
Vol.:(0123456789)

Journal of Intelligent Information Systems
https://doi.org/10.1007/s10844-022-00731-7

1 3

A framework for interoperability between models
with hybrid tools

Germán Braun1,2 · Pablo Rubén Fillottrani3,4 · C. Maria Keet5

Received: 24 February 2022 / Revised: 3 July 2022 / Accepted: 18 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Complex system development and maintenance face the challenge of dealing with different
types of models due to language affordances, preferences, sizes, and so forth that involve
interaction between users with different levels of proficiency. Current conceptual data
modelling tools do not fully support these modes of working. It requires that the interac-
tion between multiple models in multiple languages is clearly specified to ensure they keep
their intended semantics, which is lacking in extant tools. The key objective is to devise
a mechanism to support semantic interoperability in hybrid tools for multi-modal model-
ling in a plurality of paradigms, all within one system. We propose FaCIL, a framework
for such hybrid modelling tools. We design and realise the framework FaCIL, which maps
UML, ER and ORM2 into a common metamodel with rules that provide the central point
for management among the models and that links to the formalisation and logic-based
automated reasoning. FaCIL supports the ability to represent models in different formats
while preserving their semantics, and several editing workflows are supported within the
framework. It has a clear separation of concerns for typical conceptual modelling activi-
ties in an interoperable and extensible way. FaCIL structures and facilitates the interaction
between visual and textual conceptual models, their formal specifications, and abstractions
as well as tracking and propagating updates across all the representations. FaCIL is com-
pared against the requirements, implemented in crowd 2.0, and assessed with a use case.
The proof-of-concept implementation in the web-based modelling tool crowd 2.0 demon-
strates its viability. The framework also meets the requirements and fully supports the use
case.

Keywords Information systems · Conceptual modelling · Semantic interoperability ·
Ontologies · Logic-based reasoning

Pablo Rubén Fillottrani and C. Maria Keet contributed equally to this work.

 * Germán Braun
 german.braun@fi.uncoma.edu.ar

Extended author information available on the last page of the article

http://orcid.org/0000-0003-0769-6680
http://crossmark.crossref.org/dialog/?doi=10.1007/s10844-022-00731-7&domain=pdf

 Journal of Intelligent Information Systems

1 3

1 Introduction

Complex software development requires the management of models that not only repre-
sent but also help to understand, analyse, and predict properties of the different artefacts
being engineered. A relevant subset of these models are called conceptual models (Gua-
rino et al., 2020), and they are distinguished by including the following characteristics
(Mayr and Thalheim, 2021): i) being associated to a conceptual space (the a priori seman-
tics, which is provided by a community of practice); and ii) allowing relationships, like
generalisation and aggregation, between the modelled elements. Conceptual models are
extensively used in software engineering, and several software technologies are grounded
on them, for example model-driven development or model-driven engineering (Whit-
tle et al., 2014), method engineering (Jeusfeld et al., 2009), and model-driven architec-
ture (Brown, 2004). Conceptual modelling is the process of building a representation of a
conceptual model, requiring one or more modelling languages and involving engineering
activities (Thalheim, 2010) which are mostly collaborative in nature. Among the myriad of
types of models and languages, we focus on conceptual data modelling, which is used in
the data analysis stage of database development, application design or big data processing
to capture the data storage and manipulation requirements of the universe of discourse. A
Conceptual Data Modelling Language (CDML) provides one or more of: diagrammatic
techniques and/or natural language features to support communication between stakehold-
ers, and formal meaning to furnish an unambiguous semantics that allows reasoning about
the model properties.

There are long-standing different opinions and communities of practice on which
CDML is best for a particular task or on the whole. Yet, people need to collaborate, intelli-
gent systems using multiple technologies need to be developed, and disparate systems have
to be integrated. The heterogeneity in this case concerns, as a minimum, different visual
modelling languages, notably UML Class Diagrams (Object Management Group, 2017),
EER (Thalheim, 2009), and ORM (Halpin and Morgan, 2008), which also may be ver-
balised in a natural language of choice and perhaps also authored in a natural language
such as SBVR (Object Management Group, 2022). In addition, if the whole, and possibly
integrated, conceptual data model becomes large, it may be necessary to send it to an auto-
mated reasoner to check it for any inconsistencies and implicit constraints so as to verify
or improve the model’s quality (Farré et al., 2013; Sportelli and Franconi, 2016). Further,
the models may be used at runtime, such as in ontology-based data access tools (Calvanese
et al., 2017), like for data integration and analysis of, e.g., food systems in the Mediter-
ranean (Calvanese et al., 2016). Besides these examples, a practitioner survey found that
heterogeneity was also found to be sustained in practice, mainly because of language limi-
tations (ontological completeness and perspective), suitability for stakeholders and famili-
arity, and size or complexity of the domain (Sabegh and Recker, 2017). Put differently: this
situation will not go away.

The heterogeneity also acts out in different ways of representing conceptual models
(including certain application ontologies): visualised in a diagram, verbalised in (pseudo-)
natural language, serialised for computational use, and possibly also formalised in a logic.
Combined, this requires multi-modal modelling in a plurality of paradigms and that is
supported by hybrid tools, i.e., systems that not only include but also somehow reconcile
representations of two or more styles of representation. The main question then is how to
realise such a reconciliation in a hybrid tool in a way that is systematic, transparent, and
extensible?

Journal of Intelligent Information Systems

1 3

This first requires a theoretical foundation on which to base the alignments of the
modalities and, underlying that, some form of interoperability across the languages. A
recent review identified main challenges, including overlap and inconsistency across mod-
els, complexity, maintainability, language variations and tool support, and user comprehen-
sion (Ong and Jabbari, 2019). Theoretical approaches to address some of these include a
common hypergraph (Boyd and McBrien, 2005), rules with Datalog (Atzeni et al., 2012),
and metamodels with mappings and rules (Fillottrani and Keet, 2014; Venable and
Grundy, 1995). Regarding tooling, Pounamu (Zhu et al., 2004) and, recently, crowd (Braun
et al., 2021) implement a part of the theory to support the heterogeneity. What the theories
and tools fall short of are either multiple CDMLs, the verbalisation, or the formalisation
for runtime use including inconsistency detection, or they support only fragments of prior
CDMLs.

To make this heterogeneity run smoothly nonetheless, a first step is to devise a model-
ling infrastructure that can handle it. We aim to solve these issues by proposing the Frame-
work for SemantiC Interoperability of conceptual data modelling Languages, FaCIL, as a
basis for hybrid modelling tools with relations between components and a workflow that
uses them. We instantiate FaCIL for one design specifically: to cater for UML, ER, and
ORM2 interoperability. It enables one to seamlessly automatically transform models across
CDML barriers, including automatic propagation of updates, and to reason over them if
desired, all in one place. The approach was evaluated by implementing the common core
fragment that the three main CDMLs agree on (Fillottrani and Keet, 2021) availing of the
KF metamodel (Keet and Fillottrani, 2015) and the interoperability rules (Fillottrani and
Keet, 2014) together with a formalisation in a Description Logic and serialised in OWL
(Motik et al., 2022) as a proof of concept. All these previous works contribute to the theo-
retical background of FaCIL, mainly related to the KF and their rules. In this work, we
integrate the theoretical background to develop a new framework for hybrid modelling
tools. The tool crowd 2.0 is extended from Braun et al., (2021) to instantiate the proposed
framework, demonstrating its applicability and adaptability.

Distinct advantages of this framework with are as follows:

1. There is one system for related tasks: visual and text-based modelling in multiple model-
ling languages, automated transformations and update propagation between them, and
verification of the model on coherence and consistency;

2. Any visual and text-based conceptual model interaction with the logic is maintained only
in one place, instead of separately for each CDML and Controlled Natural Language
(CNL);

3. A CNL can be specified on the KF metamodel elements so that it may be applied at once
throughout the models and eliminate duplicate work of re-specifications;

4. Additional model management, such as abstraction and modularisation, can be specified
either on the KF metamodel or its related logic-based reconstruction, all in one place,
and propagate to other models accordingly, rather than reworking the algorithms for
each language separately over and over again;

5. The modular design of the framework allows for extensions to each component, be it
more variants of visual languages, controlled languages in other natural languages, or
more logic-based reconstructions in other logics for more or less scalability.

The remainder of this paper is structured as follows. We first provide a more extensive
motivation and background with the plethora of issues in Section 2. The orchestration

 Journal of Intelligent Information Systems

1 3

framework is introduced in Section 3 and the procedural side of it in Section 4. Its evalu-
ation by means of an implementation in crowd 2.0, comparison with a reference frame-
work, and a use case are described in Section 5. We compare it to related work and discuss
it in Section 6 and conclude in Section 7.

2 Motivational scenario

Let us commence with a scenario about data management of COVID-19 medicines; a sec-
tion of a UML Class Diagram is shown in Fig. 1. As a model, and for any CDML it may
be represented in, it has its own (informal) semantics irrespective of whether there is a
logic-based reconstruction. A question that does arise is how to formalise it, which could
be some Description Logic (DL) Berardi et al., (2005) or a serialisation in OWL so that
it can be sent to an automated reasoner such as Racer (Haarslev et al., 2012). Formalisa-
tion questions include heterogeneity in, among others, association/member ends vs. object
properties (relationships) and the different algorithms to deal with it Fillottrani and Keet
(2015), explicit vs. implied class disjointness, and how much of the UML specification
can be reconstructed in the logic. They differ in the details, making it hard to keep track
of what is going on and which features are supported in which instance; two examples of
partial formalisations are included in Fig. 1.

