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Stream compaction, the parallel removal of selected items from a list, is a fundamental building block in parallel algorithms.

It is extensively used, both in computer graphics, for shading, collision detection, and ray tracing, as well as in general

computing, such as for tree traversal and database selection.

In this paper we present Redzone stream compaction, the irst parallel stream compaction algorithm to remove � items

from a list with � ≥ � elements in � (�) rather than � (�) time. Based on our benchmark experiments on both GPU and CPU,

if � is proportionally small (� ≪ �) Redzone outperforms existing parallel stream compaction by orders of magnitude, while if

� is close to � it underperforms by a constant factor. Redzone removes items in-place and needs only � (1) auxiliary space.

However, unlike current � (�) algorithms, it is unstable (i.e., the order of elements is not preserved) and it needs a list of the

items to be removed.

CCS Concepts: · Massively parallel algorithms;

Additional Key Words and Phrases: Stream compaction, list removal

1 Introduction

Stream compaction, removing multiple elements from a list in parallel, is a fundamental primitive in many
parallel algorithms. In sequential algorithms this is known as stable list removal. It is used when iltering data,
for example in collision detection [6], or when culling data elements that are no longer needed, such as in Kd tree
construction [27]. As a stable algorithm it operates on a sequential array, where items to be deleted are marked,
either in the array itself (as shown in Figure 1), using an auxiliary stencil array, or by a remove predicate.

Stable stream compaction needs one [23] or multiple [4, 9, 18] sequential read passes. Stability has the beneit
of preserving the order of elements, but comes at a cost. If the output is a contiguous array ś and not, say, a
linked list ś it must process at least � − � elements, because all these elements need to be moved. If not using a
keep list, � (�) reads are required to distinguish ‘keep’ from ‘remove’ items, implying � ( �

�
) parallel time on a

machine with � processors.

Contribution. Our Redzone algorithm is the irst parallel stream compaction method to delete � items from
a list A of size � in � (�) time rather than � (�). Operations need only � (1) space. The input is A and a list R
containing � indices to be removed. It updatesA in-place. However, it is unstable, in that it does not preserve the
order of elements. Redzone cannot perform out-of-place compaction. If � ≪ � it outperforms � (�) compaction
by orders of magnitude.
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2 • J. Bontes and J. Gain

Reference implementations in C++ for both CPUs and NVidia’s CUDA, as well as the source code for our
benchmarking experiments, are available on Github under an MIT license1.

Paper structure. After the Introduction, Section 2 explains stream compaction, and Section 3 discusses previous
work on stream compaction. Section 4 details our proposed Redzone algorithm, its time and space complexity,
synchronization issues, proof for its correctness, as well as how to extend the algorithm to add and remove items
concurrently. The Experimental results in Section 5 benchmark Redzone against the current state-of-the-art using
both GPU and CPU algorithms. The Conclusion summarizes, highlights some observed opportunities to improve
performance, and lists areas for future research.

2 Concept

A B C D E F G

A B C D E F G

A B D E F G

Fig. 1. Stable stream compaction (top) visits all items and

copies valid ones to the output preserving list order. Unstable

stream compaction (botom) uses items at the end of the list

to replace deletions elsewhere.

Assuming a keep predicate indicating elements to be
retained, stable stream compaction [19], running in
� (�) sequential or � (�/�) parallel time can be coded
as follows (illustrated in Figure 1, top):

dest = 0

for a in A: if keep(a): A'[dest++] = a
(1)

However, when � ≪ �, traversing all � items is
wasteful. Instead a ‘remove’ list can be used. Using
such a list the element indexed by � is deleted as fol-
lows:

A[r] = A[--n] (2)

A B C D E a b

A B a D b

A B C D E a b c

A B a D b

Fig. 2. Items in the red zone can be used to fill holes due

to deletions outside the red zone (top). Naïvely filling

holes this way fails if the red zone itself contains an item

(❆b) to be deleted (botom).

This deletes the element at index � in � (1) time, by over-
writing destinationA[� ] with sourceA[�−1] (see Figure 1,
bottom). Given a list R containing � indices to be removed,
all items in R can be removed fromA in� (�) time by using
� tail items to ill in holes. We call this tail the red zone (Z).

The drawbacks are that removal is unstable, causing el-
ements to be reordered (see Figure 2), and that writes are
scattered, which may be computationally expensive.

Naïvely illing holes caused by deletions using items in the
red zone will work only so long as no items in the red zone
are deleted (Figure 2, top). This scheme fails when deleting
items in the red zone itself (shown in Figure 2, bottom). In
this example, two errors occur because red zone item (b)
is incorrectly used as a source, causing keep item (c) to be
discarded and remove item (❆b) to be kept. Our proposed
algorithm solves this issue with extra bookkeeping.

