
Evolutionary Deep-Learning Malware Classifiers
Sabre Didi, Geoff Nitschke

Department of Computer Science
University of Cape Town

Cape Town, South Africa
ddxsab001@myuct.ac.za, gnitschke@cs.uct.ac.za

Abstract—Malware attacks remain a critical cyber-security
concern, necessitating robust solutions for both individual users
and organizations. Deep learning methods have become per-
vasive tools for malware detection and classification. However,
the evolution of malware into sophisticated forms that aim to
elude detection poses a formidable challenge to traditional deep-
learning methods. Existing techniques for generating adversarial
samples often rely on manual feature extraction and white-box
models, introducing a gap between the generated samples and
real-world scenarios. In response to these challenges, we propose
an innovative approach leveraging evolutionary learning for the
generation of adversarial samples. Our approach uses a three-
step process for malware detection. First, a trained deep-learning
malware classifier categorizes samples as benign or malicious.
Second, an evolutionary adversarial learning approach trains
and generates new malware samples. Third, competitive co-
evolution facilitates automated adaptation of malware detection
agents that are robust against attacks. We evaluate the efficacy
of our approach for adaptive malware detection via benchmark
evaluations with an established deep-learning classifier.

I. INTRODUCTION

Recently, the surge in malware threats has prompted
significant research into malware detection methods, with a
particular focus on dynamic and static analyses [1], [2]. Static
analysis entails analyzing features of binary programs without
their actual execution, as first proposed by Lo et al. [3].
While less resource-intensive and more secure than dynamic
analysis, static analysis may not capture real-time malware
behavior accurately. Whereas, dynamic analysis involves
extracting features by monitoring program executions,
making it an intuitively preferable choice for obtaining
accurate data on program behavior [4]. However, this
approach comes with practical challenges, requiring a tailored
runtime environment like a customized Virtual Machine
(VM), which can be computationally expensive, especially
with a large number of samples. Furthermore, although
malware classification research spans multiple platforms,
Windows remains a common environment, and most threats
revolve around Windows PE malware [5], and as such this
study focuses on adaptive classifiers for Windows PE malware.

To address mounting security threats posed by Windows
PE malware, extensive research efforts have been dedicated
to effective and efficient detection. Traditional signature-
based detection [6], which identifies suspicious software
by comparing its signature to a known malware database,
has been the historical norm. However, the main limitation

of such methods is in detecting only previously identified
malware, relying heavily on malware databases [5]. In the
last decade, inspired by the significant advances in Deep
Learning (DL) [7] across various real-world applications
(such as computer vision, natural language processing, and
speech recognition), a range of DL-based malware detection
methods have emerged, demonstrating effective detection of
various Windows PE malware. The effectiveness of such
DL-based methods is based on generalization capacity,
predicting new and previously unseen (zero-day) instances of
malware [8]. Recent studies have exposed the vulnerability
of various DL methods to adversarial attacks, specifically
through meticulously crafted adversarial examples [5], [9].
These examples involve slight manipulations of legitimate
inputs to deliberately confuse specific DL classifiers.

Many adversarial attacks rely on feature-space attacks,
utilizing various gradient-based methods to, for example,
generate adversarial images [10]. Security researchers
and practitioners in academia and industry have proposed
numerous attack methods and defense mechanisms over
time, addressing the growing concerns of DL method
vulnerabilities and bolstering them against increasingly
sophisticated adversarial landscapes.

The majority of research in malware classification has
traditionally centered around manually crafted perturbations,
as exemplified by recent publications introducing concepts
such as the side-effect feature arising from the inverse-mapping
problem [9]. However, this study takes the approach of
evolving malware classifiers adapted with evolving adversarial
malware samples. This approach aims to test the hypotheses
we posit. First, neuro-evolution coupled with Convolutional
Neural Network (CNN) training achieves classification accu-
racy comparable to an established DL classifier. Second, CNNs
trained and co-evolved with adversarial malware samples re-
sult in classifiers with consistently high classification accuracy
(robust to adapting malware). The key contribution of this
study is the demonstrated efficacy of competitive co-evolution
(malware detection versus malware evasion), for the automated
adaptation of DL malware classifiers, where such co-evolved
classifiers perform comparably to an established DL classifier
while yielding consistently high task performance (malware
detection) given continually adapting malware samples.