One can verbalise the model for those users who prefer to read text rather than assess
diagrams. Such a verbalisation uses a CNL together with the visual model to produce
text by taking the vocabulary from the model and plugging it into a template. A sample

COVID-19
treatment drug

name: String
COVID-19 medicine

COVID-19
vaccine

1..*0..* rname: String
country: String

Regulatory Org

0..11 Person: IDno
date: date
batch: String

Inoculation

vaccine

0..1

0..2

SubclassOf(Inoculation
ObjectExactCardinality(1 inoculatedWith COVID19Vaccine))

Class: Inoculation
 SubClassOf: inoculatedWith exactly 1 COVID19Vaccine

Fig. 1 A selection of a sample conceptual data model about COVID-19 medicines, suboptimal for illustra-
tive purpose (resolved with automated reasoning further below), in UML Class Diagram notation (top-left);
two examples of partial logic-based reconstructions of the model (top-right); and two serialisation variants,
as statements and as questions to validate

Journal of Intelligent Information Systems

1 3

template for a mandatory participation constraint may be Each {C1} {AssocEnd} at
least one {C2} and illustrative CNL-generated verbalisation and validation sentences are
shown in Fig. 1. Going back and forth between text and diagram requires management
especially when one representation mode covers more or less features than the other and
it can be further compounded by multilingualism. Since CNLs are not standardised, there
may be a substantial proliferation of them to keep track of.

Then, there is heterogeneity in CDMLs: if the prospective COVID-19 medicine data
management system is intended for a RDBMS, then ER may be preferred, and if it origi-
nates from business rules, probably ORM2, or they all may be needed as part of a com-
plex system with a database at the back-end and an object-oriented app as front-end and
thus needing both simultaneously. ER does not have datatypes, however, and both ER and
ORM2 require identifiers that the UML diagram in Fig. 1 does not have; yet, such discrep-
ancies have to be managed. Maintaining the model in all three language families would
amount to six ad hoc mappings to and from the specific CDML flavours used in the tools
and possibly also for the respective serialisations of the visual models since each tool has
its own model serialisation. The ER or ORM2 models may be verbalised as well, using
their respective terminology.

Overall, there thus can be very many variants of ‘roughly the same’ different models.
These models and their transformations need to be managed. This would need to include
models in ‘versions’ as diagrams, natural language text, formalisation(s), and serialisa-
tions, and that for at least ER, UML Class Diagrams (its static structural components), and
ORM2.

3 FaCIL: A framework for hybrid modelling

The orchestration that we propose in Section 3.2 builds upon several key components that
have been introduced in prior work. We briefly outline some pertinent theoretical founda-
tions and preliminaries of them first in Section 3.1.

3.1 Context

First, to be able to change from one CDML to another, one needs to know what features
are available in the languages. To this end, a unifying metamodel—called the KF meta-
model—was designed (Keet and Fillottrani, 2015) and formalised for precision and verifi-
cation to ensure that there were no inconsistencies or unintended implications. The meta-
model unified the ER, ORM2, and UML Class Diagram language (v2.4.1) and harmonised
terminology of the features, which facilitated identification of the overlap and uniqueness
across the selected CDMLs. While they all have Relationship (association) and Subsump-
tion, Role (association end/relationship component), and Object type (class/entity type),
they differ on other constructs (e.g., weak entity type, qualified association), and of the
combined 49 different types of constraints, the intersection consists of only cardinality
(including Mandatory and Single identification), Disjointness and Completeness over the
subsumption relation, and Subset constraints.

These insights formed the basis of a metamodel-driven approach to interoperability
of conceptual data models (Fillottrani and Keet, 2014). Instead of requiring a mesh net-
work of mappings, each model maps into the metamodel or out of the metamodel, there-
with reducing the number of mappings. These mappings consist of 1:1 alignments for the

 Journal of Intelligent Information Systems

1 3

feature overlap, and transformations or approximation rules for the rest. More complex
transformations are built up from the component rules. For instance, ORM’s Value type
maps into the metamodel, then within the metamodel there is a rule to transform that into
an attribute, and from there it maps out into UML’s attribute.

Figure 2 depicts the application of some of the interoperability rules to convert from
UML to ER models. For the sake of space, we show only four rules related to both
Object type and Subsumption for the COVID-19 example in Fig. 1. UML-O1 and
UML-S1 convert the UML Classes and Generalisations to KF Object types and Subsump-
tions, respectively. ER-1O and ER-1S take the KF primitives generated in the previous
step and generate the corresponding ER primitives: Entity types and Subtypes. Further
conversion must be applied to UML Attributes and Associations Constraints (cardinalities/
disjointness) (Fillottrani and Keet 2014).

Relevant for realising any implementation is the prioritisation of features based on what
is used in publicly available models, for which the assessment presented in Keet and Fil-
lottrani (2015) is used, and, following from that, the specification of corresponding logic
profiles, which was first introduced in Fillottrani and Keet (2015).

The static elements summarised in this section do not yet address how these compo-
nents are supposed to interact to achieve that seamless integration in tools, which is what
the framework addresses.

3.2 Framework

The overall orchestration to design a modular hybrid modelling tool based on a systematic
approach that is maintainable, is divided into two components: the objects and their rela-
tions in the framework—what is involved—are depicted in Fig. 3 and will be described in

Fig. 2 COVID-19 medicines example from Fig. 1 where interoperability rules are applied to generate the
ER version of the model (only a subset of the rules used are shown): first from the model to the metamodel
with the relevant “UML to KF rules”, where terminology is harmonised with the other supported modelling
languages and any transformations are computed, and then the “KF to ER” rules are used to generate the
semantics-preserving corresponding ER diagram

Journal of Intelligent Information Systems

1 3

this section; and the dynamic ‘workflow’ processes—how it works—will be described in
the next section.

3.2.1 Overview of the main components

The central point for achieving the interoperability is the aforementioned KF Metamodel,
which describes all native features and their constraints present in all compatible CDMLs.
CDMLs have their own semantics independent of whichever logic is used to formalise
them. As such, it means that these elements are self-standing entities and ‘first class citi-
zens’, not merely syntactic sugar for logical theories in which they are translated.

A conceptual data model (CDM) as visual model (diagram) can be encoded in a Seri-
alised logical theory; it is that and no more and so does not become an ontology even
if the logic is that of an ontology language such as OWL 21. The conceptually distinct
aspects and artefacts are kept separate in this orchestration, as can be observed from the
encoded in. A Controlled natural language specification is a subset of (pseudo-)natu-
ral languages that are obtained by restricting the grammar and vocabulary in order to make
it easier to be processed and it verbalises a CDM in a chosen natural language.

An instance of the metamodel is a concrete collection of these elements that represents
a given conceptual model. Within some hybrid tool, it constitutes a Runtime conceptual
model, which is used as pivot to switch between different representations:

– a Visual model graphically represented in a given CDML;
– a CNL-based model, which is its verbalisation following a CNL specification;
– a Serialised logical theory to be interchanged with other systems preserving its

semantics based on some formal logic; or

Fig. 3 Framework and rules for multi-modal and hybrid modelling, with the KF metamodel centrally posi-
tioned, the various visual languages and orchestration thereof on the left, their text-based counterparts on
the top-right, and the link to the logic-based reconstructions in the bottom-right of the diagram. The squig-
gle arrows point to where which subset of transformation rules are applied

1 Conversely, an ontology rendered visually using a CDML remains an ontology.

 Journal of Intelligent Information Systems

1 3

– a Persistent conceptual model that includes tool-specific metadata when saving it
into persistent storage.

Both graphical and textual models are intended for human users of the tool. A typical tool
interaction involves generating persistent conceptual models that can be sent to a reasoner
that later solves queries over the logic-based semantics of this model. Other interactions
can be importing or exporting the model to other tools. The runtime conceptual model can
be in any format the tool developers prefer, e.g., loaded in some data structures in Java,
JavaScript, or even Python, depending on ones particular software design, which is used
in-memory. Whichever its actual data structure in a particular implementation, it is con-
strained by the KF metamodel elements with its constraints.

3.2.2 Achieving interoperability

In FaCIL, interoperability rules, such as those shown in Fig. 2, govern the transformations
between the different models a tool can handle, which are textually shown in the middle of
each relationship in green/grey in Fig. 3. It is key to specify explicitly which rules it sup-
ports in order to understand the impact of performing the transformation on the semantics.
It is also important to modularise the rules to provide the opportunity for any hybrid tool to
present the user several alternative transformations. In the framework, all of the rules are
defined on the KF Metamodel while they become operative on a Runtime conceptual
model. Any modification to these rules lead to a new behaviour for such a tool.

Concerning the interoperability with a myriad of logics for reconstructions of CDMLs,
there is one key location where this happens: between the runtime conceptual model and
the serialised logical theory, where the transformation algorithms (KF/L from logic to KF
and KF/L from KF to logic) are specified once for each computational logic.

Similar rules are necessary to visualise a runtime conceptual model in a CDML, and
also to recreate it after editing operations performed by a user, which are handled by the
KF/CDML and CDML/KF rules. Given that the CDMLs differ in expressive power, a
roundtrip from two different CDMLs may also involve additional transformations, KF/KF,
to preserve the semantics of the runtime conceptual model before visualising it into another
CDML, such as aforementioned conversion between attribute and value type.

