
Deep Learning Classification
for Encrypted Botnet Traffic: Optimising

Model Performance and Resource
Utilisation

Lucas Carr(B) and Josiah Chavula

Computer Science Department, University of Cape Town, Cape Town, South Africa

crrluc003@myuct.ac.za, jchavula@cs.uct.ac.za

Abstract. Detection of malicious traffic on a network is critical to
ensuring the safety and security of internet systems. Classical approaches
to this task increasingly struggle with modern networking procedures,
like encryption. Deep learning (DL) offers an alternative approach to
traffic classification problems. We address two major problem classes: (1)
botnet detection and (2) botnet family classification. For each problem,
we explore five implementations of DL architectures: a multi-layer per-
ceptron (MLP), shallow and deep convolutional neural network (CNN v1
and CNN v2), an autoencoder (AE) and an autoencoder + convolutional
neural network (AE+CNN). Our evaluation of models for each respective
problem class is based on the classification performance and computa-
tional requirements of each model. We further investigate the effect of
training the models on an input with a reduced feature space, where we
evaluate the impact this has in terms of a trade-off between computa-
tional and classification performance. For botnet detection, we find that
all models attain good (≥0.979 accuracy) classification performance on
a normal testing set; however, this performance drops fairly substan-
tially when evaluated on a set of unknown botnet families. Furthermore,
we observed a clear trend between increased feature space and mem-
ory utilisation, while finding no evidence of a trend between inference
time and feature space. For botnet classification, we found that models
which implement CNN architectures outperform others by a substantial
margin (≈6 percentage points). We observe the same trend between fea-
ture space and memory utilisation, and absence of apparent relationship
between feature space and inference time.

Keywords: Deep Learning · Machine Learning · Malware
Classification · Malware Detection · Botnets

1 Introduction

The proliferation of computers and networks as tools essential to modern life has
resulted in innumerable benefits. However, adoption of the associated technolo-
gies has created new security dynamics to consider; specifically in the form of
c⃝ The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Gerber (Ed.): SAICSIT 2024, CCIS 2159, pp. 3–29, 2024.
https://doi.org/10.1007/978-3-031-64881-6_1



4 L. Carr and J. Chavula

malicious software, or malware. Malware is an umbrella term that encompasses
various types of software designed to infiltrate systems without permission, aim-
ing to cause harm or exploit vulnerabilities, often with a financial motive [15].

While there are numerous sub-categories of malware, we focus attention on
botnets, out of recognition that the increasing number of security-vulnerable
Internet of Things (IoT) devices offer an ideal landscape for botnets [3]. A botnet
defines a distributed network of computers, or bots, infected with software that
enables the bots to be controlled by a malicious operator, or botmaster [1,17].
A botnet typically leverages one of many additional types of malware - such as
a worm - to propagate itself across multiple computers, and can incorporate a
centralised or decentralised operating procedure [17]. Moreover, botnets attempt
to hide themselves by transmitting normal traffic amongst their botnet traffic
[17]. However, a defining characteristic of botnets is the presence of command
and control channels, through which the malicious operator is able to transmit
instructions or receive information. A common instruction would be a distributed
denial-of-service (DDOS) attack, where the bots flood a target to disrupt its
service [1,3]. It is this characteristic of botnets - that the bot must at some
point connect to its botmaster - that may be leveraged to build detection models.
When a bot connects to the botmaster, a sequence of network flows, defined as
a grouping of related traffic, can be extracted from the generated traffic, from
which a deep learning (DL) model will be able to learn distinguishing patterns
[17]. DL is a field within machine learning which is defined by the use of multi-
layered architectures, enabling models to learn complex, hierarchical patterns
from data without requiring feature engineering [12,20].

Preventative measures against malware and botnets, are not a novel con-
cern; there are existing approaches to detect and block malicious traffic on net-
works. These approaches typically deploy a Network Intrusion Detection Sys-
tem, or NIDS [18]. NIDS operate by implementing a broad range of techniques
to detect and identify malicious traffic: notably, port analysis, blacklisted IP
addresses, and inspecting packet payloads [16,29]. Recently adopted practices
around networking have dampened the effectiveness of these techniques, making
NIDS which use them less reliable. Port numbers have become less reliable indi-
cators of application type; additionally, the existence of port-obfuscation enables
creators of malware to avoid detection [29]. Similarly, dynamic IP addresses and
IP spoofing make systems which filter traffic based on blacklisted IPs unreliable.
Finally, approaches which aim to detect malware by inspecting the payload con-
tents of packets flowing through the network face increasing difficulty as more
network traffic adopts encryption protocols - a Cisco report from 2017 noted
that ≈75% of analysed malicious traffic made use of encryption [26].

In recognition of the shortcomings of existing malware detection practices,
we define an objective to evaluate the effectiveness of different DL algorithms
when tasked with detection and classification of botnet traffic using network
flows. More specifically, we implement a series of binary classification models to
detect malicious traffic, and a secondary series of multiclass classification models
to classify botnet traffic into respective families. While this approach is not itself



DL Classification for Encrypted Botnet Traffic 5

novel, much of the existing literature evaluates the effectiveness of DL models in
terms of the accuracy, F1-score, False Positive Rate (FPR), and False Negative
Rate (FNR) [17,19,28].1 These metrics provide insight into classification perfor-
mance; however, we argue that insight into the computational requirements of
a model are important. A model which attains good accuracy scores might be
impractical due to its computational requirements, especially on smaller, lower-
resourced networks. Moreover, models are trained on a datasets made up of only
a subset of existing botnets, while newer botnets are continuously developed.
Evaluating models on an unseen testing set comprised of botnet families present
in their training set ignores this concept. As a result, there is greater uncertainty
into a model’s ability to generalise to newer botnets.

This paper evaluates the effect of feature space size has computational per-
formance, in terms of a model’s inference time and memory utilisation. Fur-
thermore, a supplementary set of unknown botnet families is used to evaluate
a model’s ability to generalise to zero-day attacks. More specifically, this paper
makes the following contributions:

1. Evaluate the performance of five binary classification models, an MLP, shal-
low CNN (v1), deep CNN (v2), AE, and AE+CNN, on the standard and
proto zero-day test set.

2. Implement and evaluate performance of five multiclass classification models,
an MLP, shallow CNN, deep CNN, AE, and AE+CNN, which aim to identify
respective families of botnets.

3. Evaluate how reducing the feature space, into 50% and 30% samples, effects
the memory requirements and inference time, in relation to the overall accu-
racy of a model.

2 Related Work

2.1 Classification Approaches: Payload vs. Flow Based

Network traffic is made up of discrete blocks of data, called packets, which travel
through a network. Approaches to classify network traffic typically make use of
training data comprising of either the individual packets’ payload, or network
flows. Informally, network flows represent a sequence of packets between a source
and destination [29]. Statistical features can be extracted from network flows,
which explain metrics such as the rate at which packets flow back and forth, and
the mean packet size of the flow [7].

Another approach is to use the core contents of a packet (the payload) as
training data. The notion is that the payload of malicious traffic contains at
least part of the malware binary, from which a model would be able to recognise
patterns belonging to this binary [11]. Payload based approaches face the diffi-
culty of classifying encrypted traffic - a problem that flow-based analysis avoids,
since only the packet headers are required, which are not encrypted [12]. There

1 Definitions for these are found in Sect. 5.1.



6 L. Carr and J. Chavula

have been implementations of payload-based classifiers which are able to handle
encrypted traffic [4,10,11]. These approaches typically require thorough pro-
cessing steps to prepare the data for classification, which makes payload-based
approaches ill-suited to real world application. Conversely, aggregated network
flows are comparatively easy to extract [18].