II. METHODS AND EXPERIMENTS

Methods [11] inter-leave training with malware samples and
evolving DL classifiers (section II-B) to automate adaptation
to concurrently evolving adversarial malware samples (pertur-
bations of a malware database, section II-A, II-C).

A. Malware Adversarial Detection Model

Figure 1 illustrates this study’s malware versus DL classifier
co-evolution model. Specifically, the population of CNN clas-
sifiers are initially trained on the malware dataset. CNNs are
then adapted via neuro-evolution to synthetic malware dataset
perturbations and the CNNs are then re-trained for the malware
perturbations. The next cycle of malware perturbations and
CNN neuro-evolution [12] to adapt these perturbed malware
samples then begins. Thus the malware samples undergo
simultaneous evolution while the malware detection process
introduces perturbations (applied to 80% of the malware
dataset) as per equation 1, after which CNNs are retrained.
When the detection accuracy surpasses a defined threshold
(Table I), malware sample perturbations are applied again, and
the re-training and evolution cycle repeats. Adversarial sample
extraction (perturbation) is given in equation 1.

x∗ = x+ δx = x+min||z|| s.t. F (x+ z) ̸= (F (x) (1)

Where, sample x is perturbed with δx (an added update),
making a new sample F (x+z) from the original sample F (x).

B. Evolving Deep Learner (DL) Classifiers

The individual (genotype evolved) in this study is a
DL malware classifier, represented as a fully connected
feed-forward Convolutional Neural Network (CNN), using
non-linear activation functions across the following sequence
of layers: convolution, max-pooling, convolution, max-pooling,
flattening, dense, drop-out, and dense (layers are described in
previous work [13]). In our experiments an input layer of 77
features was connected hidden layers (initialized as follows):
an 79x256 convolution layer, 39x256 max-pooling layer,
39x128 convolution layer, 19x128 max-pooling layer, 1x2432
flatten layer, 1x512 dense layer and 1x512 drop-out layer,
connected to two outputs (classification: malware, benign).
Table I presents the CNN architecture, hyper-parameters and
neuro-evolution parameters. Parameters not described here
can be found in related work [11]. To remove irrelevant
features and ensure consistency across all input samples
(section II-C) we applied principal component analysis to
reduce the number of CNN inputs (features) to 77.

We applied NEAT [12] to evolve the hidden layer connec-
tivity and weights for several CNN layers (CNN parameters
evolved are given in Table I). A population of 150 CNN clas-
sifiers were implemented using the NEAT-Python framework1,
integrated with Weight Agnostic Neural Networks (WANN)
[14]. WANN search samples a single shared weight at each
roll-out to explore neural network topology. CNN fitness is

1https://pypi.org/project/neat-python/

evaluated across multiple roll-outs, ranked according to max-
imal classification performance (portion of correct malware
classifications, Table II). Per generation of NEAT, the fittest
20% of CNNs undergo NEAT variation operations [12], where
the child population produced by this fittest 20% replaces the
current population. One evolutionary run is 100 generations
of this neuro-evolution process, where evolved DL classifier
task performance is an average over 20 runs (Table I).

C. Dataset

The population of CNN classifiers was trained using a
dataset [11] comprising both malicious and benign program
data derived from Windows Portable Executable (PE) files.
The dataset, curated from Kaggle2, included 19611 malicious
samples sourced from diverse malware repositories such as
VirusShare. The PE file format, integral to Win32 specifica-
tions, was introduced by Microsoft to facilitate program exe-
cution on the Windows operating system. Given compatibility
with most versions of the Windows OS, PE files have emerged
as the predominant conduit for malware propagation [15]. Our
dataset, where samples comprised 77 features, encompassed:

• NumberOfSections: Section table size (directly succeeds
headers) − different in malware and non-malware files.