3 Background and related work

Parallel stream compaction is a common primitive operation,
widely used in contexts such as graphics [6, 8, 24], simulation [17], and data stores [15, 25]. It removes, in parallel,

1https://github.com/JBontes/redzone.html
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� elements from a contiguous list A containing |A| = � items. The items to be removed can be marked within
A itself, using a Boolean stencil array of length � containing true for entries to be removed, or by a predicate
function. In all these cases� (�) keep/remove queries are required. Stream compaction outputs a listA′ of length
� − � with elements in the same order as A if the method is stable and in an arbitrary order if it is unstable. The
primitive is so common that Segura et al. [20] even proposed an implementation in GPU hardware.
Stream compaction is trivial to perform on a sequential machine (see Listing (1)). In parallel code, the main

problem is sequencing to ensure writes have no gaps or overlaps due to race conditions. This can be done using
atomic counters, but stability is easier to achieve with preix sums [7, 11, 22], also known as scans: running totals
used to parallelize operations. Blelloch [5] shows how preix sums can be used to parallelize tasks that seem
inherently sequential.

Horn irst published a stable compaction algorithm in 2005 for early GPUs without support for scattered writes
that operates in � (� log �) time for both preix sum calculation and writes. Sengupta et al. [21] reduced the time
needed for preix sums to � (�), leaving write time unchanged. Roger et al. [18] used GPU hardware support for
scattered writes to improve write time and thus overall time to � (�). This is the approach used by the remove
stream compaction function in NVidia’s Thrust library [2]. The above improvements were aided by advances in
GPU architecture in the early 2000s. GPUs now have feature parity with CPUs so that many parallel algorithms
can run on both [12, 14].

One important implementation detail of stream compaction is that multiple reads are required to achieve global
synchronization if parallel components do not have access to a low latency communication channel. This happens
when multiple distinct processors or machines are used. In such a case, one read is needed to gather data for the
preix sum and another to collect valid elements and store them in the correct locations. Synchronization can be
done by splitting execution phases into subprograms (known as kernels), each launched in sequence. However,
launching kernels incurs overhead. Hughes et al. [9] eliminate overhead in their InK-Compact algorithm by
performing both stages in a single kernel. Our experiments show that their approach performs well when deleting
the majority of items ś on so-called sparse streams ś but underperforms otherwise.
Moreira et al.’s Jumping Jack [13] is an unstable � (�) algorithm that scans the list, creates a preix sum and

calculates the maximum allowable size to ind elements that can be used to ill in contiguous sections marked for
deletion. They report that, unfortunately, this does not work well on sparse streams. Sun et al. [23] engineered
a version that only needs a single read of the stream. This approach is easy to apply if all parallel threads can
eiciently communicate, but requires computationally expensive global synchronization if not. Billeter et al. [4]
supplement the preix sum with generation of a bitmask followed by a population count, thus reducing the
number of sums needed. Shortly after their publication, GPUs supporting these operations in hardware became
available. Bakunas-Milanowski et al. [1] combine preixes with atomic operations, which do not sequence threads,
resulting in fast unstable � (�) compaction. Bernabé et al. [3] investigate the performance and power-eiciency
of various � (�) stream compaction algorithms on diferent CPU architectures and ind that multiple low-cost
computers perform better per watt than expensive multi-core CPUs.
Interestingly, all the above papers view stream compaction in isolation without taking into account the

preparation work of collecting removal items. Considering that this can take more time than the actual compaction
this leaves avenues for optimization unexplored.

Currently no method for stream compaction is known that can remove items in � (�) time.

ACM Trans. Parallel Comput.
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4 Proposed algorithm

Redzone compaction achieves � (�) run time, using three phases to: (1) mark elements as invalid sources; (2)
perform easy deletions immediately and schedule hard ones for later; and (3) clean up.

phase 1 phase 2 phase 3ZA′

A

0

B

1

C

2

D

3

a

4

b

5

c

6

d

7

A

6 0 1 4R

Z′d ...

R′1 ...

b d C D A′

×

Fig. 3. Redzone compaction works in 3 phases. Phase 1 scans removals (R) and marks deletions (❆6, ❆4) in the red zone (Z) as

invalid sources. Phase 2 pairs every source element � ∈ Z with its destination sibling � ∈ R. A destination that is invalid,

because it points to the red zone (❆6) paired with a deleted source (❆a) is quietly discarded. Valid destinations (0) paired with

unmarked sources (b) fill holes in A′. An orphaned destination (1) paired to an invalid source (❈c) is collected in R′; an

orphaned source (d) paired to an invalid destination (❆4) is collected inZ′. Phase 3 pairs source orphansZ′ with destination

orphans R′ (d, 1) so that each A′ [� ′] ← �′.

Algorithm 1 Redzone stream compaction. Code on the same line runs in parallel. Dotted lines mark syn-
chronization points. This code needs low latency thread communication, such as shared memory, requiring all
threads to run on the same (multi)processor on a GPU or CPU.