2.2 Machine Learning Approaches

Hadidi et al. [7] evaluate the effectiveness of different machine learning
approaches to botnet detection. Their approaches include Support-Vector
Machines (SVM), K-Nearest Neighbour (KNN), and Bayesian Networks (BN) to
classifying botnet traffic based of either payloads or network flows, using Detec-
tion Rate (DR) and False-Positive Rate (FPR) as evaluation metrics.23 Sim-
ulated network traffic was captured in a sandbox environment. Non-encrypted
traffic was used, so as to make their payload-classifier able to handle the traffic
captures. Notably, in the network flow preprocessing phases, identifying features
such as IP addresses and port numbers were removed from the datasets [7].
In the majority of evaluations, payload-based classifiers have been shown to be
superior to flow-based methods. Specifically, the payload-based models such as
KNN, SVM, and BN have recorded detection rates (DRs) of 1, 0.995, and 0.938
respectively. In contrast, the flow-based models have posted comparatively lower
scores, with DRs of 0.968, 0.910, and 0.838. This trend of better performance by
payload-based classifiers is also evident in terms of false positive rates (FPRs).

Yeo et al. [28] evaluate four different ML architectures (Random Forest, CNN,
MLP, and SVM) to be used as binary classifiers for botnet detection. The models
were trained on bi-directional network flows extracted from PCAPs in the CTU-
13 dataset - a dataset containing botnet traffic from 7 different families. Typical
measurements of accuracy, precision and recall were used as evaluation metrics,
while the performance of a classifier was evaluated w.r.t an individual botnet
family.

2.3 Autoencoders

Autoencoders (AE) are a type of unsupervised learning algorithm that aim to
compress input data into a lower-dimensional “latent” vector. As output, an
approximation of the input is reconstructed from the latent vector, through a
decoding process [6]. When applying AEs to classification tasks, the decoding
process can be replaced with a classification layer (like a softmax or sigmoid
layer). The encoding portion of the AE focuses on detecting crucial features in
the input data and encoding them into a condensed representation. This process
of dimensionality reduction ideally encodes the most significant features which
aid the subsequent classification layer.

2 Detection Rate is identical to Recall.
3 DR and FPR defined as TP

TP+FN , FP
FP+TN , respectively.



DL Classification for Encrypted Botnet Traffic 7

Deep Packet, an approach proposed by Lotfollahi et al. [11], is a system which
incorporates both feature extraction and classification stages. This approach is
not directly related to malware detection or classification, and instead aims to
identify major traffic classes or application. While this is a significant divergence
from the aims of our paper, the approach to solving their problem using DL
has strong parallels to ours. They propose a five-layered Stacked Auto Encoder
(SAE) connected to a softmax layer, and 1D-CNN as classifiers made up of two
convolutional layers and a softmax layer [11]. Following convention, Precision,
Recall and F1-score were the chosen evaluation metrics.

2.4 Convolutional Neural Networks

Convolutional neural networks (CNNs) have become increasingly popular algo-
rithms for classification [14]. Typically CNNs work with grid-like inputs, such as
an image, where a convolutional operation will sweep over the grid, producing a
feature map which represents significant areas of the input. These feature maps
enable the model to learn identifying spatial patterns in data. Most applications
of CNNs use two-dimensional image data, or image-representations of streams of
one-dimensional data. However, the fundamental principle of a sequence of con-
volutional layers that identify increasingly complex patterns in the data holds
for inputs which are not grid-like in nature - for instance, a network flow, which
is a one-dimensional vector [2].

Maŕın et al. [12] used flow-based and packet-based approaches to detect (a
binary classification) and further classify (a multiclass classification) botnet traf-
fic. These approaches implement a 1D CNN which is connected to an LSTM.
For the binary classification task, the flow-based approach is the best model by
a significant margin, with an accuracy of 0.986, compared to the packet-based
model’s 0.776. They note the flow-based model is able to achieve this accuracy
with a FPR of ≈0.025. For the multiclass classification, they were unable to use
a flow-based approach due to limitations relating to their dataset. Bearing this
in mind, their packet-based model, which aimed to classify traffic into classes of
Benign, Neris, Rbot, and Virut, attained accuracies of 0.878, 0.635, 0.999, and
0.547 for each respective class, with an overall accuracy of 0.765.

Pektas & Acarman [17] proposed using a deep neural network (DNN) as a
binary classifier for botnet detection. They employed the CTU-13 dataset for
botnet captures, which was also used in Yeo et al. [28]. To process the data,
they constructed a graph representation of the network captures where nodes
represent connected hosts. This approach allowed them to extract statistical
information about network flows. Alongside source and destination IP addresses
and port numbers, they computed five statistical metrics for each flow: mean,
median, maximum, minimum, standard deviation. These metrics were applied
to the duration, byte size, number of packets and periodicity of each flow. For
evaluation, they focused on accuracy, precision, recall, and the F1-score.



8 L. Carr and J. Chavula

3 Datasets and Preprocessing

Detection and classification of botnet traffic using DL algorithms is a task that
lends itself towards supervised learning. Supervised learning requires the use
of high quality, labelled datasets with sufficient samples for the training and
evaluation process - the existence of such datasets is rare [26].

Network traffic is typically captured through programs like WireShark, where
the information is stored in PCAP files. For the task at hand, network flows,
and ideally bidirectional network flows, are extracted from these PCAP files, and
preprocessed into suitable training data. We developed a preprocessing pipeline
which received traffic captures in the form of PCAP files as input, and after a
series of steps, outputted datasets in the form of .csv files. Information concerning
the original source of the dataset is discussed in Sect. 3.1, after which Sect. 3.2
describes the preprocessing steps taken in the pipeline.

3.1 Dataset

The Stratosphere Research Laboratory host an online repository4 of mali-
cious and normal network captures. Specifically, they have created the CTU-
13 dataset, which contains network captures of real traffic from seven distinct
botnet families [5]. The dataset is made up of thirteen captures; each capture
containing the malware binary, extracted network flows, and a PCAP file con-
taining only botnet traffic from that scenario’s capture (these PCAP files have
had their normal and background traffic removed due to privacy considerations)
[21].

The bidirectional network flows provided by the CTU-13 dataset, which were
extracted using the open source tool, openArgus, offer comparatively limited
information, relative to what could be extracted when using CICFlowMeter [8].5
Consequently, only the PCAP files containing botnet traffic were used from this
dataset. These were then supplemented with the Stratosphere Research Labo-
ratory’s repository of normal captures, which are captures of network activity
which imitate a typical user’s activity on a network, and are restricted to con-
tain only benign network activity. The inclusion of benign traffic was necessary
in order to facilitate the measurement of True Negatives and False Positives; as
well as encourage models to be able to generalise to a real-world environment
[22].

Captures 10 and 11 were omitted from the CTU-13 collection, as they were
instances of a malware family which had sufficient representation from the
remaining scenarios. The resultant eleven scenarios were supplemented with five
‘normal’ captures.

For the binary classification process, the botnet families Murlo and NSIS-ay
were excluded from the training and testing sets. This was to enable the cre-
ation of an additional testing set, hereafter referred to as the ‘proto zero-day’

4 The repositories can be found at: www.stratosphereips.org/datasets-overview.
5 openArgus can be found at: https://openargus.org.



DL Classification for Encrypted Botnet Traffic 9

set, which contained botnet families to which the model had not been exposed.
Unlike traditional test sets, which present models with unseen instances of known
botnet families, our set introduces entirely new categories. This additional mea-
sure is analogous to concept of zero-day attacks, which are malware attacks
that have never appeared before [30]. While measuring a model’s exact ability
to detect zero-day attacks would be impossible, we argue that this approach
reasonable indication of the model’s performance when encountering previously
unseen attacks.

3.2 The Pipeline

Illustrated in Fig. 1, the preprocessing pipeline begins with a collection of PCAP
files representing traffic captures. These were the eleven botnet captures and
five normal captures. Individually, each PCAP represents a capture of either
entirely normal traffic, or a single botnet family [5]. The bi-directional network
flows were extracted using CICFlowMeter [8]. The extracted flows from each
PCAP file would be stored in a corresponding .csv file.

