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ABSTRACT
Multi-Level Evolution (MLE) has been demonstrated for effective
robot designs using a bottom-up approach, first evolving which
materials to use for modular components and then how these
components are connected into a functional robot design. This
paper evaluates hierarchical MLE robotic design, as an evolution-
ary design method on various task (robot ambulation) environ-
ments in comparison to human designed robots (pre-designed robot
controller-morphology couplings). Results indicate that the MLE
method evolves robots that are effective across increasingly diffi-
cult (locomotion) task environments, out-performing pre-designed
robots, and thus provide further support for the efficacy of MLE
as an evolutionary robotic design method. Furthermore, results
indicate the MLE method enables the evolution of suitable robotic
designs for various environments, where such designs would be
non-intuitive and unlikely in conventional robotic design.
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1 INTRODUCTION
Currently, robot morphologies (sensory-motor hardware) and con-
trollers (control software) must be re-engineered for every new
application. This paper presents research extending and contribut-
ing to automated evolutionary robot design methods. The Multi
Level Evolution (MLE) framework [2] has been proposed as one
such method. MLE is a bottom-up multi-layered evolutionary de-
sign framework that enables the generation of novel robot designs
via first evolving materials to comprise robot components (material
layer), then evolving the types of components to comprise the robot
morphology (component layer), and finally evolves the composition
and interaction of components (morphology layer).
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Exploration versus exploitation in the MLE optimisation pro-
cess is based on Quality Diversity (QD) [18], where solutions are
discovered via exploring various feature dimensions. Here, this
feature space is defined by a range of material values (defining ma-
terial type), modular component geometries (defining robot build-
ing blocks), and robot morphologies (defining in complete robot
designs). The main benefit of MLE is its multi-layer bottom-up
approach enables the discovery of a vast range of robot designs
by virtue of solutions optimised at each layer comprise re-usable
solutions optimised at the layer below. That is, evolved robot mor-
phologies comprise evolved modular components which in turn
comprise evolved material properties, where evolved solutions are
re-used by the upper layers. A second benefit is that MLE is scalable
to a higher number of features per layer since MLE evolutionary
search concurrently and independently operates on each layer [2].

MLE uses QD to balance exploitation versus exploration of vast
solution spaces (for example, robot body-brain design). QDmethods
[18] use specially designed evolutionary optimization using maps
of high quality but diverse solutions, and have received significant
attention in evolutionary robotics. Specifically, such QD methods
have been demonstrated as an effectively maintaining controller
(brain) and morphological (body) diversity during evolutionary
optimisation of robot designs in varying environments. For example,
QD methods have co-evolved the controller-morphology (body-
brain) designs of soft robots moving to goal areas via deforming
their shape [3] and for other robotic adaptation tasks [11, 17], as well
as robots designed for more complex tasks such as reconnaissance
and gathering [12, 16]. Our main objective is to extend previous
work on MLE legged robot design[2], providing further evidence
supporting the efficacy of MLE for robotic design.

2 METHODS AND EXPERIMENTS
MLE uses CVT-MAP-Elites [19] for multi-layered hierarchical evo-
lutionary design. The bottom layer is the materials layer (compris-
ing materials with pre-generated properties), next is the compo-
nents layer (combining point-based shape grammars to generate
robot legs), and last is the robot layer (combines legs into complete
functional morphologies). The MLE method is fully described in
previous work [2], so here we present a summarized version only.

Material, Component & Robot Layer: At the material layer,
material types are represented as combinations of friction and resti-
tution coefficient values, constrained to the range: [0.25, 0.50, 0.75,
1.0], resulting in 16 material types. At the component layer, sets of
connected components (robot legs) are represented as shape gram-
mars [20], where individual component shapes (irregular polygons)
are represented as point clouds [13] with an associated material
type. At the robot layer, morphologies are represented as a rect-
angular torso (component length: [1, 8, 16]), connecting [2, 4, 6]
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legs, where minimum and maximum torso length corresponds to
the minimum and maximum number of legs.

