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Abstract

Streptococcus pneumoniae is a significant pathogen in children. Although the

PCV7 pneumococcal conjugate vaccine has reduced pneumococcal disease,

non-vaccine serotype 19A infection has increased, despite expectations of

cross-protection from vaccine serotype 19F. Serotype 19A is included in the

new PCV13 vaccine, but not in PCV10.

In the solution simulations of 19F and 19A oligosaccharide chains reported

here, both polysaccharides form unstructured random coils, with inflexible re-

peat units linked by mobile phosphodiester linkages. However, there are clear

conformational differences. In the 19F repeat unit, the rhamnose residue is

nearly orthogonal to the other residues, whereas 19A has residues in simi-

lar orientations. This finding is corroborated by key inter-residue distances

calculated from NMR NOESY experiments. Further, 19F is predominantly

in extended conformations, whereas 19A exhibits a high prevalence of tight

hairpin bends.

These conformational differences may account for a lack of antibody cross-

∗Tel:+27 21 6505107, email: mkuttel@cs.uct.ac.za

Preprint submitted to Carbohydrate Research December 23, 2014



protection between serotypes 19F and 19A.

Keywords: Streptococcus pneumoniae, vaccine, pneumococcal, cross

protection, Molecular Modelling

1. Introduction

The capsular polysaccharides of pneumococci are essential for bacterial

virulence; vaccine-induced serum antibodies against capsular polysaccharides

confer resistance to pneumococcal disease. Pneumococcal serogroup 19 is

currently responsible for the bulk of pneumococcal disease. Within serogroup

19, which comprises serotypes 19F, 19A, 19B and 19C, disease is caused

chiefly by 19A and 19F1:

→4)-β-d-ManpNAc-(1→4)-α-d-Glcp-(1→2)-α-l-Rhap-(1-P→

19F capsular polysaccharide

→4)-β-d-ManpNAc-(1→4)-α-d-Glcp-(1→3)-α-l-Rhap-(1-P→

19A capsular polysaccharide

While serotypes 19F and 19A have very similar trisaccharide repeating

units, cross-protection for these serotypes has not been clearly demonstrated:

the 7-valent Prevnar vaccine (PVC7) contains 19F, but does not appear to

elicit clinically meaningful cross-protection against 19A invasive pneumococ-

cal disease2. Indeed, despite current widespread vaccination with 19F in

PCV7, the proportion of infections caused by serotype 19A has increased:

currently, 19A appears to be the most prevalent and antibiotic-resistant

pneumococcal serotype3,4. This apparent lack of cross-protection for 19F
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and 19A is in agreement with early studies published for the pneumococ-

cal polysaccharide vaccines: although the 19F polysaccharide vaccine raised

cross-reactive antibodies against 19A, they displayed low functionality in the

opsonophagocytic killing assay.5 This assay is currently used as a surrogate

assessment of the clinical efficacy of pneumococcal conjugate vaccines6; the

opsonic ability of antibodies has been correlated to their avidity in pre-clinical

studies7. These studies led to the inclusion of the serotype 19A polysac-

charide in the second-generation 23-valent vaccine8,9. The higher valency

conjugate vaccine PCV13, which aims to provide greater coverage of the

emerging pneumococcal strains, also contains both serotypes 19F and 19A.

Immunogenicity studies for PCV13 showed the presence of functional anti-

body activity predictive of protection against serotype 19A disease10, which

has been confirmed by recent post-licensure studies11. In contrast, while the

PCV10 vaccine does not contain serotype 19A, indirect protection against

19A is claimed based on the conjugation chemistry employed in PCV10 for

the serotype 19F-diphtheria toxoid vaccine component12,13. However, in our

opinion, this is doubtful, as the random activation chemistry utilising cyany-

lation (PVC10) or periodate oxidation (PCV13) relies on levels of activation

that are sufficient to permit conjugation, but low enough so as not to affect

the structural integrity of the native polysaccharide antigen.