Input: List A, Removals R
Output: A′ ← A − R

1: if |R | = 0 or |R | = |A| then return
2: � ← |A| − |R|; � ← 0; � ← 0 ⊲ red zone boundary

3: for � ∈ R do ⊲ phase 1: mark deleted items inZ

4: if � ≥ � then MarkAsDeleted(A[� ])
5: for � ∈ {0 .. |R | − 1} do ⊲ phase 2: ill holes, record orphans

6: � ← A[� + �]; � ← R[�]
7: if � ≥ � and isDeleted(�) then do nothing ⊲ � ∈ Z and � is invalid

8: else if � ≥ � and not isDeleted(�) then ⊲ � ∈ Z, but � is valid

9: � ← � + PreixSumToIndex(�)

10: Z′ [ �] ← � ⊲ keep orphaned �

11: else if � < � and isDeleted(a) then ⊲ r is valid, but a is not

12: � ← � + PreixSumToIndex(�)

13: R′ [�] ← � ⊲ keep orphaned �

14: else ⊲ both � and � are valid

15: A′ [� ] ← � ⊲ delete A[� ]

16: for � ∈ {0 .. � − 1} do ⊲ phase 3: process orphans, note: |R′ | = |Z′ |

17: A′ [R′ [�]] ← Z′ [�]

ACM Trans. Parallel Comput.
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Algorithm 1 shows an overview of the code, which is explained below. Circled numbers, such as 2 , refer to
line numbers in the algorithm. Dotted horizontal lines show synchronization points.

Redzone takes as input a list of � items A and a list R of � indices into A to be deleted, and outputs the result
in-place intoA′: the irst � − � elements ofA. The use of R difers from stable compaction algorithms that mark
A itself or use a stencil array of Booleans (of length �) to denote keep/remove items.

The algorithm deletes items fromA by using � items from the tail of listA. This tail is called the red zone (Z)
and contains source elements to overwrite the items slated for removal in R 15, 17 . After taking care of the trivial
case where all or no items are to be deleted 1 , the start of the red zone is stored in variable � 2 . R is iterated
over 3 and any items A[� ] pointing into the red zone are marked as deleted 4 . This marking of red zone items
is identical to the marking of deleted items in stable � (�) stream compaction and can be done in-place, provided
that unused state space is available in the data elements of A. This ensures that deleted items are not used as
sources to replace deletions elsewhere, preventing the issue illustrated in Figure 2. Because phase 1 performs
scattered writes, our experiments (see Figure 6) show this to be computationally expensive. Ideally, this phase
should be mixed in with work that generates the list of removal items R so the latency incurred by scattered
writes can be hidden by other processing.

Next, the algorithm moves to phase 2. For every item in R 5 , a pairing is created between source � : Z[�] and
destination � : R[�] 6 . This is the last point where we read from input lists R andZ, which allows us to reuse
this space to store temporary data for orphans R′ andZ′ in-place, making Redzone an � (1) space algorithm.
The source � and destination � items can individually be either valid or invalid, giving rise to four possible

cases 7, 8, 11, 14 (detailed in Table 1).
If both are invalid, because (a) � ∈ Z (� ≥ �) is in the red zone and thus invalid as a destination, and (b) � is

marked for deletion and thus invalid as a source, then no action is needed and both are quietly discarded 7 .
If, however, � ∈ Z is not a valid destination, but � has not been marked for deletion 8 , then � is a valid source

without a destination: a source orphan. It is added to the in-place source orphan listZ′ 10 for later processing in
phase 3. These stores can be run fully in parallel on a GPU by irst creating a bitmask of all threads where the
if-predicate is satisied (ballot), then performing an exclusive scan of the population count (hamming weight)
of these masks per warp2 across a block 9 [4]. The starting index � per warp is the preix sum supplemented by
the preceding number of lanes in the bitmask, this is calculated as popcount(bitmask & (1 << laneId) - 1),
where laneId is 0 for the irst and 31 for the last thread in a warp. Counters � and � 9, 12 might also be updated
using atomic increments, but preix sums are typically more eicient.

The symmetric case where � is not in the red zone and thus a valid destination, but � is not a valid source because
it is marked as deleted, gives rise to a destination orphan and is stored in-place in R′ for later processing 12, 13 .
Note that counts � and � run fully independently; the outer loop 5..15 can run parallel batches of any width.
Because every read of �, � frees one item inZ,R, the write indices �, � intoZ′,R′, respectively, never run ahead
of read index � . In fact, because if statements 8 and 11 are mutually exclusive, � + � ≤ � , we could conceivably
intersperseZ′ and R′. However, to simplify processing in phase 3 these two lists are stored separately.
If none of the three former cases apply, both source � and destination � must be valid 13 and � is moved to
A[� ] 14 .
Finally, in phase 3 every orphaned source � in Z′ is moved to destination � in R′. As per the proof in

Subsection 4.5, the number of source orphans equals the destination count: |Z′ | = |R′ |. Lines 10, 13 ensure
that orphan lists contain only valid items, hence the default processing from line 15 can be repeated with the
orphans 17 . No attempt is made to preserve the order of items in A′. In fact, due to thread scheduling the
sequencing of output elements will likely difer between runs executed with identical input.

2A warp (also known as a wavefront) is a group of 32 or 64 threads on a GPU with hardware support for data sharing, akin to SIMD units in a

CPU.

ACM Trans. Parallel Comput.
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4.1 Redzone algorithm for high latency IPC

Algorithm 1 assumes fast interprocess communication (IPC), such as shared memory, where all threads run on the
same (multi-)processor. With a few adjustments Redzone can run eiciently in high latency IPC environments.
Let us deine a block as a collection of threads able to communicate over a low latency IPC channel whereas

inter-block communication happens over a high latency IPC channel. To minimize the need for intra-block
communication, phase 2 and 3 switch to batched processing. At the start of phase 3 the running totals of orphan
counts per block are collated into two preix sums, which are used to pair up orphans and complete the deletions.
Phase 1 is unchanged.