Material, Component & Robot Evolution:Map-Elites [19] was
applied to evolve both components (comprising robot legs) and
robot morphologies (how legs were connected to the robot torso),
where four features at the component layer and three features at the
robot layer (table 1), ensured that morphological diversity wasmain-
tained in the evolutionary selection of components and subsequent
morphologies comprising evolved components. Material types were
evolved via selecting combinations of friction and restitution values
to associate with components, and subsequently selecting varying
component shapes, where such components (evolved shapes) are
connected together by an evolved grammar (forming a complete
leg). At the component layer, components and how components are
connected (to form legs) are mutated using one of four (randomly
selected per generation) component mutation operators (table 1).
Similarly, at the robot layer, one of four mutation operators (ran-
domly selected per generation) are used to adapt leg actuation
(joint movement-types: fixed or revolute (Leg can move in robot’s
forward-backward or upwards-downwards axis) between each leg
component) and the number of legs (table 1). An evolved number
of (pairs) of evolved legs are attached to the robot torso (applied
symmetrically), to form a complete robot morphology. The compo-
nent layer fitness function averages the volume to surface area ratio
across all components comprising a leg, selecting for evolved leg
shapes that are compact, by maintaining an appropriate proportion
between volume and surface area. The robot layer fitness function
was defined as the portion of an environment’s length ([0.0, 1.0])
that an evolved robot traversed in a task trial (table 1).

Robot Controller Evolution: 𝑁 controllers actuated 𝑁 joints
connecting all leg components, where controller output was the
change in joint position for joint 𝑗 (at time step 𝑡 ), 𝑁 depended on
the number of components (in each leg), and each controller was
defined by a sinusoidal wave actuation [2]. All controller variables
(amplitude, frequency, phase, and offset), normalized to: [-1.0, 1.0],
were optimized using a (1+1) EA [7], where the number of variables
depended on the number of components and non-fixed joints. Con-
troller parameter evolution and the interaction of all component
controllers thus determined a robot’s overall (gait) behavior.

Pre-Designed Robots: To demonstrate benefits of MLE evolved
robots across various task environments (section 2.1) we evaluate a
set of 16 pre-designed robots, where each of the 16 is denoted by
a specific property type. That is, specific values (property types)
derived from each discrete value combination for the coefficient of
friction and restitution properties. We use a pre-designed (hexapod)
morphology from previous work [2], where the key difference
is previous work only tested one property type (friction = 0.75,
restitution = 0.75), whereas we evaluated 16material types. Each leg
comprised four square polygons, each with friction and restitution
coefficients of 0.75. In the robot simulator [2], the robot torso is 0.16
units in length, each leg component block is 0.01 units in length.
For comparison, maximum task-performance (1.0) is gained if a
robot traverses 1.0 unit in any given environment (section 2.1).

Parameter Value
MAP-Elites

Generations (Both layers) 1000
Component layer features Mean component friction

restitution, leg size
leg complexity [2]

Robot layer features Mean leg friction
restitution, leg size

Niches 1000
Initial proportion of filled niches 0.1

Simulation Environment
Starting points (On starting line) 5 (random)
Surfaces (flat, incline) 0◦, 15◦

Task trial (duration) 15 seconds
Ground friction (low, high) 0.05, 0.9

Robot Morphology
Component mutation operators Shape, Connection rule

Torso connection shape
Material type

Robot mutation operators Replace leg, Joint-type
Number of legs
Controller only evolution

Torso (constituent blocks) size [1, 8, 16]
Leg maximum length 24 (2 legs)
Leg number range [2, 4, 6]
Leg component size range [0.01, 0.16]
Maximum components per robot 64
Joint upper limit (radians) 0.2
Joint lower limit (radians) -0.2
Joint delta movement (radians) [-0.05, 0.05]

Controller Evolution: (1+1) EA
Task trials (per generation) 5
Runs (1000 generations) 10

Table 1: Method & Experiment Parameters

Task Type Task Difficulty Surface Friction
A Flat Simple 0.90
B Flat Medium-low 0.05
C Inclined (15◦) Medium-high 0.90
D Inclined (15◦) Difficult 0.05

Table 2: Environments and associated task difficulty.