Fig. 1. Illustration of the preprocessing pipeline, showing the divergence in processing
steps for the binary and multiclass classification datasets

Flow Extraction and Labelling. An essential part of the preprocessing was
to assign accurate labels to the data. The CTU-13 dataset includes labelled bi-
directional network flows for each scenario, extracted with the openArgus. How-
ever, these flows are not as detailed as flows extracted using an alternative tool:
CICFlowMeter [8]. A consequence is that flows extracted using CICFlowMeter
needed to be labelled manually. The nature of the sourced PCAP files was that
they contained either entirely malicious or entirely benign traffic [21]. As such,
the labelling process was straightforward to implement: the labels corresponding



10 L. Carr and J. Chavula

to the flows generated from the previous stage could be identified by knowing
which PCAP file the flows originated from - which was simple to do, given that
each PCAP file would produce a single .csv of its extracted flows. The labelling
process was automated through a python script, FlowLabeller.py.

For the binary classification dataset, the data was either labelled as 0 indi-
cating benign, or 1 meaning malicious. For the multi-class classification, benign
traffic was labelled 0, and the malware classes were labelled from 1-7.

Feature Selection. The bidirectional flows are one-dimensional vectors, made
up of 82 features. Each feature is a specific measurement of how the data behaves
in the flow, from which patterns can be learned during the training process. For
example, there is a feature (Total Fwd Pkt) which provides the total number of
forward flowing packets in the bi-directional flow. However, we recognised that
allowing certain features to persist in the dataset could potentially be detrimental
to the models’ classification performance.

Features relating to IP addresses and port numbers were removed. Dynamic
IP address, port-obfuscation and IP spoofing are techniques which make relying
on these features for classification a poor idea [7,18]. Additionally, the models
should be able to generalise to unseen data as best as possible, and inclusion of
these features in the training set is antithetical to this goal, since they are not
intrinsic to the identity of the malicious traffic [18].

In the end, each bi-directional flow is represented as a one-dimensional vector
with 75 features. We then create two additional datasets containing a random
sample of 50% and 30% of the features (37 and 22 features, respectively). This
would facilitate investigation into how reducing the feature space might lower
memory requirements and inference time, and what effect it would have on
classification performance.6

Balancing. The datasets for the binary classification task were balanced to have
an even distribution of benign and malicious samples. The malicious samples
were made up of Neris, Rbot, Virut, Menti, and Sogou botnet families. Murlo
and NSIS.ay families were excluded as they were used for the creation of the
proto zero-day dataset. The approximately 110, 000 malicious flows were down-
sampled to 59, 000, which was the number of benign samples in the dataset; the
datasets were split into training, validation, and testing sets in a 72%, 8%, and
20% ratio.

To balance the classes in the datasets for multiclass classification, we ensured
that classes would have a sufficient number of respective samples, so as to allow
the model to train well on that class. Empirically, we determined that a class
required a minimum of 30, 000 samples in order for the classifiers to perform effec-
tively. A consequence of this being that botnet families Sogou, Menti, NSIS.ay,
and Murlo were removed from the training set. As indicated in Table 1, these
families did not have enough samples for practical up-sampling. The resultant

6 The specific features present in these datasets are described in Table 2 in the
Appendix.



DL Classification for Encrypted Botnet Traffic 11

Table 1. Botnet Families and Network Flows from the CTU-13 Dataset with additional
Benign Traffic

Family #Flows Family #Flows

Neris 190, 028 Sogou 72

Rbot 46, 796 dMurlo 11, 537

Virut 85, 779 NSIS.ay 7, 645

Menti 4, 810 Benign 56, 665

dataset included traffic labelled as benign, Rbot, Virut, or Neris. These classes
were then down-sampled to consist of 45000 samples each; the datasets were
split into training, validation, and testing sets in a 72%, 8%, and 20% ratio.

4 Implementation

4.1 Hyperparameter Tuning

The performance of a DL model is heavily influenced by hyperparameters. Dis-
covering optimal hyperparameters typically involves references to existing lit-
erature, and exploring iterations of training slightly different models and eval-
uating which parameters yield better results (for example, Grid-Search). This
process is both computationally expensive and time consuming. We adopt an
alternate approach using an extension of Keras Tuner called Hyperband [9,13].
Starting with a predefined set of options, including ranges of layer sizes, acti-
vation functions, learning rates, and dropout rate, Hyperband adopts an early-
stopping strategy to identify promising combinations of hyperparameters. These
are trained for a small number epochs to assess their performance. The top-
performing configurations are kept for further training, while the rest are dis-
carded. This process is iterated until the algorithm converges on a network topol-
ogy and set of hyperparameters that yield near-optimal performance [9].

4.2 Architectures

To achieve our aims of both detecting and classifying botnet traffic, we decided
that for each model, we train a binary classifier (for botnet detection) and a
multiclass classifier (for botnet classification). This section describes the topology
and hyperparameters of each model - arrived at through implementation of the
Hyperband process discussed in Sect. 4.1.

Multilayer Perceptron. The MLP is, by design, our simplest model. The MLP
binary classifier has an input layer, connected to a single densely connected layer
with 33 neurons using the Tanh activation function. The output of this layer is
fed into another densely connected layer with a Sigmoid activation function for



12 L. Carr and J. Chavula

classification. The architecture for the multiclass classification model is markedly
similar, the difference being an increase in the size of the hidden layer, with 128
neurons, and a classification layer which uses a Softmax function.

Convolutional Neural Networks. For both classification tasks we introduced
two CNN architectures inspired by the implementations of 1D-CNNs as per
[25,29]. Each task has a respective shallow CNN (CNN v1), and deeper CNN
(CNN v2). Across all models, we adopted the Adam optimiser during the train-
ing phase, which has had widespread success in related literature [11,26,29].
Furthermore, all networks shared a common filter size of 3 × 1, with a stride of
1. Following these convolutional layers, MaxPooling was employed as a down-
sampling technique to reduce spatial dimensions and retain critical features of
the input.

With respect to the binary classifiers, CNN v1 had two 1D convolutional
layers made up of 128 and 416 filters, respectively. The output from the final
MaxPooling layer was flattened, and fed into a densely connected layer with 352
neurons. A final Sigmoid layer was used for classification. CNN v2 implemented
three 1D convolutional layers, with 40, 136, and 232 filters. After the final Max-
Pooling layer, a dropout of 0.5 was introduced to combat overfitting. The result
was flattened, and channelled into a dense layer of 104 neurons, followed by
another dense layer of 40 neurons before a final Sigmoid layer for classification.
Aside from the classification layer, all applicable layers made use of the Rectified
Linear Unit (ReLU) activation function, which introduced non-linearity to the
model - a decision determined through the hyperparameter tuning process.

For multiclass classifiers, CNN v1 had two 1D convolutional layers made up
of 232 filters each; after the second MaxPooling layer, the output was flattened
and inputted to densely connected layer of 72 neurons, before a final Softmax
classification layer. CNN v2 implemented three 1D convolutional layers, made
up of 232, 104, and 40 filters, respectively. After the third MaxPooling layer,
we introduced a 0.5 dropout to the model for overfitting. The output was then
flattened and inputted to a densely connected layer of 296 neurons, after which
another dropout layer of 0.25 was introduced. Two more densely connected layers
sized 456, and 168 were implemented before the Softmax classification layer.
The dense and convolutional layers used the Tanh activation function - the
decision to implement Tanh was made through empirical findings, through the
hyperparameter tuning process.

Autoencoders. The architecture of the AEs we implemented for the binary
classification and multiclass classification problems were very similar, with differ-
ences appearing in the size of the layers. Drawing inspiration from [11], each AE
had five fully connected hidden layers, and a classification layer (Sigmoid or Soft-
max). The sizes of these layers for the binary classifier were [232, 72, 40, 104, 232],
whereas the multiclass classifier has layers sized [168, 104, 104, 40, 104]. Both the
binary and multiclass classifiers implement a Tanh activation function in each
layer.



