omitted.
Small Polygons In the traditional sense of sampling, | Small polygons are never “missed”,

insufficient sampling resultsin rather only the nearest polygon
polygons being omitted. intersecting a pixel frustumis
selected.

Table 2: Aliasing: Ray-Casting vs. Rasterisation. Ray-casting and rasterisation do not produce identical
results. We list several differences and catal ogue the different types of aliasing artefacts that affect visibility.

only in the occasional omission of small polygons (with little perceptual impact). Thisis known as
approximate culling or equivalently contribution culling [ASVYNBO0O, BMH98, Zha9g].

The concept of a “from-region” visibility set can be defined in terms of point samples. This
is simply the union of the visible sets of all possible point samples taken within the rectangular
region. Since there are an infinite number of these points, an exact evaluation via point sampling is
impossible. Instead, we form the union of afinite subset of point samples.

Insufficient sampling leadsto aliasing artefacts that manifest asthe exclusion of visible polygons
(false invisibility error) when rendering.

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 56

Performance

The computation of a visibility cube consists of six renderings of scene geometry from a single
point. For each render, the frame buffer needs to be read in order to obtain the visible polygon
indices. In this section we examine the performance issues and propose several optimisations.

Firstly, we consider the rendering process. The generation of one side of a visibility cube is
similar to that of standard rendering, however several simplifications can be exploited:

1. Mapping is not required (texture maps, bump maps, environment maps, light maps)
2. Smooth shading (Gouraud/Phong) is not required

3. Lighting calculations are not required

4. All geometry in the preprocessis static

Thisimplies that the rendering process can be achieved more efficiently than traditional rendering,
often approaching the peak efficiency of the graphics hardware. For further efficiency, our imple-
mentation incorporates the following:

1. High performance video/AGP memory is allocated for geometry when possible. Using (on
our hardware) 230mb of such memory allows for 8 million triangles to be stored.

2. Triangle stripping enhances performance, and allows more geometry to be inserted into high
performance memory.

3. Geometry could be uploaded to video/AGP while rendering using synchronisation extensions
to exploit CPU-GPU parallelism. We have not implemented this since we have not found the
amount of high performance memory to be alimitation. The large quantities of available high
performance memory is a conseguence of unused texture memory.

Current hardware (we use an NVidia GeForced4 Ti 4600) claims to be able to transform 136
million vertices per second. Already, top end hardware, such as the ATl Radeon 9700, claims to be
ableto double or even triplethis. In practice, we achieve 17 million triangles per second throughput.
Since our samples are taken within the scene bounding box, the slow-down is due mainly to an
insufficient fill rate, since nearby triangles consist of many pixels.

Any acceleration technique that can be applied to traditional point rendering can also be applied
to visibility cube rendering. We implement frustum culling using bounding spheres. This acceler-
ates our throughput by afactor of 4.2. We optimise the process by noting that six views (partitioning

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 57

the full angular domain) need to be computed from the same point. We note that each of these six
(infinite) frusta are bounded by four planes from a shared set of six. These six planes are well de-
fined, and are those six that intersect the center and embed any two edges of the visibility cube. We
classify the bounding spheres with respect to the six planes once, and use this classification for all
six sides.

We consider the utilisation of point-based occlusion techniques asan areaof future investigation.
It should be noted that during our preprocess, visibility information that has already been computed
isexploited (see Section 4.2.2).

The second main issue is that of frame-buffer reading. This is often a bottle neck. Wonka et
al. [WWS00] claim that this accounts for approximately 54% of their run-time. Thisis most likely
due to the fact that they only render simplified scenes (their 8 million triangle scene is represented
by amuch smaller building “facade”), and thus may exaggerate the frame buffer read times for more
general scenes. Frame buffer reading consists of aconsiderably smaller part (20%) of our run-times.

The performance of frame buffer reads has not improved at the same rate as triangle render-
ing. The read bottleneck is due to limitations on bus technology. Older UMA (Unified Memory
Architecture) hardware such as the SGI Visual Workstation are on par with current hardware (Intel
Pentium 4 with GeForce 2/3/4). Frame buffer reads (RGBA channels) occur at approximately 46
million pixels per second (for 512x512 pixel blocks). Much older UMA hardware such as the SGI
O2 only read at 11 million pixels per second.

In Section 4.6 we give several suggestions on how specialised hardware could be engineered in
order to enhance visibility cube rendering and frame-buffer processing.

4.1.2 Uniform Sampling

For our purposes, uniform sampling is a naive solution to the sampling problem (see Figure 13a).
With this approach, under-sampling may result in unacceptabl e error, while over-sampling may lead
to prohibitive execution costs. An adaptive sampling method is necessary.

4.1.3 Adaptive Sampling

We assume a rectangular sample domain embedded in 3-space. To begin with, point samples are
evaluated at the corners of the rectangle. Then a decision is made whether or not to refine the
rectangle into four subregions based on an error minimisation heuristic. The user specifies an error
threshold (covered in this section). The subdivision proceeds recursively, in a manner equivalent

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 58

to the depth first generation of a quad-tree. A rectangular subregion, with point samples at its four
corners, is treated as a hode in the quad-tree. Corners are shared between parents and children and
among siblings in the quadtree. It is important to cache shared point samples in order to prevent
redundant computation. A typical adaptive subdivision isillustrated in Figure 13b.

(b)

Figure 13: Uniform vs. Adaptive Sampling. (a) A uniform distribution of visibility cubes on a 2D sur-
face. (b) A non-uniform distribution of visibility cubes generated by an adaptive subdivision. The adaptive
sub-division attempts to minimise both error, and the number of samples required. Effectively, a quad-tree
structure is built on the surface.

Basic Error Metric

Adaptive subdivision requires a decision at each quad-tree node (rectangular subregion) whether
or not to continue subdividing. This decision is based on a heuristic that employs a sample-error
metric to establish, given four corner point samples, if any interior view points are likely to contain
additional polygons.

Ideally, areas with high frequency changes in visibility should be sampled more densely. Our
first attempt isto explicitly encode the normalised difference between visibility samples. Given four
point samples, sg, s1, $2, s3, we define:

3 .
Err(sp.3) =1— min?zo <M) ©

Err() returns 1 iff there are no elements common to al the visibility samplesand 0 iff they are
identical.

This metric admits an efficient implementation and works well in practice. However, it does
not account for the angular distribution of error across the field of view. If error does occur, a
more uniform distribution of this error has perceptual merit, in contrast to a (potentially) clustered

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 59

distribution.

Strict Error Metric

Before we detail our stratified error metric, we would like the reader to consider an alternative. Let
us define anew heuristic as follows:

1 ifay = 20 — 20 —
diff(gjl,ggQ’x3’$4) _ { IT 21 .332 xs3 X4 (6)
0 otherwise
N 4 . , ,)
E’I”T,(S(]ng) - 1_ Zi:l d|ff(50<l)7 31(1), 82(2), 83(2)) (7)

N

We assume that the pixels of each visibility cube are enumerated consistently from 1 to N. We
define s; (i) as pixel ¢ of sample j. Where Err returns 0 iff every sample sees the same polygons,
Err’ return 0 iff each sample generates the same visibility cube. This adds an extra constraint: itis
not sufficient for a polygon to simply be seen by all samples, it must be visible in exactly the same
directions/pixels.

The heuristic defines a measure of image based similarity. It is even possible for each sample
to see exactly the same set of polygons, but for Er+’ to still return 1. It should be clear that if four
sampl es see the same polygons, at the same pixels (i.e., they see the same images), then it is highly
improbable that further refinement is necessary.

Thismeasure isinfeasible in practice, since 0 error will only occur when samples are very near
each other. It isaso likely that the error heuristic will increase excessively as the distance between
sample points grows. In the next section we present a stratified metric that provides a compromise
between Err and Err’.

Stratified Error Metric

The error distribution problem can be solved by partitioning each visibility cubeinto afixed number
of angular sub-regionsor stratal. To ensure areasonably uniform error distribution, the error among
corresponding sub-regions must fall below a certain threshold. Let s, be the visibility set of point
sample a in angular sub-region b. The revised error metric over d sub-regionsis defined as.

3
Err"(so.3) = maazgzo (1 — min?zo (mJ_—O]k>> (8)

|5ik|

LAn angular sub-region/stratum is the direct analog of a (generally convex) region of the pixelated surface of the
visibility cube. We use only rectilinear partitions.

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 60

If d = 1, thenthismetric is equivalent to that defined by Err. Similarly, if d = N (for IV pixels
on the visibility cube), then this metric is equivalent to that defined by Err’.

In practice, a minimum distance constraint is necessary to enforce termination, where an ar-
bitrarily small movement in the view-point results in a large change in visibility. Without this,
excessive subdivision may result. Although this implies that we may not refine areas of very high
change, we take the union of these samples when calculating the visibility set for the cell thereby
aggregating these differences, i.e., it is only those objects that are invisible at the corners, yet be-
come visible within the approximated surface that will be erroneously omitted. Given that the size
of this surface is small (as determined by the minimum distance constraint), the magnitude of the
error and the (temporal) duration of the error tends to be small, although we have not yet found a
theoretical bound on the maximum error.

Treating and Exploiting Manifold Meshes

Another approach that improves the error heuristic is the exploitation of specific scene properties.
For instance, many scenes consist of manifold objects with interiors that do not represent valid
view-points. In this case, each of the four point samples can be classified as interior or exterior.
Equation 8 is applied to each case independently. We denote the set of exterior and interior samples
as F and I, respectively. Some simple propertiesare: |E|+ |I| = 4and EN T = (). Two thresholds
t. and t; are defined. We subdivide iff any of the following conditions hold:

e |E| =1 Single exterior point does not provide sufficient information for afinal decision.

e |E|>1and Err’(E) > t.. Thisisthe difference between samples, considered only at valid
camera positions.

e |I| > 1 and Err”(I) > t;. If theinterior difference is high, then there is a good chance
that intermediate point samples will be external. For example, the interior samples might lie
inside different objects.

To classify sample points as internal or external, a half-space comparison is made against the
plane of any polygon in the visible set. A point in the same half-space as the normal of a visible
polygon is considered exterior. Caveat: in practice, discretisation errorstypically cause afew pixels
from backfacing polygonsto be visible along the silhouette of an object. To counter this, the polygon
that contributes the most pixelsis chosen as the half-space classifier. This classifier selection can be
efficiently integrated into the processing of the visibility cube buffers.

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 61

4.2 Algorithm Framework

We have shown how an adaptive algorithm may be used to sample visibility from a rectangular
surface. In this section, we detail how this algorithm can be applied to traditional cell partitioning.

4.2.1 Visibility From a Volumetric Region

Consider a scene bounding box, P. This can be partitioned by asinglerectangle R, orthogonal to an
axis of P. The partition can be situated anywhere along this axis. We refer to the two partitions as
P~ and PT. Observethat all sight linesfrom P+ to P~ must intersect R. A polygon visible at the
end of asight segment isvisible from all points along it. It follows that any polygon that intersects
P~ and is visible from a point in P™, must be visible from R. Now, the set of visible polygons
V(P*) fromcell P+, can be expressed as:

V(PT)=V(R)UI(PT) (9)

V(R) representsthe visibility from the rectangle R, and can be evaluated with the method discussed
in Section 4.1.3. The set I(P™) is simply those polygons that intersect P, and can be computed
with a simple polygon-cuboid intersection algorithm. Similarly, V' (P~) may be expressed as:

V(PT)=V(R)UI(P7) (20)

In general, the visibility set, V(C), of acell, C, isthe union of those polygons that intersect C'
and those polygons visible from the surface of C.

4.2.2 Hierarchical Subdivision

A hierarchy of cellsis generated in atop down fashion by starting at the scene bounding box and
aternating the axis of subdivision. Deeper levels of recursion repeat the process on these sub-cells.
Thisis effectively equivalent to building a kd-tree (for £ = 3), where only the leaf nodes are main-
tained. The subdivision process of a cell isillustrated in Figure 14. Our method for maintaining,
reusing and distributing cellsis also discussed in this section.

The grid of cellsis generally non-uniform, since subdivision is terminated when the number of
visible polygons falls below a set threshold, or triangle budget [KS99]. We adopted this threshold
technique, from Saona-Vasquez et al. [SVNB99], since this is a straightforward solution to enforce
upper bounds on rendering computations (and hence frame rates).

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 62

(c) (d)

Figure 14: Hierarchical Subdivision. (a) A typica cell within the hierarchy. (b) The chosen splitting plane
within the cell. (¢) New samples are generated on the sub-division. (d) The original cell is now partitioned.
Note, that when a cell is subdivided, only those samples on the partition plane need to be evaluated. The
samples shown in (@) need to be cached. Should both cells terminate subdivision after (d), then the samples
shown in (c) would be obsolete and can then be deleted from the cache.

Infinite subdivision could occur if the number of polygons visible from some point is greater
than the triangle budget. This is prevented by setting a maximum depth for the implicit binary
hierarchy. In practice, this event is unlikely since the polygon throughput required for acceptable
frame-ratesis generally much greater than the number of polygons visible from any single point (or
small neighbourhood around a point). For certain applications (e.g., flight simulators), aworst case
situation can occur. A level of detail approach is often more suited for this type of scene.

When the subdivision of a cell ceases, all samples on the surface of the cell are aggregated. The

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 63

union of the set of visible polygons for all samplesis computed and stored with the cell.

An advantage of top-down hierarchical subdivision is that smaller sub-cells that do not con-
tribute significantly to culling, are never evaluated in contrast to the bottom-up subdivision of van
de Panne and Stewart [vdPS99].

A second advantage isthat previously computed information in the upper levels of the hierarchy
may be exploited to accelerate the evaluation of the lower levels.

Superset Simplification

In theory, the set of polygons visible from acell, C, isa superset (allowing for potential omissions
due to aggressive sampling), of those visible from any view-point, ¢, within C: V(q) C V(C)
Vq € C. Thisalows the process of splitting aview cell to be optimised. When generating samples
on the splitting rectangle of a cell, only polygons known to be visible (V' (C')), need be rendered.
This implies that the cost of building a point sample decreases as its depth in the binary hierarchy
increases.

Although this optimisation can be applied to any from-region technique, the rate of decay for the
size of the superset is maximal only for exact and aggressive algorithms. Indeed, many conservative
agorithms perform poorly when applied to large view cells.

Cache Management

Using a top-down approach for many existing algorithms is a non-trivial optimisation problem.
Firstly, it is necessary to consider the efficiency of the algorithm with respect to the size of view
cellsin the upper level of the hierarchy since these tend to be rather large. Secondly, it isimportant
to consider whether or not sufficient benefit is gained by evaluating a given cell, rather than simply
evaluating its child cells directly.

Typical implementations result in a set of cells being generated on a uniform grid. Each grid
element can then be expanded into a hierarchy. Cohen-Or et al. [COFHZ98, NFLY CO99] use a
fixed two level hierarchy. Durand et al. [DDTPOQ] also use aninitia grid.

Our approach, however, has an interesting property that allows us to evaluate a parent cell, and
then split the parent (if so desired) into two child cells, at the same cost as generating the child
cellsinitialy. This requires the ability to partition an existing rectangular region, while being able
to disseminate the correct visibility information to the partitions, without (significant) additional
computation. Since we use a sample based approach, all the samples belonging to the parent region

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 64

are distributed to their associated partitions. In order to keep the cost low, we cache all samples
until they are no longer required.

The process proceeds as follows (illustrated in Figure 14): First, we assume that the visibility
(surface samples) from some cell C' has been computed (Figure 14a). Second, if subdivision is
indicated (depending on subdivision criteria), a splitting plane is chosen (by a heuristic) that splits
the cell into C~ and C* (Figure 14b). Third, the required samples on the shared boundary of C~
and C* are computed (subject to the visibility set V(C')) (Figure 14c). Fourth, the cells in the
negative and positive half-spaces (as defined by the splitting plane) are propagated to C— and C,
respectively (Figure 14d). Finaly, cell C' is deleted.

Removing Redundant Samples

Samples are considered redundant if they cannot possibly be used again. During sub-division of the
cell hierarchy, parent cells are split into child cells. At this point, cached samples are fetched and
distributed to the correct cells. When a cell has terminated its sub-division process, its aggregate
visibility is computed as the union of the point sample visibility.

In order to save memory resources, it is necessary to compute which of the samples associated
with the current (now finalised) cell are redundant, and that will be used again. Any given sample
can be shared among a maximum of eight cells, and a minimum of two. In the former case, the
sample must exist as a shared corner of eight cells, in the latter case, the sample must be interior to
a shared side of two adjacent cells. It is also possible for a sample cell to lie along the edges of a
cell.

We associate a counter with each sample. When subdivision terminates for a cell, the counter of
each sampleonthecell isupdated. Samplesinterior to the cell wall areincremented by four, samples
interior to acell edge are incremented by two, and samples on acell corner are incremented by one.
When the counter reaches eight (and eventually, the counter of every sample will reach eight), the
sampleisdeleted, since it must fall interior to a set of cellsthat will no longer be subdivided.

For most samples, the initial counter values are set to zero. Samples interior to a side of the
initial scene bounding box are set to four, those on an edge are set to six, and on a corner are set to
seven.

The depth first traversal that buildsthe hierarchical subdivision thus allowsfor the early removal
of samples.

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 65

4.2.3 Algorithm Analysis

The adaptive nature of the algorithm makesit difficult to obtain auseful upper bound. So, in order to
obtain a useful complexity estimate, we make several simplifying? assumptions. First, we note that
the core operation is generating samples on surfaces. We let w be the surface area of the splitting
surface at the first level of the hierarchy (i.e., the area of the surface that splits the bounding box in
two). We let k be the number of samples on this surface. Our first assumption is that the sampling
rate of g samples per unit area applies globally. Secondly, we assume that the bounding box is a
cube. Thirdly, we make the assumption that the computed spatial hierarchy is balanced, and is of
depth d. From this, we determine the number of cells, ¢, to be 24,

Since the volume is a cube, the total new sampling surface area at any level in the hierarchy is
equal to w. Thisimpliesthat thetotal sampling surface areais dw. kd samples are therefore required
to sample al the required area. This can also be expressed as & log ¢ samples.

In terms of triangles rendered, we select a scene size n. Assuming exactly 6n polygons are
rendered at each point (ignoring frustum culling), we deduce that 6nk log ¢ polygons are rendered
in total.

If we account for superset simplification, however (Section 4.2.2), the situation is markedly
different. The current upper bound O(nk log c) isonly tight if every polygon is visible from every
cell. Thisisan unredlistic case, and is certainly not one to which any occlusion algorithm should be
applied.

To account for superset simplification we define arate of decay « that is assumed to be constant.
This is the factor by which the size of the visibility set decays per level, on a parent to child basis.
For example, if a = 0.6, the size of the visible set of some cell is 0.6 times the size of the visible
set of its parent. In practice, o remainsfairly constant, however it can grow towards 1 in the deeper
levels of the hierarchy. It becomes 1 when the child cell sees exactly the same asits parent. Thisis
clearly a condition for terminating subdivision, although in practice the rapid changes in visibility
exhibited by most real scenes prevents most cells ever getting close to 1. As the depth complexity
of the scene increases, the average value of « tends towards 0.5.

Using this rate of decay, the actual number of polygons per sample rendered at depth ¢ can be
expressed as na?~!. Thetotal number of polygons rendered P can be refined to:

P = kn+kna+kna?+... 4 knat ! (11)
=P = kn(a+a®+...+a%h) (12)

2Simplified, but typically truein practice.

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 66

Asymptotically, thisimpliesthat P isof O(kn log d) that becomes O(kn log(logc)). The series
converges if o < 1, and this is witnessed in practice. Each additional level, requires a similar
number of samplesto the previouslevel. However, each sample can exploit thevisibility information
from the parent, thus becoming less expensive to compute. Similarly, the addition of an individual
cell within the new level (by subdivision), is less expensive than a céll in the previous level, since:
a) the splitting planes are, on average, half the surface area and b) the cost of rendering the samples
on this reduced surface is decreased by the decay. It should be noted that asymptotically, the cost of
a sample tends to become “free”’. Thisis not quite true, since frame buffer read times always add a
(non-zero) constant per sample. For all practical cases, though, it is unlikely that frame reads will
dominate (currently reads comprise 20% of the preprocess). Should this occur (due to an unlikely
advance in rendering performance), the algorithm will runin O(kd) time.

The final consideration is that of k. In most cases it is likely that & is some function of n.
However, it is also a function of the geometric scene distribution and general configuration, the
error threshold and the subdivision heuristic. The way & relatesto n is thus dependent on the nature
of the scene. We have found that in practice, & is considerably smaller than n, usually around four
orders of magnitude smaller.

4.3 Results

In this section we present empirical resultsillustrating the practicality of our aggressive algorithm.
We present results to quantify the performance of our technique and this is contrasted with several
existing techniques. We also consider it necessary to quantify the error produced, and we give
empirical evidence showing that for the scenes tested, the error can be suppressed in order to give
acceptable image quality.

4.3.1 Performance

We begin by showing that the algorithm can be used to preprocess scenes® that cannot be processed
effectively by existing solutions. We use a large forest scene consisting of 5 million polygons (see
Figure 15). Nearly 200 trees, each highly detailed, consisting of 25 000 polygons each. A “small”
forest scene, consisting of 2 million polygonsis also tested. This scene consists of 80 trees, also of
25 000 polygons each (see Figure 16). Note: internally, we make no use or assumption of instanced
geometry.

3Videos of the aggressive algorithm are available at: http://www.cs.uct.ac.za/3nirenst/Vis

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 67

Figure 15: Test Scene — Forest Model. A very complex forest model consisting of 5 million polygons. Each
tree consists of 25 thousand polygons. The image shows the output of our agorithm. 11.9% of the sceneis
rendered from the region containing the view point.

For reference, we pre-process the forest scene used by Durand [Dur99]. This scene consists of
approximately 1450 trees?, at 1000 polygons each (see Figure 17). The scene is far more densely
occluded than our large forest scene, implying that more culling can be performed.

We also test a large, complex town scene comprising 1.35 million triangles (see Figure 18a).
This sceneisrealistic, and consists of amix of simple and detailed objects (see Figure 18b).

First, we consider the visible set size. Being an aggressive agorithm, it is to be expected that
the visible subset is less than or equal to the results of an exact solution. Durand et al. [DDTPQQ]
cull 75% of their scene, resulting in avisible set of 25%. In comparison, we are able to cull 99.21%
from the model (see Figure 19). Where the extended projection algorithm took 17 seconds per cell,
our technique takes 2.57 seconds per cell.

Second, we consider the effectiveness of the algorithm when applied to our large forest scene.
91.32% of the sceneis culled on average (see Figure 20a). This alows for an acceleration of 11.5
times that of naive rendering. We have no knowledge of any existing aternative algorithm capable
of preprocessing this sceneto asignificant degree. Indeed, although the exact algorithm presentedin

4And several flamingoes.