Task Materials (Friction, Restitution)
A Yellow (1.0, 0.75), Green (0.25, 0.25), Blue (0.75, 0.5)
B Yellow, Green, Blue
C Yellow, Green, Red (0.5, 0.25)
D Yellow, Green, Blue, Red

Table 3: Evolvedmaterial types (friction, restitution) of fittest
robot evolved (Figure 2) in each task environment (table 2)
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2.1 Experiments
Experiments ran on custom robot simulator [1] using MLE [2] to
evolve legged robot designs suitable for various environments (Ta-
ble 2). Task environments (𝐴-𝐷 , table 2) are ordered in terms of
increasing difficulty. Surface friction of 0.90 indicated maximum
traction, so coupled with a flat surface, was the least difficult en-
vironment to traverse (simple, table 2). However, 0.05 indicated
relatively low traction, so coupled with an inclined surface this was
the most difficult environment to traverse (difficult, Table 2). Robot
task-performance was evaluated as the portion of environment
length covered in one task trial (15 seconds, Table 1). We conducted
four sets of evolutionary and subsequently evaluation experiments.

Each evolutionary experiment ran for 1000 generations, evaluat-
ing a population of 100 robot designs per environment. Per genera-
tion, each robot was evaluated by gauging the average portion of
environment length traversed over five task trials (15 seconds each).
If during any task-trial, robots moved beyond a given side-lines
boundary or changed orientation to a non-forward moving direc-
tion, the simulation was stopped and the robot assigned a 0 fitness.
Per generation, after all robots had been evaluated, evolutionary
operators were applied to generate the next generation of robot
designs. Average task performance was calculated over 10 runs
using the fittest (highest task-performance) evolved robot per run.

Evaluation experiments tested the fittest MLE robot evolved for
each environment versus a robot pre-designed for the same environ-
ment as follows. First, versus the pre-designed hexapod with a con-
stant material type per component (friction=0.75, restitution=0.75)
taken from previous work [2]. Second, versus the best performing
of 16 pre-designed hexapod morphologies [2], where each pre-
designed robot used one of 16 different material types. Each evalua-
tion run took, for a given task environment, the fittest MLE evolved
robot after 10 evolutionary runs. This fittest evolved robot was
then evaluated versus the original pre-designed robot [2], or the
pre-designed robot (using one of the 16 material types, section 2)
in a simulation task trial of 15 seconds (Table 1), replicating each
of the four task environments (Table 2). These task trials were only
used to evaluate robot ambulation task-performance and as such
no evolutionary adaptation occurred during each task trial.

To ensure statistical viability of task-performance comparisons,
for each task trial (replicating one of the four task environments),
we ran 10 repetitions for the fittest MLE evolved robot versus one of
the 16 pre-designed robots. For each task trial run, robots started in
random locations (on a starting line), and average task-performance
was computed over the 10 task trial repetitions for evolved versus
pre-designed robots. Table 1 presents all MLE and experiment pa-
rameters. All other parameter values are as in related work [2].

3 RESULTS AND DISCUSSION
We first examine comparative average task performances of MLE
robots evolved per environment and the highest task performance
of 16 pre-designed robots (section 2) and the four best performing
robots with various pre-defined materials, for the pre-designed ro-
bot morphology (section 2.1), in the same environments. Pair-wise
statistical tests applied between the average task performance re-
sults ofMLE evolved versus the pre-designed robot (section 2.1) indi-
cate MLE evolved robots achieve a significantly higher average task

Figure 1: Average maximum task-performance of evolved
(box-plots) versus pre-designed robots (red dot, colored stars).

performance (𝑝<0.05) across all environments (Figure 1, left). Re-
sults data were non-parametric, found via a Kolmogorov–Smirnov
normality test with Lilliefors correction [9]. Mann–Whitney U tests
(𝑝<0.05) were applied in pair-wise comparisons with Effect Size [4]
treatment (all statistical test results are available online [1]).