A new CDML can be supported by the framework by relating its visual elements to
the KF metamodel, possibly adding new ones, and then specifying these rules for the new
CDML. By adhering to the orchestration, a tool can be updated independently while ensur-
ing homogeneous interpretation of the language. This is not the case if one were to repur-
pose, e.g., the Protégé tool (Musen, 2015) for conceptual modelling, since different plugins
can assign different semantics to the same model.

Additionally, a set of rules KF/CNL is necessary to generate CNL-based models to be
used by human users for validation activities. Again, several sets of these rules can be sup-
ported, therewith allowing the user to choose one that is adapted for their needs. Generally,
only verbalisation is used, but FaCIL permits rule declarations to enable CNL-based edit-
ing of a conceptual model such that it will maintain compliance with the KF metamodel.

Finally, a set of rules is necessary to cater for multiple graphical renderings of the same
visual model so as to present a simplified version to the human user, which is useful espe-
cially for large models. One can simplify a diagram by removing one or more types of vis-
ual elements (a syntactic abstraction), such as hiding attributes or names of relationships,

Journal of Intelligent Information Systems

1 3

or summarise a very large diagram to the key salient subject domain content (a semantic
abstraction), whose rules are specified with the CDML abstraction rules.

3.2.3 Additional functionality

While a fully multi-modal and hybrid tool may be enough for users to complete their tasks,
one may wish to add import/export capabilities from/to other tools that are not included
in the framework; e.g., a model transformed into a Serialised logical theory in the OWL
syntax may be imported into, e.g., Protégé, and vv. This interaction is defined by the
respective set of rules KF/L and L/KF. Interoperability in terms of visual models or CNL
specifications from other tools, such as ERwin2 or draw.io3, require alignment to particular
data structures of those tools for each of them separately, since there is no standard for seri-
alising either visual models or CNL-based models.

4 Possible workflows

In this section, we describe a workflow that avails of FaCIL presented in Section 3. It is
split into two processes as illustrated in Figs. 4 and 5, where all the blue and green (darker
shades of grey) coloured elements are the key component processes and rules for model
interoperability, yellow (light grey) indicate the various models, and white-filled elements
indicate the remaining and usual activities in the one-off scenario only. Its purpose is two-
fold: i) it highlights that interoperability components are needed, and which ones and
where, and ii) it provides a walk-through scenario for usage and to elucidate functionality
required for a hybrid tool.

The first instantiation in Fig. 4 is a workflow that operates entirely in the conceptual
modelling layer and includes generation of CNL-based models, for collaborative design
of a conceptual model, involving modellers from diverse skills that require interoperabil-
ity between visual an textual models. In the top part of the figure, a tool that implements
FaCIL is used by a user to draw a diagram in their preferred CDML from scratch, or they
import an externally generated model. This model A is then transformed into a runtime
CDM (I′) using the CDML/KF rules. Then, a CNL textual model is generated for valida-
tion purposes using KF/CNL rules, labelled N. It generates sentences for each element and
constraint, such as the “Each COVID-19 medicine is approved by at least 1 Regulatory
Org” from the diagram in Fig. 1 for the 1..* multiplicity. The same visual model A also still
may be converted to another CDML using KF/CDML rules, obtaining a visual model B (an
example will be shown in the use case in Section 5.3 below). The tool enables one user
to visually update B into B′ . This new visual model may follow two flows: either it may
be converted again to a CNL-based model (N′) or it is transformed back to the original
CDML resulting in model A′ due to the updates. These steps require applying the respec-
tive CDML/KF and KF/CDML set of rules. The CNL-based model can be verified by the
modeller (or an end user) and updated if needed by using CNL/KF rules, producing N′′ ,
where such changes then trigger modifications in the corresponding visual models in dif-
ferent KF/CDML sets of rules, producing A′′ and B′′ . If B′ or B′′ is an ORM2 diagram

2 https:// erwin. com/ produ cts/ erwin- data- model er/
3 https:// app. diagr ams. net/

https://erwin.com/products/erwin-data-modeler/
https://app.diagrams.net/

 Journal of Intelligent Information Systems

1 3

then for, say, the UML diagram of Fig. 1, the Convert... step includes additional conver-
sions at the level of the KF metamodel, which are done by the KF/KF rules. As example,
the UML attribute country of the Regulatory Org class is mapped to the KF attribute
country(Regulatory Org, string), where string is a datatype and Regulatory Org
is an entity type. Then, a new internal KF primitive, named MappedTo, must be asserted
into the runtime KF model (using KF/KF rules), therewith transforming the attribute into a
relationship between Regulatory Org and country. Finally, such a relationship can
be mapped to a ORM2 fact type using a KF/CDML rule.

The second part, in Fig. 5, extends the conceptual modelling layer scenario to inclu-
sion of automated reasoning. Once a visual model A is available and a runtime CDM cre-
ated (I′), as in Fig. 4, one can, as usual, visually update it, save it for later use, or share it

Start

Design EER/UML-
CD/ORM2 model

Load external EER/
UML-CD/ORM2 model

Generate KF
runtime CDM

CDML/
KF rules Persistent

CDM II
saved

 as
Runtime
CDM I

creates

Visual
model A

saved
as

Convert to visual model
in different CDML

KF/CDML
rules

Update KF
Runtime CDM

Load Visual model

Generate
CNL model

KF/CNL
rules

Visual model Bsaved
asModify Visual

model

CDML/KF
rules

Natural language
model N

creates
Visual model

saved
as

Convert back to
original CDML

KF/CDML
rules

Visual model updates
to

Generate
CNL model

KF/CNL
rules

Natural
language
model

creates

Update KF
Runtime CDM

Modify CNL
model

Update Visual
models

CNL/KF
rules

KF/CDML
rules

Natural language model

Visual model
updates to

Visual model
Stop(start a new cycle of editing)

Visual
model Asaved

as

updates
to

Fig. 4 A possible workflow with interaction between visual conceptual data models and (pseudo-)natural
language versions, and their updates that propagate to the others. It commences with a visual model in
one’s preferred language, from which a KF runtime model is generated; from there, it can go in multiple
directions: verbalising it, converting it, or modifying it. After a modification, the KF runtime model is also
updated and the changes propagated upon visual model conversion, for as long as the modeller wishes to
continue. The coloured (grey) boxes are thanks to our FaCIL and the white ones are from traditional one-off
modelling

Journal of Intelligent Information Systems

1 3

to other modellers with different CDML preferences by using specific KF/CDML rules.
The emphasis here, however, is reasoning. Since it is well-known that manually ‘reason-
ing’ over a visual model, especially when it is large, is difficult due to possible complex
constraint interactions and their consequences, we proceed to the logic encoding by apply-
ing the KF/L set of rules to obtain a serialised logic theory S that is suited for automated
reasoning. This is depicted in the middle of Fig. 5. For instance, consider Fig. 1 again:
the 1..1 multiplicity on the side of COVID-19 Vaccine may be serialised in OWL with
those KF/L set of rules as SubclassOf(Inoculation ObjectExactCardi-
nality(1 inoculatedWith COVID19Vaccine)). When serialised into a logic
theory, together with a suitable reasoner for it, the prospective hybrid tool then uses que-
ries to the reasoner to make deductions. Depending on the configuration, the deductions
may be temporarily materialised (into S′) so as to interact with the modeller on whether
they really intended to also have those implicit constraints. Assuming they do, this will
generate an update to the runtime CDM I′ model following the L/KF rules. These rules
resolve some intricate details and hides them from the user who is typically not a logician.
Yet they are implicitly present in any tool with automatic reasoning assistance (although
their descriptions are generally brushed over). For instance, a common mismatch between
a logical theory and a conceptual model is how they handle class disjointness: it can be
declared on the classes in the logic, but conceptual data models require the same constraint

Process 1

Add/update semantics
through logic encoding Serialised logical

theory Screates

KF/Logic
rules

Automated reasoning

Update KF Runtime
CDM with deductions

Logic/KF
rules Runtime CDM

modified

Update
Visual

model(s)

KF/
CDML
rules

Visual Model modified

Visual
Model modified

Save visual model(s), Runtime CDM, materials
deductions in serialised logical theory

Accept
deduction(s)

?

Revert to
prior visual
model(s)

yes
no saved

as

saved
as

Stop

saved
 as

Modify
visual
model

Update KF
Runtime

CDM

(start a new cycle)

Temporarily materialise
deductions

Serialised
logical theory

modified

Persistent
CDM saved

as

Conceptual Data Modelling layer

Conceptual Data Modelling layer

Logic layer

CDML/
KF

rules

Fig. 5 A possible workflow where conceptual models are also formalised and interact with an automated
reasoner. “Process 1” in the top section refers to processes such as in Fig. 4, the “Logic layer” in the mid-
dle is responsible for the automated reasoning processes, and the “Conceptual data Modelling Layer” at the
bottom deals with the updates to the model and any further modelling tasks following assessing the deduc-
tions, such as resolving the problem of an unsatisfiable class

 Journal of Intelligent Information Systems

1 3

to be asserted over the subsumptions from a common direct parent class. This is a concep-
tual equivalence, but not logically: a roundtrip results into two different logical theories (a
new class has to be added). For three CDMLs, one could end up with four theories then,
if it is a direct transformation between the (serialised) logic and each of the visual models.
Rather, in the proposed orchestration, we put that in one transformation only, from Serial-
ised logical theory to the Runtime CDM, which then takes care of the rest in a loss-less
conversion (w.r.t. disjointness) to visual models in the CDML notation.