• MajorLinkerVersion: Linker version number.
• AddressOfEntryPoint: Optional field header and entry

point address. Address is for the image base obtained
as the PE file is loaded into memory − starting address
for program images and initialization function address for
device drivers. The field is null when there is no entry
point. No entry point for a Dynamic-link Library (DLL).

• ImageBase: Address of the first byte of the image when
it is loaded into memory (usually a multiple of 64K).

• MajorOperatingSystemVersion: Number used to identify
the version of the operating system.

• MajorImageVersion: Number used to identify the version
of the image. Many benign files have more versions and
most malicious files have this feature with a value of zero.

• CheckSum: 90% of the time, when the CheckSum, Ma-
jorImageVersion, and DLLCharacteristics of a file are
equal to zero, the file is found to be malicious.

• SizeOfImage: Image size as it is loaded in memory.

D. Experiments

Experiments aimed to validate the following hypotheses:
• Neuro-evolution coupled with CNN training achieves

malware classification accuracy comparable to estab-
lished DL malware classifiers.

• CNNs trained and co-evolved with adversarial malware
samples result in DL classifiers with consistently high
classification accuracy (robust to adapting malware).

Our malware dataset comprises Windows PE binary files,
where the dataset, denoted as D, comprises x classes, each
with a size of N instances (section II-C). The training set, T ,
is a subset of a specific class within D and is employed to

2https://www.kaggle.com/datasets/amauricio/pe-files-malwares

https://pypi.org/project/neat-python/
https://www.kaggle.com/datasets/amauricio/pe-files-malwares

Fig. 1: Malware detection: Deep-learning classifier is trained with continually generated adversarial (malware) examples.

TABLE I: Method and Experiment Parameters.

Evolving DL Classifier (CNN)
Parameter Value
Input, Output Layer Size 77, 2
Hidden Layers 7

Hidden Layer Size [2, 79x256]
Weight Values [0.0, 1.0]
Epochs 100

Batch Size 1000

Activation Functions Sigmoid, Tanh
Maximum parameters 1346178

Benchmark CNN
MalConv architecture Chen et al. [16]

Evolutionary Algorithm (NEAT-WANN)
Number of Generations 100

Population size 150

Detection accuracy threshold 80%
Stop (Fitness threshold) 0.99

Activation Mutation Rate 0.2

Parent selection/replacement Fittest 20%, Generational
Experiments

Training data Section II-C
Training, validation, testing 80%, 10%, 10% data subsets
Initialization (weights) Random
Runs 20

Evaluation (fitness) metric Table II

train the elements belonging to that given class (equation 2).
This ensures a training process that enhances CNN capabilities
to discern patterns and characteristics in each class [17].
Method and experiment parameters are presented in table I.
The classification accuracy (fitness) of trained and evolving
CNN classifiers used the metrics detailed in table II.

Ti ⊆ Ni ⊆ Di, i ∈ {1, 2, 3..x} (2)

Experiments compared the training and validation accuracy
of a benchmark CNN classifier (MalConv architecture [16]),
demonstrated as especially effective for detecting various
malware. The comparison was between a trained benchmark
CNN classifier and the best evolved CNN (highest validation
accuracy). All architecture and hyper-parameters of the bench-
mark CNN are as stated in related work [16]. The comparative
task performance metric (classification accuracy) was as an
average over 20 runs (section III), computed given 20 random
weight initializations and executions of the benchmark CNN
and 10 evolutionary runs of NEAT-WANN (section II-B).

III. RESULTS AND DISCUSSION

Results indicate that co-evolving CNN malware classifiers
with adversarial malware samples (PE files) yields (on
average) faster convergence to high classification accuracy
(Figure 2, right) compared the benchmark CNN (Figure 2,
left). Our co-evolution approach yields an average (20 runs)
validation accuracy of 0.97 after approximately 75 epochs,
whereas, the benchmark CNN yields a validation accuracy
of 0.90 after approximately 150 epochs. Furthermore,
statistical tests, (Mann–Whitney U, p<0.05, [18]) indicated
a statistically significant difference between average training
and validation accuracy’s of the benchmark CNN versus
the CNN co-evolved with malware samples, where the
co-evolution approach achieved higher accuracy overall.