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 68

Figure 16: Test Scene — Forest Model. A complex forest model consisting of 2 million polygons. Each tree
consists of 25 thousand polygons. Theimage shows the output of our algorithm. 11% of the sceneisrendered

from the region containing the view point.

Figure 17: Test Scene — Durand’s Forest. The forest scene used by Durand et al. [DDTPO0]. Thisflat forest
consists of 1450 trees of 1000 polygons each.

Chapter 6 is capable of processing it, without the possibility of error, the time required is excessive
for asingle workstation. The large forest model is processed at a rate of 9.23 seconds per cell for a
total time of 1 hour and 19 minutes.

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 69

Ve

Figure 18: Test Scene — Town Model. (a) A complex town model consisting of 1.45 million polygons. The
detail objects within this scene consist of up to 40 thousand polygons each. The image shows the output of
our agorithm. 1.4% of the scene is rendered from the region containing the view point. (b) A highly detailed
object (rope) within the scene. (c) The buildings are honeycombed, allowing sight lines right through them.

Thetown sceneisprocessed at 2.5 seconds per cell for atotal time of 21 minutes and 20 seconds.
An average of 1.45% of the scene was determined to be visible (see Figure 20c).

Using the error threshold, we see that it is possible to trade quality for performance. Using the
2 million polygon forest scene we see that a 32% performance increase was gained by increasing
the threshold. This tradeoff was less effective for the town scene. We discuss the reasons for this

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 70

| Exp. | Scene | Size | Threshold | Time/Cell | No. Cells | Visible Set |
1 Forest 5m 0.2 9.23s 512 8.68%
2 Forest 2m 0 5.48s 512 14.84%
3 Forest 2m 0.999 4.17s 512 13.63%
4 | Durandetal. [DDTPOO] | 1.45m | 0.99 257 400 0.79%
5 Town 1.35m | 0 2.5s 512 1.45%
6 Town 1.35m | 0.999 2.46s 512 1.35%

Table 3: Aggressive Algorithm/Preprocess— Performance Results. The Experiment column is the experiment
reference number. Each experiment number corresponds to one preprocess and analysis. They may be used
to cross-reference the error resultsin Table 4. The Scene column indicates the type of scene. The Sze column
gives the size of the scene (in triangles (m = millions)). The Threshold column indicates the error threshold
used in the preprocess (see Section 4.1.3). The Time/Cell column gives the time taken per cell. The Number
of Cells column shows the number of cells into which the bounding box was subdivided (512 = 8 x 8 x 8
and 400 = 20 x 20). The Visible Set column provides the percentage of visible geometry averaged through
all cells. The scenes were all sampled using 512 x 512 pixel item buffers.

| Exp | Avg. Error | Max. Error | CR Count | Avg. Max. CR | Tot. Max. CR |
1 | 0.338%(886) | 6.293% (16497) | 267.27 | 0.032% (84) | 0.607% (1591)
2 0.315% (826) | 1.3 % (3408) 453.42 0.016% (42) 0.09% (236)
3 | 0.888% (2328) | 5.88% (15414) | 60591 | 0.083% (218) | 0.66% (1730)
4 - - - - -
5 | 0.116%(304) | 1.034% (2711) | 14.2 0.107% (80) | 0.745% (1953)
6 | 0.117%(307) | 1.034% (2711) | 14.97 0.105% (275) | 0.745% (1953)

Table 4: Aggressive Algorithm/Preprocess — Error Results. The Experiment column is the experiment ref-
erence number. Each experiment number corresponds to one preprocess and analysis. They may be used to
cross-reference the performance resultsin Table 3. The Average Error column gives the average image error
for a sampled camera path (details in Section 4.3.2). The values in parentheses are the absolute number of
pixels corresponding to the percentage (a512 x 512 pixel view is used for our tests). The Maximum Error
column is the image error for the frame with the largest error. The CR Count column gives the minimum
number of connected regions (CR) into which the erroneous pixels may be partitioned. The CRs are averaged
over the frames in our test path. The Average Maximum CR column is the average size of the largest CR
in each frame. The Total Maximum CR column is the size of the maximum CR over all frames of the walk
through. The sceneswere all sampled using 512 x 512 pixel item buffers.

in Section 4.3.2. We a so discuss the quality implications of the tradeoff in the next section. Given
the exponential shape of this sensitivity, end user application (i.e., a person wishing to preprocess a
model) should use alogarithmic scale to manipulate the threshold scale.

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 71

Figure 19: Test Scene — Aggressive Culling of Durand’s Forest. The forest scene used by Durand et
al. [DDTP0O0]. From the cell of the given view point (yellow sphere), 0.8% of the scene is visible. Visi-
ble polygons are shown in green, whileinvisible polygons are drawn in red.

In order to ascertain scal ability with respect to the number of cells, we have executed the prepro-
cess for our 2 million polygon forest scene using a varying number of cells. The results are shown
in Figure 21.

Thisdemonstrates the logarithmic dependence of time on the number of cells (see Section 4.2.3).
Thereisahorizontal asymptote, that is offset by a positive non-zero value from the origin. Thislimit
is approached when the rate of decay (see Section 4.2.3), convergesto 1.

4.3.2 Error

We present error results for the various modelsin Table 4. The error results are found by replaying
awalkthrough of several hundred frames. For each frame, the visible geometry is rendered in green
(flat shaded and unlit). Similarly, the “invisible” geometry isrendered in red. We count those pixels
that are red, and consider this to be the number of erroneous pixels or error in the frame. See
Figure 22 for an example.

We were unable to obtain error results for Durand's scene using this evaluation method, since
there is no reasonable path through the scene. Without such a path, geometry gets clipped to the

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 72

Figure 20: Aggressively Culled Scenes — Large Forest, Small Forest and Town. Sample output from our
aggressive algorithm. Green polygons are visible and red polygons are invisible. The view point used is that
of the yellow sphere. (@) 4 million polygons are culled (21.6% of the scene is visible) from the given view
point. (b) 1.9 million polygons are culled (10.3% of the scene is visible) from the given view point. (c) 1.1
million polygons are culled (2.5% of the scene is visible) from the given view point.

12
T
o8 -
@
e
c
(%4 ~—

O T I I I

0 512 1024 1536 2048 2560

Total Cells

Figure 21: Scalahility by Cell. The average time taken per cell (vertical) is plotted against the number of
cells by which the bounding box is subdivided. As evidenced, there is exponential decay in the time taken
per cell. The model used is our 2 million polygon forest model.

near-clipping plane, alowing invisible geometry to show through. When comparing our results to
those of the exact algorithm developed in Chapter 6, we find that the aggressive result is 10.2%
smaller than the exact result. We do not use this method for comparison in the other scenes, sinceit

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 73

Figure 22: Error Measure. A 1600 x 1200 screen shot from awalk through. Green polygons are those deter-
mined to be visible by our aggressive agorithm, while the red polygons are determined to be invisible. The
appearance of red pixels mark erroneous rendering. Shading and lighting are used for this image, although
our automated error evaluator uses constant colouring.

has little bearing on the actual image error.

We also utilise several connected region (CR) metrics. The CR count isthe number of connected
regions of erroneous pixels (found per frame, by recursive search). Given a number of erroneous
pixels, the CR count constitutes information about the distribution of the error on the display. A
high CR count (with respect to error) implies that the error is fairly scattered, and will most likely
manifest as noise (more easily filtered by our visua system than coherent artefacts [Co086]). A low
CR count (with respect to error) implies that the errors are clustered together, and are more likely
to be noticeable. We present the average error and the average CR count over all frames. We also
include the largest connected region in the walkthrough.

Consider the five million triangle forest model. An average of 8.68% of the geometry isvisible.
Thisis asubset of the “truly” visible geometry. When evaluating the results of awalk through, we
found that 0.337% of the average frame comprised erroneous pixels. In isolation, this appearsto be
very little, however the distribution of error is also important. Indeed, the largest error on any frame
was asignificantly higher 6.293%. Our experiments have shown the error to comprise, of an average
of 267.27 digjoint connected regions. Indeed, on average, the largest connected region in each frame
(only those frames with error are considered), is only 0.016% of the frame. The largest connected
region in any frame in the walkthrough (consisting of several thousand frames), is 0.607%.

The other experiments show how our technigque fared for other scenes, using small and large

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 74

thresholds. The town scene resulted in lower average and maximum error, while the forest scene
resulted in more fragmented errors.

3000
—=— Forest 2M
—Town
S 2000
=
&4
o
%1000
A I
0 T T T]
0 0.25 0.5 0.75 1
Threshold

Figure 23: Error vs. Threshold. The average pixel error for awalk through as a function of threshold.

We show how error is affected by error thresholding. The forest sceneis particularly sensitive to
thisthreshold, as depicted in the graph of Figure 23, while the town sceneisnot. Thereason for this
disparity, isthat the forest allows for gradual changesin visibility as aview sample moves through a
region. In contrast, the town scene can have avery large change in visibility from one nearby view
sample to another (e.g., if an adjacent view sample crosses awall). This large change in visibility
will force any reasonable threshold to continue subdividing, thus resulting in the consistent, low
image error shown in the figure.

Similarly, we show how the threshold relates to the average size of the connected regions in
Figure 24, and the maximum size of the connected regions in Figure 25. Despite the fact that the
average error islower, the town scene resultsin alarger average connected region error, since when
an error does occur, it tends to be larger, because the town scene contains larger triangles than the
forest. The maximum connected region error is larger for the forest scene, athough this is because
several viewpoints of the test path contain clusters of sub-pixel size polygons. Such regions are
usually perceived as noise and do not impact significantly on image quality.

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 75

% 0 —-—_II:_orestZM
= -= Town
ok
n'd __J
8 20
B8 =
8 <
8 ©
s x
g - 10
@)
o
S .
< 0 T T T
0 0.25 0.5 0.75 1
Threshold

Figure 24: Average Connected Region vs. Threshold. The average size of the connected error regions (in
pixels) for awalk through as a function of threshold.

g

—— Forest2M

5 —— Town

§ 200

g

€ 100

O

@)

&

2 0 T T T

0 0.25 0.5 0.75 1

Threshold

Figure 25: Maximum Connected Region vs. Threshold.
The largest connected error region (in pixels) for awalk through as a function of threshold.

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 76

4.4 Preprocessing Ray Space

In this section we ® present an extension to the aggressive visibility algorithm presented earlier in
this chapter. This section covers the work of Sharpe et al. [SHNT03] in context.

Ray shooting is a simple yet computationally expensive task that is fundamental to many al-
gorithms in computer graphics and computational geometry [Aga92, AS93]. The “ray-shooting
problem” isto find the nearest intersection of aray with a set of geometric objects, with respect to
the ray origin. Ray shooting is used to calculate form factors for radiosity, to create photon maps,
and s, of course, the central component of both classic and Monte-Carlo ray tracing. In this section
we present a new approach to accelerating ray shooting.

A naive approach requiresthat every ray istested against every geometric primitive in the scene.
In order to reduce the number of ray-primitive intersection tests required, researchers have devel-
oped arange of acceleration schemes. The most popular schemes use spatia subdivisions, such as
binary space partition trees or uniform grids. We refer the interested reader to the thesis of Vlastimil
Havran for a critical survey [Hav00]. The goal of such schemes, isto reject trivialy those parts of
the scene that cannot be intersected first by a given ray.

With the same objective in mind, we propose an approach based on Arvo and Kirk’sray classi-
fication [AK87] technique. The origina algorithm subdivides the scene using a 5D partition of ray
space. The agorithm classifies the query ray into a5D cell and returns a candidate set of primitives
associated with this cell. Our key contributions are:

1. An algorithm that fully pre-processes the scene®, effectively pre-computing all candidate sets.
This allows for more efficient ray shooting after a once-off pre-process.

2. An upper bound on the candidate set size at run-time. This may be used to obtain upper time
bounds for run-time rendering.

3. A new technique for computing the candidate sets. Graphics hardware is exploited to accel-
erate the pre-process. Adaptive sampling is used to minimise error.

4. We present a method that accounts for occlusion within the candidate sets. Thisincreasesthe
performance of the ray shooting by trivially rejecting all hidden primitives, while simultane-
ously decreasing the memory requirements (to feasible levels) for afull pre-process.

5The implementation of the proposed algorithm formed an Honours (4th year) project. The project team consisted
of Adrian Sharpe and Matthew Hampton. The project was proposed and supervised by Shaun Nirenstein. Additional
supervision was performed by James Gain and Edwin Blake.

6As opposed to the lazy evaluation used by Arvo and Kirk.

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 77

In terms of application, this algorithm may be used to preview ray-traced scenes rapidly. The
aggressive nature of the algorithm may make the resulting images unsuitable for production re-
lease, although as a (possibly interactive) preview, this technique presents an excellent compromise
between quality and performance.

4.4.1 Brief Background

Since Rubin and Whitted [RW80], there has been much research devoted to ray-shooting acceler-
ation schemes. Most methods use 3D spatia subdivision in conjunction with a ray traversal algo-
rithm. Each cell or voxel contains alist of the primitives that are fully or partially contained within
it. The ray traversal algorithm traverses the cellsalong aray in order. Thelist of the nearest cell is
tested first, so that if an intersection point is found within the boundary of the cell, no further cells
need be tested. However, if no intersection is found, or the intersection point is outside the cell’s
boundary, the primitive list within the next cell must be tested.

These schemes perform reasonably well in the average case (since aray is more likely to first
intersect the near primitivesthat are tested first). However, aray may still be tested against a number
of cells (and their contained primitives) before an intersection is found.

Arvo and Kirk [AK87] describe a subdivision of 5D ray space, that eliminatesthis costly traver-
sal of cells. A 5D cell isdefined by a parallelepiped of ray originsin 3D (that we will call the origin
box) and arange of ray directions. It has anatural manifestation in 3D asabeam. If abeam does not
intersect a primitive then no ray in the 5D cell can either. This property is used to find arelatively
small candidate set for each cell.

A ray need only be tested against the candidate set of the cell that containsit. Classifying aray
requires at most one treetraversal (thisisreduced further in practice by using a caching scheme). In
the context of Arvo and Kirk [AK87], the purpose of the 5D subdivision isto function as a caching
mechanism. The candidate sets are evaluated lazily, the premise being that the cost of the candidate
set computation would be amortised over successive“ cache hits’ (i.e., successive rayswith the same
classification).

This method is very memory intensive due to the deep level of subdivision required before
candidate sets are sufficiently small [SD94]. Thisis further exacerbated by the highly conservative
nature of these candidate sets’. The implementation presented by Arvo and Kirk is conservative.
Firstly, occluded primitives are not culled from the candidate sets see Figure 26), and secondly, the

"In the context of offline ray-tracing, this is the most cost-effective solution.

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 78

Figure 26: Candidate Set Beam. A beam that intersects many polygons, but few are possibly visible from
the origin box due to occlusion. The polygonsin the candidate set are solid, while polygons that are occluded
or are outside the beam are shown in wire frame.

beam used is a conservative overestimate of the optimal beam. This resultsin primitives outside of
the beam, being included as candidates.

Arvo and Kirk compensate for their conservative approach by truncating the candidate sets.
Primitives that are further than a specified distance from the origin box are omitted. The beam is
capped by atruncation plane and if a ray does not intersect any primitives in the candidate set, it
is projected onto the truncation plane and reclassified. This can be effective in many cases, but the
initial advantage of a single tree traversal and candidate set per ray is lost. It would be better to
evaluate which primitives are occluded and remove them.

Our technique is similar to that of Gotsman and Sudarsky [GSF99], however, their subdivision
scheme is optimised for visibility culling, rather than ray shooting®. Furthermore, their sampling
does not exploit graphics hardware (potentialy leading to greater compromises in either time or
accuracy), nor does it effectively use the information of previously cast raysto minimise error.

4.4.2 5D Pre-processing

Our solution to the ray shooting problem is an adaptation of the aggressive visibility presented
earlier in this chapter, that allows us to generate candidate sets for a 5D subdivision similar, to that
of Arvo and Kirk. Using an aggressive technique results in an optimum candidate set being chosen

8Gotsman and Sudarsky subdivide directional space into only 8 components. Also, this subdivision only occurs
around the azimuth.

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 79

for each 5D cell (with minimal false exclusion). All visibility determination is performed offline as
apre-process. The algorithm is summarised in Figure 27.

Generate initial set of cells V'
Set primitive budget to threshold
foreachc e V do

Subdivide(¢)
next ¢

procedure Subdivide(¢)
Compute Candidate Set of ¢
if ElementsIn(c) > threshold then
{c_,ci} — Split(c)
Subdivide(c_)
Subdivide(¢y)
end if
end procedure

procedure {c_, c} < Split(c)

Choose 5D splitting hyperplane for ¢ such that:
ElementsIn(c_) + ElementsIn(cy.) isminimised
Return {c_, ¢4 }

end procedure

Figure 27: Ray-space Subdivision Algorithm. The subdivision algorithm begins by generating an initial set
of cells. These cells are then recursively subdivided until athreshold has been reached. The splitting routine
attempts to maximise the separation of the two subcells.

The Initial Classification

Only those cells whose origins lie within the 3D bounding volume of the scene need be evaluated.
For those rays with origins lying outside, but still intersecting the bounding volume, the origin can
be moved to the point of intersection and reclassified.

We begin by constructing six cells. The origin box of these cells is the scene bounding box. To
specify the angular bounds we note that the direction of any ray can be associated with its dominant
axis, denoted +X, — X, +Y, Y, +Z or —Z. Using this association, Arvo and Kirk [AK87]
define an isomorphism between the sphere of directions, and the surface of an axially aligned cube.
Initially, it is convenient to partition the direction space by the six dominant axes (discussed in
Section 4.4.2). Thisleadsto the six initia cells.

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 80

Adaptive Subdivision

A spatia subdivision of the 5D ray space is used to accelerate ray shooting. At each level of the
subdivision the size of the candidate set is reduced. At run-time, this reduces the computation cost
of finding the first ray-primitive intersection by reducing the total number of required intersection
tests.

Assuming a balanced hierarchy (roughly true in practice), the cost of ray intersection becomes
O(logn + ¢), where n is the number of cells, and ¢ is the user set candidate set maximum. The
logarithmic traversal time, assumes that the tree has been balanced as a post-process. Thisis hugely
beneficial, considering that in practice, logn is very small, and ¢ may be chosen to be arbitrarily
small. No other practical techniques limit the number of intersection tests prior to finding the first
ray-primitive intersection.

Separation and Effectiveness

Separation refers to how the primitives are split and shared between the child candidate sets. It is
used to measure the effectiveness of a subdivision. An effective subdivision will share very few
primitives between the child cell and thus have high separation. The effectiveness of a subdivision
isimportant for deciding how to subdivide a cell, and whether a given subdivision is beneficial.

Subdivision strategies

In this section we outline the heuristics that we used to guide our subdivision process.

¢ Naive subdivision A subdivision strategy in which each dimension isdivided in turn at each
level, up to a specified maximum depth, is the simplest to implement and test. It produces a
complete k-D tree, where every branch has the same height.

e Maximum Candidate Set Size The naive subdivision strategy isimproved by changing the
terminating criteria so that subdivision stops early when the candidate set size drops below
a specified user maximum. A maximum depth limit is also provided to stop subdivision
from continuing indefinitely. Assuming the maximum depth is never reached (true for a vast
majority of cells), thiswill bound candidate set size. This produces ak-D treethat is roughly
balanced in practice.

e Most Separated Dimension This strategy involves looking at the set of all possible subdi-
visions and choosing the one that gives the best separation. An optimal solution for thisis

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 81

extremely expensive. However, aggressive visibility sampling can also be used to perform
this process. A limited sampling of the five possible splitting hyperplanesis used to approxi-
mate the separation (a similar approach is used by Gotsman et al. [GSF99]). The subdivision
with the most separation is then chosen and fully sampled. This produces an axis aligned
binary space partition tree.

Optimisations

For a given scene the cost of the preprocessiis largely related to the number of samples taken. We
employ a number of simple optimisations to decrease this overhead:

e The candidate set for achild cell is aways a subset of the candidate set of its parent. There-
fore, to determine visihility for achild cell, only the primitives visible in the parent cell need
to be rendered while sampling. Fewer primitives results in faster rendering of visibility sam-
ples at deeper levels of the subdivision (see also Section 4.2.2).

e For any cell, the list of pertinent samples necessary for determining visihility is stored with
the cell. These samples are reused in child cells, if possible. A sample can only be reused
if the current subdivision does not cross its bounds (see Section 4.4.2 and 4.4.2). Reuse
can be increased by storing more that just a visibility list with each sample, for example,
by breaking the rendering into a grid of lists. The reuse of samples drastically reduces the
sampling cost, since only the splitting surface needs to be sampled for any subdivision (see
also Section 4.2.2).

e Caches are aso implemented to facilitate the reuse of samples across subdivision branches.
This alows samples to be reused on neighbouring cells that do not share a parent (that are
in separate branches of the tree). All requests for samples are directed through the cache. A
sample is created if it does not aready exist. Samples are eliminated from the cache when
they are no longer needed (see also Section 4.2.2).

Constructing Candidate Sets

The candidate set for a 5D cell is the union of the primitives that intersect the origin box and the
primitives visible by rays that originate from the surface of the origin box, with direction bounded
by the angular range of the cell.

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 82

Figure 28: 5D Point Sample. A visihility cube with point-sample frustum restricted to the subset of angles
required (uv bounds (0, 0) to (0.6,0.5)). The inset shows a typical rendering for a full face of a direction
cube. The shaded region isall that need be rendered for arestricted point-sample.

In order to determine what is visible from a surface we sample the set of rays that can origi-
nate from that surface. Thisis done using two complementary methods: point-samples and area-
samples. For a point-sample, we sample many rays originating from a single point on the surface
(see Section 4.1.1). Conversely, for an area-sample, all the rays sampled are paralel, but have a
differing origins (see Chrysanthou et al. [CCOL98]). Both can be created using graphics hardware.
The details are as follows:

Point-samples

Within the context of ray space, the desired point-sample is arestricted visibility cube. The initia
six way subdivision of ray space means that only one face of the visibility cube need be rendered
for any sample. Furthermore, the two angular bounds restrict the portion of the face that has valid
samples. To ensure that the entire rendering is useful, the point-sample is created by rendering the
scene using a perspective projection, where the frustum reflects the angular bounds of the 5D cell.
Thisisillustrated in Figure 28.

I'n our implementation, each point-sample reveals what is visible from a point over the full range
of the angular bounds of a5D cell. If this set of visible primitives is manipulated as a single set of
items, one cannot determine in which direction a particular primitive in the set isvisible, but merely

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 83

that it is visible in some direction from the point-sample origin. This has efficiency implications,
since a subdivision of one of the angular dimensions requires that all existing point-samples must
be discarded. One cannot reuse the sample in this case because the direction information has not
been preserved.