In this work, we continue our systematic investigation of the molecular

basis of cross protection in pneumococcal serotypes 19F and 19A which we

began with simulation of the conformation of the repeating units in the carbo-

hydrate antigens14. This first study predicted a wider range of conformations

for 19F than the more constrained 19A trisaccharide, suggesting a probable
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conformational difference between the polysaccharides. Here we extend this

investigation to solution simulations of 19F and 19A oligosaccharide chains

comprising three- and six repeat units, as well as experimental NMR NOESY

measurements on the 19F and 19A polysaccharides.

2. Experimental Section

We analyse the 19F and 19A pneumococcal polysaccharides according to

the following glycosidic linkages and corresponding abbreviations.

Linkage Abbreviation Polysaccharide

β-d-ManpNAc-(1→4)-α-d-Glcp M14G 19F and 19A

α-l-Rhap-(1-P→4)-β-d-ManpNAc RP4M 19F and 19A

α-d-Glcp-(1→2)-α-l-Rhap G12R 19F

α-d-Glcp-(1→3)-α-l-Rhap G13R 19A

The two-bond (1→X) glycosidic linkages in M14G, G12R and G13R are de-

fined by the torsion angles φ = H1′–C1′–O–CX and ψ = C1′–O–CX–HX.

These definitions for φ and ψ are analogous to φH and ψH in IUPAC con-

vention. In the case of the RP4M phosphodiester linkage, the four dihedral

angles are defined as φ = H1′–C1′–O–P , ψ = C1′–O–P–O, ω = O–P–O–C4

and ε = P–O–C4–H4.

2.1. Molecular Dynamics Simulations

All simulations were performed with the NAMD molecular dynamics

program15 version 2.9 (employing NAMD CUDA extensions for calculation

of long-range electrostatics and nonbonded forces on graphics processing
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units16) and run on a 12 core, 4 TeslaM2090 GPU server with 64GB RAM

per core and 6GB DDR5 per GPU.

Water was simulated with the TIP3P model17. Carbohydrates were mod-

eled with the CHARMM36 additive force field for carbohydrates,18,19 with

ad hoc extensions for the phosphodiester linkage, as follows. Although pa-

rameters for phosphate substituents were recently added to the CHARMM

carbohydrate force field20, these do not yet extend to flexible anomeric phos-

phodiester linkages. Therefore, this work necessitated adjustments to the

CHARMM carbohydrate force field to represent the β-d-ManpNAc residue,

as well as the α(P→4) glycosidic phosphodiester linkage for pyranose rings.

In accordance with suggestions from the lead CHARMM force field devel-

oper, the ManNAc residue was adapted from the parameters in the existing

βMan and αGlcNAc residues and bond, angle and dihedral parameters for

the phosphodiester linkages were taken from similar linkages in the existing

force field, or from the CHARMM nucleic acid force field where necessary21.

Initial configurations of the three- and six repeating unit oligosaccharides

(hereafter termed RU3 and RU6) for both 19F and 19A were built using

our in-house software CarbBuilder22, which employs the psfgen23 tool to

create “protein structure”(psf) files for modelling with a specified CHARMM

force field and the NAMD molecular dynamics program. Using CarbBuilder,

the glycosidic linkage dihedrals were set to initial values within the global

energy minima previously identified14: φ,ψ = 51◦,−6◦ for the M14G linkage,

φ,ψ = −41◦,−24◦ for the G12R linkage (19F) and φ,ψ = −28◦, 43◦ for the

G13R linkage (19A). The phosphodiester linkage, α-l-Rhap-(1-P→4)-β-d-

ManpNAc, was set to φ, ψ, ω, ε = −50◦, 180◦,−180◦,−180◦ to produce initial
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extended structures.

These initial oligosaccharide structures were optimised through 1000 steps

of standard NAMD minimization in vacuum and then solvated (using the sol-

vate plugin to the Visual Molecular Dynamics (VMD)24 analysis package) in

a periodic cubic unit cell with randomly distributed sodium ions to electro-

statically neutralize the system: the RU3 structures used a 60 × 60 × 60 Å

cube and three sodium ions, while the RU6 structures used a 110 × 110 ×

110 Å cube and six sodium ions.