After the logic layer, the model-as-logical-theory is passed back to the conceptual mod-
elling layer where a modeller can view the deductions in the visual model, by having been
temporarily propagated into I′ . The deductions (if any) are analysed and checked on the
updated visual model, and accepted or rejected by modellers. This may end the session,
where the final model is saved as model I′′ , or the modeller may continue modelling and
enter the workflow again.

5 Implementation and evaluation

We will demonstrate the working of FaCIL by: first, implementing it in a specific hybrid
tool, called crowd 2.0, which is a visual web tool for conceptual modelling and ontology
engineering tasks; second, evaluating FaCIL against a reference framework for conceptual
data modelling; and, third, using the motivational scenario of Section 2 as the basis for a
use case. They are presented in sequence in this section.

5.1 A hybrid tool that implements the FaCIL framework

This section summarises the tool we have developed and how it instantiates the framework
proposed in the preceding sections.

5.1.1 Overview of crowd 2.0

The intention of crowd, and its successor crowd 2.0, is to involve domain experts and
users in modelling tasks by adopting standard CDMLs, providing visual support for them,
and logic-based reconstructions (in addition to OWL 2 serialisations) for knowledge engi-
neers. The tool is fully integrated with a powerful logic-based reasoning server acting as a
background inference engine. That reasoning is relative to the diagram’s graphical syntax
so that users will see the original model graphically completed with all the deductions that
are expressed in the graphical language itself. crowd focuses on graphical modelling of
CDMs (and ontologies) at the type level, and does not consider individuals. It is compliant
with W3C standards by allowing the definition of global naming schemes as well as the
export of specifications to OWL 2 to interoperate with other tools.

crowd has been released in two versions. The first iteration, as crowd 1.0 Braun
et al. (2020), included visual support for only UML diagrams and interoperability via
the OWLlink communication protocol (Liebig et al., 2011), with the Racer (Haarslev
et al., 2012) or Konclude reasoner (Steigmiller et al., 2014) to validate them. In addi-
tion, models were exported as valid OWL 2 serialisations together with their namespaces,
which were defined from the user interface. The substantially extended version crowd
2.0 now supports three CDMLs supported by the KF metamodel, including visual editors
for not only UML, but also ORM2 and ER, and the sets of rules required for conceptual

Journal of Intelligent Information Systems

1 3

model interoperability. It does this in the way presented in Fig. 3, which is elaborated on
below. The logic-based reconstruction has been refactored (cf. crowd 1.0) in terms of KF
instances. crowd 2.0 has been released4, together with its documentation. The source code
is also publicly available5. We will demonstrate crowd 2.0 in the use case below.

5.1.2 Framework instantiation in crowd 2.0

To computationally test FaCIL, we implemented the “core fragment” of the three CDML
families (Fillottrani and Keet, 2021) and a logic formalisation thereof. In crowd 2.0, a Java
KF-API is in charge of receiving models in a given representation and converting them to/
from the metamodel by executing the rules CDML/KF and KF/CDML.

The task of keeping the workflow involving Runtime conceptual model consistent
across all the updates of the models, including deductions obtained from the reasoner, has
been implemented in a PHP module along with the set of rules KF/L and L/KF. A KF
instance is created as input, which is formalised using the KF/L rules, to be serialised in
OWL 2, and then sent to one of the two supported reasoners, as the user so prefers. Func-
tionality to import arbitrary OWL files is under development. The complete catalogue of
the implemented interoperability rules is available as an online resource6.

The models persist in a database as JSON objects. Once a model is saved, it may be
loaded in any of the visual editors. The client of crowd 2.0 is a web application imple-
mented with AngularJS and JavaScript.

5.1.3 Scalability considerations

There are two key considerations regarding scalability: 1) with respect to the models and 2)
in the light of computational costs of the algorithms. We shall address each in turn.

The approach with FaCIL is exceedingly scalable to a much larger set models: they
pivot around the KF metamodel in 1:n fashion rather than having to create and maintain
(n − 1)! mappings in a mesh structure. For instance, with n = 5 models in 4 languages,
there are 5 mappings to KF (automatically generated) and then only the requested number
of, also automatically generated, models in another family of languages in FaCIL (at most
5*4=20), whereas for the model-level mappings it would be 5 ∗ (4 − 1)! = 5 ∗ 6 = 30
mappings to maintain already. Concerning larger models than the examples in Fig. 2 and
the use case below: this is possible, for as much as any diagramming tool can handle large
sizes (Dudáš et al., 2018). The hiding feature in crowd 2.0 permits condensing the visu-
alisation and, hence, the tool permits more than a plain modelling tool. That is, there are no
model size constraints imposed by the back-end, but graphical representations have practi-
cal limitations of browsing and a modeller’s cognitive load.

The computational costs of automated reasoning over the models are as for any of the
chosen logic. For OWL in particular, that is 2NEXPTIME-complete in subsumption rea-
soning. Informally, the performance is deemed to user satisfaction for ‘small’ ontologies up
to a few thousand entities and axioms, which is well within the typical model size of about
50 entities and constraints (Keet and Fillottrani, 2015).

4 crowd 2.0 is available at https:// crowd- app. fi. uncoma. edu. ar/
5 At https:// github. com/ iamcr owd
6 At https:// github. com/ iamcr owd/ crowd- box

https://crowd-app.fi.uncoma.edu.ar/
https://github.com/iamcrowd
https://github.com/iamcrowd/crowd-box

 Journal of Intelligent Information Systems

1 3

Concerning the analysis of the algorithms that transform between the different modali-
ties of the models, the source of the complexity of them is given by the time spent looping
over each primitive of the models and their related ones. As typical examples, for each
object type it loops over each attribute associated to it, and for each disjointness or com-
pleteness in subsumptions constraint it loops over each object type participating in such a
constraint. Then, if we consider n primitives with m related other elements, the total time
taken by the algorithms is in O(n ∗ m) . The remaining operations are simple if-then-
else structures and constant string comparisons.

To complement this theoretical evaluation of scalability, we now conduct a runt-
ime performance test aiming at assessing the tool with a set of growing size models. In
the absense of real CDMs in crowd 2.0 and to stress the tool with larger models than
the average ones (as already said above, about 50 entities and constraints), we create a
dataset with the following in-use and real ontologies published in the repository LOV7:
time (Hobbs and Pan, 2004), which is a W3C recommendation; arco, a-loc (Carriero
et al., 2019) and cis (Lodi et al., 2017), supported by the Italian Ministry of Cultural Herit-
age and Activities; sto (Bader et al., 2020), for standards in use on the Industry 4.0; foaf
(Brickley and Miller, 2007), the well-known vocabulary for linking people on the Web;
s4agri (Poveda-Villalon et al., 2019), for smart agriculture and food chain domain; and
qudt (QUDT.org, 2011), for quantities, units, dimensions and types. From each ontology,
we create a KF instance by taking a subset of logical axioms, composed by all the possi-
ble subclasses, complements, unions, and existential and universal quantifications between
atomic concepts asserted in the ontology. The average size of the resulting KF instances is
of 277 entities: 48 object types, 64 subsumptions (simple and composed with disjointness
and completeness constraints), and 14 binary relationships with the respective roles and
cardinalities.

We perform the experiments on an Intel Core i5 (3.2 GHz), and 8 GB of memory run-
ning Debian GNU/Linux 10 (buster) with 64 bit kernel 4.19.98-1. To browse crowd 2.0,
we use Chrome 95.0.4638.69 and also the Chrome DevTools Performance panel to runt-
imes. The tests were executed in Incognito Mode to ensure that Chrome runs in a clean
state. We record the activity into these available categories: loading, the time making
network requests and parsing HTML; scripting, the time parsing, compiling, and running
JavaScript code (includes Garbage Collection (GC)); rendering, the time doing style and
layout calculations; and painting, the time painting, compositing, resizing and decoding
images. For each test, we record the workflow: (1) import a CDM given as a KF instance in
the UML editor of the tool (KF to UML conversion), (2) convert it to ORM 2 (UML to KF
and KF to ORM 2 conversions), (3) change the layout, and (4) verbalise the model.

Table 1 summarises the results. Overall, the runtime is affected by the scripting and
rendering activities, meaning the execution of JavaScript code on the client side to import,
display and arrange the models. We can see that the total runtime increases when the size
of each CDM is larger, which is expected if we consider that dealing with larger models is
more challenging for the tool. Most of the time is spent by scripting and also by rendering
for larger CDMs, while loading (network requests) is relative low, meaning that the conver-
sions between these models on the server side are done with an acceptable performance.

In particular, the tool spends most of the time scripting the two first models, gener-
ated from time and sto, where the majority of the primitives are simple subsumptions (with

7 https:// lov. linke ddata. es/ datas et/ lov/

https://lov.linkeddata.es/dataset/lov/

Journal of Intelligent Information Systems

1 3

very few constraints). crowd 2.0 presents similar performances for both the arco and foaf
CDMs, which are close in size (124 vs 131). While the arco model has 4 binary relation-
ships (thus, 8 roles and 8 cardinalities), the foaf includes a larger set of constraints on com-
posed subsumptions (about 67 subsumption in total and about 16 disjointness), indicating
that it is the number of elements in the model, rather than a type of element, that deter-
mines the performance.