The reuse of samples greatly accelerates the performance of this technique, especially for large
scenes. Having to discard a sampleis an expensive operation. We reduce the effect of this by break-
ing up a point-sample into a number of sets, each representing an angular region of the rendering.
Thisis done by splitting the rendering into a grid of separate samples on the visibility cube. When
an angular subdivision takes place the relevant lists are copied into a new sample. Although this
reduces the problem to a certain degree, it does not removeit. The only way to do so, isto store the
entire rendering for each point-sample. Even with image compression, the memory requirements
for thiswould be excessive.

Point-sampling results in a large number of directional samples for a small number of origins.
Improving the coverage of sampled origins, involves the evaluation of more point-samples. An
adaptive sampling of the surface is used to achieve this. The four corners of the surface are sampled
and then further samples are taken recursively in the manner of aquad-tree. Termination isgoverned
by an error minimising heuristic.

We use a heuristic similar to that described in Section 4.1.3. Although this heuristic was de-
veloped for full directional visibility cubes for determining from-region visibility, we use it with
almost no adaptation for our point-samples®. This heuristic uses an image based similarity measure
between adjacent samples. The user definesthe error threshold. When the number of common items
is above the threshold then subdivision stops.

The angular restriction to the visibility cube introduces a number of sampling problems, illus-
trated in Figure 29. Sampling can leave significant portions of the scene un-sampled. Primitives
in these portions will be categorised falsely as invisible if the terminating condition is satisfied for
the outer samples. This problem arises because al of the rays sampled by the point-samples are
clustered around a few key origins. The problem is further exacerbated when the angular bounds
are small, since the resulting gaps become larger. It is particularly significant since the un-sampled
regions are near the origin box surface.

In order to improve the coverage of the ray samples and to avoid the sampling gaps that are
created by point-sampling, an alternative sampling methodol ogy, termed area-sampling isal so used.

9The contribution that each polygon makes to the error measure is scaled by the number of sample rays that intersect
it.

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 84

Area-samples

Rather than sampling a range of ray directions from a single origin, an area-sampl e shoots parallel
rays from a range of origins across the surface. This is achieved through a generalisation of the
restricted visibility cube used for point-samples. Point-sampling uses perspective projection, with
the centre of projection on the surface and the front clipping plane very near to the surface. The
area-samples use an orthographic projection in the specified direction with the sampling surface
itself as the front clipping plane.

We adaptively sample visibility from the surface starting with four samples at the four angular
extents. However, the original termination heuristic leads to unnecessary oversampling on the four
surfaces of the origin box that are orthogonal to the dominant direction. This is because the or-
thographic projection includes a shearing operation used to achieve the desired ray direction. This
shearing is particularly significant for area-samples taken from these surfaces and can stretch in-
significant polygons such that they contribute too much to the error measure. Scaling the polygons
contribution by the shearing factor produces a better weighted sampling.

Area-samples and point-samples have complementary properties. Where point-samples cannot
be reused after splitting an angular dimension, area-samples cannot be reused after splitting the z,
y or z dimension. The reason is the same: the only information kept with a sample is the list of
visible primitives.

There are aso sampling problems with area-samples (see Figure 29). Where point-samples
have un-sampled regions close to the origin box surface, area-samples leave more remote regions
un-sampled. Itisalso evident that point-sample gaps are larger in scene volume, when the sampling
surface is large, whereas area-sample gaps are larger when the sampling surface is small.

Because of their complementary nature, the best solution uses a combination of point-samples
and area-samples. The nature of the sampling problems of each sample type suggests that more
area-samples should be used in the early stages of subdivision when the sampled cell surfaces are
large. More point-samples should be used deeper in the hierarchy, when the cell surfacesare smaller.

Uniform sampling of origin box surfaces is required for efficiency. Since child cell samples
are based on their parent cell’s visibility, it does not prove useful to adaptively sample a surface
to further depth than the parent did. No extra information can be recovered. Similarly, it is not
useful to render the item buffers at the same or higher resolution for the child cells. Instead, the
maximum adaptive sampling depth and the sampling resolution can be reduced as the subdivision
takes place. Thisensuresthat no timeis spent rendering more samples than are absolutely necessary
for visibility determination.

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 85

@ (b)

Figure 29: Un-sampled Space. Sampling problems with both point-samples (a) and area-samples
(b). The polygons in the un-sampled regions (U) will be classified as invisible (rendered in wire
frame).

4.4.3 Preliminary Results

The techniques presented in this section have been fully implemented. A number of scenes were
processed using a dual Pentium 4 1.7Ghz with 1.2GB of RAM and an NVidia G-Force 4 Ti 4600
graphics card. We have evaluated the performance of the preprocessor, the accuracy of the visibility
information and the degree of ray shooting acceleration.

Performance

The length of the preprocess depends mainly on the total number of samplesthat are rendered. This
number is directly related to the user specified maximum cell depth and maximum sample depth
parameters. We use both the Maximum Candidate Set Size (A) and the Most Separated Dimension
(B) strategies (see Section 4.4.2). Table 5 and 6 give the preprocessing parameters and resullts,
respectively, for anumber of trials using three different scenes.

Both subdivision strategies effectively reduce the average and maximum number of trianglesfor

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 86

Scene Size Cel | Sample Sub.
Depth Depth | Strategy

1 | roomshig | 45k 10 6 A
2 | roomsbig | 45k 15 6 A
3 | rooms bk 10 6 B
4 | roomshig | 45k 15 6 B
5 | hilltop 485k 12 6 B

Table 5: 5D Preprocessing input parameters. A is the Maximum Candidate Set Size subdivision
strategy while B isthe Most Separated Dimension strategy (see Section 4.4.2).

Time | Cédls Tri/Cell Cell Depth Sample Depth File Size

h:mm Ave. | Max. | Ave | Max. | Ave. | Max. | (MB)
1 0:25 5263 | 625 4944 9.9 10 4.7 6 29
2 1:51 | 82192 | 318 2312 | 145 15 50 6 143
3 4:37 1514 | 402 1122 9.0 10 5.6 6 2.4
4 | 27:25 | 12172 | 695 2348 | 13.0 15 51 6 29.8
5| 3843 | 17972 | 535 | 14267 | 119 12 5 6 93.0

Table 6: 5D Ray-space Pre-processing results.

each candidate set. Trial 5 successfully processed alarge scene and reduced the average number of
triangles per cell to 0.11% of the origina scene size. The maximum number of triangles for a cell
was 2.94% of the scene size.

Subdivision strategy B took significantly longer because of the extra processing involved in
choosing the splitting hyperplane. However, this increased pre-processing time is balanced by a
reduction in pre-processed data file size. The maximum file size was 93Mb, only 2.5 times larger
than the scene file. Thisis compared to Strategy A, whose maximum file size was 50 times bigger
than the scene file. We have yet to integrate an effective compression scheme [vdPS99].

Accuracy

Theaccuracy of the preprocessor iseval uated by comparing images produced using the pre-processed
visihility files against images produced using a reference renderer. For our evaluation the reference
renderer used a bounding volume hierarchy (BVH) [Hav00] to find the closest intersection. The
reference ray tracer produces an exact image. We calculate the number of incorrect intersections
using our 5D visibility information. Table 7 shows the accuracy statistics of thetrials.

Tria 1 and 2 produce acceptable rates of error. Trial 5 had a higher average error rate of 3.65%,
but this is acceptable considering the size of the scene and the depth of the pre-process. The max-
imum error rate was 82.19%, a substantial proportion of the image. This image, and most of the

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 87

| [Min.] Max.| Ave | St Dev. |
1 | 0.00% 1.79% | 0.03% 0.17%
2 | 0.00% 9.58% | 0.22% 0.98%
51 0.00% | 82.19% | 3.65% | 10.78%

Table 7: Error rate statistics for ray traced images.

5D BVH
Size | Ave. Int/Ray | x Speedup | Ave. Int/Ray | x Speedup |
1| 45k 594.94 75.51 40.46 1112.21
2 | 45k 126.20 356.57 40.46 1112.21
4 | 45k 200.59 224.33 40.46 1112.21
5 | 485k 290.34 1670.45 61.96 7827.63
Table 8:

Ray shooting acceleration statistics.

others with error rates above the average, had view-points near a falsely excluded polygon. This
polygon counted for the majority of the error. It should be noted that this type of error is very
infrequent. The maximum error for this scene is nearly 7.3 standard deviations from the mean.

Ray Shooting Acceleration

The success of the technique for accelerating ray tracing depends directly on its ability to reduce the
number of intersection tests required. Table 8 highlights the performance of the technique. The x
Speedup column isrelative to the naive approach (intersecting every ray with every primitive). The
speedup using our technique is a'so compared to the speedup using a bounding volume hierarchy
(BVH) column.

For al scenes the number of intersections per ray was vastly reduced compared to a naive
approach to ray shooting. 5D pre-processing successfully reduced the size of the candidate set to a
managesble level.

The traversal of the 5D tree requires one comparison per node, thus with a maximum overhead
of 15 floating point comparisons, the candidate size can be reduced to as little as 0.1% of the total
scene size and consequently reduce the number of required intersections to as little as 0.03% of the
total scene size. These are promising results, considering that a hybrid of this technique with aBSP
tree or bounding volume hierarchy offers the potential for substantial further reductions.

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 88

4.4.4 Conclusion (5D Subdivision)

We have presented a novel approach to accelerate ray shooting. An offline 5D subdivision pre-
process reduces the candidate set for aray to a manageable size based on both visibility and occlu-
sion. The results (in Table 6) reflect success in bounding both maximum and average ray intersec-
tions per ray.

Indeed, we effectively limit the number of intersections per ray to at most 2.5% of the scene
size (but on average, less than 1%). Thisis at the cost of a small error: on average, less than 4%
of rays return the incorrect primitive on very large scenes. For the smaller scenes, the average error
rate is closer to 0.3% (Table 7). Furthermore, our technique completes in practical time, even for
large scenes.

4.5 Parallelising Hardware Accelerated Visibility

We have investigated the parallelisation of the visibility algorithm presented in this chapter on a
cluster of machines. The key ideaisto distribute the pre-process onto multiple machinesin order to
benefit from the graphics hardware on each machine.

Parallelising this algorithm presents a challenge. Effectively utilising the sample cache in such
an environment is non-trivial. We have considered various models. a supervisor-worker architec-
ture, a distributed supervisor architecture, and a brute-force sweep architecture (most suited to a
cluster of low-end machines). Each have their own benefits and costs.

For afull account, see Oberholster et al. [OLBNO1a] and Oberholster and Lewis [OLBNO1b].

4.6 Hardware Extensions

There are two groups of hardware extensions that we propose to accel erate our visibility algorithm.
The first group focuses on improving rendering performance, while the second group focuses on
solving the frame-buffer read bottleneck.

4.6.1 Accelerating Rendering

For the purposes of our algorithm, we list the following features that are required for maximum
performance:

e A 24 or 32 bit Z-buffer

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 89

A 24 or 32 bit frame-buffer

e The fastest rasterisation possible

Occlusion/contribution testing should also be included

Fast hardware vertex transformations

Support for storing geometry on the video card (preferably) or AGP memory

Contemporary graphics hardware has many feature (programmable pipelines, anti-aliasing, etc.)
that are not required by our technique. All aspectsrelating toimproved image quality can be stripped
from the hardware. This can save on die space, heat maintenance and cost.

Unlike standard rendering, the visibility algorithm is roughly predictive. It is possible to build
aqueue of camera positions and directions that will need to be rendered. Thisimplies that multiple
graphics pipelines can be used to paralelise the algorithm. Given the simplicity of the required
hardware, it may be possible to integrate these pipelines on a single graphics card, where each
graphics processing unit (GPU) shares the same geometric data for efficiency.

4.6.2 Accelerating Buffer Feedback

The maximum rate that pixels can be read from agraphics card on standard PC hardware is approxi-
mately 46 million pixels per second. Thislimitation is due to the current bus architecture standards,
not the graphics hardware.

The bus architecture required to achieve accelerated item buffer readsisalready in aprototyping
phase. Intel Corporation have devel oped atechnology called PCI Express [Int03]. This architecture
will replace the Advanced Graphics Port (AGP). The first iteration of the new PCIl architecture is
faster than the AGP 8x standard. More importantly, however, is that unlike its AGP counterpart,
this high bandwidth is bidirectional .

4.7 Conclusion

We have presented an novel aggressive visibility algorithm that efficiently preprocesses difficult
scenes at the cost of possible image error. The agorithm exploits graphics hardware for additional
performance.

A kd-treeis constructed in atop down fashion. Adaptive sampling is performed on the surfaces
of the kd-tree nodes to obtain the set of visible geometry. This sampling exploits graphics hardware

CHAPTER 4. AGGRESSIVE VISIBILITY PREPROCESSING 90

to enhance performance. An efficient schemeisused to share samples between cellsand to minimise
the memory resident lifespan of these samples. We have developed an efficient heuristic to guide
the sampling process with the goal of minimising error.

Results show this technique to be significantly faster than existing techniques. Also, we show
that this technique can be used to preprocess even the most complex of scenes effectively. Image
error isminimal.

We extend this technique to a 5D sampling of ray-space. A 5D kd-tree is built in a top-down
fashion, attempting to limit the number of trianglesin each node. At run-time this information can
be used to accelerate the shooting of rays for general scenes.

Preliminary results show the 5D version of the algorithm to be more prone to errors than its
3D counterpart. In most cases though, the error is small. The number of ray-triangle intersections
required per ray is between 1% and 2.5% of those required by a naive algorithm.

Chapter 5

The Selective Stabbing Problem

A difficult problem that we have encountered in our research isthat of determining exactly whether
or not one polygon can be seen from some viewpoint on another polygon. In the next Chapter we
show how that such a solution can be used as a tool to solve for the exact set of polygons visible
from aregion.

A natural generalisation of the stabbing problem [TH93b] is a problem we term the selective
stabbing problem. In Chapter 6 we show how this generalisation may be cast as an exact polygon
to polygon visibility query.

The general problem asks one, or both, of the following questions:

1. Giventwo sets .S and M of convex polygons. Does there exist aline that stabs all polygons
in S and misses all polygonsin M.

2. Given two sets S and M of convex polygons. Compute a representation of the set of lines
that stab all polygonsin S and missall polygonsin M.

In this chapter we present an efficient solution to the selective stabbing problem. The genera
problem and solution can be expressed outside the context of visibility. We discuss it in such a
manner. In the paper by Nirenstein et al. [NBGO02], the exact visibility algorithm is presented
without the generalisation of the selective stabbing algorithm. The work in this chapter supersedes
the theory component of this paper.

The term stab refers to incidence and miss refers to non-incidence. An answer to Question 2
implicitly answers Question 1, in that such aline must exist if and only if the set of lines requiring
representation is non-empty. We refer to lines in the solution set of Question 2 as stab-miss lines.
Figure 30 illustrates the principle of selective stabbing.

91

CHAPTER 5. THE SELECTIVE STABBING PROBLEM 92

(b)

Figure 30: Sdlective Sabbing. The cyan polygons correspond to those elements in the S (“must hit”) set,
while the magenta polygons correspond to those in the M (“must miss’) set. The problem is to show the
existence of aline that stabs all elements of .S, and misses all elements of M. (a) shows a case where (by
example), astab-missline (s) must exist. (b) shows a case where clearly no stab-miss line can exist.

The classical stabbing problem can be cast as the special case where M = (). Teller and
Hohmeyer [TH93b] present a solution for stabbing oriented convex polygons. We too make the
assumption that all the polygonsin S are oriented, thereby admitting stabbing lines oriented in only
one direction. Blocker polygons may be used to block stabbing linesin one or both directions. To
achieve the latter, each blocker polygon can be treated as two blockers that are identical, except for
their orientations.

Our solution consists of two major phases. The first being the construction of the set of stab-
bing lines for the set S. These stabbing lines are represented as a polytope in Plicker space (see
Section 3.1.5).

In the second phase, the set of stabbing linesis“trimmed” by the set of blockers M. Using the
Plicker space polytope representation, we show how constructive solid geometry may be used to
achieve this trimming.

Finaly, if the whole polygon is trimmed away, then the stab-missline set isempty. If the whole
polytopeisnot trimmed away, then the remaining structureisintersected with the Pliicker hypersurface.
If no intersection exists, then again the stab-missline set is empty. If an intersection does exist, then
the intersection points can be mapped to the (non-empty) stab-miss set.

CHAPTER 5. THE SELECTIVE STABBING PROBLEM 93

5.1 Phase 1: Constructing the Set of Stabbing Lines

The existence of astabbing line through a single (non-degenerate) polygon is clearly the affirmative.
Similarly, a stabbing line through two (oriented) polygons must exist, unless the angle between the
normals of the two polygons is obtuse. For the case of S = (), the result is true or false depending
on the problem definition.

The computation of the set of stabbing lines in the case where |S| < 3 is a special case. For
completeness, in this section we present a general solution for |S| > 3 similar to that of Teller and
Hohmeyer [TH93b]. We also give a brief discussion of the reasons for the cases |S| < 3 creating
such difficulties.

We are most interested in |S| = 2, since in Chapter 6 we shall see that visibility queries always
involve selective stabbing where | S| = 2. We therefore provide a rigorous exposition of the prob-
lems encountered in this case and show how they can be solved efficiently. We present a specialised
agorithm for the computation of a line-space representation for this case that is ssmpler, and more
efficient than for the general case. In order to achieve this, we derive and exploit several novel
mathematical results for the two-polygon case.

The notation used in this chapter adheres to that of Chapter 3.

5.1.1 Computing the Set of Stabbing Lines for |S| > 2

Ideally, we would like a generic representation of the set of stabbing lines for a set S. This
set should be both easy to represent and to manipulate. Working directly on the surface of the
Plucker hypersurface is difficult due to its curvature. Instead, we build a polyhedral representation
of thisline set. The intersection of this polyhedron with the Pliicker hypersurface gives the desired
set of points. This polyhedron may be constructed as follows:

Foralinestostabaset S, itisnecessary and sufficient that all edgesfrom the polygonsof S pass
by adirected version of s with the same relative orientation. Thisisillustrated in Figure 31. Given
the (appropriately directed) set of edges of these two polygons ey, es, . . ., e,, verifying whether s
is a stabber is equivalent to testing whether:

Dx(II(s)) > 0,¥r € {II(e1), II(ea), ..., I(en)} (13)

We call each one of these constraints, an edge constraint of the set of polygons S.
The projective space P5 is an augmentation of R> by two additional hyperplanes at positive and
negative infinity (see Section 3.1). These additional hyperplanes are useful as an elegant means to

CHAPTER 5. THE SELECTIVE STABBING PROBLEM 94

Figure 31: Sabhing constraints. Directed linese; to eg correspond to the edges of two quadrilaterals (the set
S). Note that the stabbing line s passes al e; to eg to the left. This condition is both necessary and sufficient
for stabbing.

handle uniformly those cases that appear as singularities in other parameterisations. Recall that the
Plucker six-tuples are unique to within a positive scale factor. It is therefore possible to normalise a
projective six-tuple by dividing through by one of its components, and then excluding that compo-
nent (normalised to one). This, of course, assumes that the normalisation component is non-zero. It
istrivial to pre-rotate the scene geometry so asto prevent this from occurring (i.e., to ensure that all
stabbing lines can still be represented). This process is equivalent to projecting down to R°. This
approach was also taken by Teller and Hohmeyer [TH93b].

After this projection, the function D, (z) : P° — R becomes D’ (x) : R> — R where D’ (z) =
Tox3 + M4 + mToxs + w3 + max1 + Tsxe. In this case, the first el ement has been selected as
the normalisation component, and thus g = 1 and may be omitted. The six tuple that was x =
(1,21, 22, x3, 4, 25) becomes the tuple z = (x1, 2, 23,74, z5) in R®. Where the old form of
the equation D, (z) = 0 (z € R®) defined a hyperplane through the origin in R®, D’ (z) = 0

CHAPTER 5. THE SELECTIVE STABBING PROBLEM 95

(x € R?) defines aless restricted hyperplane in R, Using D’ rather than D, the solution space for
the constraints of astabbing line s given in Equation 13 may be used to define avolumein R®. This
volume compl etely represents the set of stabbing linesfor the set .S. This construction and mapping
is depicted in Figure 32a and Figure 32c.

D'ni(e(x)=0

D'nien(x)=0

(e) (d)

Figure 32: Plicker-complex Construction. (a) A typical setup between two polygons (the quadrilaterals),
and one occluder (the triangle). (b) A visualisation of the mapping of the edges of the triangle occluder to
avolumeinR®. Again, G isavisuaisation of the Pliicker hypersurface. (c) A visuaisation of the mapping
of each edge of the quadrilaterals to form avolume in R5. (d) The subtraction of the occluder volume from
the initial volume. The remainder fully represents the set of lines between the quadrilaterals that miss the
occluding triangle.

Definition 5.1 The stabbing polyhedron of a set of convex polygons S, is the set of points (in
Pliucker coordinates) satisfying the set of constraints in Equation 13, where eq, eo, . .., e, are the
edges of the polygonsin S.

There are varioustechniquesthat may be used to extract a polyhedral representation from several
half-space intersections. We used a version of the double description method [AF92] to extract the

CHAPTER 5. THE SELECTIVE STABBING PROBLEM 96

extreme points. With this and the hyperplane information, we construct the full face lattice/graph
of the polyhedron using a combinatorial face enumeration algorithm similar to that presented by
Fukuda and Rosta [FR94].

The technique presented in this section is valid for any cardinality of S. What separates the
cases |S| < 3, is that the half-space intersections do not form a polytope, rather they define a
convex, necessarily unbounded polyhedron. We discuss this next.

5.1.2 Unboundedness in the Set of Lines Through One Polygon

The case where |:S| = 1 resultsin an unbounded stabbing polyhedronin R?. This can be shown eas-
ily: consider any (non-degenerate) polygon p. Now consider a stabbing line ¢ of p, intersecting p at
apoint ¢. ¢ can be swivelled at ¢ with two directions of freedom and still remain astabber of p. This
implies that those components of T1(¢) corresponding to direction (the first two/three components
depending on the nature of the projection to R®) can be chosen arbitrarily. The constraints imposed
by p are therefore unable to bound I1(¢) in line-space, thereby demonstrating the unboundedness of
the stabbing polyhedron of S.

5.2 The Set of Lines Though Two Polygons

In this section we investigate the structure of the Pliicker polyhedron of aset S, where |S| = 2. We
have developed a method that obtains a bounded representation of thisline set in worst case optimal
time.

5.2.1 Proof Outline

We begin by proving a lemma characterising those lines that are extremal stabbing lines. These
lines correspond to the intersection points of the boundary edges of the stabbing polyhedron of S
with the Pliicker hypersurface.

These intersection points can be found by computing the dual of the (now characterised) ex-
tremal stabbing lines. In order to compute the complete stabbing polyhedron, it is sufficient to find
the extreme points of the polytope.