The RU3 MD simulations ran for 150 ns and the larger, computationally

expensive RU6 simulations for 100 ns. All MD simulations were preceded by a

30 000 step minimisation phase, with a temperature control and equilibration

regime involving 10 K temperature reassignments from 10 K culminating

in a maximum temperature of 300 K. Equations of motion were integrated

using a Leap-Frog Verlet integrator with a step size of 1 fs and periodic

boundary conditions. Simulations were performed under isothermal-isobaric

(nPT) conditions at 300 K maintained using a Langevin piston barostat25

and a Nose-Hoover26,27 thermostat.

Long-range electrostatic interactions were treated using particle mesh

Ewald (PME) summation, with κ = 0.20 Å−1 and PME grid dimensions

of 60 for the RU3 systems and 110 for the RU6 systems. Non-bonded inter-

actions were truncated with a switching function applied between 12.0 and

15.0 Å to groups with integer charge. The 1-4 interactions were not scaled,

in accordance with the CHARMM force field recommendations.

Subsequent analysis of the simulations used time series frames 25 ps apart.

Molecular conformations extracted from the MD simulations were depicted
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with VMD, where necessary using the PaperChain visualization algorithm

for carbohydrates28 to highlight the glycan rings. For comparison with NMR

measurements, average effective proton-proton distances, r, were calculated

from the equilibrated RU3 simulations using the equation

r = < r−6i,j >
− 1

6 (1)

where ri,j is the instantaneous atomic distance between atoms i and j. The

radius of gyration, Rg, is a common measure of the conformation of a polymer

and represents the root-mean-square distance of a collection of atoms from

their common centre of mass. We calculated Rg with VMD using the carbon

atoms in each oligosaccharide chain as:

Rg
2 =

1

n

n∑
i=1

(Ri −Rc)
2 (2)

where Rc is the centre of mass, Ri the position of atom i and n the number

of atoms. The squared end-to-end distances, d2, were measured as

d2 = (RC2 −RC4)
2 (3)

where RC4 is the position of the carbon atom C4 on the first ManNAc residue

and RC2 is the position of the carbon atom C2 (or C3 for the 19A oligosac-

charide) on the rhamnose at the terminal reducing end.

Conformations from both RU3 trajectories were clustered using VMD’s

internal measure cluster command to calculate clusters according to the qual-

ity threshold algorithm.29 Clustering was performed with a cut-off of 3.0 on

an RMSD fit to the carbon, oxygen and phosphate atoms involved in the

glycosidic linkages.
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2.2. NMR

19F and 19A polysaccharide samples were obtained from PATH’s pneu-

mococcal vaccine project. The samples (10 mg) were dissolved in D2O (0.6

mL, Aldrich) and transferred to 5 mm NMR tubes (Wilmad). NMR spec-

tra were obtained using a Bruker Avance III 600 MHz NMR spectrometer

equipped with a BBO Prodigy cryoprobe. The probe temperature was set at

303 K and the spectra were acquired and processed using standard Bruker

software (Topspin 3.2). 1H NMR spectra were referenced to the residual cell

wall polysaccharide signal at 3.23 ppm. Two dimensional NMR spectra were

collected in the phase sensitive mode, TOCSY (mixing time, 120 ms) and

NOESY (mixing time, 250 ms) using presaturation to suppress the water

resonance. Spectral assignments were based on literature assignments and

confirmed by use of 1H-1H and 1H-13C correlation experiments30,31. Linearity

of the NOE build-up curves was demonstrated using a series of 1D NOE ex-

periments (mixing times ranging from 100 to 400 ms). Inter-proton distances

were estimated from the integrated cross-peak intensities of key 2D NOESY

peaks by the isolated spin pair approximation32:

ri,j = rref

(
aref
aij

) 1
6

(4)

where ri,j is the inter proton distance to be estimated and aij the correspond-

ing cross-peak intensity. The ManNAc H1/ManNAc H3 distance calculated

from the RU3 solution simulation (2.38 Å, an r6 average) was used as a

reference distance.
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Figure 1:

3. Results and discussion

We begin our analysis of the pneumococcal capsular polysaccharides in

serotypes 19F and 19A with investigation of the conformation and dynam-

ics of the repeat unit and then progress to the preferred conformation and

dynamics of the RU3 and RU6 polysaccharide chains.