For the last four models, the tool notably increases the rendering time if we compare
foaf (10.1 sec) vs. cis (32.05 sec). The CDMs for cis, s4agri and a-loc include a greater
number of binary relationships (30, 28 and 49, and therefore 60, 56 and 98 roles and cardi-
nalities, respectively), explaining the rendering time w.r.t. the first models. This last obser-
vation is consistent if we consider the rendering time of the model qudt, which is com-
posed by only subsumptions and is the shortest rendering time (24.4 sec) in these last four
models analised, with increasing scripting time.

Concluding this performance analysis of the tool crowd 2.0, it has been validated the
feasibility of the tool to manipulate average-size CDMs in a reasonable amount of time.

5.2 Alignment with a reference framework

We have devised workflows for hybrid modelling, which involve a set of activities based on
them that we will use later for classifying related approaches. Even so, to theoretically test
FaCIL to also demonstrate it is not some ‘arbitrary’ framework, we consider a “reference

Table 1 Runtime performance of crowd 2.0 for increasing CDMs

ahttp:// www. w3. org/ 2006/ time
bhttps:// w3id. org/ i40/ sto#
chttps:// w3id. org/ arco/ ontol ogy/ core
dhttp:// xmlns. com/ foaf/0. 1/
ehttp:// dati. benic ultur ali. it/ cultu ral- ON/ cultu ral- ON. owl
fhttp:// qudt. org/ schema/ qudt
ghttps:// saref. etsi. org/ saref 4agri/
hhttps:// w3id. org/ arco/ ontol ogy/ locat ion
i TBox axioms modelled = subclasses + complements + unions + existential + universal quanti-
fications
j CDM size = Object types + Attributes + Subsumption + Binary Relationships + Roles +
Constraints cardinalities/disjointness/completeness)

Ontology Ontology Metrics CDM Metrics Runtime (seconds)

#TBox axioms modelled i CDM Size j Loading Scripting Rendering Painting

timea 24 46 0.21 15.39 3.1 0.14

stob 40 85 0.37 21.2 6.52 0.14
arcoc 85 124 0.34 54.23 9.1 0.24
foafd 76 131 0.33 63.93 10.1 0.16
cise 131 287 0.52 54.24 32.05 0.14
xqudtf 100 307 0.74 63.66 24.4 0.29
s4agrig 148 582 0.66 102.03 57.07 0.26
a-loch 157 655 0.71 114.41 78.25 0.2

http://www.w3.org/2006/time
https://w3id.org/i40/sto
https://w3id.org/arco/ontology/core
http://xmlns.com/foaf/0.1/
http://dati.beniculturali.it/cultural-ON/cultural-ON.owl
http://qudt.org/schema/qudt
https://saref.etsi.org/saref4agri/
https://w3id.org/arco/ontology/location

 Journal of Intelligent Information Systems

1 3

framework” (Delcambre et al., 2018) to align and justify our workflows and activities for
conceptual modelling. In line with our contribution, that reference framework of Delcam-
bre et al., 2018 discusses the purposes of a conceptual model—being to provide levels
of abstractions (with explicit semantics) to promote communication and understanding
among people with different views of domains—and it aims at characterising the field of
conceptual modelling by offering a holistic view of definitions, dimensions of analysis and
activities involved. Based on that framework, we focus on the activities associated with
conceptual models and conceptual modelling languages, and describe briefly how they are
covered by FaCIL.

– Activity 1: defining (modelling) a CDM using a CDML. In FaCIL, a model A can be
defined using a particular CDML (UML, ER, ORM2), which is also an instance of a KF
model (going through CDML/KF rules). In the same direction, such a model A could be
given in terms of structured text and then rendered into a CDML as well.

– Activity 2: implementing a CDM. This is the activity of transforming a CDM A into an
implemented artefact or product. As an example, the model A can be defined in FaCIL
as a UML Class Diagram and reconstructed into a logic formalism, to be used as a
runtime OWL 2 model in an Ontology-Based Data Access (OBDA) system (Calvanese
et al., 2016). Related features such as automatically compiling a model into a runtime
system could easily be also integrated.

– Activity 3: CDM reverse-engineered from an implemented system. This is the opposite
of the previous activity. A typical example is the extraction of a CDM from a database.
For instance, the NORMA tool offers reverse engineering of a database into an ORM
diagram, which then could be used in FaCIL. Similarly, an OWL 2 file can be extracted
from a database before implementing an OBDA system (Lubyte and Tessaris, 2009).
This kind of activity could be supported in FaCIL by importing OWL 2 files through
the L/KF rules.

– Activity 4: defining or extending a CDML. In addition to ground FaCIL, the KF meta-
model identifies the commonalities and differences in the modelling principles based on
the study of the standard CDMLs (ER, UML, ORM2). In this sense, the KF metamodel
provides the baselines to define or extend CDMLs. A new CDML can be supported by
FaCIL by relating its visual elements and interoperability rules to the KF metamodel.

– Activity 5: CDM translation. This is the activity of translating on CDM A in a CDML
L
1
 to a CDM A in a CDML L

2
 . As an example, as provided by FaCIL, a CDM given in

UML can be translated to a CDM in ER or ORM2, or a model can be verbalised into
natural language. Moreover, possible losses during the translations are tracked by the
KF metamodel, which keeps the whole semantics of the CDMs.

– Activity 6: mapping from one CDM to other, where both are expressed in the same
CDML. Integration of information is the key motivation of the KF metamodel, which
includes reconciling encoding differences. For instance, a typical example from Del-
cambre et al. (2018) is modelling something as a binary association or as an association
class in UML, which easily can be recognised when they are present in two conceptual
models in the same CDML. Thanks to the logic-based reconstruction, it could use the
patterns and algorithm of Fillottrani and Keet (2017) to translate between the two, or
those patterns can be specified in terms of the KF metamodel, so that the transforma-
tion happens there, and complete the mapping in three steps (i.e., UML→KF, KF→KF,
KF→UML).

– Activity 7: validating a CDM aims at identifying inconsistencies or contradictions in a
model. Such an activity depends on the formal definition of the CDML. In particular,

Journal of Intelligent Information Systems

1 3

in FaCIL this validation can be executed over a CDM in UML, ER or ORM (being this
validation rendered on the same diagrams), or over a CDM in structured text, which is
facilitated in particular by the constraints from the KF metamodel and the automated
reasoner.

Concluding this assessment of the reference framework, it has been demonstrated that
FaCIL meets such requirements.

5.3 Use case: revisiting the motivational scenario

With the theory in place and a hybrid tool that implements its core components, we now
turn to the motivational scenario about the modelling of the COVID-19 medicines of Sec-
tion 2. To do this, we will follow the use case diagram depicted in Fig. 6, which illustrates
how users can work collaboratively by exploring a conceptual model from different per-
spectives that suit their respective competencies and core tasks. For the sake of space, the
full description of this scenario is provided as an online resource8.

Analyst

create [x]
diagram

Convert to
[y] Convert to

[z]

Accept a
deduction

Modify
diagram

Save
diagram

HCIdev

DB
designer

Run
reasoner

Convert to
[x/y/x]

Sem Web
Dev

Export to
OWL

Simplify
view

Sem
Web Dev

Export to
OWL

Fig. 6 Sample use case diagram related to the use case described in Section 5.3, involving participants with
different roles, such as the database and the interface designer, who may prefer different modelling lan-
guages. The [x], [y] and [z] are distinct and either UML, ER, and ORM; the “[]” is UML in the use case,
but each type of diagram can be simplified and so left blank here

8 https:// github. com/ iamcr owd/ crowd- box

https://github.com/iamcrowd/crowd-box

 Journal of Intelligent Information Systems

1 3

First, let us put the UML diagram into crowd 2.0 (see Fig. 7). To push the tool’s capa-
bilities a little more so as to obtain more interesting results, we add an additional class in
the spirit of the CIDO ontology (He et al., 2020), called Experimental substance, which
is also shown in Fig. 7. Its back-end runtime conceptual model as KF instantiation and the
implementation of the rules were then called to generate automatically their correspond-
ing ER and ORM2 versions, which are depicted in Fig. 8. As can be seen in the figures,
there are labels like Assoc3 (abbreviated from the default generated Association-x, where
x is an increment count in the interface) and Qf Wzz9 in Fig. 8: ER requires names for
relationships, but UML does not, and this discrepancy is fixed with default naming. This
is similar for ORM2, where each UML attribute is converted into a ORM2 value type that
uses an extra mandatory 1:1 fact type (relationship) for it, which have been added. They all
can be modified by the modeller.

Let’s assume the modeller is a database analyst, and so we present them the ER dia-
gram. They decide to run the reasoner over the ER diagram to double-check its quality.
The deductions are displayed visually as shown in Fig. 9 and, upon clicking it, a brief note
appears in the right-hand pane of the tool: Experimental substance is unsatisifiable
because its parent classes are disjoint, and the cardinality on the Pfizer vaccine changed
from 0..2 to 0..1 because of the cardinality on with in Assoc2 and the subsetting con-
straint on the relationship. The modeller can accept or reject the deductions.

The scenario continues with more conversions across UML, ER, and ORM2, removing
that unsatisfiable class and transforming it back to UML that we started off with. This dia-
gram can be ‘decluttered’ by toggling the attributes and the role and relationship names, so
as to obtain a simplified visual notation whilst maintaining the details in the background.
Finally, it demonstrates it is possible to generate an OWL file and JSON from the model.
Also, upon the client’s request for validating the model, the HCIdev employee generates

Fig. 7 The same UML diagram as in Fig. 1, but then rendered in crowd 2.0’s interface

Journal of Intelligent Information Systems

1 3

a text-based version with an English CNL. As mentioned, these last features are fully
described in the online resource referenced above.

