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Abstract

Artificial neural networks often neglect the physical wiring
costs that are crucial to biological nervous systems. This
study investigates how incorporating such a biologically in-
spired wiring constraint influences the structure and func-
tion of Recurrent Neural Networks (RNNs) during learn-
ing. We systematically varied network size (N ) and the
strength (λ) of a communicability-weighted spatial regular-
ization penalty applied to RNNs performing a seasonal forag-
ing task requiring short and long-term memory, and decision-
making. Our results reveal that while all networks achieved
high task accuracy, larger networks (N ≥ 100) exhibited dif-
ferent sensitivity patterns to higher penalties (λ) compared to
smaller ones (N=50). Increasing λ induced neural network
topologies with similarities to biological brains, including
sparsity, shorter connection lengths (while preserving crucial
long-range connections), increased modularity, and enhanced
small-world characteristics. We identify a size-dependent op-
timum (sweet spot) for λ ∈ [0.05, 0.10] that yields these ef-
ficient, brain-like structural properties without compromising
functional performance. These results highlight the impor-
tance of physical network constraints in shaping adaptive sys-
tems, demonstrate how functional networks can self-organize
towards efficient topologies under cost pressures and offer de-
sign principles for developing neuromorphic systems.

Introduction
Biological nervous systems represent paradigms of adaptive
complexity, capable of sophisticated computation and learn-
ing within strict physical and metabolic budgets (Laughlin
et al., 1998; Bullmore and Sporns, 2012). A fundamen-
tal constraint is wiring cost, the material and energetic ex-
pense of constructing and maintaining neuronal connections
(axons and dendrites) within the brain’s physical volume
(Chklovskii et al., 2002). This pressure is thought to pro-
foundly shape brain architecture, favoring efficient network
topologies that balance computational needs with resource
limitations (Striedter, 2004). Understanding how such con-
straints influence the emergence of structure and function is
a core pursuit in both computational neuroscience and Ar-
tificial Life (ALife), which seeks to understand the essen-
tial principles governing living systems, including adapta-
tion under various constraints (Gershenson, 2023).

Recurrent Neural Networks (RNNs) have been demon-
strated as powerful tools for modeling cognitive processes
over time, successfully capturing aspects of working
memory, decision-making, and sequence processing (Barak,
2017; Greff et al., 2016; Yang et al., 2019). However,
standard RNN models are typically abstract, neglecting
the spatial embedding and associated wiring costs inherent
to their biological counterparts. This omission limits
their biological plausibility and overlooks fundamental
organizational principles governing efficient computation
in physical systems. While some studies have explored
spatial factors in network models (Kaiser and Hilgetag,
2006; Achterberg et al., 2023), there is little work on how
functionally-modulated wiring costs impact network scale
during complex learning tasks.

This study addresses this gap by investigating the inter-
play between network size (N ) and an explicit penalty mim-
icking wiring cost (λ) in RNNs. We implement a weighted
spatial regularization term (Achterberg et al., 2023) that pe-
nalizes connection weights based on Euclidean distances
between connected neurons, modulated by the connec-
tion’s role in global network communication (Estrada and
Hatano, 2008). We train RNNs of varying sizes (N ∈
{50, 100, 200}) on a seasonal foraging task designed to si-
multaneously engage working memory, long-term memory,
and decision-making. This study’s research objectives are:

1. Quantify the impact of network size (N ) and spatial reg-
ularization strength (λ) on task performance.

2. Analyze and ascertain how λ influences the learned recur-
rent connectivity structure (Wrec), given metrics for spar-
sity, connection length, modularity, and small-worldness.

3. Investigate the interaction between N and λ to understand
how scaling affects the emergence of efficient neural net-
work topologies given spatial constraints.

By systematically varying N and λ (Table 2) and analyz-
ing the resultant network dynamics, structure, and task per-
formance, we demonstrate that incorporating spatial costs



drives RNNs to develop topologies with key characteristics
observed in biological brains, such as sparsity, modularity,
and small-worldness. We find that the optimal level of spa-
tial pressure is size-dependent, suggesting a crucial trade-
off between network connection capacity, wiring economy,
and task-accomplishing capacity. Results provide insights
into the principles of constrained neural network adaptation
and offer guidelines for designing more efficient and biolog-
ically plausible artificial cognitive architectures.