DL Classification for Encrypted Botnet Traffic 13

AE+CNN. The AE + CNN is an ensemble of the previously implemented AE
and CNN v1. For the binary classification task, five densely connected layers
were used for the encoding process, which had 136, 136, 72, 104, 136 neurons,
respectively. The output from the fifth layer was reshaped in order to be suitable
input for the CNN. Subsequently, two one-dimensional convolutional layers were
implemented with 64 and 32 filters, respectively. Each convolutional layer was
followed by a MaxPooling layer, where the final MaxPooling layer was flattened
and channelled into a densely connected layer with 8 neurons, connected to the
final classification layer which used the Sigmoid activation function. All of the
applicable layers used a ReLU activation function, and the Adam optimiser - for
the same reasons as before.

The multiclass AE+CNN implemented a similar architecture, with five
densely connected encoding layers with 136, 104, 72, 40, 104 neurons, respectively.
The same reshaping and subsequent convolutional and MaxPooling layers were
included, with 32 and 96 neurons in each respective convolutional layer. These
layers, where applicable, implemented a Tanh activation function, as opposed
to the binary classification model’s ReLU. A final softmax layer was used for
classification.

5 Experiment Design

5.1 Evaluation Metrics

To evaluate the performance of a model, we use accuracy, FPR, FNR, mean
inference time (MIT), and mean memory usage (MMU). While accuracy is a
standard metric w.r.t. determining the effectiveness of a classifier, much of the
related work prefers F1-score [10,11,18]. The advantage F1-score offers is that
it provides a fairer representation of a model’s performance in the case of unbal-
anced datasets [27]. In our case, measures were undertaken to ensure a balanced
training and testing set; consequently, accuracy was preferred to F1-score.

FPR quantifies the fraction of benign results incorrectly identified as mali-
cious by the model [7]. Conversely, FNR measures the proportion of actual
threats misclassified as benign. In the context of intrusion detection systems,
both metrics are important. High FNRs undermine the essential purpose of an
IDS - to detect threats. On the other hand, an elevated FPR can erode trust
in the system. If users are frequently alerted to false threats, they may begin to
ignore genuine threats [7]. These metrics are defined as:

Accuracy =
TP + TN

TP + FP + FN + TN

FPR =
FP

FP + TN

FNR =
FN

FP + FN



14 L. Carr and J. Chavula

where TP refers to true positives, TN to true negatives, FP to false positives,
and FN to false negatives.

MIT and MMU provide the mean time for a model to make an inference,
and memory required to make 100 inferences, respectively. These measurements
require multiple iterations of measurements for each model, in order to extract
the mean. An alternate approach of taking the worst-case performance of these
measurements was considered. The advantage of a worst-case measurement is
that it enables us to infer the hardware specifications needed to implement the
model without fear of failure, providing an upper bound on the memory usage
or inference time. However, we recognise that there are significant difficulties in
ascertaining accurate measurements of memory usage or CPU time, (see Sect.
5.2 for further discussion of these challenges).

5.2 Binary Classification Task

Classification Performance on Normal vs Proto Zero-Day Test Sets.
This experiment establishes a baseline evaluation of how MLP, CNN v1, CNN
v2, AE, and AE+CNN perform, in terms of classification accuracy, FPR, and
FNR on the conventional testing set. Subsequently, these models are evaluated
on the additional testing set, as discussed in Sects. 3.1 and 3.2 to ascertain their
ability to generalise to unseen botnet families. Accuracy is determined through
the use of the Keras framework’s ‘evaluate’ function. For calculation of FPR
and FNR, a model makes predictions on a testing set which are compared with
the set of ground truths to determine the FP, FN, TP, TN values used in the
formulas outlined in Sect. 5.1.

Effect of a Reduced Input Feature Space on Computational and Clas-
sification Performance. While DL has largely alleviated the necessity for fea-
ture engineering, as is present in machine learning, larger feature spaces typically
incur a greater computational cost [11,20]. We aim to explore the relationship
between computational and classification performance of the five DL models
when trained on inputs of 100%, 50%, and 30% of the feature space.

We define computational performance as the memory usage (MMU) and
inference time (MIT) of a model. Determining accurate values for these met-
rics presents significant difficulties: during the execution of a program, there are
invariably other processes running concurrently. Furthermore, memory manage-
ment of an operating system is largely beyond our control. Empirically, we found
that a when a program iterated over each model, measuring memory use and
inference time, there was a consistent increase in memory consumption with each
subsequent iteration, irrespective of model complexity. To minimise the potential
impact these factors may introduce, we elected to measure the inference time and
memory utilisation across batches (b = 10) of the test dataset, each batch com-
posed with fixed number of samples (n = 100). In this approach, the system was
rebooted after each subsequent evaluation of a batch. Memory use was measured



DL Classification for Encrypted Botnet Traffic 15

using the ‘Memory Profiler’7 python package, which provides a list of memory
usage taken at snapshots during the program’s execution. We record the model
and memory usage for each batch, extracting the mean usage from these results.
Inference time was determined using the ‘timeit’ package from Python’s Stan-
dard Template Library [23]. We measure and record the time taken for a model
to make predictions over a batch, extracting the mean from these records. We
implement this procedure three times for each model, using training and testing
sets containing 100%, 50%, and 30% of the available features.

5.3 Multiclass Classification Task

Multiclass Classification Accuracy for Each Botnet Family. This exper-
iment evaluates the MLP, CNN v1, CNN v2, AE, and AE+CNN models to
determine their overall accuracy scores, as well as their accuracy scores for each
specific botnet family. Metrics like FPRs and FNRs are not applicable to multi-
class classification problems, as they require a binary relation. It is still useful,
however, to determine how each model performs relative to each class in the mul-
ticlass classification. We evaluate each model on the normal testing set only, and
from this evaluation we are able to determine a general accuracy for each model,
as well as the accuracy of each model respective to the available classes. Reit-
erating the discussion from Sect. 5.1, we use accuracy because we have ensured
that each class has an equal representation of samples, at 8000. For each model,
we make classifications using the Keras Library’s ‘predict()’ method, and store
the results in a confusion matrix.

Evaluating the Effect of a Reduced Input Feature Space. We evaluate
how datasets with reduced feature spaces influence the computational and clas-
sification performance of models. More specifically, five models are trained on
three datasets containing a random sample of 100%, 50%, and 30% of the total
features - this translates to datasets with 74, 37, and 22 features, respectively.
We then observe the effect that a reduced feature space might have on a single,
or group of models’ computational and classification performance. We regard
the computational performance to be the MIT and MMU of a model, while clas-
sification performance is largely defined as a model’s accuracy across all classes,
with a secondary focus on the portion incorrectly classified traffic. This latter
focus enables us to determine which models might struggle to classify specific
families, or if certain families are poorly classified by all models.

We determine the MIT and MMU by taking measurements over a series
batches (b = 10) containing a fixed number of samples (n = 100).

7 Memory Profiler can be accessed at https://github.com/pythonprofilers/memory pro
filer.



16 L. Carr and J. Chavula

6 Results and Discussion

In the following, we present and discuss the findings from the experiments out-
lined in 5. We begin with the discussion of binary classifiers, followed by multi-
class classification results.

6.1 Binary Classifiers for Botnet Detection

Performance on Normal and Proto Zero-Day Test Sets. Figure 2 displays
the accuracy, FPR, and FNR of the MLP, CNN v1, CNN v2, AE, and AE+CNN
when evaluated on the normal and proto zero-day testing sets. Performance on
the normal testing set provides an indication of a model’s ability to generalise to
unseen traffic that belongs to botnet families which were present in the training
set. On the other hand, results relating to the proto zero-day testing set relates
to a model’s ability to classify traffic from botnet families which were entirely
excluded from the training set.

Fig. 2. Sub-Figures A, B, and C, respectively, show Accuracy, False-Positive Rates, and
False-Negative Rates of each model when evaluated on the normal and proto zero-day
testing sets.