6 Related work and discussion

As noted in Section 1, there are several tools that cater for conceptual modelling, solely
or as part of a drawing suite, which are to a greater or lesser extent hybrid tools for multi-
model modelling. However, to compare crowd 2.0, we limit ourselves to those tools that
aim to support conceptual modelling interoperability, and preferably also have a notion
of multi-modality with CNLs and a formal foundation. Thus, we exclude tools from the
comparison that offer independent multiple drawing canvases for different CDMLs and
tools that offer only one CDML, such as AuRUS (Rull et al., 2015) and OLED-OntoUML

Fig. 8 Automatically generated ER and ORM diagram versions of the original UML class diagram model
of Fig. 7

 Journal of Intelligent Information Systems

1 3

(Guerson et al., 2015). Both of them support only UML, through the off-the-shelf tool
ArgoUML9, and offer reasoning over CDMs by encoding diagrams in DL and Alloy,
respectively. Also, FaCIL does not aim to be a multi-level approach (Atkinson et al., 2014)
and therefore such tools were excluded from the comparison. Although conceptual mod-
els are ‘instances’ of the KF metamodel in our setting, FaCIL does not allow both types
and instances to be mixed in the same model as defined for multi-level approaches. Actu-
ally, the KF is only a bridge for supporting CDML translations and multi-modality. Con-
ceptBase (Jeusfeld, 2021), GeRoMe (Kensche et al., 2007) and all the multi-level model-
ling approaches based on Telos (Koubarakis et al., 2021) are tools that provide powerful
generic meta-modelling features to formally characterise different levels of abstractions,
including languages, models and instances. These approaches are generic, so visual rep-
resentations and reasoning is not tailored to specific CDMLs. There are also generic
visual tools like MetaEdit+ Kelly et al (2013) and the SyncMeta framework (Nicolaescu
et al., 2016). These systems allow one to define collaboratively a visual modeling language
and then to generate a model editor for it. They would in principle be capable to express
graphically the well-known UML, ORM2 and ER diagrams in their visual view specifica-
tions (although some features like cardinalities cannot be represented), but very restricted
semantics is attached to these graphical elements, and so the only property that can be veri-
fied is model well-formedness. That is, reasoning over models is impossible.

This demarcation of scope reduced the related work to: i) OpenPonk that offers both
UML and BORM as well as FSAs and domain-specific languages (Uhnák and Pergl, 2016),
ii) Pounamu (Zhu et al., 2004) and the work by Boyd & McBrian, (2005), which both
cater for UML class diagrams, ER, and ORM and therewith are most within scope, iii)
the MIDST tool Atzeni et al. (200) for translating a model from one language to another,

Fig. 9 Deductions over the model, obtained with the automated reasoner: Experimental substance is
unsatisfiable and the cardinality on the Pfizer vaccine changed from 0..2 to 0..1

9 https:// github. com/ argou ml- tigris- org/ argou ml

https://github.com/argouml-tigris-org/argouml

Journal of Intelligent Information Systems

1 3

considering ER, UML and physical schema languages, and iv) NORMA with the ORMiE
extension Sportelli and Franconi (2016), which is a successor to ICOM Fillottrani et al.
(2012) but then tailored to ORM and, like crowd, duals as ontology editor as well. The
latter avails of their “Universal Conceptual Modelling Framework” Sportelli and Fran-
coni (2016) that might support transformations in the future but is predicated in the notion
of diagrams as ‘syntactic sugar’ for the logic. The features that they are assessed on are
devised based on FaCIL that was presented in Section 3, which are summarised as follows:

– Multiple CDMLs: the tool supports more than one CDML to design and maintain con-
ceptual models diagrammatically.

– Verbalisation (model → text): conceptual models in a particular CDML can be verbal-
ised in (pseudo-)natural language sentences by using a CNL.

– From structured text to model: conceptual models given as a textual specification with a
CNL are written in or imported into the tool and converted into a visual model by using
a CDML.

– Logic-based reconstruction of the model: the semantics of conceptual models given in a
CDML is encoded into a logical specification.

– Render logical theory diagrammatically: the tool generates a visual model from a logi-
cal specification.

– Reasoning over a model: In addition to encoding models into a logical theory, the tool
verifies them and then shows the inferences over the same diagram.

– Reasoning over structured text: the tool validates models given in structured text and
then shows the inferences over that verbalisation.

– Swap between models in different CDMLs: the tool supporting multiple CDML pro-
vides capabilities to convert between each other.

– Abstraction or hiding: The tool offers features to simplify the models, hiding attributes
or names, or defining modules and summarisation, among others.

The comparison is included in Table 2. As can be seen, crowd 2.0 compares favourably,
although it also does not have all the features implemented yet either. Notably, the inter-
operability with CNLs is under development (Garrido, 2019) and the systematic semantic
abstraction is within reach when integrating NOMSA’s abstraction algorithms (Khan and
Keet, 2021).

The multi-modality regarding CNL-based conceptual modelling receives little support,
both in the tools considered here and in general, with the NORMA tool for ORM2 (and
therewith ORMiE) as main exception. It is likely that this is because there is no standard
for it other than in SBVR format, which thus leaves plenty of scope for design cf. the fixed
syntax of the visual languages, and it requires tailoring to each natural language, whereas
the diagrammatic representation is independent of the natural language of the model-
ler. The state of affairs is similarly patchy for abstractions across the tools (see Khan and
Keet, 2021), which likewise looks easy to do superficially, but becomes complicated in the
details, for there are many ways how to abstract and it has to be re-implemented for each
CDML and modelling tool for as long as there is no common serialisation. Logic-based
reconstructions also face a so-called ‘embarrassment of the riches’, which may be partially
due to the plethora of logics, but also because of mismatches in language design principles
and purposes (Fillottrani and Keet, 2020).

The framework proposed in this paper contributes to alleviating these issues, and in par-
ticular items 1-4 as listed in Section 1, notably: one system for related modelling tasks
in different modes, one place to declare any CNL specifications that then may be applied

 Journal of Intelligent Information Systems

1 3

Ta
bl

e
2

 C
om

pa
ris

on
 o

f c
ro

w
d

2.
0

to
 si

m
ila

r t
oo

ls
, h

el
d

ag
ai

ns
t t

he
 fr

am
ew

or
k

fe
at

ur
e

re
qu

ire
m

en
ts

 fo
r m

ul
ti-

m
od

al
 m

od
el

lin
g

a
 It

is
 p

os
si

bl
e

to
 g

en
er

at
e

an
 E

R
 d

ia
gr

am
 fr

om
 a

n
O

R
M

 d
ia

gr
am

, b
ut

 n
ot

 v
v.

b
Re

as
on

in
g

re
su

lts
 a

re
 n

ot
 sh

ow
n

ov
er

 th
e

di
ag

ra
m

 b
ut

 th
ey

 a
re

 sh
ow

n
in

 a
n

in
de

pe
nd

en
t w

in
do

w
s.

c
 c

ro
w

d
2.

0
pr

ov
id

es
 E

ng
lis

h
C

N
L

sp
ec

ifi
ca

tio
ns

 fo
r t

he
 c

om
m

on
 se

t o
f K

F
pr

im
iti

ve
s.

d
D

er
iv

at
io

n
ru

le
s i

n
C

N
L

ar
e

us
ed

 to
 e

xp
re

ss
 k

no
w

le
dg

e
th

at
 is

 b
ey

on
d

no
rm

al
 O

R
M

 c
ap

ab
ili

tie
s.

e
 It

is
 li

m
ite

d
to

 th
e

ex
pr

es
si

ve
ne

ss
 o

f d
ia

gr
am

s.

Fe
at

ur
e

D
SL

/C
D

M
C

D
M

C
D

M
/O

nt
ol

og
ie

s

O
pe

nP
on

k
Po

un
am

u
B

&
M

cB
M

ID
ST

N
O

R
M

A
 +

 O
R

M
iE

cr
ow

d

To
ol

 c
ur

re
nt

ly
 av

ai
la

bl
e

ye
s (

Li
nu

x,
 W

in
do

w
s)

no
no

no
ye

s (
W

in
do

w
s)

ye
s (

O
S-

in
de

p.
)

M
ul

tip
le

 C
D

M
Ls

ye
s

ye
s

ye
s

ye
s

no
a

ye
s

Ve
rb

al
is

at
io

n
(m

od
el

 →
 te

xt
)

no
no

no
no

ye
s

ye
sc

Fr
om

 st
ru

ct
ur

ed
 te

xt
 to

 m
od

el
no

no
no

no
no

no
Lo

gi
c-

ba
se

d
re

co
ns

tru
ct

io
n

of
 th

e
m

od
el

pa
rti

al
ly

 (F
SA

 o
nl

y)
no

ye
s (

gr
ap

h)
ye

s (
D

at
al

og
)

ye
s (

O
W

L)
ye

s (
O

W
L)

Re
nd

er
 lo

gi
ca

l t
he

or
y

di
ag

ra
m

m
at

ic
al

ly
pa

rti
al

ly
 (F

SA
 o

nl
y)

ye
s

ye
s

no
no

ye
se

Re
as

on
in

g
ov

er
 m

od
el

no
no

no
no

ye
sb

ye
s

Re
as

on
in

g
ov

er
 st

ru
ct

ur
ed

 te
xt

no
no

no
no

ye
sd

no
Sw

ap
 b

et
w

ee
n

m
od

el
s i

n
di

ffe
re

nt
 C

D
M

Ls
no

ye
s

ye
s

no
no

ye
s

A
bs

tra
ct

io
n

or
 h

id
in

g
no

no
no

no
m

od
ul

es
at

tri
bu

te
s r

ol
es

 re
ls

. n
am

es

Journal of Intelligent Information Systems

1 3

throughout, and model management (e.g., abstraction or summarisation) then also can be
managed from one central location and propagate rather than administering multiple sepa-
rate specifications. Further, since it has this realised through a so-called ‘separation of con-
cerns’ for the different sub-tasks, i.e., with each component of the framework in a separate
module, it is extensible by design. For instance, one could add a new CDML to FaCIL by
relating its visual primitives to the KF metamodel, and possibly even add new elements or
constraints together with their interoperability rules. Similarly, one can add a new CNL for
both KF and any particular CDML. FaCIL does not constrain the serialisation technique
for a CNL specification, but since its instantiation in crowd 2.0 already has a reasoner,
ToCT (Mahlaza et al., 2021) may be of use to define the CNL, so that the CNL specifica-
tion itself can be sent to the reasoner for verification as well.