Background
Biological neural networks exhibit remarkable cognitive
abilities given the coordinated activity of vast numbers of
interconnected neurons (Kandel et al., 2000). However, un-
like many abstract computational models, biological brains
are physical entities subject to fundamental biophysical con-
straints, including spatial embedding and metabolic costs as-
sociated with building and maintaining neural connections
(Laughlin and Sejnowski, 2003; Chklovskii et al., 2002).

RNNs for Sequential Processing and Cognition
RNNs process sequential data, making them powerful tools
for modeling temporal dependencies (Elman, 1991; Hop-
field, 1982). RNNs possess connections that form directed
cycles, allowing them to maintain an internal state or mem-
ory to capture information from past inputs. This is cru-
cial for modeling cognitive processes over time, such as lan-
guage processing (Sutskever et al., 2014), evidence-based
decision-making (Wang, 2002), and working memory (Gr-
eff et al., 2016). RNN architectures, such as the SimpleRNN
(Elman, 1991), and more advanced variants like Long Short-
Term Memory (LSTM) (Greff et al., 2016) and Gated Re-
current Units (GRU) (Cho et al., 2014), have been success-
fully simulated complex cognitive functions. For instance,
RNNs trained on specific tasks can develop dynamics that
mimic neural activity observed in biological experiments
during working memory delays (Barak and Tsodyks, 2014)
or context-dependent decision-making (Yang et al., 2019).

Spatial Embedding and Wiring Cost Constraints
While abstract RNN models capture temporal dynamics,
they often neglect the physical reality of biological neural
circuits. Neurons in the brain occupy physical space, and
their connections (axons and dendrites) have associated ma-
terial and metabolic costs that increase with length (Azevedo
et al., 2009; Bullmore and Sporns, 2012). This wiring cost is
considered a significant evolutionary pressure shaping brain
architecture (Chklovskii et al., 2002; Striedter, 2004). Em-
pirical evidence supports the idea that brain networks are
organized to minimize wiring costs while maintaining ef-
ficient information processing, often resulting in modular
structures and a prevalence of short-range connections (Bas-
sett et al., 2010; Kaiser and Hilgetag, 2006; Felleman and
Van Essen, 1991). The physical distance between neurons

is a critical factor since it determines the material wiring
cost, and it increases signal propagation delay, which can
impact the timing of neural computations (Buzsáki, 2006).
This suggests a fundamental trade-off between minimiz-
ing wiring cost and delay (favoring local connections) and
global integration and complex computation (favoring long-
range connections) (Bassett and Sporns, 2017). Ignoring
such spatial constraints will likely result in in computational
models with unrealistic connectivity patterns.

Spatial Constraints in Neural Models
Recognizing the importance of physical constraints, var-
ious methods have incorporated spatial aspects into neu-
ral network models, such as developmental models where
network structure emerges through growth rules and spa-
tial constraints (Kaiser et al., 2010). Others use neurons
in geometric space and introduce distance-dependent con-
nectivity probabilities or penalties during network construc-
tion or learning (Rubinov and Sporns, 2011). Regularization
techniques offer a flexible framework for incorporating such
constraints during the training of neural networks. Regu-
larization methods like L1 (Lasso) and L2 (Ridge) penal-
ize large weight magnitudes, promoting sparsity or smaller
weights, to prevent overfitting (Tibshirani, 1996; LeCun
et al., 2015). Others employ spatial-aware regularization
(Achterberg et al., 2023) that penalizes recurrent connection
weights based on the Euclidean distance between the pre-
and post-synaptic neurons embedded in 3D space. Also,
this regularizer modulates the wiring cost distance penalty
(Estrada and Hatano, 2008), to reflect the functional and
communication roles of connections in network dynamics.