Algorithm 2 Redzone compaction for high latency IPC

Input: List A, Removals R, Processors P
Output: A′ ← A − R

0: � ←
⌈

| R |
|� |

⌉

;�� ← �;� |� |−1 ← |� | − � ( |R| − 1); start� ← (�)�; �� ← �� ← 0 ⊲ � = batch size

⊲ phase 1 is unchanged, note that lists start at zero

5: for �, �� ∈ �, {start� .. start� + �� } do ⊲ phase 2: data is segmented per block �

6: � ← A[� + �� ]; � ← R[�� ]
7: if � ≥ � and isDeleted(�) then do nothing ⊲ � ∈ Z and � is invalid

8: else if � ≥ � and not isDeleted(�) then ⊲ � ∈ Z, but � is valid

9: �� ← �� + PreixSumToIndex(�� , �)

10: Z′ [ �� ] ← � ⊲ keep orphaned a

11: else if � < � and isDeleted(a) then ⊲ r is valid, but a is not

12: �� ← �� + PreixSumToIndex(�� , �)

13: R′ [�� ] ← � ⊲ keep orphaned r

14: else ⊲ both � and � are valid

15: A′ [� ] ← � ⊲ delete A[� ]

16: � ←
⌈

� |� |
|� |

⌉

; � ← threadId() ⊲ phase 3: C = number of runs

17: � ← PreixSum( �� ); � ← PreixSum(�� )

18: for � ∈ {0 ..� − 1} do ⊲ phase 3: process orphans, note: |R′ | = |Z′ | on aggregate but not per block

19: �� ← LoadBalance(� , �, �) ⊲ source address

20: �� ← LoadBalance(�, �, �) ⊲ destination address

21: A′ [R′ [�� ]] ← Z
′ [�� ] ⊲ delete orphans

22: � ← � + |� |

Phase 1 is unchanged 1..4 . Phase 2 switches to batched processing. Each block �� owns its own slice of R

and Z of length � =

⌈

|� |
|� |

⌉

. The inal block � |� |−1 contains trailing elements 0 . Otherwise, phase 2 matches

Algorithm 1 5..15 .
Due to the batched processing per block, phase 3 receives two orphan counts per block �� and �� . Using these

counts each block redundantly generates preix sums (� , �) 17 , so that all blocks share the same view but do

not communicate. Given |� | blocks, we need � =

⌈

� |� |
|� |

⌉

runs 16 to process all orphans. In each run � 18 , load

balancing calculates destination (�� ) and source indices (�� ) using preix � , thread counter � , and batch size � 19 .
Because � and � do not line up, � is processed separately from � 20 . The orphans are paired up and A[� ] is
deleted 21 . Thread counter � tracks the batches 22 . Note that loop 18 does not need any synchronization ś even
between threads. Global syncs between phases allow memory writes to settle.

ACM Trans. Parallel Comput.
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A simple load balancer (see Algorithm 3) assigns threads to source and destination orphans. This is needed,
because each batch has its own list of orphans and the counts per batch of destination and source orphans do
not agree, although they do match on aggregate. Load balancing does not afect asymptotic run time. If need be,
load balancing can be moved out of loop 18 so it is only performed once. Our CPU reference implementation of
Redzone demonstrates this.

Algorithm 3 Load balancing

Input: Preix sum of start indices per block S, thread counter � , block ofset �
Output: Destination �
1: Start← �/�

2: if Start > |S| then return out of bounds ⊲ all items have been processed

3: Index← ReduceMin(S[Start], ≥ �) ⊲ get the smallest index ≥ �

4: for ever do ⊲ ind the correct block index

5: if (� ≥ S[Index]) then Index← Index + 1
6: else break ⊲ if � ≫ |� |, loop will likely iterate only once

7: SubIndex← � − S[Index]
8: return Index × � + SubIndex

4.2 Time complexity

Phase 1 performs � reads from R 3 and writes at best 0, on average �2

�
, and at worst � entries toZ 4 , marking

deleted items in the red zone. Phase 2 always reads 2� items from R andZ combined 6 , and writes at best � = 0,

on average � =
min(�3,(�−� )3 )

�2 and at worst � = ½� to both orphan lists 10, 13 , as well as up to � − � writes to

overwrite deleted items inA 15 . Finally, phase 3 reads no more than ½� orphans from each list to delete items in
A 17 . Redzone compaction performs 1 + 2 + 2(½) = 4� reads and 1 + 2(½) + 2(½) = 3� writes in the worst case
and 1 + 2 + 0 = 3� reads and 0 + 1 + 0 = � writes in the best case. Other operations track reads and writes at � (1)
cost, resulting in � (�) run time. Writes to A/A′ are scattered, other reads and writes are sequential, greatly
aiding eiciency.

When more than half of the list gets deleted (�
�
> ½), we have observed in our tests (see Figure 6) that scattered

writes to mark deletions in phase 1 4 take up the majority of the run time. The GPUs used in our experiments (as
well as many other modern GPUs and CPUs) can only write to a single cache line (e.g., a section of 256 contiguous
bytes) per clock cycle. If scattered writes touch multiple cache lines, writes are serialized, meaning that threads
writing to diferent cache lines are paused until earlier writes retire.