DL Classification for Encrypted Botnet Traffic 17

All models achieved relatively high (≥0.979) accuracy scores when evaluated
on the normal testing set. The MLP, our least complex model, attained a score
of 0.986, indicating that the task of botnet detection from known families is
fairly simple. The CNN v2 attained the highest classification accuracy of 0.993,
while the AE was the lowest with a score of 0.979. A possible explanation for
the poor performance of the autoencoder models is that latent vectors created
by the encoding phase fail to capture some distinguishing features of the input
data. When comparing best and worst models - CNN v2 and AE - there is
an absolute improvement by the CNN v2 of 0.014. While this improvement is
small, we calculate that the error rate of the CNN v2, at 0.007, represents a
0.667 reduction in errors relative to the error rate of the AE, at 0.021.8

To recognise the significance of this reduction, we need to contextualise the
problem. Networks are often required to handle a large volume of traffic; for
example, a network on a college campus with 10, 000 users may see a typical
transfer of 7TB of data every 24 hour period [24]. For an intrusion detection
system monitoring this network, a relative reduction in error rate of 0.667 could
entail thousands of fewer errors.

These errors can be broken down into two categories: false negatives and false
positives. From this, we determine the FPR and FNR for each model. When FPR
was evaluated on the normal testing set, the CNN v2, AE+CNN, and MLP were
the best performers with FPRs of 0.008. The CNN v2 attained an FPR of 0.016.
The poorer performance of the CNN v2 in comparison to the CNN v1 might be
explained by the increased complexity of CNN v2, with the additional convolu-
tional layer and fully connected layers causing overfitting. The worst performer
w.r.t FPR was once again the AE, with a measure of 0.030. It is difficult to
suggest an acceptable tolerance for FPR and FNR: factors around the type of
information being secured, the size of the organisation, and general security pos-
ture may all influence what might be deemed acceptable. However, the FPRs
achieved by the CNN v2, AE+CNN, and MLP, with respective accuracies of
0.993, 0.983, and 0.986, present an improvement on existing work [12,28].

Evaluation on the proto zero-day testing set showed a decline in performance
in terms of accuracy, FPR, and FNR across all models. The best performing
model w.r.t. this classification performance was the CNN v2, which achieved
an accuracy of 0.842, FPR of 0.038, and FNR of 0.255. The same model eval-
uated on the normal testing set achieved scores of 0.990, 0.016, and 0.004 for
each respective metric. The decline in classification performance aligns with
our understanding that distinct botnet families are likely to exhibit, at least
partially, different behaviour. It is this difference which causes the models to
struggle when classifying traffic belonging to families entirely excluded from the
training set. However, the model’s performance on the proto zero-day testing set
remains a significant improvement on guessing. We suggest that an explanation
for this improvement rests on the notion that while there are certainly some
differences, distinct botnet families must express certain shared behaviour that
is not present in benign traffic. This would be behaviour intrinsic to all sampled

8 Formulas and calculations provided in Appendix.



18 L. Carr and J. Chavula

botnet families, as opposed to behaviour distinct to individual families. This
shared behaviour among botnet families is what a model would recognise in the
proto zero-day testing set.

There was also a more pronounced degree of variability in classification per-
formance of the five models when evaluated on the proto zero-day testing set,
relative to the evaluation based on the normal testing set. For instance, the mean
accuracy, over all five models, when evaluated on the proto zero-day testing set
was 0.783 with a standard deviation of 0.047. In contrast, when evaluated on
the normal testing set, we determined a standard deviation of 0.005 around a
mean of 0.986. This variability indicates that there is a fairly substantial differ-
ence between each models’ ability to learn the more complex, intrinsic botnet
behaviour which enable better detection of unknown botnet families.

From these two ideas - that good performance on the proto zero-day testing
set requires learning more complex behaviour patterns intrinsic to all botnets,
and that there is greater variability in model’s classification performance when
evaluated on the proto zero-day testing set - we make the claim that certain mod-
els, specifically models which implement convolutional layers, are significantly
more capable of learning these more complex patterns. We ground this claim
in the observation that the CNN v1, CNN v2, and AE+CNN achieved accura-
cies on the proto zero-day set of 0.842, 0.793, and 0.810, respectively, whereas,
the AE and MLP achieved accuracies of 0.732 and 0.740. A potential expla-
nation for the efficacy of convolutional layers towards learning these behaviour
patterns is that they are particularly good at learning patterns which emerge
from the relationship between closely related features - which may represent the
more intrinsic behaviour general to all botnets. The AE and MLP are able to
achieve high (>0.979) accuracies on the known botnet families because they can
learn the defining features of each individual family, as opposed to learning some
underlying pattern seen in all families. This is sufficient for binary classification
on known families, but generalises poorly to classification of unknown families,
because these ‘defining’ features may not be present.

Effect of a Reduced Input Feature Space on Computational and Clas-
sification Performance. Sub-Fig. 3C and 3D show the MIT and MMU for each
model when using 30%, 50%, and 100% of the available input feature space. From
Fig. 3D, we observe a small but clear trend whereby increasing the feature space
of a model’s input has an associated increase in the memory usage of that model.
This result aligns with the position outlined by Sarker [20], that the absence of
feature engineering in DL may increase computational requirements of DL mod-
els. While the trend is consistent across all models, the proportional increase in
memory is small; going from feature spaces of 30% to 100% (that is, 22 to 74 fea-
tures), we observe a mean increase in MMU of ≈10%. In the most extreme case,
CNN v1, the jump from 30% to 100% of features saw an increase in MMU of
≈90 MB, or 20.726%. For CNNs, an explanation for the relatively small increase
to MMU when given larger feature spaces is likely found in their use of sparsely
connected layers and parameter sharing, which reduce the number of trainable
parameters in a model.



DL Classification for Encrypted Botnet Traffic 19

Fig. 3. Figures illustrating model performance on testing sets comprised of 30% (22
features), 50% (37 features), 100% (74 features) of total features. The figures show
Normal Accuracy (A), Proto Zero-Day Accuracy (B), Mean Inference Time (C), Mean
Memory Usage (D), False Positive Rate (E), False Negative Rate (F), False Positive
Rate on Zero-Day set (G), and False Negative Rate on Zero-Day set (H).



20 L. Carr and J. Chavula

From sub-Fig. 3D, we observe that the CNN v1 sees the largest increase in
memory utilisation when evaluated on larger feature spaces. However, larger
feature spaces in this model also result an improvement to classification perfor-
mance. From sub-Fig. 3A, the normal accuracy improves from 0.968 to 0.993,
sub-Fig. 3E shows that the FPR improves from a rate of 0.027 to 0.008, and
FNR (sub-Fig. 3F) improves from a rate of 0.037 to 0.006. These improvements
to classification performance when using larger feature spaces are significant.
Moreover, they are, to lesser extents, observable in the four other models. Con-
sequently, we make the claim that the increase in memory utilisation associated
with larger feature spaces is justified by the improvements made to classification
performance, given the informal notion that it is easier to buy more memory
than it is to attain higher classification accuracy.

This argument is made clearer when we evaluate the impact of a reduced
feature space on the proto zero-day testing set. To this end, sub-Fig. 3B shows
that the best performing model using 100% of features, in terms of accuracy,
was the CNN v2 with a score of 0.842. When this model was trained and tested
on the set of 30% of features, the accuracy declined to 0.751. Furthermore, sub-
Fig. 3G shows that the FPR increased from 0.038 to 0.076, and similarly that
the FNR declined from 0.255 to 0.389, evident in sub-Fig. 3H. An explanation
for the more significant decline in classification performance when evaluated on
the proto zero-day set compared to the normal testing set is that detection of
botnet traffic from a range of known botnet families is a fairly simple task,
enabling (relatively) high accuracies to be obtained with fewer features. On the
other hand, echoing the discussion in Sect. 6.1, detection of botnet traffic from
a range of unknown botnet families requires models to learn complex patterns
shared by all botnets, which the datasets with reduced feature spaces are not
rich enough to support.