Network Size, Scaling, and ALife Principles
Neural network size, the number of neurons (N ), is a crit-
ical factor influencing computational capacity and learn-
ing. Larger networks can represent more complex functions
and store more information, but also have higher metabolic
and volume costs (in biological systems) and more param-
eters and training time (in computational systems) (Hinton,
1986). How network size interacts with constraints, such as
wiring cost, is an important but little-studied question. For
example, efficient processing concomitant with increased
network size might necessitate increased modularity as ob-
served in biological brains (Grindrod and Higham, 2018).
From an ALife perspective, studying systems under con-
straints is fundamental (Gershenson, 2023). Investigating
how adaptive behavior (task performance) emerges in RNNs
under the pressures of task requirements and resource lim-
itations (implicit in size N and explicit via spatial cost λ)
aligns with the goal of understanding complex adaptive sys-
tems. The trade-offs explored in this study, between network
capacity (related to N ), connectivity cost (related to λ), and
task performance, reflect broader principles of efficiency and
adaptation relevant to biological and artificial systems.



Methods
Computational Task: Seasonal Foraging
We developed a seasonal foraging task (Nolfi and Parisi,
1996) designed to evaluate an agent’s capability to learn and
apply context-dependent rules for consuming food items.

Task Structure: Each trial comprises a season cue, a de-
lay and a food cue phase, where an agent (network) trial
duration is T = Tseason + Tdelay + Tfood = 50 steps.

1. Season Cue Phase (Tseason = 20 steps): The current sea-
son is presented to the agent (neural network).

2. Delay Phase (Tdelay = 10 steps): No external cues, and
the agent must represent season information internally.

3. Food Cue Phase (Tfood = 20 steps): A specific food item
is presented to the agent.

Input Representation: The agent receives sensory input
vectors xt ∈ RDin at each time step t. The input dimension
Din = Dseason +Dfood, where Dseason = 4 is the number of
seasons and Dfood = 6 is the number of food types (colors),
where to enhance task-accomplishing robustness, Gaussian
noise (N (0, 0.052)) is added to input vectors per time step.

During the season phase (1 ≤ t ≤ Tseason), the sensory
input is xt = [s;0food], where s is a one-hot vector
representing the current season (for example, [1, 0, 0, 0]⊤

for Autumn) and 0food is a zero vector of size Dfood.

In the delay phase (Tseason < t ≤ Tseason + Tdelay), the
sensory input is a zero vector: xt = 0in, and in the food
phase (Tseason + Tdelay < t ≤ T ), the agent’s input is
xt = [0season;f ], where f is a one-hot vector representing
the food color (for example, [0, 1, 0, 0, 0, 0]⊤ for Red) and
0season is a zero vector of size Dseason.

Output Representation: At the end of a trial, the agent
produces a decision y ∈ RDout , where Dout = 2. The
agent’s output represents the probability distribution over
two actions: Eat ([1, 0]⊤) and Don’t Eat ([0, 1]⊤).

Task Rules and Cognitive Demands: Correct decision
making depends on a combination of the season and food to
the agent presented given predefined rules (Table 1), mean-
ing seasonal foraging task accomplishment necessitates:

1. Long-Term Memory (LTM): Encodes associations be-
tween seasons and between safe and unsafe foods.

2. Working Memory (WM): Keeps the current season’s iden-
tity across delay periods when no external cue is available.

3. Perceptual Processing: Differentiating the input patterns
corresponding to distinct seasons and food colors.

Season Eat Don’t Eat
Autumn Yellow, Red Blue, Green, Purple, Black
Winter Yellow, Blue Red, Green, Purple, Black
Spring Yellow, Green Blue, Red, Purple, Black

Summer Yellow, Purple Blue, Green, Red, Black

Table 1: Seasonal foraging task: Which food colors are des-
ignated as Eat (safe) versus Don’t Eat (unsafe), per season.

4. Action Selection: Integrating the retrieved LTM rules with
the current WM state (season) and the perceived food cue
to make the appropriate binary decision.

5. Learning: Acquiring the LTM rules through experience.

Justification: The seasonal foraging task provides an en-
vironment with sufficient dynamics (sensory variation) nec-
essary to evaluate how network structure, given size and spa-
tial constraints, enables task accomplishing behaviors that
emerge in response to environmental changes over time. The
task serves as a proxy for adaptive behaviors where context
(season) modulates responses to stimuli (food) over time, re-
quiring memory and flexible decision-making.