However, our marking of deleted items in onlyZ is identical to deletion marking required in all of A by � (�)
compaction algorithms. These algorithms need to track deleted items in A itself or use a stencil array. A fair
comparison should count this cost for all or none of the competing algorithms. If so, the generation of removal
list R must likewise be included in performance comparisons. However, this list is built up using contiguous
writes and occupies a tiny fraction of the time spent performing scattered writes. Marking deleted items inZ (or
even all of A) may incur a smaller penalty if the preparation features suicient non-write operations to hide
latency due to scattered writes. Note that Redzone writes toA′ in phase 2 and 3 are still scattered, whereas stable
stream compaction need only perform contiguous writes in these phases. Depending on the implementation of
scattered writes in hardware this may bias performance for or against Redzone.

4.3 Space complexity

Redzone takes A and R as input. This requires � ← |A|, � ← |R| = � + � space. � (�) time algorithms take A
and either use a predicate function, mark deletion items in place, or use a Boolean stencil. They need � space

ACM Trans. Parallel Comput.
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without or 2� space with a stencil. Redzone’s intermediate lists (Z,Z′, and R′) take � (1) space. InputZ is an
alias for the � tail items of A, output A′ is an alias for the front � − � items of A (see Figure 3). Orphan listsZ′

and R′ are stored in-place inZ and R, respectively, as Redzone processes both lists. Ergo, apart from its input,
Redzone has � (1) space complexity.

4.4 Synchronization

Thus far we have glossed over synchronization needs. Algorithm 1 requires local synchronization (denoted by )
between phases 5, 16 , local meaning inside the same (multi-)processor. Algorithm 2 needs global synchroniza-
tion ( ), because writes must settle before entering a new phase. Inside phase 2 both algorithms need local
synchronization ( ) to calculate the orphan indices � and � . This synchronization cannot be skipped, even if
preix sums 9, 12 are replaced by atomic counters! The reason for this is subtle. The reads of � and � in line 6 of
both algorithms free up a slot inZ and R. However, without synchronization before writes 10, 13 to the orphan
listsZ′ and R′, a thread with index � = � may not yet have read its data before another thread with index � = �
(or � = � ) writes an orphan to that same entry. This race condition is prevented by waiting after reads 6 before
writes 10, 13 . In Algorithm 1, the sync of the preix sums 9, 12 performs this function implicitly.

If these sync points are removed, then a wait after 6 must be added. This can be a local sync if each block reads
and writes only from and to its own section ś as in Algorithm 2. Alternatively, no synchronization is needed
in phase 2 if ½� auxiliary storage is used for each of the two orphan lists, turning Redzone into an � (�) space
algorithm.

4.5 Proof |Z′ | = |R′ |

For Redzone to function correctly, both source and destination orphan lists must be the same size at the end of
phase 2: |Z′ | = |R′ | = � = � 16 . Lines 10, 13 ensure that these source and destination lists contain only valid
items. This allows the inal loop 16..17 to process orphans correctly. The proof for this requirement follows:
In phase 1, R is traversed and if destination � ∈ Z (meaning � ≥ �) points into the red zone, then source
Z[� − �] will be deleted and is thus not valid. We mark these sources as deleted: Z[� − �] ← isDeleted 4 .
At the start of phase 2 we thus have subsets of R,Z with deleted items: R� ← {�� ∈ R | �� ≥ �} 13 and
Z� ← {�� ∈ {Z ∩ R}} 10 .
Line 4 marks one element ofZ as invalid for every �� ∈ R� that points into the red zone. Thus |R� | = |Z� |

and because |Z| = |R | 2 , it follows that |Z� | = |R� | for the valid subsets of both lists Z� ← Z − Z� and
R� ← R − R� .
In other words, every invalid destination in R� has exactly one invalid source twin in Z� and, conversely,

every valid source inZ� has exactly one valid destination twin in R� . We thus obtain the following result:

Lemma 4.1. |R� | = |Z� | and |R� | = |Z� |.

Note that � ← R[�] where � increases monotonically from 0 to � − 1 3 , but � is an arbitrary index 4 . This
means that the red zone indices in R do not typically align with deleted items inZ. Due to this misalignment,
when both lists are traversed in phase 2 6 , the source/destination pairs (Z[�],R[�]) can be in one of four states
as shown in Table 1.
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Table 1. Possible states for destination � and source � and the implications thereof

case � � implications

A � ∉ Z valid both � and � are valid, remove 1 item from both R� andZ� ; delete A[� ] ← � 15 .
B � ∈ Z deleted both � and � are invalid, remove 1 item from both R� andZ� ; quietly discard � and

� 7 .
C � ∉ Z deleted � indexes a valid destination in A, but � is not a valid source, delete 1 item from

R� and another fromZ� ; add orphaned � to R′ and discard � 13 .
D � ∈ Z valid � indexes the red zone and is not a valid destination, but � is a valid source, remove

one item from R� and another fromZ� ; add orphaned � toZ′ and discard � 10 .