We prove that no such points exist by showing that each boundary edge of the stabbing poly-
hedron isin fact an infinite line. Thisis achieved by proving that all the polytope boundary edges
are parallel. Thisis true for al pairs of polygons, however, for simplicity we only show this for

CHAPTER 5. THE SELECTIVE STABBING PROBLEM 97

a special case. The special case suffices, since all configurations can be transformed to this case
(McKennaand O’ Rourke [MO88] use a similar argument).

In order to prove parallelism, we show how the direction vectors of these boundary lines (in R)
can be computed explicitly. We then show that these directions are the same.

Next, we show that any point within the polytope may be expressed using the Minkowski-Weyl
theorem!. Using thisrepresentation, we characterise those pointsthat lie on the Pliicker hypersurface.
Thisleadsto abound on the intersection between the stabbing polyhedron and the Pliicker hypersurface.
This bound may then be used to compute a Plicker polytope that has the same intersection with the
Plucker hypersurface as its unbounded superset.

Using these results, we give an O(mn) worst case optimal algorithm. m and n are the number
of vertices in the two respective input polygons. This enumerates the extreme rays of the stabbing
polyhedron and then capsit.

5.2.2 Details

Firstly, we assert that the general construction (asin Section 5.1.1) can indeed be unbounded (thisis
evidenced for any pair of convex polygons that lie within distinct planes). Thisis counter-intuitive,
since the argument used for |S| = 1, in Section 5.1.2, does not hold. Given a set consisting of two
distinct polygons .S where |S| = 2, it appears to be impossible to choose any of the components
of the Plicker mapping of a stabbing line arbitrarily, without violating one of the edge constraints.
Thismight, at first sight, hint at aconsistently bounded representation for the set of stabbing lines of
S. However, solving for the solution space of the edge constraints of S always gives an unbounded
polyhedron.

We begin with a characterisation of the set of extremal stabbing lines (see Section 2.5.2) gener-
ated by two polygons.

Lemma 5.1 Given two convex polygons A and B, where A consists of n edges, and B of m edges,
(1) there are exactly n x m extremal stabbing lines between A and B, (2) these stabbing lines
correspond to every vertex-vertex combination between A and B.

Proof: A stabbing line is extremal iff it is constrained (incident) on four edges. Because A
and B are convex polygons, they can each contribute at most two edges. Since the edges of A are
coplanar, the intersection point of the two contributing edges must be a vertex of A. Similarly, the
intersection point on B must be avertex of B.

!].e., asaconvex combination of extreme vertices and rays.

CHAPTER 5. THE SELECTIVE STABBING PROBLEM 98

We note that there are n verticesin A and m verticesin B. We aso note that therearen x m
possible combinations of A to B vertex-vertex pairs. Every such combination of vertices (equivalent
to a combination of four edges) gives an extremal stabbing line, and every extremal stabbing line
must be generated by a pair of verticesfrom A to B.

O

In Section 3.5.2, we see that four lines in general position generate exactly two lines by inci-
dence. Let us consider an extremal stabbing line of polygons A and B. Thisline is determined by
four edges, and is simply the line through the vertex defined by the intersection of one edge pair of
A, and the vertex defined by the intersection of another edge pair of B.

We note in passing, that by extending these edges to lines, we find a second line is incident on
thefour lines, namely the line &, where the plane of A intersectsthe plane of B. Thislineisincident
on every linein the plane of A and every line of the plane of B (projectivity handles the incidence
of paraldl linesarising from parallel edges).

Selective stabbing is by definition invariant under invertible affine transformation®. The exis-
tence of astab-missline s, for astab set S and miss set M is equivalent to that of the stab set 7'(.S)
and missset T'(M), where T" is comprised of only arotation and atranslation. Similarly, given the
stab-miss set P for stab set 7'(.S) and miss set 7'(M), the stab-miss set for S and M, is simply the
pre-image T~ (P).

We continue our proof for the case where exactly one of the two polygons of the stab set S is
embedded in the x = 0 plane. We note that any scenario can be transformed into this case using
a consistent translation and rotation of the geometry. It is therefore sufficient to prove consistent
unboundedness for this case.

Theorem 5.1 Given two distinct lines/; and /; inthe primary plane z = 0 (inIR?) and two distinct
lines ¢3 and ¢, in a different plane B (also in R?), the direction * of line p + A7 in R> defined by
p+ A7 ={xeR’: Dy (z) = 0and D, (x) = 0and D) (x) = 0 and Dj, (x) = 0} isa function
only of the plane B.

Proof: Denote the intersection point of ¢; and ¢, as a, and denote the intersection point of /3
and /4 asd. Let b, ¢, e and f be pointson ¢1, ¢o, ¢35 and £4 respectively, such that a # b, a # c,

e#dand f # d.
p—+ A7 must lie within each of the four hyperplanes of it's definition. Thisimpliesthat the vector

2Since collinearity is preserved.

CHAPTER 5. THE SELECTIVE STABBING PROBLEM 99

7 must be orthogonal to the normals of the four defining hyperplanes. Using the generalised cross
product (see Section 3.5.1) and the plucker dua hyperplanes, we can express * as follows:

i i I m
0 0 by —a, b, —a,
0 0

oS O

ay—c¢y a;—c; (14)

=
I

d.ep —dze, dgey —dye, ez —dy ey—dy, e,—d;
fzdx_fwdz fxdy_fydx dz_fw dy_fy dz_fz

Whererows n = 2, 3,4 and 5 correspond to the coefficients of Dh(fn_l)(:c) = 0. The constant is

ignored, sinceit is only the hyperplane normals that are required to define 7. Vectorsy, ;, k, [and 1

correspond to the standard 5D Euclidean basis. The zeros in the top left of the determinant matrix

are due to the assumption that ¢; and /5 arein the plane z = 0. Thisresultsina, = b, = ¢, = 0.
Two levels of cofactor expansion gives the following for +:

by —ay b.—a:

= (fady = fyds)(ex — da)

b - bz_ z
(doey — dyes)(ds — f) v ¢ '

Gy —Cy Q»—Cy Ay —Cy Qay —C

by—ay bz_az

by —ay b:—a. ’

Gy —Cy Qr—Cz Gy —Cy Qr—C;

(dzeﬂc - der)(fﬂcdy - fydx) by —ay . —a - (fzdx - fde)(dxey - dye:c) by =y be—a
Gy —Cy Az —C: Gy —Cy Qr —C:
0 bz — Uz 0 bz - Uz
(deee — doez)(fody — fydz) B = (feda — fod.)(duey — dyes) ¢
0 ay—c: 0 a—c:
(deea — due) (fody — fuda) | © 27 | = (e — fud) oy — dyes)| O 2T
0 ay—cy 0 ay—cy
(15)
By factoring and expanding, we obtain the following:
fxdy + fyex - fydz - eyfx - dyex + dxey
b b ezfz —dge, _fxdz _emfz +dz€x+fzd:r
a a
F=dy| 7 T T deeyf. — doenfy + dyefo — dyenfs + dofyen — daey fo
ay —Cy Gy —C; 0
0
(16)

We digressto consider the structure of plane B. This plane can be identified by a unit normal 7,
where 77 = (ng, ny, n.) and a constant ¢ in the standard way. Since point d lieson ¢3 and ¢4 and e
lieson /3 and f on /., these three points must lie in plane B. 77 may therefore be expressed in terms

of these points:

(Mg, s M2) (17)

S

CHAPTER 5. THE SELECTIVE STABBING PROBLEM 100

o= ((le—d)x(f—d)) (18)
(ey — dy)(fz —dz) — (ez — d2)(fy — dy)
=101 = v (ez - dz)(fx - da:) - (ex - d:c)(fz - dz) (19)

(ex — du)(fy — dy) — (ey — dy)(fx — d2)
eyf: —eyd, —dyf. —e.fy+e.dy+d.f,
=1 = 7| esfo—due:— fods —exf. + deey + frdy (20)
Jody + fyex — fyds — ey fo — dyes + dyey

Where ~ is a normalisation constant. Similarly, it is possible to express ¢ in terms of these

points, by substituting in any of d, e or f into the plane equation of B. We choose point d:
q = ngdy+nydy+n.d, (21)
=q = "(dzeyf. —deerfy + dye.fo —dyerf. + d. fyes — d.ey fr) (22)

Returning to our derivation of # (Equation 16), through substitution we can further simplify the
expression to:

Ty
Ny
dy | by — b, —a,
pelo| T T (23)
Tl ay—cy ay—c; 0
0

The direction of 7 is clearly dependent only on plane B since we fixed plane A. The scalar

by =y b= s the component of the cross product between two distinct vectors in the

Ay — Cy Az — Cz

direction of lines ¢1 and ¢ respectively. Since these lines are embedded in x = 0 and distinct, the
normal must be non-zero. The specia case where d,, = 0 can cause problems. Thisis addressed in
Section 5.2.6.

5.2.3 Implications

We consider each extremal stabbing line. As shown in Lemma 5.1, each extremal line generated
by two polygons A and B originates from a vertex of A and terminates on a vertex of B. Each
such extremal line is associated with a vertex pair and each vertex is associated with two edges.
Since these are the two edges that meet at the vertex, each vertex pair is associated with four edges.
Extending these edges gives four lines, two in the plane of A, and two in the plane of B.

CHAPTER 5. THE SELECTIVE STABBING PROBLEM 101

As shown, the entire scene can be transformed by an affine function 1" such that polygon A lies
within x = 0. Using Theorem 5.1, we see that the direction of each extremal line in Plucker space
is the same, since this is a function of the plane of 7'(B), and all edges of T'(B) lie within this
plane. Given that the extremal rays are all parallel, we deduce that the volume defined by the dual
Plicker half-space intersections is unbounded. Furthermore, we can deduce that the structure of the
stabbing polyhedron isthat of a 4D polyhedron, extruded in direction 7.

5.2.4 Constructing the Stabbing Polyhedron in Worst Case Optimal O(nm) Time

In this section we present an efficient algorithm for constructing the stabbing polyhedron between
two polygons. By construction, we refer to the explicit determination of the skeleton (0 and 1
dimensiona elements) of the polyhedron.

General agorithms that enumerate vertices from a half-space description may also be used.
Teller [Tel92a, THI3b] use the fact that the half-space intersection test is the dual problem of the
convex hull problem, and solve the dual problem. Vertex enumeration may also be performed
directly using the reverse search algorithm [AF92, AF96] or the double description method [FP96].
Our method uses the special structure of the stabbing polyhedron to perform enumeration more
efficiently.

Additional enumeration of the higher dimensional faces may be performed to construct the full
face lattice if desired (see Section 3.2.2). We use the full face lattice in Phase 2.

Given two polygons A and B, transform them using the affine transform T' that rotates and
translates A onto the z = 0 plane. Let V' be the set of lines, where each line correspondsto aT'(A)
to T'(B) vertex-vertex pair. If the number of verticesledgesin A and B are n and m respectively,
then the cardinality of V' is exactly nm (best and worst case).

Each linein V' can then be mapped to Plucker coordinates. The points where the edges of the
stabbing polyhedron intersect the Pliicker hypersurface, is exactly the set TI(V)3. The direction
can be computed from any vertex-vertex pair within V' (Theorem 5.1). Finally, the skeleton of the
Plicker polytope isthe set of lines ey, es, ... em, Where e; = p; + A7, and p; is the i-th point in
II(V'). Since this is a constant time operation on the elements of a set with cardinality nm, the
algorithm has the worst case optimal complexity of O(nm).

This result has the potential to accelerate the technique of Bittner [Bit02]. For each region,
Bittner needs to construct a stabbing polyhedron for every occluder inserted into, or tested against,
his occlusion tree. His current system uses an implementation of the general reverse search method.

3Sinceall linesin V are extremal stabbing lines.

CHAPTER 5. THE SELECTIVE STABBING PROBLEM 102

Our experiments using Komei Fukuda's implementation of the double description method [FP96],
showsthe general approach to take approximately 4msto enumerate for aquadrilateral and atriangle
asinput. Our direct construction is at least three orders of magnitude faster.

5.2.5 Capping the Stabbing Polyhedron

In order to cap the polyhedron we choose two capping planes (one for each open side of the poly-
hedron) with normal vector 7. What remainsis to find two constants ™ and h~ for the hyperplane
constraints:

IN

Bt (24)

A T
T (.’1717 $27 3.73, 354, 335)

Pu(x1, 9, T3, 24,25)° > h” (25)

such that these two constants result in hyperplane bounds for all those points that are incident on
both the stabbing polyhedron and the Pliicker hypersurface.
For convenience we define the coefficients of the normalised vector 7 as follows:

n, 1
1 ’I’Ly T9
P — 26
=T ¢ s (26)
0 0
0 0

Let us consider apoint a in polygon A, and a point b on polygon B. It is possible to represent
any point on A by a convex combination of the n vertices of A:

a:Zaiai Zaizl,aizo (27
=1 =1
Similarly, it is possible to represent any point on B by a convex combination of the m vertices of
B: . .
b:Zﬁibi 2@'217@‘20 (28)
=1 =1

Thisimplies that the line ab has Pliicker coordinates of the form:

Z?il Bleq - Zr:'l=1 Qily,

Z;‘zl ﬁibyz‘ - Z?:l Ay,

H(a b) _ Zzl ﬁibzi - Z?:l Qilz,; (29)
) - P

21";1 Bibzi Z?:l Ay, — 2111 ﬂibyi Z:L:l QA z,

Z;r;l ﬂib?‘q Z?:1 AiQy, — Z:il 61172, Z?:l Qi Gy,

Z;r;l ﬂzbyz Z?:l Qilg; — Zgl ﬁlb% Z?:l QiQy,

CHAPTER 5. THE SELECTIVE STABBING PROBLEM 103

Normalising this expression, and mapping the result from P° to R® gives *:

Z?;l ﬁibyi - Z?:l Qi Qy;
Z?zl ﬁibzi - E?fl QiQz;
1 7l_ ’_
II'(a,b) = ST Gibe, Doy Bibz Yoy iay, — D00 Biby, Y0 i, (30)
= ' 221 ﬂvban Z;L:l QA
- 221 Biba, Z;L:l QiQy;

Inorder tofindan A and ~~ that will bound the Pliicker dual of this arbitrary stabbing line, we
substitute IT' (a, b) into Equation 24:

2211 Biby, — Z?:l Qily;, 1
1 iy Bibzy — D20 cvia, 2

(a,b) .7 = m Doimy Bibz, DT aiay, — 30, Biby, 31, cias, T8 (31
- ' Yo Bibe, Do cua, 0

=iy Bibay 3o, @iay,

(e z)

1 m
ST (Z C S)
<§m: ﬁzbm Z Ay, — Z Bibyi En: am‘q) (32)

Nk
"‘Q»—l
s
s
P_ﬂ

bzl|+Z|a21>

1 m n
m“ﬂ z::|bz|2|ay|+2|b |Z|az |> (34)
L (Z b+ 3 o)

“Wenotethat > | aias, = 0, sinceal points of A are assumed to existinthez = 0 plane.

1 m
<) Z
T it Biba, Il (Zz;ﬂ 1oy |+Za |ay, |>
1 m
—_—— b, | + Jas,
ST B, (Zﬁ b=, za @)
2is 1ﬁ'b " (ZB b= |Zal|% |+Zﬁ by, |Zoc1|az) (33
i=1 MYz, =
1 m n
™m b, | + n
- Zi:l Blbrz ‘Tl' (; | vi | Z |ay |>

CHAPTER 5. THE SELECTIVE STABBING PROBLEM 104

|b- .|+Z|azi|> +

mln;n 1bTL |r2| (=

)
o (2 el S o+ 33 @

Similarly, it can be shown that:

Wob)r > i (Z AEDY ||> -
i=1 =1
- b,.) =
(S)
1 m n m n
Tbh‘lﬂ Z ‘bzi | Z ‘ayi‘ + Z |b?li| Z |a'zi| (36)
AT =1 Oa; i=1 i=1 i=1 i=1

Inequalities 35 and 36 are independent of scalars o and . Thisimplies that they are not func-
tions of the line ab, but rather are functions only of the vertices of A and B. Since a and b are
arbitrarily chosen points of A and B (respectively), this implies that they bound the Pliicker duals
of all stabbing lines through A and B. Thus giving acceptable values for h* (Equation 35) and k™
(Equation 36).

These bounds are not necessarily optimal. We consider the determination of tighter bounds
(or the proof that those bounds presented here are optimal) to be an area of future research. The
implication of loose bounds on these caps is that the bounding spheres used for accelerating CSG
(see Section 5.3.1) become more conservative, resulting in lesstrivial rejection.

Since the polytope existsin R® and not IP?, the coefficients of the capping planes are not subject
to geometric distortion. Distortion dueto projectivity occurs at the stage where P5 is projected down
to R®. The projective plane that is chosen determines the size of the capped polytope in R>.

With our current selection of a projective plane® asingularity does occur, but this can be treated
(see Section 5.2.6). Using an alternative plane removes this problem, however, the formal proof
becomes more complex®. In particular, since the two polygons are disjoint convex sets, there must
exist a separating plane. It is this plane that should be transformed to be parallel to the Y Z plane.
The advantage is that no stabbing line can become parallel to this plane.

5.2.6 The Polytope-Plane Intersection Case

In Section 5.1.1, we show that the set of stabbing lines for a set S can be represented by a set of
constraints using a dual mapping of edges to half-spaces in Pliicker coordinates. These constraints

SWe orient the plane of one polygon to be parallel to the Y Z plane.
®We intend this as future work.

CHAPTER 5. THE SELECTIVE STABBING PROBLEM 105

(Equation 13) are depicted in Figure 32.

There is one case where these constraints may not fully constrain the set of lines to only those
stabbing S. Thisis the case where the plane of at least one polygon intersects another polygon in
the stabbing set. Experiments have shown that this case occurs frequently in practice.

For illustration purposes, we consider the case with two polygons. Let A and B be two convex
polygons, where the plane embedding B intersects A. Denote the set of points of this intersection
asthe set I (see Figure 33). The only lines incident on I that should be part of the set of stabbing
lines, are those that stab B. Decomposing the set of constraints we obtain the following:
Constraints of A:

D, (I1(s)) > 0,Va € {II(a1),(ag),...,(a,)} (37)

Constraints of B:

Where aq,as,...,a, and by, bo, ..., b, are the edges of A and B respectively. We note that
since constraints of B are defined using a greater or equal to relation, then all lines incident on
and embedded in the plane B satisfy the constraints of B. Furthermore, any one of these lines are
incident on every edgeto line extension of the edges of B. Indeed, each one of these lines ¢ satisfies:
Dg(I1(¢)) = 0,95 € {IL(b1), IL(b2), . .., 1L(bmm) }-

One way to prevent this problem isto clip the polygon A against the plane of B at a distance of
€, where e isvery small. Thisshould work in practice, sincethe only error introduced isthe possible
omission of those polygons stabbed only from the e strip of A. Once again, this e strip is a very
small area.

A better dternative, however, isto further constrain the set of lines. We introduce two additional
constraints (defined by two lines ¢; and ¢;) that limit the lines on the plane of B to those lines
incident on B.

Lines ¢; and ¢, are defined as follows: Let p; and po be the endpoints of the line segment 1
(intersection of the plane of B with A). Let a,, and a,, be the edges of A incident on p; and po,
respectively. Define the plane P to have the normal vector p; — p1, and to go through p,. Next, the
vertices of B are sorted by their signed Hausdorff distance from P. The vertex with the smallest
distance v, is associated with py, and the vertex with the largest distance v is associated with p-.
These two pairs of vertices define two lines, namely the supporting lines of I and B. Finally, ¢;
is defined to be the line with the same direction as a,,,, but translated so that it is incident on v;.
Similarly, c; is defined to be the line with the same direction as a,,, but transated so that it is

incident on vs.

CHAPTER 5. THE SELECTIVE STABBING PROBLEM

B
p2 Vi
Supporting
Plane of B p: Lines
@ (b)

C2

ap:

ap:

(©)

106

Figure 33: Plane-Polygon Intersection Case. (a) A two polygon scene, where the plane of polygon B
intersects polygon A at line segment 7. All directed lines in the plane of B that intersect I in the correct
direction through A will satisfy the edge constraints of these two polygons. This includes non-stabbers (b)
The supporting lines of I and polygon B. (c) The addition of two more constraints, defined by ¢; and ¢ will

constrain the set of linesin the plane of B to only those that intersect B.

CHAPTER 5. THE SELECTIVE STABBING PROBLEM 107

Adding the following constraints allows for an exact solution to this case:
D,(11(s)) > 0,Vm € {II(c1),(c2)} (39

The general half-space intersection routine must be used in this case.

5.3 Phase 2: Incorporating Misses

In Phase 1, the set of lines stabbing the set of polygons S are computed and represented as a polytope
in R® using a Pliicker parameterisation. In Phase 2, polyhedral set subtraction operations are used
to trim this polytope in order to remove those points corresponding to lines blocked by a second set
of polygons M.

5.3.1 CSG in Plucker Space

To remove those lines blocked by an element of M from the polyhedron, we have to find a more
explicit representation for the set of lines blocked. As for the stabbing polytope, we map the edges
of the occluder to hyperplanes in R® using the II and D’ operators. The volume enclosed by the
intersection of the half-spaces described by these hyperplanes is used. We maintain the volume as
aset of oriented hyperplanes, O. Thisvolumeis necessarily unbounded. We depict the mapping of
an occluder to R® in Figure 32b, and the subtraction of this volume from the stabbing polytope in
Figure 32d.

Subtraction of one polyhedron from a polytope in five dimensionsis anon-trivial task. Given an
agorithm that splits any polytopeinto two, each half falling on either side of a specified hyperplane,
it is possible to partition a polytope volume into a set, or complex (see Section 3.3), of polytopes
that have no faces crossing any hyperplane of O. The polytopesthat fall within the volume enclosed
by O can then easily beidentified and removed. An intersection of the remaining complex with the
Plucker hypersurface would therefore provide the remaining set of lines (those unblocked by the
occluder).

This approach is applied iteratively, until either there are no polytopes left in the complex, or
there are no occluder volumes left to subtract. The former implies that the query polygons are
mutually occluded, the latter implies that they are mutually visible if and only if at least one of the
polytopes, within the complex, intersects the Pliicker hypersurface.

CHAPTER 5. THE SELECTIVE STABBING PROBLEM 108

Splitting a Complex by a Hyper-plane

We develop an algorithm similar to the multi-dimensional polytope splitting algorithm of Bajgj and
Pascucci [BP96]. The original algorithm (discussed in detail in Section 3.3) maintains the whole
polytope-complex as asingle face graph structure. Their algorithm has to traverse each face of each
dimension. For each of these faces, its children (k¥ — 1 dimensional boundary elements) need to
be visited. Thisresultsin an O(pm) time agorithm for p faces and an average of m children per
face. Bgjgj and Pascucci do suggest the use of a half-space range reporting algorithm to classify the
vertices more efficiently. We present an alternative that allows all faces to be classified efficiently.