3.1. Repeating unit conformation

The repeating units in the RU3 and RU6 polysaccharides remain rel-

atively rigid in solution, as is clear from a comparison of the M14G and

G12R/G13R dihedral angle time series for RU1 (prior work14), RU3 and

RU6 simulations shown in Figure 1.

Comparison across the RU1, RU3 and RU6 simulations in Figure 1 reveals

that additional RU do not affect the distribution of dihedral angle values sig-
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nificantly. This indicates that, for both the 19F and the 19A polysaccharides,

the RU1 simulations give a good indication of the dihedral angle distribution

in the corresponding polymer. The mean φ, ψ values for the 19F G12R link-

age in the RU3 simulations are φ, ψ = -45.63◦ (15.28), -30.50◦ (27.50), while

for the 19A G13R linkage φ, ψ = -53.84◦ (13.30), -42◦ (26.50). However, the

19F repeating unit is more conformationally varied than the 19A repeating

unit: while the 19A shows a normal distribution about the mean for both φ

and ψ, 19F has two minor populations at ψ > 0◦ (≈ 10%) and ψ < 90◦ (≈

10%). This is in accordance with our detailed analysis of the single repeating

units in 19F and 19A, which showed two families of “bent” conformations

for the G12R linkage, that are not apparent in the G13R linkage.14

In these comparatively rigid repeat units, across all simulations there is

a marked difference in the relative orientation of the Rha residue in 19F

as compared to 19A. In 19F, the orientation of the plane of Rha is nearly

orthogonal to the Glc and ManNAc residues, whereas in 19A the planes of the

sugar rings are all in roughly parallel orientations - compare representative

conformations of 19F (Figure 2, left) and 19A (Figure 2 left) repeat units.

A direct measure of this difference relative orientation of the Rha are the

inter-residue H1 Glc/H1 Rha and H1 Glc/H3 Rha distances. Figure 2 shows

a time series plot of these distances for the middle residue in the RU3 unit

simulations of 19F (red) and 19A (green) (RU1 and RU6 simulations show

the same distribution). 19F and 19A show distinct, separate populations for

these distances (Figure 2, middle). The orthogonal arrangement of Rha in

19F brings the Glc H1 atom into close proximity with the Rha H1 atom,

while stretching the H1 Glc/H3 Rha distance (representative structure with
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Table 1:

19F 19A

Atomic distance (Å) exp. sim. exp. sim.

H1 Glc/H1 Rha 2.32 2.28 - 4.68

H1 Glc/H2 Rha 2.49 2.41 2.44 2.25

H1 Glc/H3 Rha - 4.57 2.81 2.66

H1 ManNAc/H4 Glc 2.33 2.30 2.19 2.31

distances indicated shown in Figure 2, left). The opposite holds for 19A:

Glc H1 is in close proximity to Rha H3, but relatively distant from Rha H1

(representative structure with distances indicated shown in Figure 2, right).

In contrast, the Glc H1/Rha H2 distance is similar for both the 19F and 19A

repeat units.

This finding is corroborated by our NMR NOESY experiments (Figure

3). The H1 Glc/H2 Rha peak is present in NOESY for both 19F and 19A

(indicating close proximity of these atoms in the polysaccharides), but the

H1 Glc/H3 Rha peak is absent in the 19F NOESY and the H1 Glc/H1 Rha
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peak is absent in the 19A NOESY. Further, the distances calculated by peak

integration (Table 1) show good agreement between simulation and NMR.