Given two boolean variables, four states (A to D) are possible as listed in Table 1. Lemma 4.1 implies that for
every case C that pairs a valid destination with an invalid source (��, �� ) there exists an opposite pairing D that
matches (�� , ��). This can be proven as follows:
A draws equally from R� andZ� ; likewise, B draws equally from R� andZ� , neither violates Lemma 4.1.
C draws from R� and Z� , violating both parts of Lemma 4.1, a single case C causes |Z� | = |R� | + 1 and
|R� | = |Z� | + 1.
D symmetrically gives: |Z� | = |R� | − 1 and |R� | = |Z� | − 1.
If Lemma 4.1 is to be maintained, then imbalances due to over-application of C can only be restored if an equal
number of cases D apply, and vice versa, ergo |D| = |C|: the number of destination orphans in R′ due to case C
equal source orphans inZ′ due to case D. This leads to our inal result, concluding the proof.

Lemma 4.2. |Z′ | = |R′ | 10,13

4.6 Adding as well as removing items

Users may wish to concurrently add and remove items from list A. For example, when modelling a todo list
where tasks are added and resolved, but ś because Redzone is unstable ś the order of todo items does not matter.
In this case addition can be eiciently handled as follows. Add all additions (gains) G to the end of A, wait for
writes to resolve and perform Redzone on the newly expanded list A + G. If |G| is small it can be bufered and
fed to Redzone separately. This order optimizes memory access patterns and reduces the number of orphans ś
compared to irst deleting and then adding ś although it does not change the � ( � + �) asymptotic time to add �
and remove � items.

5 Experimental results

To evaluate the performance of Redzone, we benchmark GPU implementations of Algorithms 1 and 2 as well as a
CPU version of Algorithm 2. Our GPU implementations of Redzone 1 and 2 are coded in pure CUDA C++ without
any framework. The CPU version of Redzone 2 uses Intel’s TBB [10] library.
Our GPU code is compared against InK compaction [9] and NVidia’s Thrust::remove [2] function on an

NVidia RTX 3070 GPU with 8 GiB of RAM running at 1.815 GHz, as well as on an NVidia A100 running at
1.41 Ghz in the MIG 4g-20gb coniguration, which ofers 4 × 14 = 56 multiprocessors, 20 MiB of L2 cache, and
20 GiB RAM.

On the CPU, Redzone is compared against Stencil compaction [3] and std::remove from C++20 using dual Intel
Xeon Gold 6330 CPUs running at 2 GHz with 2× 28 = 56 cores. To aid comparison, all CPU algorithms use Intel’s
TBB [10] library for thread scheduling. CPU code was compiled with gcc 11.2 using -Ofast -march=native

settings, GPU code with CUDA 12.3 using -O3 lags, with compute/sm lags set to 80 for the A100 and 86 for the
RTX 3070.
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To test a range of inputs, we vary array size from 128 KiB to 2 GiB and ill arrays with random data of which
2% to 90% is marked for removal. This random data is generated using the MT19937 random generator built into
C++20. Duplicates are prevented by drawing from list A without replacement. The overall wall clock time �� is
measured using the CPU’s high resolution timer. Clock cycles per phase on the GPU ��� are measured using the
GPU’s clock64 function, these are transformed to wall clock time using the CPU timer: �new = �old ×

��
Σ���

. A ixed

random seed ensures all algorithms use the same data. Runs are repeated 20× with 20 diferent random seeds.
Figures 4 to 7 show the mean times per phase as well as the maximum observed total time. For an apples-to-apples
comparison, a phase 1 is added to all competing algorithms in our experiments. The vertically stacked bar graphs
display cumulative logarithmic time to make it easy to mentally remove phase 1 time if needed. Horizontally
stacked bar graphs show relative time per phase for � = 2 GiB to visualize what percentage of its total time each
phase occupies.

5.1 Comparison of algorithms on the GPU
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Fig. 4. Time in microseconds for three compaction algorithms run on two GPUs. Input size (�) varies from 128 KiB to 2 GiB,

removals (�) range from 2%, 10%, 50% to 90%. Runs on the A100 (top) use 56 blocks of 1 024 (57 344) threads, those on the

RTX 3070 (botom) use 46 × 1 024 (47 104) threads. Logarithmic mean times per phase are shown using stacked bars with

Phase 3 (Redzone only) at the botom, followed by phase 2 , and phase 1 on top . Lines atop each stack shows

the maximum observed run time. Horizontal bars show relative time per phase at � = 2 GiB, with a divider at 20%

intervals.