The basis of our improvement is that for each top level polytope of the complex, we construct
two notationally disjoint” top level polytopes when splitting, one on either side of the hyperplane.
This introduces redundancy into the representation, since shared faces are duplicated, but we gain
the performance advantage of rapidly isolating those polytopes that are split, thereby reducing the
set of polytopes traversed to those incident on the hyperplane. That is, the traversal is sensitive to
the number of polytopesin the zone of the hyperplane.

To query whether a polytope intersects a hyperplane, we use a 5D bounding sphere for aconser-
vative test. If this conservative test indicates a potential intersection, an accurate vertex-hyperplane
sidednesstest is used to determine whether any two vertices lie on opposite sides (or on) the hyper-
plane. If and only if this provestrue, will the polytope intersect the hyperplane.

Figure 34 gives pseudo-code for our algorithm (cf original in Figure 9). There are severdl
important differences between our algorithm and the original: In the first step the algorithm begins
with a conservative computation of those polytopes incident on the splitting hyperplane. In the
second step, the algorithm computes exactly which polytopes are split by the given hyperplane.

By the third step, all the primary numerical calculations have been performed. In the third step
al the split faces are traversed. The splitting occurs in a similar manner to the original algorithm.
Unlike the original algorithm, we have moved the secondary numerical calculation into the splitting
algorithm, so that the vertices arising from hyperplane-edge splits are evaluated when they are
determined. The advantage of thisis that all the required information (i.e., the children vertices of
the split edge) are readily available. The original algorithm requires auxiliary data be to refer to the
two vertices of each split edge.

Another modification, required for a notationally digjoint complex, is the maintenance of alist
of those faces synthesised from the splitting operation. These are exactly those faces marked as

"Disconnected face | attices.

CHAPTER 5. THE SELECTIVE STABBING PROBLEM 109

Step 1 (Conservative intersection test)
S0
foreach c € C' do
if boundingSphere(¢) intersects H then
S—Suc
endif
next ¢
Step 2 (Accurate intersection test)
for each s € S do
Classify all the vertices of s either[+]or[—|.
if all Vertices(s) =[—] or allVertices(s) =[+ | then
S—S\s
endif
nexts
Step 3 (Split zone of H)
for each polytope s € S do
E«— 0
for k =1toddo
for each ¢ € sy, do:
if not allFacets(¢) =[— | and not allFacets(c) =[+] then
- Create anew (k — 1)-polytope f (classified as[=) and connect it to each
(k — 2)-polytopein c classified as| = .
- If £ = 1, then compute the vertex associated with f by intersecting H with c.
- Create two polytopes ¢ and ¢~ connected both (down) to 7 and (up) to all
the k& + 1 polytopes connected with c.
- Connect each (k — 1)-polytopein ¢ classified as to ¢, and each one
classified as[— |to ™.
- Remove ¢ from sy.
-E—FEUf.
endif
next c
next k
-E — FE
- removePositiveConnectivity(£)
- removeNegativeConnectivity(£’)
- 5T « postiveFaces(s)
- s~ « detachPositiveFaces(s)
-sT —stUFE
-C—C\s
-C«—CUs™T
-C+—CUs™
nexts

Figure 34: Improved Polytope Splitting Algorithm. The algorithm uses the following terminology: d is the
dimension, H is the hyperplane, s; isthe set of all faces of polytope s of dimension k. C'is the polytope
complex. Final optimisations are given in Figure 40.

CHAPTER 5. THE SELECTIVE STABBING PROBLEM 110

[=]. One can visualise this set I, as the face lattice of the polytope resulting from a cross section
through the complex by the given hyperplane.

Using £ (computed per polytope), it is possible to sunder each polytope into two disjoint face
lattices. Firstly, the faces marked positive are removed and inserted in a new face lattice. Secondly,
acloned version of the E set is attached to the new face lattice. In the representation of Bajaj and
Pascucci, the set E is shared. The redundancy introduced by our approach is exactly the cost of
storing those faces in the E' set twice. It should be noted though, that the connectivity information
is not duplicated, as the set E is attached only to the negative complex, while the set E” is attached
only to the positive complex. We illustrate this principle in Figure 35. Note that when we refer
to face lattice “unions” we mean the union of both the set of faces and the reconstitution of the
connectivity.

Removing a Polytope from a Complex

Bajg and Pascucci do not describe an agorithm that will allow a polytope to be removed from
the complex. Using the original representation of the complex, we have derived a smple recursive
polytope subtraction algorithm. See Figure 36. A similar algorithm for our symbolically digoint
representation is presented in Figure 37. The difference, is that when using the disjoint approach,
connectivity with other polytopes does not have be checked before deletion.

5.3.2 Optimising the CSG process

In order to achieve the most efficient CSG, we attempt to minimise the number of split operations
performed on the complex. We begin by considering a naive algorithm for solving the selective
stabbing problem. We use the notion of a hyperplane arrangement in line space as away of deriving
our algorithm from first principles. This has two purposes: Firstly, we show how optimisations
can be applied successively, until our algorithm is found. Using some of the concepts resulting
from the arrangement derivation below, an agorithm that is more efficient than the one presented
in Section 5.3.1 is found. Secondly, the consideration of our algorithm in this context makes the
qualities that differentiate it from global visibility algorithms [DDP96, Pel93] explicit.

By inserting the hyperplanes of the stabbing polytope, aong with the hyperplanes defined by
the Plicker duals of all occluder edges into a 5D arrangement, all isotopy classes are enumerated.
What remains, is to inspect each isotopy class (5D faces of the arrangement).

If one such class corresponds to a set of stab-misslines, then the result of Question 1 (see Page

CHAPTER 5. THE SELECTIVE STABBING PROBLEM 111

+

€2~ et & Ca=

Vi V4= V5=

(b)

(d)

Figure 35: Modified triangle splitting. (a) A triangle split by a hyperplane (see also Figure 8). (b) The face
lattice of the split triangle depicted in (a). (c) A reordering of (b) to show the shared faces E' (highlighted set).
(d) The separating of E to generate a disjoint face lattice. Note that the face representations (e, vy, vs) are
duplicated, but that the connectivity (the six edges crossing the boundary of E in (c)) remains the same (the
six (3+3) edges leaving the two regionsin (d)).

procedure RemovePolytope(P)
for each child k of P do
if NumParents(k) = 1 then
RemovePolytope(&)
next k
delete(P)

Figure 36: Original Approach — Polytope Removal. An agorithm for removing a polytope from the original
polytope complex representation of Bajg and Pascucci.

CHAPTER 5. THE SELECTIVE STABBING PROBLEM 112

procedure RemovePolytope(P)
for each child k of P do
RemovePolytope(&)
next k
delete(P)

Figure 37: Modified Approach— Polytope Removal. An algorithm for removing a polytope using our repre-
sentation.

91) istrue, otherwise it isfalse. Question 2 (see chapter start) may be answered by reporting a list
of all isotopy classes corresponding to stab-miss lines®. Care must be taken not to include those 5D
faces of the arrangement that do not correspond to isotopy classes of real lines (i.e., those faces of
the arrangement that do not intersect the Pliicker hypersurface).

Asit stands, this algorithm runsin O(n°) time, since this is the complexity for constructing a
5D arrangement [EOS86, Ede87]. By constructing only those parts of the arrangement in the zone
of the Pliicker hypersurface, this time may be reduced to O(n*logn) [APS93].

Thefirst optimisation isto compute only those isotopy classes that correspond to stabbing lines
of S. In adirect construction of an arrangement, determining this subset would be prohibitively
expensive. However, since the set of such isotopy classes can be computed explicitly (i.e., they
have the same intersection with the Plicker hypersurface as the stabbing polytope of Section 5.1),
we begin a priori with the single isotopy class of lines that stab all of S (to be refined later by the
inclusion of M).

If we consider the polygon in Figure 38ato be a visualisation of the 5D stabbing polytope, we
see how it can be embedded into an arrangement of its defining hyperplanes (Figure 38b).

In general, we do not have to compute the whole subset of the arrangement that falls within the
stabbing polytope. It is more efficient to construct and inspect progressively, in a hierarchical fash-
ion: let the total number of edgesin S and M ben. Let H be an ordered set of the dual hyperplanes
of the n edges in both S and M respectively. Let A* refer to the arrangement constructed from
the insertion of the first k& elements of H. By this definition, .A/°! will then partition line space into
those elements that stab S and those that do not (see Figure 38b). The sequence A%, A, ..., A"
defines a spatial hierarchy: for any 0 < i < n, the arrangement A*+! is always a refinement of the
arrangement A’. A cell c € A’ isaparent of acell d € A1 iff d C c.

8The reader should note that if a given isotopy class contains one stab-miss line, then all lines within the class will
also be stab-misslines.

CHAPTER 5. THE SELECTIVE STABBING PROBLEM 113

2
@

€Y (b)

Figure 38: Polytope in an Arrangement. (a) A polytope. (b) An arrangement embedding the polytope of (a).
Recall that lines are hyperplanesin 2D.

Should acell ¢ € A* correspond to an isotopy class (defined only by the first k£ edges) that
is blocked/occluded, then all descendants of ¢ in the hierarchy will also be blocked. Further in-
formation could be gained by continued refinement, although this information (e.g. knowledge of
additional occluders) is unnecessary for our application. In terms of implementation, the cells that
are determined to be blocked are removed or rather subtracted from the complex, and are thus no
longer represented explicitly.

To illustrate this last concept, we depict a stabbing polytope that has had an occluder subtracted
from it (in Figure 39a). Figure 39b shows the complex of this object, and Figure 39c shows the
arrangement in which it is embedded. Let us call the arrangement of Figure 38b, .A°. Then the
arrangement of Figure 39c is A”. It is unnecessary to compute the blue polytopes in Figure 39,
since they correspond to an aready blocked (subtracted) polytope in Figure 39c.

By removing all “blocked cells’ progressively, large branches of the hierarchy are pruned (i.e.,
refined isotopy classes). In most cases this provides greatly improved performance. The problem of
choosing agood ordering, in order so as to maximise performance is discussed in Chapter 6.

Further optimisation is still possible. The number of isotopy classes are sensitive to the number
of lines (onelineis extended from each edge). Accounting for the boundedness of the edges, allows
us to collapse many isotopy classesinto a considerably coarser, yet sufficiently refined superset.

Simply put, it is unnecessary to refine an isotopy class according to whether subsets of it lie on

CHAPTER 5. THE SELECTIVE STABBING PROBLEM 114

(d) (f)

Figure 39: Polyhedral Complex in an Arrangement. (a) A polyhedron. (b) A polyhedral complex represent-
ing the polyhedron in (@) as the union of convex polytopes. (c) An arrangement embedding the polyhedron
and complex of (a) and (b), respectively. (d) An object isto be subtracted. (€) Complex after the hyperplanes
of the object in (d) have been used for further refinement. The blue polytopes correspond to isotopy classes
that are occluded/blocked, but fall within aregion previously determined to be blocked. The green polytope
refines the stabbing polytope to define a newly occluded isotopy class. (f) The resulting polytope complex
(i.e., the subset of the arrangement that is yet unblocked).

one side or another of some edge of x, if it can be shown that the set of linesit represents cannot be
blocked by z. Thisisillustrated in Figure 41.

To achieve this, our occluder subtraction routine will split only those parts of the polytope
complex that lie on the boundary of the polyhedron to be subtracted O. When splitting the complex,
thisis a simple matter of removing those polytopes that lie completely in the “outside” half-space
of any of the hyperplanes defining O. We give a modified Step 1 and 2 in Figure 40. The key
concept isthat thissplitting algorithmis“aware” of the subtraction being performed, thus preventing
unnecessary refinement within the complex.

In summary, the algorithm begins with the construction of the stabbing polytope. Next, blocked
polyhedra are subtracted from the complex using our augmented polytope complex splitting algo-
rithm. These splits are invoked on a given polytope of the complex iff the polytope lies on the

CHAPTER 5. THE SELECTIVE STABBING PROBLEM 115

Step 1’ (Conservative intersection test)
L « all hyperplanes belonging to occluder polyhedron
L —L \ H
S—0
for each c € C do
if boundingSphere(¢) intersects H then
foreach ! € L do
splitC — true
if boundingSphere(¢) liesoutside [then
splitC — false
breakFromLoop([)
endif
next |
if splitC then
S—SUc
endif
endif
next c
Step 2’ (Accurate intersection test)
foreach s € S do
Classify al the vertices of s either or = with respect to H.
if all Vertices(s) =[—] or allVertices(s) =[+ | then
S—S\s
else
foreach ! € L do
Classify all the vertices of s either [+] or [— | with respect to I.

if all Vertices(s) =[] then

S—S\s
breakFromLoop([)
endif
next/
endif
nexts

Figure 40: Subtraction aware step 1 and 2. Thisis a modification of the algorithm presented in Figure 34.
This algorithm is aware that the split operation is part of a subtraction operation, and therefore avoids extra-
neous splitting. Thisincludes all optimisations.

boundary of the polyhedron to be subtracted. At any time, the only datathat is persistent in memory
isthe face lattices and vertices of the set of polytopes corresponding to unblocked lines space.

CHAPTER 5. THE SELECTIVE STABBING PROBLEM 116

(b)

Figure 41: Optimised Splitting. (a) The same subtraction is being performed, as per Figure 39d. However,
Py isnot split by eo, since Py lies entirely on the “outside” half-space of e; (the inside half-spaces of ey, e
and e3 intersect in the blue triangle). Similarly, P, lies wholly in the outside half-space of e, and therefore
Ps isnot split by e;. (b) A polyhedral complex representing the polyhedron in (a). Note that the structure of
the complex is much simpler than that in Figure 39f.

5.4 Conclusion

In this chapter, we have presented a solution to the selective stabbing algorithm. The solution
algorithm executes in two phases. First a stabbing polytope is built that represents al lines in the
stabbing set. Such solutions do exist, however, the case where the stabbing set consists of exactly
two polygons requires special treatment. We discover that the form of the polyhedron is that of
an extruded 4D polytope. We prove a theorem showing how the axis of extrusion can be derived
explicitly. Thisisthen used to build the stabbing polytope efficiently, without the usage of a less
efficient general vertex enumeration algorithm. The general form of the required bounds for a pair
of planes capping the polyhedron are also computed.

The second phase of the algorithm describes our 5D polyhedral constructive solid geometry
algorithm. This algorithm incrementally trims away the unoccluded line space from the stabbing
polytope. Should the whole stabbing polytope be trimmed away, no stab-miss lines can exist. Oth-
erwise, the remaining parts of the polytope can map directly to all the existing stab-miss lines. We
augment an existing polytope complex splitting algorithm to achieve this. The new version is sen-
sitive to those polytopes in the zone of they hyperplane. We also show how a subtraction operation
can be implemented efficiently using such a splitting algorithm.

Chapter 6

Exact Visibility Pre-Processing

“How many trees make up the forest? How many houses a city?...as
the German proverb goes, one cannot see the forest for the trees.
Forest and city are two things essentially deep, and depth is

fatally condemned to become a surfaceif it wantsto be visible.”
—Jose Ortegay Gasset, “The Forest”, Meditations on Quixote, pg. 59.

This chapter details our exact from-region visibility algorithm. This consists of two parts. The
first part is a visibility query engine, which queries exactly whether or not one polygon can see
another within a 3D scene. The query algorithm can be cast as a specialised selective stabbing
problem. We detail thisin Section 6.1.

Our visibility query algorithm is, in essence, a direct construction of a localised subset of the
visibility complex [DDP96]. It is more suited to queries, since the construction is local to the
pair of polygons in question, and is sensitive only to the smallest number of occluders necessary
for occlusion, as opposed to sensitivity in the number of visibility interrelationships between all
occluders.

We use the visibility query asameans of experimentally verifying the performance of the selec-
tive stabbing algorithm of Chapter 5. In particular, we present and evaluate heuristics for choosing
an efficient order of occluder/blocker subtraction.

The second part is the global framework. The goal of our framework is to utilise the visibility
query effectively, in order to compute from-region visibility efficiently. This is detailed in Sec-
tion 6.2. Our general approach isto prevent the unnecessary recomputation of visibility results. We
generate and use virtual occluders to disregard line sets already determined to be occluded. This
results in an output sensitive algorithm. We also use a two tiered spatial hierarchy for clustering

117

CHAPTER 6. EXACT VISIBILITY PRE-PROCESSING 118

occlusion queries. The computations used in the parent nodes (bounding boxes) are reused when
evaluating the children (primitives).

Another objective of the framework is to perform only those computations necessary to deter-
mine exact from-region visibility. Integrating the exact query algorithm into aframework where the
visibility of a majority of polygons can be determined trivialy, allows processing time to be spent
only on those queries that require an exact algorithm to be evaluated accurately.

Results are given which demonstrate the effectiveness of our approach. Thisincludes an empir-
ical analysis of the scalability of the whole system and the visibility query in context.

6.1 The Visibility Query

In this section we describe our exact visibility engine, based on an implementation of the selective
stabbing solution presented in Chapter 5. We begin by casting the visibility problem as a selective
stabbing problem. We then investigate the most important performance factor: choosing a good
order for occluder subtraction. Finally, we discuss the visibility algorithm in the context of other
analytic visibility techniques.

6.1.1 Casting Visibility as Selective Stabbing
Visibility can be defined formally in terms of line segments. Namely:

Definition 6.1 A set of points Y is said to be visible from a set of points X if there exists a closed
line segment s whose two end points liein X and Y respectively. Additionally, s cannot intersect
another set M, where M isthe set of points representing all occluding geometry.

Definition 6.2 We refer to a segment s with the properties described in Definition 6.1 as a sight
segment.

We wish to cast the visibility problem as a selective stabbing problem, where the stab set S is
comprised of two query polygons, and the miss set M, consists of al occluding geometry.

A selective stabbing scenario cast thisway, is sufficient to prove or disprove visibility, if and only
if, the supporting line of any potential sight segment only intersects M if the sight segment does.
Indeed, if this condition ismet, it is clear that there is a bijection between the set of sight segments
and the set of stab-miss lines. Examples illustrating this principle may be found in Figure 42.

It is always possible to derive a set M’ from M which guarantees that the above condition is
met. The approach which involves the smallest change from M, isto clip M to the union of two

CHAPTER 6. EXACT VISIBILITY PRE-PROCESSING 119

my ms mi m
2 2
P! P!
ms S me S mo:
Ms
@ (b)

Figure 42: Casting to Visihility — Problem. The above figures show a plan view of atypical query scenario.
(a) A scene where at least one sight line (s) does exist between the query polygons (p; and ps). m; to mg
are occluders. Note that as a selective stabbing problem, no stab-miss line exists. (b) A similar scene to that
of (a). However, every sight line between p, and p- is supported by a stab-missline.

anti-penumbra: one cast by the first stabbing polygon through the second, and the other cast by the
second stabbing polygon through the first. Thisisillustrated in Figure 43a.

p2
« .

p1

al C

@ (b)

Figure 43: Casting to Visibility — Solution. The above figures show a plan view of atypical query scenario.
(8 C depicts the convex hull of the query polygons. a; represents the anti-penumbra cast through p, by
po. Similarly, ao represents the anti-penumbra cast through ps by p;. All occluder geometry within the
regions a; and as must be removed in order to ensure sight segment to stab-miss line bijectivity. (b) A faster
conservative approach. All geometry on the one side of the planes embedding p; and p, are clipped (all
geometry in regions a; and az). The geometry clipped is on the side which does not contain the convex hull
C.

CHAPTER 6. EXACT VISIBILITY PRE-PROCESSING 120

There are, however, more conservative technigues which also allow for this condition to be met.
Let C bethe convex hull of S. Itissufficient to clip al polygons against two planes: the first plane
being the plane embedding the first polygon of .S, the second being the plane embedding the second
polygon of S. The parts of M discarded, are those on the opposite sides of the planefrom C'. Thisis
illustrated in Figure 43b. In genera though, it is advantageous to remove those parts of M which do
not intersect C', since they cannot affect the existence of sight segments. Thisissimply an efficiency
consideration.

In Chapter 5, two guestions were proposed and solved, one being the existence of a stabbing
line, and the other being the computation of the set of stabbing lines. In the context of visibility, the
guestion of existence is equivalent to the question of mutual visibility. Similarly, the computation
of the set of stab-miss linesis equivalent to determining those parts of one polygon which fall into
the anti-penumbra cast by another.

One clear extension of this technique is to that of cell-portal rendering. Where Teller [Tel92b]
compute the anti-penumbra through a set of portals, our technique allows for the inclusion of oc-
cluders which block the anti-penumbra.

6.1.2 Selecting a Good Order of Subtraction

The focus of Chapter 5 is on solving the selective stabbing problem. Choosing a good order for
subtracting occluders (elements of the miss set) is critical for good performance in practice.

The most important consideration, is that of early termination. When subtracting dual occluder
polyhedrafrom the Plicker polytope (see Section 5.3.1), it is sufficient to terminate early when oc-
clusion has been established. Thisis equivalent to terminating once the remaining polytope complex
(which at all times represents the unoccluded line space) is empty?.

During the subtraction process we have noted the following: initially, the number of polytopes
in the complex typically grows as a function of the number of subtractions. This is due to the
split operations performed during subtraction. Next, aturning point is reached, and the number of
polytopes then begin to decrease rapidly. Thisis a direct result of the increase of the granularity
of the complex: the finer it is subdivided, the more likely it is that more polytope elements will be
removed during each subtraction.

1Those complex elements that do not intersect he Pliicker hypersurface are removed implicity during the subtraction
process

CHAPTER 6. EXACT VISIBILITY PRE-PROCESSING 121

Naive Ordering

Our first choice of order was a naive ordering. We simply subtracted the occluders in the order in
which they occurred in the mesh. We have found this to be a pathological case. Adjacent mesh
elements are typically spatialy coherent. Since spatial coherence trandates to line space coher-
ence?, successive subtractions are performed in the same spatial locality (in Pliicker space) as their
recent predecessors. This generates subdivision upon subdivision, resulting in a near linear initial
growth in the number of elements in the complex as afunction of the number of subtractions. This
linear growth in the number of complex elements results in a near quadratic run-time, since each
successive subtraction is tested or applied to a growing number of polytopes that cannot be trivially
rejected due to the Pliicker space coherence.

We have developed severa heuristics that improve greatly on this naive subtraction order (i.e.,
they result in earlier termination). These include prioritising by occluder size (weighted by angle),
randomising the subtraction order, as well as anovel line space sampling methodology. All of these
heuristics avoid the pathological case described above, since there is little or no coupling of the
ordering to spatial coherence. In Section 6.3 we see that slightly super-linear growth is achievable.

Area-angle Measure

The solid anglerefersto the projected area (in steradians) of an object onto aunit sphere surrounding
some reference point. This area can be approximated (see Coorg and Teller [CT97]) as a function
of distance, area and angle. The situation is somewhat different in the context of avisibility query,
since we are dealing with visibility from aregion, not asingle point. Also, the situation is different
from typical from-region visibility [KCOQO0], since we are dealing with visibility from a bounded
region, to a bounded region. Koltun and Cohen-Or [KCOO0Q] use an umbra-volume approximation
as a heuristic. Ideally, we should be able to determine the area of the umbra on one polygon cast
by a source polygon. We have used the following metric (see Figure 44 for an explanation of the

terms): .
(r1 —re).m

(40)
[lr1 = 72|

AreaAngle = a

2The et of lines intersecting one triangle, will typically lie next to the set of lines of an adjacent triangle sharing an
edge. Since the Pliicker mapping is isomorphic (and in particular, continuous), this is reflected as spatial coherence in
Plucker space.