Recurrent Neural Network Model
We use a SimpleRNN architecture implemented in Tensor-
Flow(Keras)1, where the network architecture consists of:

1. Input layer: time series data: X = (x1, . . . ,xT ).

2. A Gaussian noise layer.

3. A single recurrent hidden layer comprising N Sim-
pleRNN units, where N is a key experimental parameter
varied across {50, 100, 200}.

4. Output layer: Dout=2 units, softmax activation function.

The RNN includes a hidden state ht ∈ RN , where the
RNN layer is updated per time step t using equation 1.

ht = ϕ(Winxt +Wrecht−1 + brec) (1)

Where, Win ∈ RN×Din are the input weights, Wrec ∈
RN×N are the recurrent weights, brec ∈ RN is the bias vec-
tor, and ϕ is the activation function. We use the Rectified
Linear Unit (ReLU) activation function: ϕ(z) = max(0, z).
Recurrent weights Wrec are initialized using an orthogonal
matrix scheme. For the final classification decision, only the
last hidden state hT is passed to the output layer. In the
output layer the final output y is computed using equation 2.

y = softmax(WouthT + bout) (2)

Where, Wout ∈ RDout×N are the output weights and bout ∈
RDout is the output bias.

1https://www.tensorflow.org/guide/keras

https://www.tensorflow.org/guide/keras


Spatial Embedding, Distance-based Regularization
A key component of our approach are spatial constraints on
the network’s connectivity, implemented via a custom reg-
ularization term applied to the recurrent weight matrix Wrec.

Neuron Coordinates: We assume the N neurons of the
RNN layer are physically embedded in a 3D Euclidean
space. For each network size N , we generate a set of
coordinates {ci ∈ R3}Ni=1. These coordinates are derived
by defining a minimal cubic grid structure large enough
to contain N points, populating the grid, and selecting the
first N coordinates. This procedure ensures a consistent
spatial layout across network sizes. The Euclidean distance
between neuron i and j is denoted by dij = ||ci - cj ||2,
where distances are stored in a distance matrix D = [dij ].

Communicability-Weighted Spatial Regularization:
We introduce a regularization penalty R(Wrec) added to
the network’s loss function during training. This encour-
ages sparsity and locality by penalizing recurrent connection
magnitude |Wrec,ij | based on the physical distance dij be-
tween connected neurons, modulated by a connection’s role
in network-wide communication, as outlined in following.

1. Base Spatial Cost: The fundamental cost of a connection
is proportional to its absolute weight and the distance.

2. Communicability Modulation: To account for the func-
tional importance of connections within the network dy-
namics, we compute a communicability matrix G. First,
the absolute weight matrix |Wrec| is normalized to ob-
tain Wnorm = (diag(s))−1/2|Wrec|(diag(s))−1/2, where
s is the vector of node strengths (si =

∑
j |Wrec,ij |) and

diag(s) is the diagonal matrix of strengths (with a small
epsilon added to si for numerical stability (Rajapandian
et al., 2020)). The communicability matrix is then cal-
culated as G = expm(Wnorm), where expm denotes the
matrix exponential. Gij quantifies the ease of communi-
cation between nodes i and j through all possible paths
within the network, thus accounting for a connection’s
role in facilitating network-wide information flow beyond
its direct weight or distance (Estrada and Hatano, 2008).

3. Penalty: Equation 3 defines the final regularization term.

R(Wrec) = λ

N∑
i=1

N∑
j=1

|Wrec,ij | · dij ·Gij (3)

Where, λ is the regularization strength parameter. This
penalty discourages connections that are simultaneously
long, strong, and part of highly communicable pathways.

Training and Statistical Analysis
Learning Paradigm: Per trial, the network is input with
the sequence: (x1, . . . ,xT ) and generates an output y. The

objective is to minimize the difference between output and
the target decision ytarget (one-hot encoded correct action).

Loss Function: Equation 4 defines the standard categori-
cal cross-entropy loss function:

L = −
Dout∑
k=1

ytarget,k log(yk) (4)

Optimization: The total loss minimized during training
is Ltotal = L + R(Wrec), performed using the Adam
optimizer (Diederik, 2014) with default parameters.

Data Generation and Training Regime: Per training
run, Ntrain = 10240 trials are generated. Training proceeds
for 100 epochs, with inputs shuffled and presented in
batches of size 128. A separate validation set (Nval = 5120
trials) is used to generalize task performance during training.