6.2 Multiclass Classifiers for Botnet Classification

Classification Accuracies of Each Model Overall, and for Each Botnet
Family. The classification performance of each of the five multiclass classifiers is
shown in Fig. 4; each model has a corresponding confusion matrix which displays
its predictions, and enables evaluation of how the model performs w.r.t. each
botnet family. Sub-Figure 4F offers a holistic representation of all the models’
performance on each respective family. Evident in Fig. 4F, the overall accuracies
of the models when classifying traffic into respective families of Benign, Neris,
Rbot, and Virut were expectedly lower than the binary classification task model
accuracies, with a mean accuracy score across all classes of 0.850, compared to
0.986. The best performance was observed in the CNN v1, which achieved an
average accuracy across all families of 0.907. We observed that there was again
a marked improvement, in terms of overall classification accuracy, seen in the
models which used convolutional layers, with the exception of the AE+CNN
model. CNNs are known for their efficacy when learning hierarchical relation-
ships between features, which is a useful way of reasoning about the necessary
and sufficient conditions when making a classification [6]. In the context of this
classification task, this ability may be an explanation for their performance, as



DL Classification for Encrypted Botnet Traffic 21

they are better able to combine the surface level and more complex features of
network flows in order to learn more detailed patterns from the data.

As with the binary classification task, the shallow CNN (v1) outperforms the
deep CNN (v2) by a small margin, with accuracies of 0.907 and 0.898, respec-
tively. This is a percentage point increase of 0.009, which is fairly negligible.
These findings allow us to make the claim that whichever patterns are learned
by the CNNs are able to be learned with a shallow network, and that additional
complexity (and associated dropout layers to combat overfitting) is unnecessary.

In the discussion from Sect. 6.1, concerning binary classification accuracy
on the proto zero-day set, we suggested that the models that implemented con-
volutional layers (CNN v1, CNN v2, and AE+CNN) performed better due to
the ability of CNNs to learn complex underlying behaviour patterns present
in all botnet families. With respect to multiclass classification accuracy, CNN
v1 and v2 are the best performers with overall accuracies of 0.907 and 0.898,
respectively; while the AE+CNN has substantially worse classification perfor-
mance, with an accuracy of 0.837. We have just proposed that a CNNs’ ability
to capture hierarchical relationships in data may be an explanation for their
effectiveness for this problem; consequently, we suggest that an explanation for
the relatively poor performance of the AE+CNN, which should benefit from this
property of the convolutional layers, is that the encoding phase of the network
reduces the complexity of the data to a point where the subsequent CNN is
unable to learn the necessary hierarchical relationships, because they no longer
‘exist’ in the encoded representation. We further suggest that the reason for
this is that the typical purpose of an autoencoder is to encode the input into a
lower-dimensionality representation, from which an approximation of the orig-
inal input can be reconstructed. This process may encourage the encoder to
prioritise the more ‘visible’, surface-level patterns as they would be the best
way to approximate the input. The consequence being that the encoder begins
to act as a bottleneck - the features which aid more complex pattern learning
are not present in the encoding, preventing a subsequent CNN from exploiting
them. When we compare the results of the AE+CNN to the AE, similar accu-
racy rates are observed across the board, with overall accuracies of 0.837 and
0.836, respectively. This appears to reaffirm the notion of the encoder acting as
a bottleneck for further classification.

Maŕın et al. [12] implemented a multiclass classifier of a deep CNN fed into an
LSTM, trained on a dataset of Benign, Neris, Rbot, and Virut classes. Our best
performing model, the CNN v1, showed an improvement on their CNN+LSTM,
with an overall accuracy of 0.907 to their 0.765. Apart from the model archi-
tecture, a significant difference between our model and theirs is that our CNN
v1 uses network flows as data, while they use bytes from the packet payloads,
which are encrypted. We suggest that the difference in classification performance
is caused by their model struggling to learn meaningful representations from the
encrypted data. In support of this notion we refer to their binary classification
experiments, where their payload-based classifier obtained an accuracy of 0.650,
a result significantly lower than their flow-based classifier at 0.900, and our best
performing binary classifier at 0.979 [12].



22 L. Carr and J. Chavula

Fig. 4. Sub-Figures A to E show the respective confusion matrices for CNN v1, CNN
v2, AE, AE+CNN, and MLP models, showing performance of each model w.r.t. indi-
vidual classes. Sub-Figure F shows the overall accuracy, false-positive rate, and false
negative rate of each model w.r.t. each class.

Notably, the CNN+LSTM struggled the most when classifying instances of
Neris and Virut families. Figures 4B and F quite clearly show that this trend is
observable across all models. Maŕın et al. suggest that an explanation of this is



DL Classification for Encrypted Botnet Traffic 23

a result of the similarity between the Neris and Virut botnet families, causing
models to misclassify one as the other. The results in Fig. 4 show that Virut sam-
ples are most frequently misclassified as Neris, supporting this notion. However,
Neris samples are most frequently misclassified as Rbot, which may indicate that
there is some other cause for the models’ confusion.

Impact of Reduced Feature Space on Computational and Multiclass
Classification Performance. Figure 5A shows the accuracy of each model
given the size of the feature space. As the number of features is reduced we
observe an associated decline in classification accuracy. This aligns with the
intuition that more features enable a model to use the relationships between
features to learn more complex patterns, facilitating better classification perfor-
mance. The two CNN models show a more substantial decline in accuracy when
the features are reduced from 50% to 30%, when compared to 100% reduced to
50%. In some sense, this is an unintuitive result; the larger reduction in feature
space is accompanied by a smaller reduction in accuracy. An explanation for
this lies in the notion that the CNN’s success is a consequence of their ability
to learn useful patterns from relations between features. When the feature space
is reduced from 100% to 50%, there remains a sufficient number of features to
enable the models to learn these patterns. In the reduction from 50% to 30%,
while fewer features are removed, the resultant dataset is not detailed enough
for CNN’s to learn useful information. However, an alternate explanation of why
the decline in accuracy is more pronounced when going from 50% to 30% of
feature space, as opposed to 100% to 50%, is that the process of reducing the
feature space uses random sampling to select features. This may have resulted
in important features being absent from the 30% dataset. To this end, the cause
of the decline might be a result of quality, rather than quantity of features.

We observe that the three models that employ a CNN appeared to use more
memory than the AE and MLP. We expect the MLP to use the least memory,
as it is the least complex model. However, the CNN v1 has fewer trainable
parameters than the AE, while using more memory. We suggest that the cause
of this, and a general explanation for why CNNs seem to have the largest MMU,
is that the CNN has to store filters and their respective activation maps in
memory, which can become fairly expensive [6].

We find that in every model, there is an increase to MMU as the feature space
increases. This was an expected result, reaffirming the position outlined in Sect.
6.1 that larger input feature spaces are associated with an increase to a model’s
MMU. However, we maintain that this increase to MMU represents a relatively
small improvement to computational performance, and is often coupled with a
fairly substantial improvement in classification performance. For instance, when
going from 30% to 100% of features the MLP’s MMU performance declines,
with an increased utilisation of only ≈28MB; however, there is an accompanied
improvement to accuracy of 0.089.



24 L. Carr and J. Chavula

Fig. 5. Sub-Figures A, B, and C show the respective accuracy, Mean Inference Time,
and Mean Memory Usage when evaluated on datasets of varying feature size.

The CNN v1, v2 and AE+CNN models have the three slowest inference times
when evaluated on 100% of the feature space. This result matches our expec-
tations, as CNNs operate by executing a convolution operation for each filter
across all output elements of the preceding layer [6]. This convolutional process
is computationally intensive and is not a requirement in the Autoencoder (AE)
and Multilayer Perceptron (MLP) architectures. While these trends seemingly
continued as the feature space was reduced, we found no discernible relation
between the MIT and the size of the feature space.