CHAPTER 6. EXACT VISIBILITY PRE-PROCESSING 122

Figure 44: Area-angle Metric. A plan view. The area of the polygon is referred to as a, the reference points
r1 and ro are chosen to be the respective centroids of p; and p. 77 isthe normal of the polygon o.

Effective Occluders

Undoubtedly, however, the most effective technique we have implemented is a direct sampling of
line-space. This does not consider each occluder independently, but actually accounts for potential
occluder fusion. The algorithm proceeds as follows: First, rays are cast between the two query
polygons®. Next, the polygon intersecting the most raysis subtracted. Next, the polygon intersecting
the most rays excluding those rays already accounted for is subtracted. Thislast step continues until
either occlusion is established, or al the rays are accounted for. In the latter case, we relegate the
choice of priority among the remaining polygons to another heuristic. We illustrate this ordering by
the example in Figure 45.

We define an effective occluder to be a member of the set containing the minimum number of
occluders required to block the total occluded line space. The ordering defined by the direct line
sampling defines both an order of subtraction, as well as a set of occluders that approximates this
smallest possible set of occluders.

3We cast two rays for every triangle within the convex hull of the query polygons. We consider the determination of
a better casting strategy to be an area of future research.

CHAPTER 6. EXACT VISIBILITY PRE-PROCESSING 123

[Step | o1 (02 [03 | 04|
149 8]7
2 [0 - |13
3 0] -|0]-

Figure 45: Order of Subtraction. A plan view of atypica scenario is shown. 12 segments are generated
between the query polygon pair p; and po. The table illustrates the number of segment samples incident on
the occluders o; to o4. The polygon with the highest priority is o,. Since the sampling (9 hits) indicates
probabilistically that it blocks the largest volume of line space. Next in the ordering is o4, Since the sampling
indicates that it blocks the largest volume of remaining/unoccluded line space (3 hits, since 4 of the origina
7 hits also intersect 02). The remaining occluders o; and o3 have no remaining hits, since all the incident
samples are accounted for by o, and o4. The ordering of these two defaults to an alternative mechanism (e.g.
an area-angle metric).

The number of effective occluders is at most as large as the set of visible polygons within the
query shaft. Using this approach we observe that since each effective occluder blocks at least one
ray that is unblocked by another effective occluder, that every subtraction will reduce the volume of
the polytope complex to some degree.

It should be noted that we do not perform standard ray-casting, since our priority isnot based on
a“first hit” result. Our technique would be more aptly named segment intersection testing. Our ray
casting solution is a greedy algorithm, and does not guarantee that the computed set of occluders
is the smallest. However, most important wasteful cases are avoided. These are catalogued in
Figure 46.

A very important side effect of thisapproachisthat it seamlesdy integrates an efficient meansto
determine trivial acceptance: if any ray should not intersect any occluder, then the query polygons
can be considered to be mutually visible. A vast magjority of visible polygons are found in this way.
Thismakesit far more likely that those queries on which the sel ective stabbing algorithm is actually

CHAPTER 6. EXACT VISIBILITY PRE-PROCESSING 124

executed, are occluded. Thisfurther establishesthe performance benefit of having aquery algorithm
that has a run time complexity that is sensitive to the number of effective occluders.

Q05

o1l 0; 07

Q1
\ 02
Os
03
02 Q4
o “04
Os
Os

@ (b)

02

(©)

Figure 46: Selection of Cases. We assume that many segments have been cast. (a) A solid angle based
priority would iterate through occluders o7 to o;, and then establish occlusion only when osg is subtracted.
Our line space sampling approach will immediately isolate o; and og and subtract them to establish occlusion.
(b) If afirst-hit ray cast was performed, the segments o, through o5 would be the first subtracted. The line
space sampling would immediately prioritise og. () An example of sub-optimality. o3 is prioritised first,
however only the combination of o, and o, is necessary to establish occlusion.

6.1.3 The Query Algorithm in Context

Both the visibility complex [DDP96] and skeleton [DDP97b] have been designed as tools for per-
forming exact visibility queries rapidly between scene objects, as opposed to queries between cells

CHAPTER 6. EXACT VISIBILITY PRE-PROCESSING 125

and aobjects. Furthermore, these approaches attempt to extract not just the qualitative states of visi-
ble or invisible, but aso an exact description of which parts of each primitive are visible. Their goa
isto use visihility primarily for accurate illumination simulations.

In contrast, our goa is from-region qualitative per-polygon visibility. Our visibility query al-
gorithm is a direct construction of alocalised subset of the visibility complex. It is more suited to
queries, since the construction is local to the pair of polygons in question, and is sensitive only to
the smallest number of occluders necessary for occlusion, as opposed to sensitivity in the number of
visibility interrelationships between al occluders. Furthermore, at any point of execution, only the
parts of the complex representing the currently unblocked set of lines between the query polygons
isresident in memory.

Durand et al. [DDP97b] present an on-demand construction of a subset of the visibility skeleton.
The construction of this subset involves an explicit combinatorial iteration through the various ele-
ments of the scene geometry, in order to construct the lower dimensional elements of the complex.
Just as for the visibility complex, this computes more than is required for our purposes, namely
the visibility relationships between all geometry (i.e., the query polygons and all occluders). The
skeleton construction algorithm can a so be adapted to terminate early when an object isfound to be
visible. Aswe have shown, thisisgenerally unlikely* for the scenesin which we are most interested.
The lack of topological information in the skeleton (due to the omission of the higher dimensional
elements) makes it impossible to gauge whether an object is invisible during construction. Invisi-
bility may only be ascertained when the whole skeleton (relative to the query polygons) has been
constructed.

As for the visibility complex, the Plicker hyper-plane arrangement [Pel90] is a superstructure
of the structure computed by our query algorithm. The respective combinatorial complexities of
this hyper-plane arrangement and the visibility-complex are O(n* log n) and O(n*). Two lines are
defined to be in qualitatively distinct (isotopy) regionsif they are both passed by the directed lines
extended from the scene polygon edges in the same way. The Pliicker hyper-plane arrangement
encodes all qualitatively distinct regions of line space (the visibility-complex accounts for line seg-
ments). A necessary implication of this, isthat if two lines fal in the same isotopy class, then they
must stab the same polygons. Theoretically, this structure can therefore be used to perform a query
by searching for an isotopy class that meets our stab-miss criteria.

To put our algorithm into context, we only compute the subset of these qualitatively distinct
regions relating to those lines intersecting our query pair of polygons. Thisis explicit in our initial

“Primarily due to the numerous test rays cast to each polygon beforehand.

CHAPTER 6. EXACT VISIBILITY PRE-PROCESSING 126

polytope construction. For our purposes it is also irrelevant how a region of line space is blocked
(i.e., by which occluders). We are only interested in whether it is blocked. By subtracting blocked
regions, rather than enumerating them, we avoid the computation and internal representation of
further refinements.

The first advantage of our algorithm is that it terminates early in the most common case. Sec-
ondly, for all but the most contrived of scenes, the combinatorial complexity of the information that
we are interested in is very much smaller than that of global visibility techniques. Our algorithm
exploits this fact, and is sensitive to this lower complexity. Experimentally, Durand noted that the
average time complexity for the construction of the visibility skeleton appears to be O(n?*). Since
we compute significantly lessinformation, we expect the average-case time complexity of the query
agorithm to be somewhat lower. We have demonstrated this experimentally (see Section 6.3).

6.2 Exact Visibility from a 3D Region

The objective of our framework is to group polygons together effectively, so that clusters of poly-
gons may be classified using the fewest possible queries. We also wish to take advantage of previ-
ously computed results.

Our approach is most similar to that of Koltun et al. [KCCOO01]. Once again, their solution
is for the much simpler Z%D problem. Unlike Koltun et al. we do not make use of a multi-tiered
hierarchy since the combinatorial complexity of line space in 3D is such that efficiency is gained
by querying many small objects, rather than a single large object. Our framework is also different
in that it takes advantage of previously computed results. We believe this last technique would aso
further enhance the algorithm of Koltun et al.

6.2.1 Querying Clusters of Geometry

There are many ways to order a scene hierarchically. We take advantage of natural scene coherence
and use a simple two level hierarchy, where the scene consists of a set of objects, which in turn
consist of individual polygons. If objects are very large (based on a volume and polygon count
threshold), we split them into separate objects.

From a source view cell (an element of a partitioned 3-dimensional camera space), we first
guery the bounding box of an object. If the bounding box isinvisible, then clearly, al its contained
geometry is also invisible. If, however, the box is determined to be visible, then the geometry

CHAPTER 6. EXACT VISIBILITY PRE-PROCESSING 127

contained may be considered potentially visible from the source cell. The true visibility status of
each child may then be queried individually (from each surface of the source cell).

The source cell to bounding box query is effectively the combination of the queries between all
pairs of faces of the two boxes. There are 36 possible pairings, however, back-face removal will
quickly reject most of these as mutually invisible. If all side to side queries return “invisible”, then
the object bounding box isinvisible. If one such pairing returns “visible”, then the object bounding
box is considered visible. It is sufficient to terminate the pair querying early if visibility between
any one pair is shown. However, in the next section we will see the advantage of completing this

query.

6.2.2 Reuse of Parent Line-space

If the bounding box of atarget object isvisible, and we allow the completion of all sideto side query
pairs, we effectively have a representation of all un-obstructed line segments originating from the
source cell and terminating on the target box. Thismay be visualised asasimilar structureto Teller's
anti-penumbra [Tel92b]°.

The unobstructed line segments can be extended through the bounding box to form a set of lines.
Then, anecessary but not sufficient test of visibility for objects within the bounding box isthat they
intersect (at least partially) this set of lines.

This allows afast, conservative, but relatively accurate rejection test to be applied®: Each poly-
gon within the bounding box istransformed to its hyper-plane representation in the Plicker coordinate
system, and if each stabbing polytope of the previously computed complex (for the bounding box)
does not intersect the polyhedron defined by this transformation, then the object is necessarily invis-
ible. This can be computed efficiently, but conservatively, by testing to see whether every stabbing
polytope falls exterior to at least one half-space defining the polyhedron. Any objects which pass
this test will have to be queried individualy.

6.2.3 Virtual Occluders

During the process of computing the visibility status of bounding boxes, opportunities to extract
“virtual occluders’ arise. Ascoined by Koltun et al. [KCCOO0Q], virtua occluders are occluders that
are not part of the geometry, but still represent a set of blocked lines. We observe that if the side

*More precisely, it is the subset of the union between the anti-umbra and anti-penumbra that illuminates only the
target polygon
5This test is similar to the tube interference test used by Teller and Hanrahan [TH934] for blocker maintenance.

CHAPTER 6. EXACT VISIBILITY PRE-PROCESSING 128

of abounding box is determined to be invisible from a source view cell, it may then be used as an
occluder for any object behind it. In fact, if the whole bounding box of an object isinvisible, then
none of the polygon geometry within need be incorporated as occluders, since the bounding box is
sufficient. In truth, the bounding box is more than sufficient, since a bounding box occludes at |east
as large a volume of line-space as the geometry it contains.

By processing the scene objects in an approximate front to back order, it is possible to fully
exploit this feature. This, in conjunction with the sensitivity of the query algorithm on only the
number of effective occluders, is key to our algorithm’s output sensitive nature. Geometry behind
the nearest occluded “layer” (with a similar connotation to that of Klosowski and Silva [KS0Q]),
is quickly rejected since the relatively large size of the virtual occluders imply that only very few
occluders are necessary to confirm invisibility. A screen-shot of our algorithm output, along with
various visualisations illustrating this process, is depicted in Figure 47.

Figure 47: Virtual Occluders. Visihility is computed from the cuboid highlighted in yellow. Green polygons
arevisible, red ones are invisible. Many of the red polygons are surrounded by blue bounding boxes. These
are those boxes that were queried and found to be invisible. Those bounding boxes which aretrivially visible
(found viaray casting), are not displayed. The red bounding boxes are those determined to be occluded by
the blue bounding boxes (virtual occluders).

CHAPTER 6. EXACT VISIBILITY PRE-PROCESSING 129

6.2.4 The Framework in Context

Sincethe publication of the algorithm presented here [NBG02], one other technique by Bittner [Bit02]
has been published that computes exact from-region visibility (see Section 2.5.8).

An advantage of the approach taken by Bittner, is that the algorithm computes exactly those
fragments of each visible polygon that are visible. This can be applied to the generation of disconti-
nuity meshes. The cost of thisflexibility isthat it isless scalable than our approach. Our experiments
successfully use models that are significantly’ more complex than those used by Bittner.

One reason for this is the uniform treatment of polygons by Bittner. As a visible polygon is
added to the occlusion tree, itsdual polytopeistested against thetree, splitting nodesasit isinserted.
This process is computationally expensive (see Section 2.5.8). Our framework trivially accepts a
vast mgjority of visible polygons due to our line space sampling heuristic (see Section 6.1.2). This
allows computational effort to be concentrated on those objects that are not trivially visible. This,
of course, precludes the use of our algorithm for determining the visible fragments of objects.

A second benefit of our approach, is that we use effective occluders (see Section 6.1.2) to de-
termine the occlusion of objects, whereas Bittner always uses the (larger, and thus more inefficient)
set of visible polygons as occluders. A similar issue, is that during our front to back traversal of
the scene, our technique eventually integrates large virtual occluders (see Section 6.2.3) into the
effective set, aggregating the effect of several smaller polygon occluders efficiently. In contrast, the
occlusion tree requires that all objects are tested against the visible polygon set. This is somewhat
ameliorated by the persistency of the occluder tree, since splitting operations are only required on
insertion, where we perform splitting for every non-trivial query. Polytope-hyperplane sidedness
tests are till required.

One must take into consideration that a direct theoretical comparison should not be made, be-
tween our query algorithm and Bittner’s visibility algorithm since the query algorithm existsin a
visibility framework where it may be executed many times per polygonal region, whereas Bittner's
algorithm is executed once per directional stratum, per polygonal region, and returnsalist of visible
polygons for that stratum. It is of key importance to realise that non-trivial visibility queries are
executed very selectively, and that when they are executed, they proceed very rapidly®.

To contrast the difference between our query agorithm, and Bittner’s full visibility algorithm,
consider the following: Our algorithm incrementally refines the set of unoccluded lines. Thisis

"Our scenes are two orders of magnitude larger, and are more likely to generate many visibility events. Also, the
average visible set size is approximately two orders of magnitude larger.

8We will show experimentally, that the query is only slightly super-linearly dependent on the number of effective
occluders.

CHAPTER 6. EXACT VISIBILITY PRE-PROCESSING 130

advantageous, since at any one time, only a representation of the unoccluded line set isresident in
memory. Bittner incrementally maintains both the unoccluded line set and the currently occluded
line set. For the latter, aleaf node exists for every connected set of lines that terminate at (or “see”)
the same polygon. Asnoted by Bittner, the algorithm execution time may be aslargeas O(n* log n),
and the tree size is bounded above by O(n®) (see Section 2.5.8). This leads to heavy computational
and memory requirements. The memory requirements are managed by subdividing the set of lines
leaving the source region into directional strata.

Effectively, where Bittner’s algorithm is coupled to the combinatorial complexity of visibility
events in line space, our algorithm is coupled to the complexity of the set of lines representing the
gaps though which a target polygon may be seen from aregion. In most cases these gaps are few,
and tend to be simple®.

For those cases where large gaps do appear, the target polygon is rapidly determined to be
visible by ray shooting. It is possible to construct a scenario where a large polygon is visible only
through many small holes. This type of sceneis rare, but not necessarily contrived. E.g., a forest
scene. Such a scene also represents a bad case for Bittner's occlusion tree algorithm, since al the
gaps have to represented, along with all the possible interactions of the visible polygons with each
other. We have, however, developed a technique that allows for fast and accurate evaluations for
even these cases (see Section 7.1.3).

6.3 Results and Discussion

We have implemented the exact visibility query algorithm of Section 6.1.1 and integrated it into the
framework proposed in Section 6.2. Our implementation has been tested on two different represen-
tative scenes.

Firstly, we tested the algorithm on a town scene depicting the geometry of a small 16th century
town. The scene consists of 1.33 million triangles and includes several highly detailed component
objects which are visible through doors and windows. This sceneis fully 3-dimensional in nature'©,
Our second scene is the forest scene used by Durand [Dur99]. This scene consists of 1.45 million
triangles, organised into 1450 trees each with 1000 triangles. This represents a much more difficult
scene to cull. In terms of the algorithm presented here, it is an extreme case, since occlusion
only occurs as the aggregate of a large number of triangles and consequently subtractions on the

®Requiring only one polytope for representation.
101t has a high vertical complexity.

CHAPTER 6. EXACT VISIBILITY PRE-PROCESSING 131

Figure 48: Algorithm results. The top image shows a view of our town scene, while the bottom shows a
view of the forest. In both images, the yellow block corresponds to a view-cell. The geometry visible from
the view cell isrendered in green, while occluded geometry isrendered in red.

CHAPTER 6. EXACT VISIBILITY PRE-PROCESSING 132

Plicker dual polytope. See Figure 48 for screen-shots of these scenes showing the output of our
implementation.

For the town scene we choose a uniform subdivision of cells. The base grid is a 32x32 partition
of the base of the bounding box, and we consider two such levels, for a total of 2048 cells. This
selection of cells should cover the camera view-space used in any reasonable walk-through applica-
tion. 16384 such cells would fully partition the scene bounding box. For the forest scene, we apply
a20x20 partition for compatibility with Durand.

We executed the tests on a dual Pentium 4 1.7Ghz with 1.2GB RAM, and solved for distinct
cellsin parallel. For both scenes we have culled and timed the visibility of a random selection of
100 cells. These timings on a per-cell basis are presented in Table 9.

| Scene | Time/Cell | Culling | Full solution |

Town | 2min33sec | 99.45% | 3 days 15hrs
Forest | 10min 30sec | 99.12% | 2 days 22hrs

Table 9: Experimental result summary.

To solve for the whole town scene adequately, would require 3 days and 15 hours on our PC.
Similarly, the forest scene, would take 2 days and 22 hours. Such regquirements are high by the
standards of most existing approximate or conservative algorithms, but the pre-process is a once-
only cost, and is more than offset by the advantages of our approach. Note the large degree of culling
achieved (Table 9). We note that our technique determined that the extended projections algorithm
of Durand [Dur99, DDTPOQ] overestimated the average visibility set by afactor of approximately
28.4.

When only a single workstation is available for pre-processing, this algorithm can be used as a
final and permanent visibility solution applied after a large model has been fully generated, as an
accurate solution for smaller models, or asthe only possible acceptable solution for difficult models.

We advocate the use of this algorithm on machine clusters, which are often readily available. It
is easy to parallelise our technique, since each cell can be solved independently. The computationis
therefore very loosely coupled, making it suitable even for informal clusters with alow bandwidth
infrastructure.

Scalability of visibility pre-processing algorithmsis of crucial importance. The run-time of our
agorithm isdependent on the particular scenein terms of the number of visibility queries performed,
and the time taken to solve these queries.

CHAPTER 6. EXACT VISIBILITY PRE-PROCESSING 133

The visibility query algorithm quickly rejects occluders which fall outside of the space of lines
between the query polygons. During line space subtraction, it also quickly rejects occluders which
have aready been accounted for. Hence there is little correlation between the number of polygons
in the scene (or shaft), and the time complexity of the query algorithm. In order to quantify time
complexity, we measured the time taken by the algorithm as a function of our approximation to the
number of effective occluders (see Section 6.1.2).

We time approximately 48000 queries, running on a single processor. For each of these we
count the number of effective occluders m, and compute the average time taken to query this many
effective occluders. We use a least-squares fit, and find the growth to be in the order of O(m!-1%).
Thisisdepicted in Figure 49a. To increase the confidence of our fit, we exclude timings correspond-
ing to fewer than 5 samples. The data resulting from this noise reduction is plotted in Figure 49b.
We note that this excludes most of the larger queries, since they are infrequent. We further note a
distinct inflection where the number of effective occluders is 30. Further investigation has shown
this to be caused by our polytope complex becoming larger than the L2 cache of our test machine.
This behaviour is reproduced in both the town and the forest scene. Fitting two curves, one from 0
to 30, and one from 31 to 57, we observe the order to be O(m!1%) and O(m), respectively. Given
our justification for anticipating such a result (see Section 6.1.3) and the low variance, we do not
expect this complexity to vary significantly with any realistic scenes.

To estimate the global scalahility of our approach, we consider first the complexity of a naive
solution, where visibility is computed for a single cell by simply querying every single polygon.
This would require n queries. At most, each query can be given n — 1 polygons as input, and
find each of these to be effective occluders. This gives a computation cost of O(n?!5). For area
scene, n— 1 effective occludersishighly unlikely. For our forest and town scenes, we have found the
maximum number of effective occludersto be 472 and 250 respectively, whereasthe average number
of effective occluders are respectively 3.6 and 1.7 per query (recall that large virtual occluders are
extracted).

If we let m be the maximum number of effective occludersrequired in any query for aparticular
scene, then we can expect a complexity of O(nm!19), wherein practice, m << n. This agorithm
isalready scalable but by incorporating our general framework, the number of queries can typically
be greatly reduced (approx. 55000 queries per cell for the forest scene and approx. 42900 queries
per cell for the town scene). Furthermore, m is an upper bound. We cannot give an exact depiction
of our algorithm’s average case performance, since this would be a complex function of geometric
distribution, cell configuration and scene size. Such a statistical analysisis beyond the scope of this

CHAPTER 6. EXACT VISIBILITY PRE-PROCESSING 134

30000 1000
— Sample Data

- - - Fitted curve

— Sample Data

- - - Fitted Curve X
750
500 /\

15000 H N TN
7500 250 R

22500

Time in ms
Time in ms

0
0
0 125 250 375 500 0 15 30 45 60
Effective Occluders # Effective Occluders
€Y (b)

Figure 49:
Time vs. Effective occluders. (a) The average time for queries consisting of varying numbers of
effective occluders. The fitting curve shows growth of the order O(m!-!5). The average distance
from the fitting curve to the sample data is 1285(ms). (b) The same data set as for (a), however
those averages computed with lessthan 5 samples are excluded. A two curvefit is applied, showing
O(m!1) growth up to 30 and O(m) to 57. The average distance from the fitting curve to the
sample datais 38(ms).

dissertation. It is clear however, that the average order is bounded above by O(nm!1%), whichin
itself shows scalability.