3.2. Polymer hydrodynamics

Although the repeat units are relatively rigid, in our simulations, the

three repeat unit (RU3) oligomers for 19F and 19A polymers are very mobile

- a consequence of the very flexible phosphodiester linkage. In both 19F

and 19A, the peripheral φ and ε torsions for the phosphodiester linkage are

constrained to conformations in the range −60◦ to +50◦. Rotations about

the phosphodiester linkage are therefore primarily determined by the central

phosphodiester linkage dihedrals: ψ and ω. These C-O-P-O dihedrals each

have three principal minimum energy conformations: −85◦, 85◦ and 175◦.

Although transitions between these minima occur frequently through the

simulations, both 19A and 19F favour the ψ, ω = −85◦,−85◦ conformation,

which causes a bend in the phosphodiester bond. However, 19F shows an

increased population of the secondary minimum conformation ψ, ω = 85◦, 85◦

which is associated with extension of the phosphodiester linkage.

The RU3 simulations demonstrate that the 19F and 19A R are mo-

bile, disorganised molecules that form random coils, with no well-defined

tertiary structure. There is a wide variation in Rg for both the 19F and

19A molecules (Figure 4i), which alternate between extended and compact

conformations throughout the 150 ns of simulation time. However, the RU3

simulations show a difference in average Rg (indicated by the dashed lines

in the graph Figure 4i): after discarding the first 10 ns as equilibration, 19F

has < Rg >=10.43(1.12) Å, while 19A has < Rg >=9.07(1.37) Å. As a fur-

ther comparison, for the same period the 19F RU3 oligomer shows a mean
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squared end-to-end distance of 823 Å2, while 19A has 474 Å2. 19F has a

higher frequency of extended structures (Figure 4i, conformations C and E),

19A more persistent compact structures (Figure 4i, conformations c and d).

This behaviour is a direct consequence of the different repeat unit confor-

mations for 19F and 19A, as follows. The parallel arrangement of residues

in 19A allows for close stacking of residues in successive RU’s in tight hair-

pin bends about the phosphodiester linkage (e.g. Figure 4i conformation a).

This allows for strong shifting network of Glc-Glc’ or Glc-ManNAc’ hydro-

gen bonds, an example of which is shown in Figure 4ii, where an Glc HO6 -

ManNAc’ O2 hydrogen bond is formed across the bend. These interactions

maintain the hairpin bend for up to 20 ns (e.g. conformation c in Figure

4i). Indeed, our clustering analysis reveals that the 19A RU3 strand is in

a hairpin bend conformation about one of the two internal phosphodiester

linkages for approximately 75% of simulation time. In contrast, while hairpin

bends do occur for 19F (e.g. conformation B in Figure 4i), they do not bring

successive RUs into as close enough proximity for hydrogen bonding and are

therefore comparatively short-lived: the 19F RU3 strand is in hairpin bend

conformations for only 6% of the simulation, while very extended conforma-

tions (e.g. conformation C in Figure 4i) occur for 25% of the simulation

time.

The autocorrelations of Rg for the RU3 strands indicate relative long

decay times of ≈ 5-10 ns (Figure 4iii), with 19A having the longer decay.

These extended decay times are a result of entanglements promoted by self-

interactions between methyl, hydroxymethyl and N-acetyl groups on neigh-

bouring repeating units in both 19F and 19A. The longer decay for 19A is a
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consequence of the close residue stacking that facilitates hairpin bends. This

propensity for self-entanglements has the consequence that, after 100 ns of

simulation time, the computationally expensive simulations of RU6 of 19F

and 19A cannot be said to have reached equilibrium with regards to chain

conformation, as is evident from theRg time series for these molecules (Figure

5i). However, it is also clear that the hydrodynamic behaviour of the longer

RU6 strands is consistent with the corresponding RU3 simulations, with con-

stant interconversions between compact and extended structures (compare

structures A-E and a-e in Figure 5i). Also, although the simulations have

not equilibrated, the 19F simulation shows Rg values associated with more

extended structures, whereas the trend of the 19A simulation is towards more

compact conformations. Once more, long-lived hairpin bends are prevalent

for the 19A oligosaccharide: Figure 5iii shows an example hairpin conforma-

tion, with Glc-Glc’ and ManNAc’-Glc hydrogen bonds stabilizing the bend.