7 Conclusions

We have proposed the framework FaCIL for seamless multi-modal modelling in multi-
ple conceptual data modelling languages, supporting all their language constructs, and
described a workflow for it. A distinct feature of FaCIL compared to prior work is that it
ties together adjacent tasks in an interoperable way, notably multiple modelling languages
and automated reasoning over them for quick error detection and updates that propagate
throughout the models. Thanks to its theoretical foundations, automated transitions between
models in different modelling languages can be carried out coherently and consistently.

The framework was instantiated in a proof-of-concept hybrid tool, called crowd 2.0, which
demonstrated the practical feasibility of the theoretical foundations and was shown to com-
pare favourably to related work. FaCIL with crowd 2.0 was also evaluated against a reference
framework for conceptual data modelling and shown to be meeting those requirements.

The separation of concerns into distinct modules for separate subtasks plays an essential
role in fostering flexible frameworks and facilitates customisation and future extensions,
such as adding new CDMLs and then specifying their interoperability rules or specifying
new CNL dialects for both KF and particular CDMLs. Indeed, there are several directions
for future work, including extending crowd 2.0 with the proof-of-concept Spanish CNL
Garrido (2019), incorporating NOMSA’s abstraction mechanisms (Khan and Keet, 2021),
and adding choices in logic-based reconstructions for both the logic and the encoding deci-
sions. Further, we plan to extend FaCIL as a starting reference framework to help others to
evaluate tools, and understand what it has to offer, as well as contribute to the development
of tools with user-centred perspectives.

Acknowledgements CMK was financially supported by the National Research Foundation (NRF) of South
Africa (Grant Number 120852).

Data Availibility Statement For reproducibility, the models along with the evidence of the tests in the sec-
tion 5.1.3 are available on the GitHub repository https:// github. com/ iamcr owd/ crowd- box.

Code availability The implementation of crowd 2.0 is available on the GitHub project https:// github. com/
iamcr owd.

Declaration

Conflicts of interest The authors declare that they have no conflict of interest

https://github.com/iamcrowd/crowd-box
https://github.com/iamcrowd
https://github.com/iamcrowd

 Journal of Intelligent Information Systems

1 3

References

Atkinson, C., Gerbig, R., & Kühne, T. (2014). Comparing multi-level modeling approaches. In: 17th Int.
Conference on Model Driven Engineering Languages & Systems (MoDELS). CEUR-WS, vol. 1286,
pp. 53–61.

Atzeni, P., Cappellari, P., Torlone, R., Bernstein, P. A., & Gianforme, G. (2008). Model-independent schema
translation. The VLDB Journal, 17(6), 1347–1370. https:// doi. org/ 10. 1007/ s00778- 008- 0105-2.

Atzeni, P., Gianforme, G., & Cappellari, P. (2012). Data model descriptions and translation signatures in a
multi-model framework. Annals of Mathematics and Artificial Intelligence, 63, 1–29. https:// doi. org/
10. 1007/ s10472- 012- 9277-y.

Bader, S. R., Grangel-González, I., Nanjappa, P., Vidal, M., & Maleshkova, M. (2020). A Knowledge Graph
for Industry 4.0. In: 17th International Conference, ESWC, Proceedings. LNCS. Springer, vol. 12123,
pp. 465–480. https:// doi. org/ 10. 1007/ 978-3- 030- 49461-2_ 27

Berardi, D., Calvanese, D., & De Giacomo, G. (2005). Reasoning on UML class diagrams. Artificial Intel-
ligence, 168(1–2), 70–118. https:// doi. org/ 10. 1016/j. artint. 2005. 05. 003.

Boyd, M., & McBrien, P. (2005). Comparing and transforming between data models via an intermediate
hypergraph data model. J. Data Semant. IV, 69–109. https:// doi. org/ 10. 1007/ 11603 412_3

Braun, G. A., Gimenez, C., Cecchi, L. A., & Fillottrani, P. R. (2020). crowd: A visual tool for involving
stakeholders into ontology engineering tasks. KI - Künstliche Intelligenz, 34(3), 365–371. https:// doi.
org/ 10. 1007/ s13218- 020- 00657-8

Braun, G. A., Marinelli, G., Gavagnin, E. R., Cecchi, L. A., & Fillottrani, P. R. (2021). Web interoperabil-
ity for ontology development and support with crowd 2.0. In: 30th Int. Joint Conference on Artificial
Intelligence, IJCAI, p. 4980–4983. https:// doi. org/ 10. 24963/ ijcai. 2021/ 707

Brickley, D., & Miller, L. (2007). The friend of a friend (FOAF) vocabulary specification. http:// xmlns. com/
foaf/ spec/

Brown, A. W. (2004). Model driven architecture: Principles and practice. Software and Systems Modeling,
3(4), 314–327. https:// doi. org/ 10. 1007/ s10270- 004- 0061-2.

Calvanese, D., Cogrel, B., Komla-Ebri, S., et al. (2017). Ontop: Answering SPARQL queries over relational
databases. Semantic Web, 8(3), 471–487. https:// doi. org/ 10. 3233/ SW- 160217

Calvanese, D., Liuzzo, P., Mosca, A., et al. (2016). Ontology-based data integration in EPNet: Production
and distribution of food during the roman empire. Engineering Applications of Artificial Intelligence,
51, 212–229. https:// doi. org/ 10. 1016/j. engap pai. 2016. 01. 005.

Carriero, V. A., Gangemi, A., Mancinelli, M. L., Marinucci, L., Nuzzolese, A. G., Presutti, V., & Veninata,
C. (2019). Arco ontology network and LOD on italian cultural heritage. In: Proceedings of the First
International Workshop on Open Data and Ontologies for Cultural Heritage Co-located with the 31st
International Conference on Advanced Information Systems Engineering, ODOCH@CAiSE. CEUR
Workshop Proceedings, vol. 2375, pp. 97–102

Delcambre, L. M. L., Liddle, S. W., Pastor, O., & Storey, V. C. (2018). A reference framework for concep-
tual modeling. In: 37th Int. Conference on Conceptual Modeling, ER. LNCS. Springer, vol. 11157, pp.
27–42. https:// doi. org/ 10. 1007/ 978-3- 030- 00847-5_4

Dudáš, M., Lohmann, S., Svátek, V., & Pavlov, D. (2018). Ontology visualization methods and tools: a survey of
the state of the art. The Knowledge Engineering Review 33. https:// doi. org/ 10. 1017/ S0269 88891 80000 73

Farré, C., Queralt, A., Rull, G., Teniente, E., & Urpí, T. (2013). Automated reasoning on UML conceptual
schemas with derived information and queries. Information and Software Technology, 55(9), 1529–
1550. https:// doi. org/ 10. 1016/j. infsof. 2013. 02. 010.

Fillottrani, P. R., Franconi, E., & Tessaris, S. (2012). The ICOM 3.0 intelligent conceptual modelling tool
and methodology. Semantic Web 3(3), 293–306. https:// doi. org/ 10. 3233/ SW- 2011- 0038

Fillottrani, P. R., & Keet, C. M. (2020). An analysis of commitments in ontology language design. In: 11th
Int. Conference on Formal Ontology in Information Systems (FOIS), vol. 330, pp. 46–60. https:// doi.
org/ 10. 3233/ FAIA2 00659

Fillottrani, P. R., & Keet, C. M. (2021). Evidence-based lean conceptual data modelling languages. Journal
of Computer Science and Technology, 21(2), 93–111. https:// doi. org/ 10. 24215/ 16666 038. 21. e10.