7 Conclusions and Future Work

In this paper we evaluated the classification and computational performance
of DL models for botnet detection, and classification. We further explored the
effects of reducing feature spaces on performance. For our first research objec-
tive, we found that all models achieved accuracy ≥0.979, FPRs ≤0.033, and
FNRs ≤0.026, suggesting that the classification problem was fairly simple. Clas-
sification performance on the proto zero-day set saw models which implemented
convolutional layers have substantially better classification performance. Addi-
tionally, there was considerably more variation between models’ performance,
indicating that architecture choice plays a more significant role when detecting



DL Classification for Encrypted Botnet Traffic 25

unknown botnet families. We suggest this was a result of the ability of con-
volutional layers to learn the more complex behaviour, general to botnets, as
opposed to surface-level features. Learning the behaviour patterns of botnets in
general enables the models to perform well on testing sets made up of entirely
unknown botnet families. We further observed a clear trend that larger feature
spaces where associated with a larger memory utilisation (MMU), affirming our
expectation that feature selection might improve computational performance.
However, in reducing feature space we also observe a substantial decline in clas-
sification performance. We found no evidence of a trend between feature space
size and MIT; however, we acknowledge that there were serious limitations to
the accuracy of measuring MIT. The consequence of this is that an ’optimal’
size for a feature space should be determined on a per case basis, it is dependent
on relevant constraints.

While we found little evidence of a reduced feature space improving the infer-
ence time of models, we did observe that CNNs in general seemed to have longer
inference times, which we attributed to the expense of the convolution operation.
Furthermore, we found that CNNs appeared to have a greater associated MMU,
which we suggest is a result of the filters and respective activation maps, and not
solely their complexity. With respect to MMU across varying feature space, we
observed in all models that a reduction in feature space was clearly associated
with a lower MMU. However, as was argued with respect to the binary classifica-
tion problem, the fairly minor improvements to the computational cost of models
are accompanied by an arguably more significant degradation to classification
performance.

With respect to the second research objective, we found a fairly large differ-
ential between the classification performance of models which used convolutional
layers and those that did not. We suggest that the efficacy of CNNs at learning
hierarchical relations between features is an explanation for this. As with the
binary classifiers, we observed a trend where larger feature spaces were associ-
ated with slightly greater MMU. However, the larger feature spaces resulted in
substantially better classification performance.

The most significant observation from this work is in the classification per-
formance of binary classifiers on the proto zero-day set. In this area, we observed
accuracies high enough to act as a proof of concept: that models are able to gen-
eralise what they learn from training data to entirely unseen botnets. However,
these results leave considerable room for improvement.

Future work might take one of two directions; while we explored the theoret-
ical capabilities of DL models to detect and classify encrypted botnet traffic, an
interesting extension would be a practical implementation of some of this work.
We suggest that a good starting point would be to implement a binary classifier
for detection - as detection, when contrasted with family classification, seems
to have more immediate utility. On the theoretical side, we suggest ablation
studies to investigate both feature and hyperparameter importance. The notion
being that model size could be reduced if we knew more about the importance
of certain features, or parts of the model. This may further yield insight into



26 L. Carr and J. Chavula

behaviours common between botnets, and consequently enable tuning models
specifically for handling new botnet families.

A Appendix

For comprehensive information, see Project Website or Github.

A.1 Feature Sets

Table 2. All the features present in flow extraction from CICFlowMeter. Bold and/or
underlined indicate inclusion in 30% and 50% feature-spaces, respectively. All features
present in 100% feature space.

No. Feature Name No. Feature Name No. Feature Name

1 Flow ID 30 Fwd IAT Max 59 Average Pkt Size

2 Src IP 31 Fwd IAT Min 60 Fwd Segment Size Avg

3 Src Port 32 Bwd IAT Total 61 Bwd Segment Size Avg

4 Dst IP 33 Bwd IAT Mean 62 Fwd Bytes/Bulk Avg

5 Dst Port 34 Bwd IAT Std 63 Fwd Pkt/Bulk Avg

6 Protocol 35 Bwd IAT Max 64 Fwd Bulk Rate Avg

7 Timestamp 36 Bwd IAT Min 65 Bwd Bytes/Bulk Avg

8 Flow Duration 37 Fwd PSH Flags 66 Bwd Pkt/Bulk Avg

9 Total Fwd Pkt 38 Bwd PSH Flags 67 Bwd Bulk Rate Avg

10 Total Bwd Pkts 39 Fwd URG Flags 68 Subflow Fwd Pkts

11 Total Length of Fwd Pkt 40 Bwd URG Flags 69 Subflow Fwd Bytes

12 Total Length of Bwd Pkt 41 Fwd Header Length 70 Subflow Bwd Pkts

13 Fwd Pkt Length Max 42 Bwd Header Length 71 Subflow Bwd Bytes

14 Fwd Pkt Length Min 43 Fwd Pkts/s 72 FWD Init Win Bytes

15 Fwd Pkt Length Mean 44 Bwd Pkts/s 73 Bwd Init Win Bytes

16 Fwd Pkt Length Std 45 Pkt Length Min 74 Fwd Act Data Pkts

17 Bwd Pkt Length Max 46 Pkt Length Max 75 Fwd Seg Size Min

18 Bwd Pkt Length Min 47 Pkt Length Mean 76 Active Mean

19 Bwd Pkt Length Mean 48 Pkt Length Std 77 Active Std

20 Bwd Pkt Length Std 49 Pkt Length Variance 78 Active Max

21 Flow Bytes/s 50 FIN Flag Count 79 Active Min

22 Flow Pkts/s 51 SYN Flag Count 80 Idle Mean

23 Flow IAT Mean 52 RST Flag Count 81 Idle Std

24 Flow IAT Std 53 PSH Flag Count 82 Idle Max

25 Flow IAT Max 54 ACK Flag Count 83 Idle Min

26 Flow IAT Min 55 URG Flag Count 84 Label

27 Fwd IAT Total 56 CWR Flag Count

28 Fwd IAT Mean 57 ECE Flag Count

29 Fwd IAT Std 58 Down/Up Ratio



DL Classification for Encrypted Botnet Traffic 27

A.2 Classification Results

(See Tables 3, 4, 5 and 6)

Table 3. Results of Binary Classifiers on Default Test Set

Model Accuracy Precision Recall FPR FNR

100 50 30 100 50 30 100 50 30 100 50 30 100 50 30

CNN v1 .990 .972 .966 .990 .972 .966 .990 .972 .966 .016 .030 .032 .004 .026 .036

CNN v2 .993 .983 .968 .993 .983 .968 .993 .983 .968 .008 .021 .027 .006 .012 .037

AE .979 .974 .966 .979 .974 .966 .979 .974 .966 .030 .026 .035 .012 .027 .033

AE CNN .983 .974 .963 .983 .974 .963 .983 .974 .963 .008 .030 .034 .026 0.022 .040

MLP .986 .971 .959 .986 .971 .959 .986 .971 .959 .008 .033 .055 .021 0.026 .027

Table 4. Results of Binary Classifiers on Proto Zero-Day Test Set

Model Accuracy Precision Recall FPR FNR

100 50 30 100 50 30 100 50 30 100 50 30 100 50 30

CNN v1 .793 .653 .480 .904 .777 .671 .700 .736 .116 .092 .448 .071 .300 .264 .884

CNN v2 .842 .714 .751 .960 .777 .909 .745 .677 .611 .038 .240 .076 .255 .323 .389

AE .732 .552 .716 .783 .581 .824 .713 .683 .619 .245 .609 .163 .287 .317 .381

AE CNN .810 .705 .687 .957 .727 .785 .688 .746 .597 .038 .346 .202 .312 .254 .403

MLP .740 .594 .698 .782 .610 .744 .734 .736 .691 .253 .580 .294 .266 .264 .309

Table 5. Computational Performance of Binary Classifiers

Model Memory (MB) Inference Time (S)