The significant run-times of our experiments can be explained as a large constant factor in-
troduced due to the initia complexity of the exact query algorithm. Indeed, our initial polytope
typically consists of hundreds of faces.

Returning to the number of queries performed; for the forest scene, the output sensitivity of
our agorithm (see Section 6.2.3) results in approximately 97% of the pre-process computation time
being spent on the first, and therefore nearest, 8% of the scene. For general high depth compl exity
scenes, we can expect the dominant component of the run-time complexity to be afunction of what
isvisible. This shows the output sensitivity of our algorithm.

6.4 Conclusion

We have presented a tractable exact visibility query algorithm and have effectively integrated it
into a framework that allows for the efficient, output sensitive computation of accurate from-region
visibility.

CHAPTER 6. EXACT VISIBILITY PRE-PROCESSING 135

The query agorithm is implemented as a specia case of the selective stabbing problem we
presented and solved in Section 5.

Our solution to the visibility problem can be used to obtain the smallest possible set of visible
polygons (for the given partition), while making no sacrifice in image correctness. Thisis the first
general 3D solution that allows for both optimal run-time performance and correctness.

Since it is an exact solution, we can expect our solution to be slower than that of approxi-
mate/conservative solutions. Our tests confirm this. Fortunately, the algorithm is scalable, implying
that if the high constant cost of the algorithm is bypassed, either by simply accepting the run-time,
or through amortisation via a distributed solution, then an exact and practical solution to the from-
region visibility problem has been found.

Chapter 7

Conclusion

We have presented two from-region visibility culling algorithms. Existing techniquestry to achieve
optimal results for the three goals of preprocessing speed, run-time performance and image accu-
racy. We recognise that the achievement of all these goals is seldom required simultaneously, and
that a better overall solution may be found by taking this into consideration.

We present one algorithm that minimises preprocessing time and maximises run-time perfor-
mance. The cost is a potential 1oss of image accuracy.

A core component of this algorithm is an aggressive from-surface visibility algorithm. We have
developed heuristic error measures that guide an adaptive sampling process in a successful attempt
to minimise this error. Experiments show the resulting error to be negligible in practice. However,
no non-trivial upper bound is placed on the error.

The from-surface aggressive algorithm isintegrated into a sophisticated framework. The frame-
work effectively manages a sample cache, ensuring that only samplesthat will definitely be required
again are retained. The caching scheme alows for the progressive generation of cell partitions at
no additional computational cost. The algorithm is output sensitive and has only a logarithmic
dependence on the number of view cells.

This algorithm can be used while drafting models (where preprocessing speed is valued over ac-
curacy), or for the effective preprocessing of highly complex models (where run-time performance
and preprocessing speed are valued over accuracy). We demonstrate that we are able to process
very large, very complex scenes of up to 5 million polygons in less than 80 minutes on a standard
workstation, and achieve an average of 91.32% culling with very low error (0.338% on average).

We extend the aggressive algorithm to process 5D ray-space. The goal being a new method to

136

CHAPTER 7. CONCLUSION 137

accelerate ray shooting. Preliminary results show agreat reduction in the number of ray-trianglein-
tersections per ray cast (less than 2.5% that of anaive algorithm). The algorithm is comparable with
existing techniques. Unlike these other techniques, however, the traversal stage is very inexpensive.
With further optimisation, we believe that this approach may perform better than the current state
of the art.

Our second algorithm solves the long standing problem of discovering a tractable solution to
exact from-region visibility. The algorithm consists of a hovel polygon to polygon visibility query
algorithm that is integrated into a powerful framework.

The framework successfully avoids redundant computations by reusing previously computed
results whenever possible. Thisis achieved through the construction of large virtual occluders, and
the effective usage of the line space structures generated by prior queries. The query algorithm
uses a novel occluder order prioritisation algorithm to select an efficient order for the treatment of
occluders.

This algorithm maximises run-time performance and results in no image error. The cost is a
lengthy preprocess. Experiments have shown that this cost is due to alarge constant computational
factor, and that the algorithm is bounded above by O(nm!-1%), where m << n. This shows scala-
bility, however, the algorithm performs better in practice.

This algorithm is suited to computing optimal visibility for any model that has been finalised
(where run-time performance and image accuracy are valued over preprocessing time). Since the
per-region computations of the algorithm are independent, it may be distributed easily.

We test our algorithm using scenes of moderate to high depth complexity. We demonstrate that
our agorithm can solve for very complex scenes, as large as 1.45 million polygons in atime of 70
hours on a standard workstation. We are able to achieve as much as 99.12% culling. Thisis 28.4
times more effective than the conservative solution of Durand [Dur99, DDTPOO].

In the process of solving the exact visibility problem, we have also solved the theoretical prob-
lem of selective stabbing. This problem is a generalisation of both the stabbing problem and (with
minor modification) the exact from-region visibility query. Our solution is efficient, as evidenced
by the success of our exact visibility algorithm.

We have proved several novel mathematical results that facilitate our solution to selective stab-
bing. We determine that the dual form of the set of lines through two polygonsisafour dimensiona
polytope extruded along a particular direction in Plicker space. We provide a closed form solution
that evaluates both this polytope and this direction.

CHAPTER 7. CONCLUSION 138

We have also improved and augmented an existing multi-dimensional polyhedral complex split-
ting algorithm. We have improved performance, making the algorithm fully sensitive to the zone of
the splitting hyperplane. We have further augmented it so that it can be used as an efficient, context
aware, multi-dimensional polyhedral subtraction algorithm.

7.1 Future Work

An important milestone in visibility research has been reached by devel oping an exact from-region
visibility solution. In terms of preprocessing for static scenes, we believe the future liesin devel op-
ing faster exact visibility solutions, and the treatment of scenes with higher order primitives.

As afirst step, we expect agorithms to be developed that are essentially conservative or ag-
gressive variants of exact algorithms. The purpose being the reduction of preprocessing time costs.
Although this may be seen as a step back towards using suboptimal, multipurpose algorithms, the
novelty is that, given sufficient, but finite, time, the solution will become exact. No existing algo-
rithms support this: either suboptimal results are reported, or infinite time is required. The goal of
this flexibility isthat, given a particular time budget, the best possible solution is found.

7.1.1 Including From-point Acceleration Techniques

In our aggressive algorithm, point sample and area sample rendering contributes a major part of the
preprocess. Although we exploit occlusion datathat has already been computed, it is possibleto use
other rendering acceleration technique for further improvements'. We intend to use the occlusion
testing functionality of recent graphics cards to accelerate the rendering process and we expect this
to result in significant time savings.

7.1.2 5D Ray Space Partitioning

We believe that there are several ways in which the ray-space preprocessing can be improved. The
algorithm results are dependent on the particular spatial subdivision. An investigation into different
subdivision heuristics should result in far fewer ray-triangle intersection tests. In particular, we
believe that a ray-space subdivision that seeks to minimisie cell surface area while minimising the
subdivision depth, would be highly beneficial.

Your current implementation uses frustum culling only.

CHAPTER 7. CONCLUSION 139

7.1.3 Feedback in Selective Stabbing

We intend to explore the possibility of afeedback loop within our exact visibility query algorithm.
Instead of precomputing an ordering for occluder subtractions, we believe that considerable im-
provement may be achieved by using the current state of the complex to sample unoccluded line
space.

Theresult of this, isthat those occludersthat areto small to be classified as potentially necessary
effective occluders, will be found directly. In the case where the sampling reveals that no occluders
exist, visibility is established. Thisis particularly useful for scenes where the query polygons are
visible only through small gaps, since the query will terminate when the first gap is encountered
(i.e., asampleray will be generated through the gap, and visibility will be established).

We have demonstrated that our exact algorithm can handle such complex scenes. We believe,
however, that with the inclusion of this feedback process, we can still achieve a significant perfor-
mance increase.

Appendix A

Theorems

In this appendix we present a sel ection of theoremsfrom within thisthesis. Thetheoremsin this sec-

tion are either non-original, or trivial, and are presented purely for the convenience of the rigorous

reader. All proofsin this section are referred to in context within the dissertation.

Theorem A1 EP(A)UEP(B) C EP(AUB)
Given an arbitrary point z such that x € EP(A) U EP(B), we have:

by definition
=
or
=

=

r € EP(A) = Nwecen ViewwAor x € EP(B) =y eeen Vieww B
EP(AUB) = wecen Vieww (AU B)
T € Ny eccen Vieww A C iy eeen Vieww (AU B) = EP(AU B)
7 € Nwecen Vieww B © MNyyecey vieww (AU B) = EP(AU B).
z € EP(AUB).
EP(A)UEP(B) C EP(AU B).

(41)
(42)
(43)
(44)
(45)
(46)

To show that these two quantities are not necessarily equal we give a counter example in Fig-

ure 50b and Figure 50c.

Lemma A.1 Wedefine < &, >: R® x RS — R to be equivalent to Dz (i). Only axioms 1, 2 and
3 of the standard inner product axioms are satisfied. These axioms are;

Axiom 1 Linearity inthefirst variable. VZ, 7, 7 € RS, < 2+ ¢, 2 >=< T, 7> + <
Axiom 2 Linearity in the second variable. V&, 4,7 € RS, < &, ¢+ Z >=< &, § > +

<xT,zZ>.

zZ
T,

140

APPENDIX A. THEOREMS 141

(

a) b) ©)

|P

Figure 50: a) shows how the extended projections of occluders A and B can be fused to create a larger
extended occluder. b) shows the unconnected union of the extended projections of A and B onto the planes
P, and P, (in which the fusion of the extended projections is the empty set). Note that the size of the
extended projections (and hence the union of the extended projections) become smaller as the projection
planes progress farther from the cell. Finally, c) shows the much larger extended projection of the union of A
and B. Note that extended projection of the unions would grow as P progresses farther from the cell. Thisis
because the extended occluder is larger than the cell (if projected).

Axiom 3 Commutativity. VZ, 5 € RS, < 7, >=< , & >.
Axiom4 Vi e RS, < 2,7 >> 0.
Axiom5 VZ e RS, < 2,7 >=0iff. =0

Proof:
The first three axioms make use of the fact that these same axioms are true for the standard inner
product (.) of RS,

Axiom 1:
To + Yo 23 To z3 Yo Z3
1+ Y1 Z4 1 z4 Y1 24
T2 + 1 x 1 F1
cirgEzs=| BT AN T = P T el P P | =<z <iiz> @)
xr3 + Y3 20 xs3 20 Y3 20
T4 + Ya 21 T4 z21 Ya 21
5 + Ys 22 Ts 22 Ys Z2
Axiom 2:
Asfor axiom 1.
Axiom 3:
To Y3 z3 Yo Yo 3
T1 Ya T4 Y1 Y1 T4
T T T
<zgs>= == 2T | =<gzs (48)
X3 Yo Zo Y3 Y3 Zo
T4 Y1 1 Ya Y4 T1
Ts5 Y2 Z2 Ys Ys T2
Axiom 4:

Thisis clearly false, since every point which does not lie on the Pliicker hypersurface will serve as

APPENDIX A. THEOREMS

a counterexample.
Axiom 5:

142

Thisis cleraly false, since every point on the Pliicker hypersurface (indeed, every rea line) will

serve as a counter exampl e.

We also prove distribution:

Lemma A2 Givenv,y, < of,j >= a < T, >.

Proof:

We use the distributive property of the standard inner product (.) of RS.

(6% 1)
ar1
T2
axs3
(M)

A5

Zo
z1
z2
3
T4

x5

Lemma A.3 Using the previous derivation of 7, < 7, 7" >= 0.

Proof:

. dy

T — -

g

d
<FTF> = (=
v

=0

by — ay

ay

Qy

by —

Qy

b, —a,

A, —

b

Ay —

Cz

_az

Cz

Y3

(49)

(50)

(51)

(52)

Appendix B

Compression

Visibility preprocessing algorithms often generate a significant amount of data that needs to be
compressed. It is also often beneficial to compress data during the execution of the preprocess in
order to reduce the number of page faults, or even to prevent the possible overflow of address space.
Thisappendix coversthe compression techniques that we have used in our various implementations.

These techniques were devel oped at the beginning of the research presented in this dissertation
(i.e., in 1999). Independently, during this time van de Panne and Stewart[vdPS99] developed and
later published similar ideas. Where we devel oped two techniques that take advantage of two types
of visibility coherence, van de Panne and Stewart have presented an elegant and uniform solution
that exploits both types of coherence simultaneously.

B.1 Taking advantage of spatial coherence

L ossless techniques seek to locate coherence in order to achieve compression. A technique where
the differences between the visibility of a group of neighbouring cells and the similarities of the
group of cells are evaluated, is presented by Nadler et al. [NFLYCO99]. Similarity is evaluated
simply asthe intersection of the respective visibility sets, while the differences are exposed by those
elements that do not fall into the intersection.

The similarities are stored oncein aparent cell, while the differences are stored in the child cells.
The original visibility set for a cell can be reconstructed ssimply by taking the union of the cell’s
visibility set and the visibility set of its parent. The lossless technique we present is a generalisation
of this approach that is equivalent to the technique proposed by Nadler et al. in the worst case.

The coherence exploited here, is the property that nearby viewpoints, and hence nearby cells,

143

APPENDIX B. COMPRESSION 144

have atendency to see asimilar set of objects.

Viewpoint Coherence Compression Algorithm

Our agorithm worksin asimilar fashion to that of Nadler et al. [NFLY CO99]. Two differentiations
being that we do not limit the hierarchy to two levels and that we also take advantage of visibility
sets that are mostly similar with respect to the visibility of a particular polygon, rather than exactly
the same.

In asimilar fashion to the filter-bank approach used by wavelet compression, we associate an
average set with each parent cell and difference sets with that cells children: A difference set of
polygons is associated with each cell. These sets are constructed such that the difference sets from
aleaf cell to the root (through traversing the leaf cell ancestors) can be decoded to give the set of
visible polygons from the cell. The decompression is simple: We begin with the current cell being
that of the desired leaf cell. If an object index exists in the current cell’s parents set and its own
set, it is considered invisible, if an index does not exist in either set it isinvisible, and if an index
exists in only one of either sets, it is considered visible!. This process occurs recursively for each
ancestor of the leaf, the until the root node is reached. The current cell is promoted to its parent at
each iteration.

To build the difference sets we assume a bottom up approach. Given a set of adjacent leaf cells
(starting point), we let an average set be the set of polygons contained in at least half plus one? of
the leaf selected leaf cells. The difference set isthen cal culated as being the exclusive-or® of average
set and the visibility set.

It isthe sharing of datain the parent set that gives the compression. If apolygon isvisible from
most of the children it is stored only once in the parent. In the case where most, but not all of the
children sets contain a polygon, the polygon is inserted into the parent set as visible, but it is also
inserted into the child set. Thisindicates that the child differs from the parent set by that polygon.

As an example, consider the case where a polygon is visible from seven out of eight child cells
of a parent cell. Since seven is greater than half the number of sets plus one (four), the polygon is
stored in the parent set. To represent that it isnot in one child set, that child set will aso contain the
polygon. The presence of a polygon in a child set represents its difference from its parent set. An
exampleis shown in Figure 51.

Thisis an exclusive-or relation.
2The “one” accounts for the storage of the polygon in the parent list.
3Since XOR isits own inverse.

APPENDIX B. COMPRESSION 145

The algorithm often makes use of atuple representation of visibility sets. These are simply lists
whose ith value is true if and only if 7 isin the original set. Since this relationship is bijective, a
visibility set or atuple can always be reconstructed from the other.

| N B [T [Ty | Ta]
(S]SS [5] |02 21919 | [D[Dy[Ds[Di[A]
110 |1 12 (1104111 2 0 |3 |1
2 |3 |3 |4 211 10 19 10 |0 6 3
=3 [T [T [0 1 |=> : 2
I a[1 1 (1 |1 |1 -
- = 510 |0 |0 |0 |0

6§/0 |0 |1 |0 |0

701 |1 |1 |1 |1

Figure 51:. Example of our Lossless compression technique. 17 numbers are reduced to 9. The columns
(S1..4) inthefirst table represent the visibility sets to be compressed. The columns (77, 4)in the middle row
are the same sets in their tuple form, except that the parent tuple (7°4) is also appended. An element in this
latter tuple is true if three (4/2 + 1) or more of its associated children have a true value. Finaly, the tuples
are converted back into sets (D, 4) after they are XORed with T)4. Notice that D5 and D, did not originaly
contain 1 and 3 respectively. Decompression can be achieved by recombining the tuple form of any set Dy 4
with T4 (readily derived from A) using XOR.

Our compression technique can be applied either incrementally, during visibility calculation or
subsequently.

van de Panne and Stewart cluster by rows and columns. The clustering by rows is equivalent to
the clustering of view cells, and accounts for the same coherence we do. The algorithms differ in
the choice of cells and how the clusters are represented. van de Panne and Stewart also present a
lossy version of the algorithm that reduces space at the cost of conservativity*

B.2 Index-Spatial Coherence Compression

In Chapter 4, many samples of visibility are taken. We have applied the technique above and a 0-
based run length encoding (RL E) technique to compress the data. We have found the RLE technique
to perform considerably better. As mentioned above, these techniques take advantage of different
forms of coherence. The technique presented in Section B.1 takes advantage of the property that
view points near each other have a tendency to see similar objects, while the technique presented

“The potentially visible sets may be overestimated.

APPENDIX B. COMPRESSION 146

here exploits the property that indices that are adjacent tend to be associated with spatially related®
primitives. Such primitives have a tendency to all be visible or invisible from most view points®.

The result of this coherence, isthat in avisibility tuple’, the bits typically form in clusters.

A standard RL E compression a gorithm that takes advantage of such runswould work very well.
However, we use a 0-based RLE algorithm that only encodes runs of zeros, but encodes them more
cheaply than other RLE algorithms. Thisisto take advantage of depth complexity, since high depth
complexity is usually a feature of scenes to which visibility algorithms are applied. Such scenes
result in tuples that are almost entirely zero.

Once again, the algorithm of van de Panne and Stewart capture this coherence in terms of their
column clustering. Their choice of clusters and actual compression technique (gzip) differ from
ours.

SFor example, triangle n and triangle n. + 1 usually share an edge or vertex, thereby implying that the two triangles
are near.

SFor example, two triangles representing a window of a building will both be either visible of invisible from most
view points.

A structure of n bits (for n primitives), where the nth bit is set iff the nth primitiveisvisible.

Bibliography

[AF92]

[AF96]

[Aga92]

[AGSO0]

[AKS7]

[AMe92]

[APS93]

[ARJO0]

D. Avis and K. Fukuda. A pivoting agorithm for convex hulls and vertex enu-
meration of arrangements and polyhedra. Discrete and Computational Geometry,
8:295-313, 1992.

D. Avisand K. Fukuda. Reverse search for enumeration. Discrete Applied Mathe-
matics, 65:21-46, 1996.

Panka] K. Agarwal. Ray shooting and other applications of spanning trees with low
stabbing number. SAM Journal on Computing, 21(3):540-570, 1992.

T. Asano, S. K. Ghosh, and T. Shermer. Visibility in the plane. Handbook in Conm+
putational Geometry, pages 829-876, 2000.

James Arvo and David Kirk. Fast ray tracing by ray classification. In Computer
Graphics, Annual Conference Series (SGGRAPH '87 Proceedings), volume 21,
pages 55-64. ACM, July 1987.

NinaAmenta. Finding alinetransversal of axial objectsin three dimensions. In Pro-
ceedings of the third annual ACM-SAM symposium on Discrete algorithms, pages
66—71. Society for Industrial and Applied Mathematics, 1992.

B Aronov, M Pellegrini, and M Sharir. On the zone of an algebraic surface in a hy-
perplane arrangment. Discrete and Computational Geometry, 9(2):177-188, 1993.

John M. Airey, John H. Rohlf, and Frederick P. Brooks Jr. Towards image realism
with interactive update ratesin complex virtual building environments. 1990 Sympo-
sium on Interactive 3D Graphics, 24(2):41-50, March 1990. ISBN 0-89791-351-5.

147

BIBLIOGRAPHY 148

[AS93]

[ASVNBOO]

[BHS9g]

[Bit02]

[BKESO0]

[BMHO8]

[BMHO9]

[BNRSV01]

[BP96]

[BWWO1]

Pankaj K. Agarwal and Micha Sharir. Ray shooting amidst convex polytopesin three
dimensions. In Proceedings of the fourth annual ACM-S AM Symposiumon Discrete
algorithms, pages 260-270. ACM Press, 1993.

Carlos And{jar, Carlos Saona-V azquez, | sabel Navazo, and Pere Brunet. Integrating
occlusion culling and levels of detail through hardly-visible sets. Computer Graphics
Forum, 19(3):499-506, August 2000. ISSN 1067-7055.

J. Bittner, V. Havran, and P. Slavk. Hierarchica visibility culling with occlusion
trees. In Computer Graphics International 1998. IEEE Computer Society, June
1998.

Jifi Bittner. Hierarchical Techniques for Visibility Computations. PhD thesis, Czech
Technical University in Prague, October 2002.

Fausto Bernardini, James T. Klosowski, and Jihad El-Sana. Directional discretized
occluders for accelerated occlusion culling. Computer Graphics Forum, 19(3):507—
516, August 2000. ISSN 1067-7055.

Dirk Bartz, Michael Meil3ner, and Tobias Hittner. Extending graphics hardware
for occlusion queries in opengl. 1998 SGGRAPH / Eurographics Workshop on
Graphics Hardware, pages 97—-104, August 1998. Held in Lisbon, Portugal.

Dirk Bartz, Michael Meil3ner, and Tobias Hittner. Opengl-assisted occlusion culling
for large polygonal models. Computers & Graphics, 23(5):667-679, October 1999.
ISSN 0097-8493.

P. Brunet, |. Navazo, J. Rossignac, and C. Saona-Vasquez. Hoops. 3d curves as
conservative occluders for cell visibility. Computer Graphics Forum, 20(3), 2001.

Chandrgjit L. Bajgj and Valerio Pascucci. Splitting a complex of convex apolytopes
in any dimension. In 12th Symposium on Computational Geometry, pages 88-97.
ACM, May 1996.

J. Bittner, P. Wonka, and M. Wimmer. Visibility preprocessing for urban scenes
using line space subdivision. In 9th Pacific Conference on Computer Graphics and
Applications, pages 276-284. |EEE, October 2001. ISBN 0-7695-1227-5.

BIBLIOGRAPHY 149

[CCOLYS]

[CCOZ98]

[CEG*96]

[CG85]

[CKS02]

[COCSDO3]

[COFHZ98]

[COKTO02]

[Coo86]

[COZ98]

Y. Chrysanthou, Daniel Cohen-Or, and Dani Lischinski. Fast approximate quan-
titative visibility for complex scenes. In Computer Graphics International 1998,
Hannover, Germany, June 1998. IEEE Computer Society.

Yiorgos Chrysanthou, Daniel Cohen-Or, and Eyal Zadicario. Viewspace partitioning
of densely occluded scenes. In Proceedings of the fourteenth annual symposium on
Computational geometry, pages 413-414. ACM Press, 1998.