Non-parametric tests were used to assess statistical signif-
icance differences in task performance and structural metrics
between network sizes (N ) per regularization strength (λ).
Per metric and each fixed λ value, we used the Kruskal-
Wallis H test (Kruskal and Wallis, 1952) to determine if
there was a significant difference among the median values
of the three network size groups based on the Nruns=20 runs
per treatment. If the Kruskal-Wallis test yielded a signifi-
cant result (p < 0.05), we performed Dunn’s post-hoc test
with Bonferroni correction (Dunn, 1964) for multiple com-
parisons to identify which pairs of network sizes differed
significantly. Test statistics and p-values are online2.

Experimental Design and Data
Experiments systematically varied two key parameters: the
network size N ∈ [50, 100, 200] and the regularization
strength λ ∈ [0.01, ..., 0.25]. For each combination of (N ,
λ), we performed Nruns = 20 independent training runs,
each starting with different random weight initializations
and training data order, to ensure statistical robustness of the
results. This enabled us to analyze how the interaction be-
tween intrinsic network scale (N ) and extrinsic spatial con-
straints λ shapes the structure, dynamics, and task perfor-
mance of the learned recurrent networks.

Experimental Setup
Experiments evaluated the impact of network size (N )
and the strength of spatial regularization (λ) on task per-
formance and emergent structure of RNNs trained on the
seasonal foraging task. Experiments varied the number of
recurrent units (N ) and the regularization hyperparameter
(λ). All other architectural, task, and training parameters

2Source code and results: https://anonymous.4open.
science/r/Spacially-aware-RNN

https://anonymous.4open.science/r/Spacially-aware-RNN
https://anonymous.4open.science/r/Spacially-aware-RNN


Table 2: Key Experimental Parameters

Parameter Value(s)

Independent Variables
Network Size (Recurrent Units), N {50, 100, 200}
Regularization Strength, λ {0.01, ..., 0.25}
Task Parameters
Number of Seasons, Dseason 4
Number of Food Types, Dfood 6
Season Cue Duration, Tseason 20 steps
Delay Duration, Tdelay 10 steps
Food Cue Duration, Tfood 20 steps
Input Noise, σ 0.05

Training Parameters
Epochs 100
Batch Size 128
Training Trials per Run, Ntrain 10240
Validation/Test Trials, Nval/test 5120
Optimizer Adam
RNN Activation Function, ϕ ReLU
Recurrent Initializer Orthogonal

Regularization Parameters
Distance Metric Euclidean

Experimental Procedure
Independent Runs per Condition, Nruns 20

(Table 2) were held constant across experiments in order to
isolate the impact of these two key variables.

Network Size (N ): The range {50, 100, 200} was chosen
to span between small networks, where resource limitations
might be significant, to larger networks capable of more
complex solutions. This enables us to observe how scaling
impacts task performance given spatial constraints.

Regularization Strength (λ): The range was a spectrum
from weak spatial influence (close to an unregularized
network) to strong spatial influence (distance penalty signif-
icantly impacts weight formation). The non-linear spacing
of values aims to capture potentially rapid transitions in
network structure or performance as the penalty increases.

Number of Runs (Nruns): We performed 20 runs per
(N,λ) treatment to ensure statistical robustness, accounting
for the effects of random weight initialization and stochas-
ticity in the training process (for example, batch sampling).

Epochs and Trial Counts: 100 epochs were sufficient
for networks to converge to stable task performance. The
number of training trials (Ntrain=10240), validation and test
set size (Ntest=5120) enabled reliable task evaluation.

Task Duration: Durations for season, delay, and food
phases defined the periods requiring perceptual processing
(Tseason, Tfood) and internal maintenance (Tdelay), ensuring
the task is suitable to test our research questions.

Results and Discussion
Experiment results report the impact of network size
(N ) and communicability-weighted spatial regularization
strength (λ) on the agent’s RNN emergent structural prop-
erties as well as seasonal foraging task capability.

Network Size Modulates Tolerance to Spatial Costs
We first examined how task performance (final accuracy on
the test set) varied with network size N and regularization
strength λ. Accuracy represents the fraction of correctly
classified trials, ranging from 0.0 (low performance) to 1.0
(perfect performance), with higher values indicating better
task execution (Figure 1). All network sizes were capable of
achieving high average accuracy (≥ 0.90) on the seasonal
foraging task, demonstrating the general general efficacy of
our selected neural architecture (Figure 1).