100 50 30 100 50 30

CNN v1 465.89 422.91 422.39 0.00032 0.00024 0.00027

CNN v2 526.16 443.78 435.83 0.00031 0.00026 0.00026

AE 457.02 428.02 420.16 0.00022 0.00022 0.00023

AE CNN 490.94 485.50 475.42 0.00026 0.00023 0.00033

MLP 446.05 422.70 416.67 0.00020 0.00020 0.00020

Table 6. Classification and Computational Performance of Multiclass Classifiers

Model Accuracy (%) Memory (MB) Inference Time (S)

100 50 30 100 50 30 100 50 30

CNN v1 .907 .881 .819 465.96 434.63 425.77 .00030 .00031 .00027

CNN v2 .898 .889 .809 465.85 446.88 431.28 .00029 .00026 .00025

AE .836 .786 .745 447.98 427.21 419.70 .00024 .00022 .00022

AE CNN .836 .807 .755 492.95 478.88 458.87 .00028 .00030 .00030

MLP .773 .764 .684 445.69 425.44 418.13 .00023 .00023 .00022



28 L. Carr and J. Chavula

References

1. Abu Rajab, M., Zarfoss, J., Monrose, F., Terzis, A.: A multifaceted approach to
understanding the botnet phenomenon. In: Proceedings of the 6th ACM SIG-
COMM Conference on Internet Measurement, IMC 2006, pp. 41–52. Association
for Computing Machinery, New York (2006). https://doi.org/10.1145/1177080.
1177086

2. Aceto, G., Ciuonzo, D., Montieri, A., Pescapé, A.: Mobile encrypted traffic classi-
fication using deep learning. In: 2018 Network Traffic Measurement and Analysis
Conference (TMA), pp. 1–8. IEEE (2018)

3. Bertino, E., Islam, N.: Botnets and internet of things security. Computer 50(2),
76–79 (2017)

4. Cheng, R.: D 2 pi : identifying malware through deep packet inspection with deep
learning (2017). https://api.semanticscholar.org/CorpusID:53062187

5. Garćıa, S., Grill, M., Stiborek, J., Zunino, A.: An empirical comparison of
botnet detection methods. Comput. Secur. 45, 100–123 (2014). https://doi.org/
10.1016/j.cose.2014.05.011, https://www.sciencedirect.com/science/article/pii/
S0167404814000923

6. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://
www.deeplearningbook.org

7. Haddadi, F., Le Cong, D., Porter, L., Zincir-Heywood, A.N.: On the effectiveness
of different botnet detection approaches. In: Lopez, J., Wu, Y. (eds.) ISPEC 2015.
LNCS, vol. 9065, pp. 121–135. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-17533-1 9

8. Lashkari, A.H., Gil, G.D., Mamun, M.S.I., Ghorbani, A.A.: Characterization of tor
traffic using time based features. In: Proceedings of the 3rd International Confer-
ence on Information Systems Security and Privacy - Volume 1: ICISSP, pp. 253–
262. INSTICC, SciTePress (2017). https://doi.org/10.5220/0006105602530262

9. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband:
a novel bandit-based approach to hyperparameter optimization. J. Mach. Learn.
Res. 18(1), 6765–6816 (2017)

10. Lim, H.K., Kim, J.B., Kim, K., Hong, Y.G., Han, Y.H.: Payload-based traffic clas-
sification using multi-layer LSTM in software defined networks. Appl. Sci. 9(12),
2550 (2019)

11. Lotfollahi, M., Jafari Siavoshani, M., Shirali Hossein Zade, R., Saberian, M.: Deep
packet: a novel approach for encrypted traffic classification using deep learning.
Soft Comput. 24(3), 1999–2012 (2020)

12. Maŕın, G., Caasas, P., Capdehourat, G.: DeepMAL - deep learning models for mal-
ware traffic detection and classification. In: Data Science – Analytics and Appli-
cations, pp. 105–112. Springer, Wiesbaden (2021). https://doi.org/10.1007/978-3-
658-32182-6 16

13. O’Malley, T., et al.: Kerastuner (2019). https://github.com/keras-team/keras-
tuner

14. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv
preprint arXiv:1511.08458 (2015)

15. Pachhala, N., Jothilakshmi, S., Battula, B.P.: A comprehensive survey on identi-
fication of malware types and malware classification using machine learning tech-
niques. In: 2021 2nd International Conference on Smart Electronics and Communi-
cation (ICOSEC), pp. 1207–1214 (2021). https://doi.org/10.1109/ICOSEC51865.
2021.9591763



DL Classification for Encrypted Botnet Traffic 29

16. Papadogiannaki, E., Tsirantonakis, G., Ioannidis, S.: Network intrusion detection
in encrypted traffic. In: 2022 IEEE Conference on Dependable and Secure Com-
puting (DSC), pp. 1–8 (2022). https://doi.org/10.1109/DSC54232.2022.9888942

17. Acarman, T.: Botnet detection based on network flow summary and deep learn-
ing. Int. J. Netw. Manage. 28(6), e2039 (2018). https://doi.org/10.1002/nem.2039,
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.2039

18. Piskozub, M., Gaspari, F.D., Barr-Smith, F., Mancini, L., Martinovic, I.: Mal-
Phase: fine-grained malware detection using network flow data. In: Proceedings of
the 2021 ACM Asia Conference on Computer and Communications Security. ACM
(2021). https://doi.org/10.1145/3433210.3453101

19. van Roosmalen, J., Vranken, H., van Eekelen, M.: Applying deep learning on packet
flows for botnet detection. In: Proceedings of the 33rd Annual ACM Symposium
on Applied Computing, pp. 1629–1636 (2018)

20. Sarker, I.H.: Cyberlearning: Effectiveness analysis of machine learning security
modeling to detect cyber-anomalies and multi-attacks. Internet Things 14, 100393
(2021)

21. Stratosphere: Stratosphere laboratory datasets (2015). https://www.
stratosphereips.org/datasets-overview. Accessed 13 Mar 2020

22. Torres, P., Catania, C., Garcia, S., Garino, C.G.: An analysis of recurrent neu-
ral networks for botnet detection behavior. In: 2016 IEEE Biennial Congress of
Argentina (ARGENCON), pp. 1–6. IEEE (2016)

23. Van Rossum, G., Drake, F.L.: Python 3 Reference Manual. CreateSpace, Scotts
Valley (2009)

24. Villa, A., Varki, E.: Characterization of a campus internet workload. In: Proceed-
ings of CATA, pp. 140–148 (2012)

25. Wang, W., et al.: HAST-IDS: learning hierarchical spatial-temporal features using
deep neural networks to improve intrusion detection. IEEE Access 6, 1792–1806
(2017)

26. Wang, Z., Fok, K.W., Thing, V.L.: Machine learning for encrypted malicious traf-
fic detection: approaches, datasets and comparative study. Comput. Secur. 113,
102542 (2022). https://doi.org/10.1016/j.cose.2021.102542

27. Weisz, S., Chavula, J.: Community network traffic classification using two-
dimensional convolutional neural networks. In: Sheikh, Y.H., Rai, I.A., Bakar, A.D.
(eds.) AFRICOMM 2021. LNICST, pp. 128–148. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-06374-9 9

28. Yeo, M., et al.: Flow-based malware detection using convolutional neural network.
In: 2018 International Conference on Information Networking (ICOIN), pp. 910–
913 (2018). https://doi.org/10.1109/ICOIN.2018.8343255

29. Zeng, Y., Gu, H., Wei, W., Guo, Y.: deep − full − range: a deep learning based
network encrypted traffic classification and intrusion detection framework. IEEE
Access 7, 45182–45190 (2019). https://doi.org/10.1109/ACCESS.2019.2908225

30. Zhou, H., Hu, Y., Yang, X., Pan, H., Guo, W., Zou, C.C.: A worm detection system
based on deep learning. IEEE Access 8, 205444–205454 (2020)