These results support our hypotheses (section II-D) and
underscore the benefits of co-evolving classifiers and synthetic
malware (approximating perpetually emerging real-world
malware). Specifically, these results support the efficacy of
co-evolving CNN architectures competitively with malware
samples (synthetic variants of a Windows PE file database).

TABLE II: Malware classification metrics used for all CNN classifiers.

Metric Formula Description

True Positive (TP) tp =
∑n

1 Total malware correctly predicted

False Positive (FP) fp =
∑n

1 Total benign incorrectly predicted

True Negative (TN) tn =
∑n

1 Total benign correctly predicted

False Negative (FN) fn =
∑n

1 Total malware incorrectly predicted

Accuracy TP+TN
TP+FP+TN+FN

Rate of correct predictions

Fig. 2: Left: Average (20 runs) training and validation accuracy (table II) of benchmark CNN classifier. Right: Average (20
runs) training and validation accuracy of CNN co-evolved with adversarial malware samples.

Results were further supported by comparisons with an
established CNN classifier trained on current malware
data. That is, the lower average accuracy yielded by the
benchmark CNN is a result of training and validation on a
fixed dataset (section II-C). In the latter case, datasets must
be constantly updated with the latest malware variants, where
even re-trained classifiers with careful hyper-parameter tuning
still mis-classify new malware [1], [2]. The key contribution
is thus demonstration of quick convergence to a high
classification accuracy given adapting (co-evolving) malware
samples (section II-D). This has significant potential benefits
for future automated malware applications that must rapidly
adapt to constantly emerging variants of malware across a
broad range of applications and operating systems. Given
that malware datasets for training classifiers become quickly
outdated and the emergence of malware is currently outpacing
many malware database updates, co-evolutionary classifiers,
specially adapted with co-evolving adversarial malware
samples, are a key alternative for malware classification.

With notable exceptions [19], the use of competitive co-
evolution to adapt malware detectors versus adversarial mal-
ware samples [20] has been little investigated, though such
related work supports this study’s demonstrated efficacy of
using competitive co-evolution as a means to boost the average
accuracy of malware classifiers. Also, to the authors’ knowl-
edge this study is the first example of applying competitive
co-evolution to adapt (via neuro-evolution) CNN classifiers
in company with synthetic malware samples (evolved from a
given malware dataset of Windows PE files).

IV. CONCLUSION

This study demonstrated and evaluated the competitive co-
evolution of CNN classifiers in a company with synthetic
adversarial malware samples. CNN classifiers were evaluated
according to malware classification accuracy and malware
samples were evaluated according to evasion of correct CNN
classification. This study’s key contribution was demonstra-
tion of co-evolving CNN classifiers and synthetic malware
examples as an effective means to achieve consistently high
malware classification accuracy for constantly adapting mal-
ware samples (co-evolving with classifiers). The classification
accuracy of the fittest evolved CNN classifier significantly
exceeded that of an established CNN (benchmark) classifier
trained on the same malware data, supporting the efficacy of
competitive co-evolution as an effective means for continually
adapting CNN malware classifiers in response to new emergent
malware. Overall, this research contributed a novel approach
to adaptive malware detection to potentially enhance future
malware detection systems in the face of evolving cyber
threats. Future work will expand the scope of experimen-
tation to account for various types of malware and under-
lying operating systems. The current focus is competitively
evolving increasingly robust malware classifiers in response to
increasingly sophisticated synthetic malware, where classifiers
and synthetic malware are co-evolved from a broad range of
malware datasets. An end goal is to automate the adaptation
of anti-malware classifiers in response to constantly emerging
malware, as part of larger research effort to produce perpetu-
ally adapting and self-sustaining autonomous systems [21].