Performance sensitivity to the regularization strength λ
differed visually between network sizes (Figure 1). While
all networks achieved perfect or near-perfect peak accuracy
at low-to-moderate penalties, their degradation patterns
varied. The smallest network (N = 50, peak at λ = 0.03)
exhibited relatively graceful degradation, maintaining per-
formance above 0.900 throughout. Similarly, the N = 100
network (peak at λ = 0.05) also degraded gradually. In
contrast, the largest network (N = 200, peak at λ = 0.01)
was more sensitive, with a sharper drop reaching the lowest
minimum average accuracy (0.883 at λ = 0.16) despite
recovering to the highest final accuracy at λ = 0.25 (0.913).
However, these observed differences were not statistically
significant at any single λ level (Kruskal-Wallis, p > 0.05
for all λ). The lack of statistical significance, despite
differing degradation profiles, is posited to result from the
task allowing for multiple solutions, leading to a ceiling
effect for this task performance metric across networks with
adequate capacity (Barak and Tsodyks, 2014).

This task performance variation suggests larger networks,
despite greater capacity, might adopt architectures more re-
liant on specific long-range connections, rendering them
vulnerable when such connections are heavily penalized.
This resonates with observations in mammalian cortical
scaling, where increases in cortical area necessitate a dis-
proportionate increase in the volume of costly, long-range
white matter tracts (Chklovskii et al., 2002; Bullmore and
Sporns, 2012). Our results illustrate this capacity-cost trade-
off, where connections required for attaining some minimal
task performance are adapted for given spatial constraints.



Figure 1: Task Performance (Accuracy) versus regularization strength (λ) across network sizes (N ). Mean accuracy across
Nruns=20 runs is shown, illustrating high peak performance is achievable across network sizes.

Emergence of Brain-Like Network Topologies
Next we analyzed the structural properties of the learned
recurrent weight matrices (Wrec) to understand how spatial
regularization shapes the agent’s neural network topology.

Connection Length and Sparsity: Observing network
graphs2 revealed a clear trend: increasing λ favored shorter
connections, yet even under strong penalties (λ=0.25), a few
long-range connections were typically preserved. Quantita-
tively, median connection length decreased monotonically
with λ across all network sizes. Retained long-range
connections are theorized to represent functionally critical
pathways analogous to sparse but vital long-distance
fasciculi in the primate brain (Bullmore and Sporns,
2012). Concurrently, the total recurrent weight magnitude
(
∑

i,j |Wrec,ij |), indicating overall connectivity cost and
density, decreased steeply with increasing λ before plateau-
ing or slightly increasing at extreme penalties (Figure 2),
reflecting compensatory strengthening of essential local
connections. Due to scale, total weight differed significantly
between network sizes at all λ values (Kruskal-Wallis, p
< 0.0001), with all pairwise comparisons being significant
(Dunn’s test, p < 0.05), confirming that larger networks
maintain a significantly greater magnitude of connections.

Modularity: We quantified network modularity (Q)
using the Louvain algorithm (Blondel et al., 2008) (Fig-
ure 3), where higher positive values indicate stronger
segregation into communities, a hallmark of organiza-
tion in many complex biological brain networks (Bassett

et al., 2010; Sporns et al., 2004). Modularity increased
significantly with λ for larger networks (N = 100, 200),
indicating penalty-driven formation of functional clusters
(Q ≈ 0.15-0.18). Interestingly, the small N = 50 net-
work exhibited significantly higher baseline modularity
(Q ≈ 0.26) compared to larger networks at low penalties
(λ ≤ 0.05; Kruskal-Wallis, p < 0.01; Dunn’s test, p < 0.01
for N = 50 versus N = 100, N = 200) and followed a
non-monotonic, U-shaped trend. Significant differences
between sizes persisted at specific higher penalties (λ=0.10,
0.16, 0.25; Kruskal-Wallis, p < 0.05), often with N = 50
remaining distinct (Dunn’s test, p < 0.05). This suggests
size-dependent emergent structure, indicating ceiling effects
or topological phases in smaller versus larger systems given
spatial constraints (Fornito et al., 2010).