Figure 4 compares Redzone algorithm 2 against thrust::remove and InK compaction. InK compaction is down-
loaded from Github3 and written in plain CUDA C++, thrust::remove and its related functions use NVidia’s cub

3downloaded from https://github.com/knotman90/cuStreamComp
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library [16]. Runs are done on two Ampere GPUs: an A100 using 57 344 threads and a RTX 3070 GPU using 47 104
threads. The A100’s memory bus is 20× wider than the RTX 3070, speeding up contiguous, but not scattered
reads and writes.
InK is consistently slower than Thrust because the latter groups reads and writes in cache-friendly small

batches whereas InK reads all ofA once, rereads it again and only then writes. In phase 1, InK and Thrust perform

� scattered writes, here Redzone only performs �2

�
writes on average (see Subsection 4.2 for details, Subsection 5.2

for analysis). Later Redzone phases reverse this advantage. On average, phase 2 does ≤ � − �2

�
and phase 3 ≤ �2

�

scattered writes; All writes in phase 2 of InK and Thrust are contiguous. Note that all algorithms do at least �
scattered writes. As can be seen in Figure 4 such writes dominate run time when � ≥ 50%. In these cases InK and
Thrust spend themajority of time in phase 1 running the simple for loop: parallel for r in R: A[r] = deleted.
Redzone is faster for � ≤ 50% because on average it performs 3½� contiguous reads, whereas Thrust and InK
perform 2� such reads (contiguous writes are ire-and-forget and take negligible time). Redzone is only slightly
slower than Thrust at � = 90% because scattered writes dominate run time and both algorithms do � such writes
(as explained in Subsection 5.2).

However, if an application is compute rather than memory bound, it may speed up stream compaction by
intermixing phase 1 marking with compute operations to hide scattered write latency. If, say, all of the run time
of phase 1 can thus be hidden, the phase 1 time segments of Figures 4 to 7 would disappear, and Redzone would
underperform for � ≥ 10%.

For � < 8 MiB constant factors dominate run time, for this reason we repeat the experiment on a single GPU
block.

ACM Trans. Parallel Comput.
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Fig. 5. Time in microseconds for Redzone 1 vs Single pass on a single block of 1 024 threads. The top half shows times on

the A100 GPU, the botom half the same on the RTX 3070. Input size (�) varies from 512 KiB to 2 GiB, removals (�) range

from 2%, 10%, 50% to 90% of �. Logarithmic mean times per phases are shown using stacked vertical bars , lines show

the max time. Phase 3 (Redzone only) is below, followed by phase 2 , and phase 1 on top. Horizontal bars show

relative time per phase at � = 2 GiB.

Figure 5 compares Redzone algorithm 1 with � (�) compaction on a single GPU core running 1 024 threads.
This setup puts less strain on the GPUs memory subsystem, resulting in relatively faster scattered writes; phase 1
takes up a smaller percentage of the time ˜60-50% (at � = 90%) rather than ˜90% of the time in Figure 4. Due to
reduced overhead, inputs < 8 MiB are processed faster. The horizontal bars displaying relative time per phase at
� = 2 GiB show that relative time for Redzone’s phase 3 is maximized at � = 50%, as is explained in Subsection 5.2.

Unfortunately, cub and thus Thrust only support compaction GPU-wide, not on a single block. InK can be
run on a single block, but then it superluously reads A to calculate a preix sum to schedule multiple blocks.
Removing this extra work yields the Single pass algorithm. Reading A only once results in a ˜1.8× speedup of
InK’s phase 2. Because this change to Thrust yields the same code, Redzone 1 is only compared against Single
pass. This optimization can also be applied to InK for multiple GPU blocks. InK splits work into batches [9].
Instead of counting removals per batch in phase 2 we can do this while marking removals in phase 1 using atomic
counters. This adds negligible time to phase 1, but nearly halves InK’s phase 2 time. Figure 4 uses unaltered InK,
but our Github code includes this optimization.

5.2 Breakdown of run time per phase

The relative time Redzone spends per phase depends on the number of elements to remove (�), the percentage of

elements deleted (�
�
), the percentage of orphans in the red zone � = |Z

′ |
�

, and to a small extent the version (1 or 2)
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of the algorithm used. Figure 6 gives an indication of the run time per phase for diferent values of � and � . It
shows the average time spent per phase as a percentage of overall time for Redzone algorithm 2.
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Figure 6 displays the observed workload per phase for non-uniformly distributed removals. In this experiment,
we run Redzone algorithm 2 using 57 344 threads on the A100 GPU over three parameters. The size parameter �

ranges from 512 KiB to 2 GiB and the removals parameter �
�
includes � = 2%, 10%, and 50%. The last parameter is

� : the percentage of items to be removed from the red zone itself. It increments in steps of 25% from � = 0% to
� = 100%.

Some modest spikes occur in relative run times, e.g., at the intersection of � = 10%, � = 50%, and � = 32 MiB.
This is due to phase data no longer itting into the 20 MiB cache. Cache eviction in phase 2 penalizes phase 3. For
large �, the cache is exceeded throughout, restoring balance.

Interesting things happen for diferent values of � . At � = 0% no red zone items need marking in phase 1, and
hence no orphans will be created. Phase 2 scatters � red zone items into A′. Note that phase 1 will still read all
of R and phase 3 will synchronize, incurring a small ixed cost. At the other extreme: � = 100% all items in the
red zone will be marked as orphans. Due to line 7 (case B in the proof) phase 2 will quietly discarded all these
orphans and no writes take place here. This sounds very eicient, but alas, because Redzone cannot detect this
case, phase 1 still does � scattered writes to mark red zone items, phase 2 still reads all of R andZ and phase 3
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runs bookkeeping and syncs. For � = 50% overall performance varies little between these extremes. At � = 10%
and below the efect is more noticeable: � = 0% takes the most overall time, as � increases the total time decreases.
The opposite holds for the time taken in phase 1; phase 1 time is minimal at � = 0% and increases with higher
percentages of � .
An application can potentially hide ś some of ś phase 1 time (as discussed in Subsection 5.1). Later phases

depend on phase 1 and thus cannot easily be mixed with compute work. For this reason, only phase 1 and total
time are included in the left panel of Figure 6. This shows that the potential for phase 1 savings grows as � and �
increase.