REFERENCES

[1] D. Gibert, C. Mateu, and J. Planes, “The Rise of Machine Learning
for Detection and Classification of Malware: Research Developments,
Trends and Challenges,” Journal of Network and Computer Applications,
vol. 153, p. 102526, 2020.

[2] M. Gopinath and S. Sethuraman, “A Comprehensive Survey on Deep
Learning based Malware Detection Techniques,” Computer Science
Review, vol. 47, p. 100529, 2023.

[3] R. Lo et al., “MCF: A Malicious Code Filter,” Computers Security,
vol. 14, no. 6, pp. 541–566, 1995.

[4] K. Rieck et al., “Automatic Analysis of Malware Behavior using Ma-
chine Learning,” Journal of Computer Security, vol. 19, no. 4, pp. 639–
668, 2011.

[5] X. Ling et al., “Adversarial attacks against Windows PE Malware
Detection: A Survey of the State-of-the-Art,” Computers Security,
vol. 128, p. 103134, 2023.

[6] T. Alsmadi and N. Alqudah, “A Survey on Malware Detection Tech-
niques,” in 2021 International Conference on Information Technology
(ICIT), pp. 371–376, 2021.

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[8] K. Aryal, M. Gupta, and M. Abdelsalam, “A Survey on Adversarial
Attacks for Malware Analysis,” 2022.

[9] F. Pierazzi et al., “Intriguing Properties of Adversarial ML Attacks in
the Problem Space,” in Proceedings of the IEEE Symposium on Security
and Privacy, pp. 1332–1349, IEEE, 2020.

[10] X. Zeng et al., “Adversarial Attacks Beyond the Image Space,” 2019.
[11] Anon, “Anonymous Repository,” https://github.com/neatcnn/

malwaredetection, 2024.

[12] K. Stanley and R. Miikkulainen, “Competitive Coevolution through Evo-
lutionary Complexification,” Journal of Artificial Intelligence Research,
vol. 21, pp. 63–100, 2004.

[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
USA: MIT Press, 2016.

[14] A. Gaier and D. Ha, “Weight Agnostic Neural Networks,” arXiv,
vol. 1906.04358, 2019.

[15] A. Kumar, K. Kuppusamy, and G. Aghila, “A Learning Model to Detect
Maliciousness of Portable Executable using Integrated Feature Set,”
Journal of King Saud University - Computer and Information Sciences,
vol. 31, no. 2, pp. 252–265, 2019.

[16] B. Chen et al., “Adversarial examples for cnn-based malware detectors,”
IEEE Access, pp. 54360–54371, 2019.

[17] T. Wang, , C. Wu, and C. Hsieh, “Detecting Unknown Malicious
Executables Using Portable Executable Headers,” in Proceedings of the
Fifth International Joint Conference on INC, IMS and IDC, pp. 278–284,
2009.

[18] B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes.
Cambridge, UK: Cambridge University Press, 1986.

[19] S. Sen, E. Aydogan, and A. Aysan, “Coevolution of mobile malware
and anti-malware,” IEEE Transactions on Information Forensics and
Security, p. DOI:10.1109/TIFS.2018.2824250, 2018.

[20] K. Babaagba and J. Wylie, “An Evolutionary based Generative Adversar-
ial Network Inspired Approach to Defeating Metamorphic Malware,” in
Proceedings of the Companion Conference on Genetic and Evolutionary
Computation, pp. 1753–1759, 2023.

[21] G. Nitschke and D. Howard, “Autofac: The perpetual robot machine,”
IEEE Transactions on Artificial Intelligence, vol. 3, no. 1, pp. 2–10,
2022.

https://github.com/neatcnn/malwaredetection
https://github.com/neatcnn/malwaredetection

	Introduction
	Methods and Experiments
	Malware Adversarial Detection Model
	Evolving Deep Learner (DL) Classifiers
	Dataset
	Experiments

	Results and Discussion
	Conclusion
	References