Table 3 presents the evolved material composition (morphology)
for the fittest (highest task-performance) robot evolved in each en-
vironment (Table 2). Supporting the impact of suitable materials for
morphological design, we observe the task-performance benefits of
all evolved morphologies (Figure 1), across all environments. That
is, for each environment, robots with evolved material designs sig-
nificantly out-perform (𝑝<0.05), the best performing pre-designed
robots, including the best performing that comprise one of 16 pre-
set material types (section 2.1). In terms of evolved material designs,
Figure 2 presents the morphology of the fittest robot evolved in
each environment, where components are coloured either green,
red, blue or yellow to denote different material types (combinations
of varying friction and restitution values). For clarity of visualiza-
tion, note that specific component colours denote specific friction
values, whereas restitution values can vary per component colour.

The fittest evolved robots (Figure 2) indicates the importance
of the material types for adapting to varying environments. For
example, observing the morphology of the fittest robot evolved for
the most difficult task (Figure 2, right), we note this robot uses all
material types, (green, red, blue and yellow blocks defined by vary-
ing friction coefficients: 0.25, 0.5, 0.75, 1.0, respectively). Whereas,
the other fittest robots, evolved in less difficult environments (Fig-
ure 2, left, center-left, center-right), use only three of the material
types. Also, the material composition of the fittest robot evolved in
environment 𝐷 (Table 2) intuitively suits the environment type. For
example, each front leg is comprised of mostly high-friction (four
blue blocks per leg) material that enables the robot to gain traction
on an inclined slippery surface, and propel its body forward by
force of leg movement. The middle-legs have a similarly beneficial
material composition, that is mostly very high-friction (four yellow
blocks per leg) material that (coupled with the paddle-like leg shape)
enables the robot to stay fixed on an inclined slippery surface while
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Figure 2: Morphologies of fittest robots evolved in each environment. Left: High friction, flat surface (𝐴, Table 2). Center-Left:
Low friction, flat (𝐵, table 2). Center-Right: High friction, inclined surface (𝐶, Table 2). Right: Low friction, inclined (𝐷 , Table 2).

the front legs elevate to move forward. The robot’s back legs also
serve the function of helping the robot maintain stability while the
robot’s other legs are moving. The back-legs mostly used lower
friction (two red blocks per leg), where a lower friction was suitable
given that the main function of these back-legs was to maintain
overall stability as either the middle or forward legs moved. Videos
of the gaits of the fittest robots, evolved in each environment, are
available online [1]. These results are supported by related work
similarly demonstrating benefits of evolving material compositions
in robot design [5] and evolving such compositions [10] as a means
to optimise robot behavior across varying tasks.

Overall, results indicate two key contributions. First, further
demonstrating the efficacy of MLE for evolutionary robot (mor-
phological) design, where morphologies are embedded with simple
controllers actuating component joints (section 2). MLE evolved
robot morphologies generated suitable gaits as the robot interacted
with its environment, significantly out-performing (distance cov-
ered) pre-engineered robot designs. This also provides support for
the morphological computation hypothesis [14], via further demon-
strating the benefits of adapting material composition to off-load
computation for suitable behaviors (effective gaits in this case) from
the robot’s controller to its morphology (legged structure and ma-
terial composition in this case). The benefits of evolving material
compositions as part of robot design for changing environments
has been similarly demonstrated in various soft-robotic ambulation
[10] and object gripping [8] tasks.

4 CONCLUSION
We applied MLE robotic design via evolving materials comprising
components and components comprising morphology. Results in-
dicate MLE evolved robots effectively ambulate across increasingly
difficult task environments, out-performing robots pre-designed for
such environments. MLE evolved robots comprised component ma-
terial types suitable for specific environments (defined by surface
friction and inclination). Environment suitability of MLE evolved
morphologies was supported by task-performance comparisons
with pre-engineered robot designs using other materials. Overall,
this study’s results further support the efficacy of MLE as an evo-
lutionary robotic design method. Future work will evaluate the
robustness of MLE robot designs across changing task environ-
ments using evolutionary controller-morphology transfer [6, 15].
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