5.3 Comparison of algorithms on the CPU
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Fig. 7. Time in microseconds for three CPU-based algorithms. Input size varies from 512 KiB to 2 GiB, removals (�) range

from 2%, 10%, 50% to 90% of �. Runs are performed on a dual Intel Xeon 6330 CPU. Logarithmic means for the times per

phase are shown using stacked bars with Phase 3 (Redzone and Stencil) at the botom, followed by phase 2 , and

phase 1 on top . A line atop each stack shows the maximum observed run time. Horizontal bars show relative

time per phase at � = 2 GiB.

Figure 7 compares Redzone 2 against Algorithm 2 (Stencil) from Bernabé et al.’s CPU compaction paper [3] as
well as std::remove from the standard C++ algorithms library on a dual Intel Xeon 6330 CPU with 2 × 28 = 56
threads. To aid comparison, all three algorithms use Intel’s TBB [10] library. Stencil compacts A in three phases.
Phase 1 marks of deleted elements, not in A, but in an auxiliary Boolean stencil. Phase 2 reads the stencil and
generates a preix sum with counts per thread for scheduling. In phase 3 Stencil uses this data to compact the
list. Unlike Redzone, InK, and std/thrust::remove, Stencil is an out-of-place algorithm. It also becomes more

eicient as �
�
increases, which is useful for sparse lists. Having multiple threads write to a 1-bit Boolean stencil is

known to perform poorly due to false sharing, however, implementing the stencil using 8 or 32-bit integers did
not meaningfully afect Stencil’s performance. As per our remark on InK at the end of Subsection 5.1, Stencil’s
phase 2 can be fully eliminated, in which case we expect it to outperform std::remove.
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6 Conclusion

Redzone stream compaction is the irst parallel � (�) algorithm for stream compaction. It outperforms existing
� (�) algorithms if a number of factors align: unstable but in-place stream compaction is required (Redzone
cannot perform out-of-place compaction without performing� (� − �) extra work); a list of items to be deleted R

can be generated (R must not have duplicates), and on average fewer than half of the items are deleted: �
�
< 50%.

In such circumstances, we have empirically determined that Redzone performs on par with competing � (�)

algorithms on the GPU and CPU when �
�
= 50% and outperforms them by roughly an order of magnitude when

�
�
= 2%.
All code used in this paper is available under an MIT license at: https://github.com/JBontes/redzone.html

Possible optimizations. Redzone has optimal time complexity � (�), but constant factor improvements are
possible.

• Write latency in phase 1 can be hidden by combining it with compute work in earlier stages of the application.
If, at this time, deletion count is unknown, this does not imply all � removals must be marked. The running
count of keep items (� − �) marks the start of the red zone. Only items beyond this bound need to be
marked.
• If � is small, processing can be sped up using fast memory (such as shared memory on a GPU). Rather than
storing orphans in-place in R′ andZ′, these can be stored using 2(½)� fast memory. This reduces latency
in lines 4, 10, 13, 17 , performs only a single read from R rather than two 3, 6 , and allows reads fromZ and
R to be annotated as ‘do not store in cache’.
• Data can be prefetched from main into fast memory before it is needed. This is especially advantageous if
the hardware features asynchronous memory transfer [26]. If care is taken to have each thread prefetch its
own elements, i.e.: only those the same thread will use later on, then no synchronization is required, but a
per-thread barrier suices. Experiments show up to a 30% reduction in run time in our GPU tests.
• Rather than storing all orphans 10, 13 early, this can be delayed until counts for both are known at 13 .
We can then pair up� = min( �, �) orphans, delete the items associated with these� paired orphans and
store any unpaired leftover orphans in either R′ or Z′. This reduces the number of orphans written in
phase 2 and re-read in phase 3 17 , and processes most of them early in phase 2 instead, reducing cache
contention. In our system phase 3 ś without load balancing ś occupies between 1% and 14% of total run
time (see Figure 6). Experiments show that about half this time can be saved by processing orphans early.

If �
�
> ½ then Redzone is a poor choice, due to extra I/O needed to achieve � (�) run time. Redzone performs

3.5� reads on average, meaning that an � (�) algorithm reading 2� elements will outperform it in such cases.

Future work. For sparse compaction, the algorithmic inverse to Redzone may generate a new list A′ given a
preserve list P containing � items to preserve. This would efectively remove all non-preserve items from list A,
taking only � (�) time, rather than � (� − �) as Redzone does. An unstable out-of-place algorithm, where the
output A′ does not overlap with input list A, is trivial:

for i in {0..p - 1}: A'[i] = A[P[i]] (3)

However, no in-place algorithm is currently known. Ideally, it would need only � (1) space during operation
and run in� (�) time for an unstable algorithm. A stable� (� log �) in-place algorithm can be obtained by sorting
list P irst.
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