Small-Worldness: We computed the small-world coeffi-
cient σ (Watts and Strogatz, 1998; Humphries and Gurney,
2008), where σ > 1 is an efficient topology balancing local
clustering and global integration, characteristic of biologi-
cal neural systems (Bassett et al., 2010; Sporns et al., 2004).
All networks displayed small-world properties (σ > 1. Fig-
ure 4), with σ generally increasing with λ, especially for
N = 50. Significant differences in σ between network sizes
emerged primarily at intermediate penalties (λ=0.05, 0.10,
0.13; Kruskal-Wallis, p < 0.05). For instance, N = 50
was significantly higher σ than N = 200 at λ=0.05, while
N = 100 differed significantly from N = 200 at λ=0.10
and λ=0.13 (Dunn’s test, p < 0.05). Significant differences
in this intermediate regime indicate a critical point where



Figure 2: Mean total recurrent weight (
∑

|Wrec,ij |) versus regularization strength (λ) across network sizes (N ). Decreasing
weight indicates sparsification due to λ. The scale differs significantly between sizes (p<0.0001), given capacity differences.

Figure 3: Mean network modularity (Q) versus regularization strength (λ) across network sizes (N ). Higher Q indicates
stronger community structure.



Figure 4: Mean small-worldness coefficient (σ) versus regularization strength (λ) across network sizes (N ): σ > 1 indicates
small-world characteristics.

spatial cost actively forces localization, making the result-
ing balance (and thus σ) most sensitive to network size (N )
before high penalties dominate (Watts and Strogatz, 1998).

Network Size-Cost and Learning Dynamics

The regularization strength λ influenced network structure
and learning dynamics. Analysis over epochs2 indicated a
two-phase dynamic for strong penalties (λ ≥ 0.10): rapid
initial pruning and gradual stabilization. Low-λ networks
learned faster than high-λ networks, showing a trade-off
between convergence speed and finding cost-efficient solu-
tions. This dynamic is similar to developmental processes
in the mammalian cortex (Huttenlocher, 1990).

These differing dynamics result in the observed interac-
tion between network capacity (N ) and wiring cost penalty
(λ). The results highlight a crucial trade-off: while final
accuracy plateaus across sizes (Figure 1), the underlying
network cost (total weight, Figure 2) remains significantly
different, and the emergence of efficient structural proper-
ties (modularity, small-worldness, Figures 3 and 4) is most
pronounced at intermediate λ values that still permit high
task accuracy (≥ 0.95). This suggests an optimal regime
(sweet spot) where biologically plausible structural organi-
zation can be achieved without significant functional cost,
provided the spatial pressure (λ) is appropriately moder-
ated relative to the network’s scale (N ). These findings
directly address our research objectives by quantifying the
size-performance interaction (Objective 1), demonstrating

the influence of λ on emergent structure (Objective 2), and
revealing the size-dependent scaling of these effects (Ob-
jective 3). This study’s primary contribution is demonstrat-
ing that biologically plausible wiring costs can drive self-
organization towards efficient, brain-like network topologies
in functional RNNs, with the optimal balance between cost
and task performance being contingent on network scale.

Conclusion

This study demonstrated that a connection wiring cost cou-
pled with communicability-weighted spatial regularization,
guides an RNN towards sparse, modular, and small-world
topologies reminiscent of biological brains. Our main find-
ing is a critical interaction between network scale and spa-
tial constraints. Optimal regularization strength (λ) fosters
efficient structural properties without sacrificing high task
performance. Such optimal regularization scales inversely
with network size (N ). Thus, when spatial penalties are suit-
ably tuned to network capacity, one can achieve an effective
compromise by preserving a subset of long-range connec-
tions crucial for global function given predominant short-
range connections. These results highlight the fundamental
role of physical constraints in shaping the structure and com-
plexity of neural systems (Chklovskii et al., 2002; Chechik
et al., 1998), while providing future work guidelines for de-
signing neural systems bound by changing resource (energy)
(Nagar et al., 2019) and morphological (embodied) (Watson
and Nitschke, 2015; Mailer et al., 2021) constraints.
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