4. Conclusions

Although polymer dynamics in our simulations of the 19F and 19A pro-

vides evidence of very mobile random chains for both molecules, this is a

consequence of the very flexible phosphodiester linkage: both the 19F and

19A repeating units are relatively rigid. Most significant, there is a marked

difference in the repeating unit conformation of 19F and 19A, with 19F

having Rha oriented nearly orthogonal to the Glc and ManNAc residues,

whereas 19A has the planes of the sugar rings in parallel orientations. This

finding is corroborated by NMR NOESY experiments, with distances from

peak integration in good agreement with simulation distances. Further, in
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our simulations, the 19F oligosaccharide adopts more extended conforma-

tions than 19A: tight hairpin bends around the phosphodiester linkage are

favoured in 19A by the close stacking of successive repeating units allowed

by the Glcα(1→3)Rha linkage. These structural differences could account

for the lack of cross-protection of serotype 19F vaccination against serotype

19A disease.

Therefore, we have shown that a slight difference in glycosidic linkage

conformation can have a significant affect, not only the conformation of the

repeating unit, but the polysaccharide as a whole. We are extending our sys-

tematic approach — analysis of the carbohydrate backbone from individual

disaccharide pairs to 6RU chains — to the study of closely related bacterial

capsular polysaccharide serotypes where similar structures of the capsular

polysaccharide repeating unit also elicit distinct immune responses.
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Figure and Table Captions

Table 1. Inter-atomic distances (Å) for 19F and 19A from NMR and simu-

lation.

Figure 1. Plots for 19F (left, red) and 19A (right, green) of the M14G

and G12R/G13R φ,ψ simulation time series superimposed on the cor-

responding disaccharide vacuum free energy surfaces14 for RU1 (top,

prior work14), RU3 (middle) and RU6 (bottom). The first 10 ns of

simulation were discarded as equilibration. RU3 shows time series for

the middle repeating unit only (highlighted in the structures); RU6

the time series for repeating units 3 and 4 (also highlighted in the cor-

responding structures). Structures are annotated to indicate residue

identity: ManNAc (M, green), Glc (G, blue) and Rha (R, purple).

Figure 2. Time series of the H1 Glc/H1 Rha and H1 Glc/H3 Rha distances

for the middle repeat unit in the RU3 simulations of 19F (red, top and

left) and 19A (green, bottom and right). Distances from NMR are in-

dicated by dashed lines. Representative conformations for the middle

RU are shown for 19F (left) and 19A (right), with key atoms and dis-

tances indicated. Structures are annotated to indicate residue identity:

ManNAc (M, green), Glc (G, blue) and Rha (R, purple).

Figure 3. Selected regions of the 2D 1H-1H-NOESY spectra of polysaccha-

ride serotype 19F (A) and 19A (B) recorded at 1H frequency of 600
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MHz and with a mixing time of 250 ms. Key correlations from the

anomeric protons are annotated.

Figure 4. Comparison of the hydrodynamic behaviour of the RU3 19F and

19A polysaccharides. i) Time series of the instantaneous values of the

radius of gyration (Å) for the RU3 simulations of the 19F (red line, top)

and 19A (green line, bottom) polysaccharides. Representative struc-

tures are shown (19F top and 19A bottom) and the average radius

of gyration indicated dashed lines. ii) Snapshot at 84 ns of a hairpin

bend in 19A RU3, showing stabilizing hydrogen bonding interactions

(dashed lines) between adjacent repeat units. iii) Time autocorrelation

function for the radius of gyration for the RU3 simulations in 19F (red

line) and 19A (green line).

Figure 5. Comparison of the hydrodynamic behaviour of the RU6 19F and

19A polysaccharides. i) Time series of the instantaneous values of the

radius of gyration (Å) for the RU6 simulations of the 19F (red line, top)

and 19A (green line, bottom) polysaccharides. Representative struc-

tures are shown (19F top and 19A bottom). ii) Closeup at 84 ns of a

hairpin bend in 19A, showing stabilizing hydrogen bonding interactions

(dashed lines) between adjacent repeat units.
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