Bernard Chazelle, Herbert Edelsbrunner, Leonidas J. Guibas, Micha Sharir, and
Jorge Stolfi. Lines in space: Combinatorics and algorithms. Algorithmica,
15(5):428-447, May 1996.

Michael F. Cohen and Donald P. Greenberg. The hemi-cube: A radiosity solution
for complex environments. Computer Graphics (Proceedings of SGGRAPH 85),
19(3):3140, August 1985. Held in San Francisco, California.

Weagner T. Corréa, James T. Klosowski, and Claudio T. Silva. iWalk: Interactive
out-of-core rendering of large models. Technical Report TR-653-02, Princeton Uni-
versity, 2002. Submitted for publication.

Daniel Cohen-Or, Yiorgos Chrysanthou, Claudio T. Silva, and Frédo Durand. A
survey of visibility for walkthrough applications. |EEE TVCG, 9(3):412-431, July-
September 2003.

D. Cohen-Or, G. Fibich, D. Halperin, and E. Zadicario. Conservative visibility and
strong occlusion for viewspace partitioning of densely occluded scenes. Computer
Graphics Forum, 17(3):243-254, 1998.

Daniel Cohen-Or, Shuly Lev-Yehudiand Adi Karol, and Ayellet Tal. Inner-cover of
non-convex shapes. In Proceedings of the 4th |srael-Korea Bi-National Conference
on Geometric Modeling, 2002.

Robert L. Cook. Stochastic sampling in computer graphics. ACM Transactions on
Graphics (TOG), 5(1):51-72, 1986.

D. Cohen-Or and E. Zadicario. Visibility streaming for network-based walkthroughs.
In Graphics Interface, pages 1-7, 1998.

BIBLIOGRAPHY 150

[CT96]

[CT97]

[DDO2]

[DDP96]

[DDP974]

[DDP97h]

[DDP97c]

[DDPOS]

[DDP99)]

[DDPO2]

[DDS03]

Satyan Coorg and Seth Teller. Temporally coherent conservative visiblity. In 12th
Annual ACM Symposium on Computational Geometry, pages 78-87, 1996.

Satyan Coorg and Seth Teller. Real-time occlusion culling for models with large
occluder. In Symposium on Interactive 3D Graphics, pages 83-90, 1997.

Florent Duguet and George Drettakis. Robust epsilon visibility. In Proceedings of
the 29th annual conference on Computer graphics and interactive techniques, pages
567-575. ACM Press, 2002.

Frédo Durand, George Drettakis, and Claude Puech. The 3d visibility complex:
A new approach to the problems of accurate visibility. In Eurographics Render-
ing Workshop 1996, pages 245-256, Porto, Portugal, 1996. Eurographics/ Springer
Wien.

F. Durand, G. Drettakis, and C. Puech. 3d visibility made visibly ssimple. InInvideo
13th Annual ACM Symposium on Computational Geometry, 1997.

Frédo Durand, George Drettakis, and Claude Puech. The visibility skeleton: A pow-
erful and efficient multi-purpose global visibility tool. In Proceedings of S GGRAPH
97, pages 89-100. ACM, 1997.

Frédo Durand, George Drettakis, and Claude Puech. The 3d visibility complex: a
unified datastructure for global visibility of scenes of polygons and smooth objects.
In Canadian Conference on Computational Geometry, August 1997.

F Durand, George Drettakis, and Claude Puech. Visihility driven hierarchical ra-
diosity, 1998. SIGGRAPH technical sketch.

Frédo Durand, George Drettakis, and Claude Puech. Fast and accurate hierarchical
radiosity using global visibility. ACM Transactions on Graphics (TOG), 18(2):128—
170, 1999.

Frédo Durand, George Drettakis, and Claude Puech. The 3d visibility complex. ACM
Transactions on Graphics (TOG), 21(2):176-206, 2002.

Xavier Décoret, Gilles Debunne, and Francgois Sillion. Erosion based visibility pre-
processing. In Proceedings of the Eurographics Symposium on Rendering. Euro-
graphics, 2003.

BIBLIOGRAPHY 151

[DDTPOQ]

[DF94]

[Dur99]

[Edes7]

[EOSS6]

[FP9g]

[FRO4]

[FST92]

[GCS91]

[GK93]

[GM90]

Frédo Durand, George Drettakis, Joélle Thollot, and Claude Puech. Conservative
visibility preprocessing using extended projections. Proceedings of SGGRAPH
2000, pages 239248, July 2000.

George Drettakis and Eugene Fiume. A fast shadow algorithm for arealight sources
using backprojection. In Proceedings of the 21st annual conference on Computer
graphics and interactive techniques, pages 223-230. ACM Press, 1994.

Frédo Durand. 3D Visihility, analysis and applications. PhD thesis, U. Joseph
Fourier, 1999. http://graphics.|cs.mit.edu/~ fredo.

H Edelsbrunner. Algorithmsin Combinatorial Geometry. Springer-Verlag, 1987.

H Edelsbrunner, J O’ Rourke, and R Seidel. Constructing arrangements of lines and
hyperplanes with applications. SSAM Journal of Computing, pages 341-363, 1986.

K. Fukudaand A. Prodon. Double description method revisited. Combinatorics and
Computer Science, 1120 of Lecture Notesin Computer Science:91-111, 1996.

K Fukudaand V Rosta. Combinatoria face enumeration in convex polytopes. Com-
putational Geometry, 4:191-198, 1994.

Tom Funkhouser, Carlo H. Sequin, and Teller. Management of large amounts of
datain interactive building walkthroughs. I1n Proceedings of the 1992 Symposiumon
Interactive 3D Graphics, volume 25(2), pages 11-20, March 1992.

Z. Gigus, J. Canny, and R. Seidel. Efficiently computing and representing aspect
graphs of polyhedral objects. |EEE Transactions on Pattern Analysis and Machine
Intelligence, 13(6):542-551, 1991.

Ned Greene and M. Kass. Hierarchical z-buffer visibility. Proceedings of SG-
GRAPH 93, pages 231-240, 1993. ISBN 0-201-58889-7. Held in Anaheim, Califor-
nia.

Z. Gigus and J. Malik. Computing the apsect graph for line drawings of poly-

hedral objects. |EEE Transactions on Pattern Analysis and Machine Intelligence,
12(2):113-112, 1990.

BIBLIOGRAPHY 152

[Gre9s]

[GSF99]

[HAQ0]

[Hai00]

[Han94]

[Hav00]

[HDS03]

[Heco?]

[HMC*97]

[HT92]

[Int03]

[KCCOO0]

Ned Greene. Hierarchical polygon tiling with coverage masks. Proceedings of SG-
GRAPH 96, pages 65—74, August 1996. ISBN 0-201-94800-1. Held in New Orleans,
Louisiana.

Craig Gotsman, Oded Sudarsky, and Jeffrey A. Fayman. Optimized occlusion
culling using five-dimensional subdivision. Computers & Graphics, 23(5):645-654,
October 1999. ISSN 0097-8493.

Nicholas Holzschuch and Laurent Alonso. Using graphics hardware to speed-up
visibility queries. Journal of Graphics Tools, 5(2):33-47, 2000.

Eric Haines. Shaft culling tool. Journal of Graphics Tools, 5(1):23-26, 2000.

Andrew J. Hanson. Geometry inn dimensions. In Paul S. Heckbert, editor, Graphics
Gems V. AP Professional (Academic Press), Boston, 1994.

Vlastimil Havran. Heuristic Ray Shooting Algorithms. Ph.d. thesis, Department of
Computer Science and Engineering, Faculty of Electrical Engineering, Czech Tech-
nical University in Prague, November 2000.

Denis Haumont, Olivier Debeir, and Franois Sillion. Volumetric cell-and-portal
generation. In Computer Graphics Forum, Eurographics Conference Proceedings.
Blackwell Publishers, 2003.

Paul Heckbert. Discontinuity meshing for radiosity. In Third Eurographics Work-
shop on Rendering, pages 203-216, May 1992.

T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and H. Zhang. Accelerated
occlusion culling using shadow frusta. In Proceedings of the thirteenth annual sym-
posium on Computational geometry, pages 1-10. ACM Press, 1997.

M. Hohmeyer and S. Teller. Stabbing isothetic rectangles and boxes in O(n logn)
time. Computational Geometry Theory and Applications, 4:201-207, 1992.

Intel developer network for pci express architecture, 2003.
http://www.intel.com/technol ogy/pciexpress/devnet.

Vladlen Koltun, Yiorgos Chrysanthou, and Daniel Cohen-Or. Virtua occluders. An
efficient intermediate pvs representation. Rendering Techniques 2000: 11th Euro-
graphics Workshop on Rendering, pages 5970, June 2000. ISBN 3-211-83535-0.

BIBLIOGRAPHY 153

[KCCOO01]

[KCOO00]

[KS99]

[KS00]

[KS01]

[KvD76]

[KvD79]

[LCCOO03]

[LGOS5]

[LSCO03]

[MMBOS8]

Vladlen Koltun, Yiorgos Chrysanthou, and Daniel Cohen-Or. Hardware-accelerated
from-region visibility using a dual ray space. In Rendering Techniques 2001: 12th
Eurographics Workshop on Rendering, pages 205-216. Eurographics, June 2001.

Vladlen Koltun and Daniel Cohen-Or. Selecting effective occluders for visibility
culling. In Eurographics (short presentations track), pages 165169, 2000.

James T. Klosowski and Claudio T. Silva. Rendering on a budget: A framework
for time-critical rendering. |EEE Visualization ' 99, pages 115-122, October 1999.
ISBN 0-7803-5897-X. Held in San Francisco, California.

James T. Klosowski and Claudio T. Silva. The prioritized-layered projection algo-
rithm for visible set estimation. 1EEE Transactions on Visualization and Computer
Graphics, 6(2):108-123, 2000.

J. T. Klosowski and Claudio T. Silva. Efficient conservative visibility culling using
the prioritized-layered projection algorithm. | EEE Transactions on Visualization and
Computer Graphics, 7(4):365-379, October - November 2001. ISSN 1077-2626.

JKoenderink and A.J. van Doorn. The singularities of the visual mapping. Biological
Cybernetics, 24(1):51-59, 1976.

J Koenderink and A van Doorn. The internal representation of solid shape with
respect to vision. Biological Cybernetics, 32(1):211-216, 1979.

Alan Lerner, Yiorgos Chrysanthou, and Daniel Cohen-Or. Breaking thewalls. Scene
partitioning and portal creation. In Pacific Graphics, 2003.

David Luebke and Chris Georges. Portals and mirrors. Simple, fast evaluation of
potentially visible sets. 1995 Symposium on Interactive 3D Graphics, pages 105—
106, April 1995. ISBN 0-89791-736-7.

Tommer Leyvand, Olga Sorkine, and Daniel Cohen-Or. Ray space factorization for
from-region visibility. ACM Transactions on Graphics, 22(3):595-604, July 2003.

Daniel Meneveaux, Eric Maisel, and Kadi Bouatouch. A new partitioning method
for architectural environemnts. Journal of Vizualisation and Computer Animation,
9(4):195-213, 1998.

BIBLIOGRAPHY 154

[MOS88]

[NAT90]

[NBGOZ]

[NFLY CO99]

[NRO3]

[OLBNO14]

[OLBNO1b]

[PD87]

[PD90]

[Pel90]

[Pel93]

M McKenna and J O’ Rourke. Arrangements of lines in 3-space: a data structure
with applications. In The 4th Annual Symposium on Computational Geometry, pages
371-380, 1988.

Bruce Naylor, John Amanatides, and William Thibault. Merging BSP trees yields
polyhedral set operations. In Proceedings of the 17th annual conference on Com-
puter graphics and interactive techniques, pages 115-124. ACM Press, 1990.

S. Nirenstein, E. Blake, and J. Gain. Exact from-region visibility culling. In Proceed-
ings of the 13th workshop on Rendering, pages 191-202. Eurographics Association,
June 2002.

Boaz Nadler, Gadi Fibich, Shuly Lev-Yehudi, and Daniel Cohen-Or. A qualita-
tive and quantitative visibility analysis in urban scenes. Computers & Graphics,
23(5):655-666, 1999. 1SSN 0097-8493.

Isabel Navazo and Jarek Rossignac. Shieldtester: Cell-to-cell visibility test for sur-
face occluders. In Eurographics, 2003.

Gary Oberholster, John Lewis, Edwin Blake, and Shaun Nirenstein. An aggressive
paralld visibility preprocessor. Technical Report CS01-22-00, University of Cape
Town, 2001. http://www.cs.uct.ac.za/Research/CV C/projects/parvis/paper.pdf.

Gary Oberholster, John Lewis, Edwin Blake, and Shaun Nirenstein. Aggressive par-
alel visihility preprocessor. Undergraduate thesis report, University of Cape Town,
2001. http://www.cs.uct.ac.za/Research/CV C/projects/parvis/report.pdf.

H. Plantingaand C. R. Dyer. The asp: a continuous viewer-centered representation
for 3d object recognition. In The First International Conference on Computer Vision,
pages 626630, 1987.

W. Plantingaand C. Dyer. Visibility, occlusion and the aspect graph. International.
Journal of Computer Vision, 5(2):137-160, 1990.

Marco Pellegrini. Stabbing and ray shooting in 3-dimensional space. In 6th ACM
Symposium on Computational Geometry, pages 177-186. ACM Press, 1990.

Marco Pellegrini. Ray-shooting on triangles in 3-dimensional space. Algorithmica,
9:471-494, 1993.

BIBLIOGRAPHY 155

[Pel97]

[Plag2]

[Plag3]

[Pla9g]

[Pli65]

[PS85]

[Pu9s]

[PVO3]

[Reg02]

[RWS0]

[SD94]

[SDDS00]

Marco Pellegrini. Ray-shooting and lines in space. CRC Handbook of Discrete and
Computational Geometry, pages 599-614, 1997.

Harry Plantinga. An algorithm for finding the wealky visible faces from a polygon
in 3d. In Fourth Canadian Conference on Computational Geometry, pages 45-51,
1992.

Harry Plantinga. Conservative visibility preprocessing for efficient walkthroughs of
3d scenes. In Graphics Interface, pages 166173, 1993.

William Harry Plantinga. The asp: a continuous, viewer-centered object represen-
tation for computer vision. PhD thesis, The University of Wisconsin, 1998.

J. Plicker. On a new geometry of space. Philosophical Transactions of the Royal
Society, 155:725-791, 1865.

F P Preparata and M | Shamos. Computational Geometry: An Introduction.
Springer-Verlag, 1985.

Fan-Tao Pu. Data Structures for Global Illumination and Visibility Queries in 3-
Srace. PhD thesis, University of Maryland, College Park, MD, 1998.

Michel Pocchiola and Gert Vegter. The visibility complex. In The Ninth Annual
Symposium on Computational Geometry, pages 328-327. ACM Press, New York,
NY, USA, 1993. ISBN 0-89791-582-8.

Ashu Rege. Occlusion (hp and nv extensions).
http://www.nvidia.com/dev_content/gdc2002/GDC2002_occlusion_files/frame.htm,
2002.

Steven M. Rubin and Turner Whitted. A 3-dimensional representation for fast ren-
dering of complex scenes. In Proceedings of the 7th annual conference on Computer
graphics and interactive techniques, pages 110-116, 1980.

G. Simiakakisand A. M. Day. Five-dimensional adaptive subdivision for ray tracing.
Computer Graphics Forum, 13(2):133-140, 1994.

Gernot Schaufler, Julie Dorsey, Xavier Decoret, and Francois X. Sillion. Conser-
vative volumetric visibility with occluder fusion. Proceedings of S GGRAPH 2000,
pages 229238, July 2000. ISBN 1-58113-208-5.

BIBLIOGRAPHY 156

[SG93]

[SGO4]

[SG99]

[SHN*03]

[SOG9S]

[Som59]

[SSG8Y]

[SSS74]

[Sto91]

[Sud]

[Sudos]

A. James Stewart and Sherif Ghali. An output sensitive algorithm for the com-
putation of shadow boundaries. In Fifth Canadian Conference on Computational
Geometry, pages 291-296, August 1993.

A. James Stewart and Sherif Ghali. Fast computation of shadow boundaries using
gpatial coherence and backprojections. In Proceedings of the 21st annual confer-
ence on Computer graphics and interactive technigues, pages 231-238. ACM Press,
1994.

Oded Sudarsky and Craig Gotsman. Dynamic scene occlusion culling. |EEE Trans-
actions on Visualization and Computer Graphics, 5(1):13-29, January - March 1999.
ISSN 1077-2626.

Adrian Sharpe, Matthew Hampton, Shaun Nirenstein, James Gain, and Edwin Blake.
Accelerating ray shooting through aggressive 5d visibility preprocessing. In Pro-
ceedings of the 2nd international conference on Computer graphics, virtual Reality,
visualisation and interaction in Africa, pages 95-100. ACM Press, 2003.

N. Scott, D. Olsen, and E. Gannett. An overview of the visualize fx graphics accel-
erator hardware. The Hewlett-Packard Journal, pages 28-34, 1998.

D.M.Y. Sommerville. Analytical Geometry of Three Dimensions. Cambridge Uni-
versity Press, 1959.

D. Sdesin, J Stolfi, and L. Guibas. Epsilon geometry: building robust algorithms
from imprecise computations. In Proceedings of the fifth annual symposium on Com-
putational geometry, pages 208-217. ACM Press, 1989.

Evan E. Sutherland, Robert F. Sproull, and Robert A. Schumacker. A characteriza
tion of ten hidden-surface algorithms. ACM Computing Surveys (CSUR), 6(1):1-55,
1974,

Jorge Stolfi. Oriented Projective Geometry ;. A Framework for Geometric Computa-
tions. Academic Press, 1991. ISBM 0126720258.

Oded Sudarsky. Personal communication.

Oded Sudarsky. Dynamic scene occlusion culling. Technion — Isragl Institute of
Technology, January 1998. Research Thesis (Doctor of Science).

BIBLIOGRAPHY 157

[SVNBOY]

[Tel924]

[Tel92b]

[TH934]

[THO3b]

[TH99]

[TLO1]

[TN87]

[TS91]

[vdPS99]

C. Saona-Vasguez, |. Navazo, and P. Brunet. The visibility octree: a data structure
for 3d navigation. Computers & Graphics, 23(5):635-643, October 1999. ISSN
0097-8493.

Seth Teller. MVisibility Computations in Densely Occluded Polyhedral Environments.
PhD thesis, University of Californiaat Berkeley, 1992.

Seth J. Teller. Computing the antipenumbra of an area light source. In Computer
Graphics (Proceedings of SGGRAPH 92), volume 26, pages 139-148, Chicago,
[linois, July 1992.

Seth Teller and Pat Hanrahan. Visibility computations for global illumination algo-
rithms. In Computer Graphics (Proceedings of SGGRAPH 93), volume 27, pages
239-246, July 1993.

Seth Teller and Michael Hohmeyer. Stabbing oriented convex polygons in random-
ized O(n?) time. In Jerulsalem Combinatorics, volume 178, pages 311-318. Amer-
ican Mathematical Society, Providence, RI., 1993.

Seth Teller and Michael Hohmeyer. Determining the lines through four lines. Jour-
nal of Graphics Tools, 4(3):11-22, 1999. ISSN 1086-7651.

Eya Teler and Dani Lischinski. Streaming of complex 3d scenes for remote walk-
throughs. Computer Graphics Forum, 3(20), 2001.

William C. Thibault and Bruce F. Naylor. Set operations on polyhedra using binary
space partitioning trees. In Proceedings of the 14th annual conference on Computer
graphics and interactive techniques, pages 153-162. ACM Press, 1987.

Seth J. Teller and Carlo H. Séquin. Visibility preprocessing for interactive walk-
throughs. Computer Graphics (Proceedings of SGGRAPH 91), 25(4):61-69, July
1991. ISBN 0-201-56291-X. Held in Las Vegas, Nevada.

Michael van de Panne and James Stewart. Efficient compression techniques for
precomputed visibility. Eurographics Rendering Workshop 1999, June 1999. Held
in Granada, Spain.

BIBLIOGRAPHY 158

[WA77]

[WBPOS]

[WWSO0]

[WWS01]

[YR96]

[Zhaos]

[ZMHI97]

K. Weiler and K. Atherton. Hidden surface removal using polygon area sorting.
Computer Graphics (Proceedings of SGGRAPH 77), 11(2):214-222, July 1977.
Held in San Jose, California

Yigang Wang, Hujun Bao, and Qunsheng Peng. Accelerated walkthroughs of vir-
tual environments based on visibility preprocessing and simplification. Computer
Graphics Forum, 17(3):187-194, 1998. ISSN 1067-7055.

Peter Wonka, Michael Wimmer, and Dieter Schmalstieg. Visibility preprocessing
with occluder fusion for urban walkthroughs. Rendering Techniques 2000: 11th
Eurographics Workshop on Rendering, pages 71-82, June 2000. |SBN 3-211-83535-
0.

Peter Wonka, Michael Wimmer, and Francois Sillion. Instant visibility. In Euro-
Graphics. Eurographics, A. Chalmers and T.-M. Rhyne, 2001.

Roni Yagel and William Ray. Visibility computation for efficient walkthrough of
complex environments. PRESENCE, 5, 1:1-16, 1996.

Hansong Zhang. Effective Occlusion Culling for the Interactive Display of Arbitrary
Models. PhD thesis, University of North Carolina at Chapel Hill, 1998.

Hansong Zhang, Dinesh Manocha, Thomas Hudson, and Kenneth E. Hoff 111. Vis-
ibility culling using hierarchical occlusion maps. Proceedings of SGGRAPH 97,
pages 77-88, August 1997. ISBN 0-89791-896-7. Held in Los Angeles, California.

Index

Plicker space, 42

affine combination, 43
affine hull, 43

affine set, 43

affinely independent, 44
aggressive visibility, 1
approximate visibility, 2
arrangement, 49

ASP, 33

aspect graph, 32

conservative visibility, 1
constructive solid geometry, 107

discontinuity meshing, 34

exact visibility, 2
extreme point, 44

face, 44

face enumeration, 45
face lattice, 45

facet, 44
from-region, 2

h-representation, 44
halfspace representation, 44
hidden surface removal, 1

isotopy class, 28

159

polyhedron, 44
polytope, 44
polytope complex, 46
simple, 46
top levd, 47
polytope complex, 46
polytope complex splitting, 46
improvements, 107
projective geometry, 38
Plicker space, 42
duality, 40
oriented spaces, 40
the projective plane, 38

selective stabbing, 91
stabbing lines, 93

v-representation, 44
vertex representation, 44
visibility complex, 31
visibility culling, 1
aggressive, 1
approximate visibility, 2
conservative, 1
exact, 2
from-point, 2
visibility event, 29
visibility skeleton, 32

INDEX 160

zone, 49
Plicker hypersurface, 28
hyperplane, 49

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