Fillottrani, P. R., & Keet, C. M. (2014). Conceptual model interoperability: a metamodel-driven approach.
In: 8th Int. RuleML. LNCS, vol. 8620, pp. 52–66. https:// doi. org/ 10. 1007/ 978-3- 319- 09870-8_4

Fillottrani, P. R., & Keet, C. M. (2015). Evidence-based languages for conceptual data modelling profiles.
In: 19th Conference on advances in databases and information systems (ADBIS). LNCS, vol. 9282, pp.
215–229. https:// doi. org/ 10. 1007/ 978-3- 319- 23135-8_ 15

Fillottrani, P. R., & Keet, C. M. (2017). Patterns for heterogeneous tbox mappings to bridge different mod-
elling decisions. In: 14th Extended Semantic Web Conference (ESWC’17). LNCS, vol. 10249, pp.
371–386. https:// doi. org/ 10. 1007/ 978-3- 319- 58068-5_ 23

https://doi.org/10.1007/s00778-008-0105-2
https://doi.org/10.1007/s10472-012-9277-y
https://doi.org/10.1007/s10472-012-9277-y
https://doi.org/10.1007/978-3-030-49461-2_27
https://doi.org/10.1016/j.artint.2005.05.003
https://doi.org/10.1007/11603412_3
https://doi.org/10.1007/s13218-020-00657-8
https://doi.org/10.1007/s13218-020-00657-8
https://doi.org/10.24963/ijcai.2021/707
http://xmlns.com/foaf/spec/
http://xmlns.com/foaf/spec/
https://doi.org/10.1007/s10270-004-0061-2
https://doi.org/10.3233/SW-160217
https://doi.org/10.1016/j.engappai.2016.01.005
https://doi.org/10.1007/978-3-030-00847-5_4
https://doi.org/10.1017/S0269888918000073
https://doi.org/10.1016/j.infsof.2013.02.010
https://doi.org/10.3233/SW-2011-0038
https://doi.org/10.3233/FAIA200659
https://doi.org/10.3233/FAIA200659
https://doi.org/10.24215/16666038.21.e10
https://doi.org/10.1007/978-3-319-09870-8_4
https://doi.org/10.1007/978-3-319-23135-8_15
https://doi.org/10.1007/978-3-319-58068-5_23

Journal of Intelligent Information Systems

1 3

Garrido, M. A. (2019). Verbalización de un Subconjunto de UML en una Herramienta Web. MSc thesis,
Univ.Nac. del Comahue, Argentina

Guarino, N., Guizzardi, G., & Mylopoulos, J. (2020). On the philosophical foundations of conceptual mod-
els. Information Modelling and Knowledge Bases, 31(321), 1. https:// doi. org/ 10. 3233/ FAIA2 00002

Guerson, J., Sales, T. P., Guizzardi, G., & Almeida, J. P. A. (2015). OntoUML lightweight editor: a model-
based environment to build, evaluate and implement reference ontologies. In: 19th EDOC Workshops.
IEEE Computer Society, pp. 144–147. https:// doi. org/ 10. 1109/ EDOCW. 2015. 17

Haarslev, V., Hidde, K., Möller, R., & Wessel, M. (2012). The RacerPro knowledge representation and rea-
soning system. Semantic Web, 3(3), 267–277. https:// doi. org/ 10. 3233/ SW- 2011- 0032

Halpin, T., & Morgan, T. (2008). Information Modeling and Relational Databases, 2nd edn. Morgan Kaufmann
He, Y., Yu, H., Ong, E., et al. (2020). CIDO: the community-based coronavirus infectious disease ontology.

In: 11th Int. Conference on Biomedical Ontologies (ICBO). CEUR-WS, vol. 2807
Hobbs, J. R., & Pan, F. (2004). An ontology of time for the semantic web. ACM Transactions on Asian Lan-

guage Information Processing, 3(1), 66–85. https:// doi. org/ 10. 1145/ 10170 68. 10170 73.
Jeusfeld, M. A. (2021). Multilevel modeling with conceptbase. In: Lukyanenko, R., Samuel, B.M., Sturm,

A. (eds.) Proceedings of the ER Demos and Posters 2021 Co-located with 40th Int. Conference on
Conceptual Modeling (ER 2021). CEUR-WS, vol. 2958. https:// www. ceur- ws. org/ Vol- 2958/ paper1. pdf

Jeusfeld, M., Jarke, M., & Mylopoulos, J. (2009). Metamodeling for Method Engineering (1st ed.). Cam-
bridge: The MIT Press.

Keet, C. M., & Fillottrani, P. R. (2015). An ontology-driven unifying metamodel of UML Class Diagrams, EER,
and ORM2. Data & Knowledge Engineering, 98, 30–53. https:// doi. org/ 10. 1016/j. datak. 2015. 07. 004.

Keet, C. M., & Fillottrani, P. R. (2015). An analysis and characterisation of publicly available conceptual
models. In: 34th Int. Conference on Conceptual Modeling (ER). LNCS. Springer, vol. 9381, pp. 585–
593. https:// doi. org/ 10. 1007/ 978-3- 319- 25264-3_ 45

Kelly, S., Lyytinen, K., Rossi, M., & Tolvanen, J. (2013). Metaedit at the age of 20. In: Jr., J.A.B., Krogstie,
J., Pastor, O., Pernici, B., Rolland, C., Sølvberg, A. (eds.) Seminal Contributions to Information Sys-
tems Engineering, pp. 131–137. https:// doi. org/ 10. 1007/ 978-3- 642- 36926-1_ 10

Kensche, D., Quix, C., Chatti, M. A., & Jarke, M. (2007). Gerome: A generic role based metamodel for model
management. Journal on Data Semantics, 8, 82–117. https:// doi. org/ 10. 1007/ 978-3- 540- 70664-9_4.

Khan, Z., & Keet, C. M. (2021). Structuring abstraction to achieve ontology modularisation. In: Daramola,
O., Moser, T. (eds.) Advanced Concepts, Methods, and Applications in Semantic Computing. IGI
Global, pp. 72–92

Koubarakis, M., Borgida, A., Constantopoulos, P., Doerr, M., Jarke, M., Jeusfeld, M. A., et al. (2021). A
retrospective on Telos as a metamodeling language for requirements engineering. Requirements Engi-
neering, 26(1), 1–23. https:// doi. org/ 10. 1007/ s00766- 020- 00329-x.

Liebig, T., Luther, M., Noppens, O., & Wessel, M. (2011). OWLlink. Semantic Web, 2(1), 23–32. https://
doi. org/ 10. 3233/ SW- 2011- 0027

Lodi, G., Asprino, L., Nuzzolese, A. G., Presutti, V., Gangemi, A., Recupero, D. R., Veninata, C., & Orsini,
A. (2017). Semantic Web for Cultural Heritage Valorisation, pp. 3–37. Springer, Cham. https:// doi. org/
10. 1007/ 978-3- 319- 54499-1_1

Lubyte, L., & Tessaris, S. (2009). Automated extraction of ontologies wrapping relational data sources.
In: Int. Conference on Database and Expert Systems Applications (DEXA). Springer, pp. 128–142.
https:// doi. org/ 10. 1007/ 978-3- 642- 03573-9_ 10

Mahlaza, Z., & Keet, C. M. (2021). ToCT: A task ontology to manage complex templates. In: FOIS Ontol-
ogy Showcase, The Joint Ontology Workshops (JOWO). CEUR-WS, vol. 2969. https:// www. ceur- ws.
org/ Vol- 2969/ paper 40- FoisS howCa se. pdf

Mayr, H. C., & Thalheim, B. (2021). The triptych of conceptual modeling. Software and Systems Modeling,
20(1), 7–24. https:// doi. org/ 10. 1007/ s10270- 020- 00836-z.

Motik, B., Patel-Schneider, P. F., & Parsia, B. (2022). OWL 2 Web Ontology Language Structural Specifica-
tion and Functional-Style Syntax. W3C recommendation, W3C (accessed 3 February 2022). www. w3.
org/ TR/ owl2- syntax/

Musen, M. A. (2015). The protégé project: a look back and a look forward. AI Matters, 1(4), 4–12. https://
doi. org/ 10. 1145/ 27570 01. 27570 03

Nicolaescu, P., Rosenstengel, M., Derntl, M., Klamma, R., & Jarke, M. (2016). View-Based Near Real-Time Col-
laborative Modeling for Information Systems Engineering. In: Advanced Information Systems Engineering
- 28th Int. Conference, CAiSE, vol. 9694, pp. 3–17. https:// doi. org/ 10. 1007/ 978-3- 319- 39696-5_1

Object Management Group (2017). OMG Unified Modeling Language (OMG UML). Object Management
Group. www. omg. org/ spec/ UML/2. 5.1/

Object Management Group (2022) Semantics of business vocabulary and rules (SBVR) – OMG Released
Versions of SBVR. www. omg. org/ spec/ SBVR/1.0

https://doi.org/10.3233/FAIA200002
https://doi.org/10.1109/EDOCW.2015.17
https://doi.org/10.3233/SW-2011-0032
https://doi.org/10.1145/1017068.1017073
https://www.ceur-ws.org/Vol-2958/paper1.pdf
https://doi.org/10.1016/j.datak.2015.07.004
https://doi.org/10.1007/978-3-319-25264-3_45
https://doi.org/10.1007/978-3-642-36926-1_10
https://doi.org/10.1007/978-3-540-70664-9_4
https://doi.org/10.1007/s00766-020-00329-x
https://doi.org/10.3233/SW-2011-0027
https://doi.org/10.3233/SW-2011-0027
https://doi.org/10.1007/978-3-319-54499-1_1
https://doi.org/10.1007/978-3-319-54499-1_1
https://doi.org/10.1007/978-3-642-03573-9_10
https://www.ceur-ws.org/Vol-2969/paper40-FoisShowCase.pdf
https://www.ceur-ws.org/Vol-2969/paper40-FoisShowCase.pdf
https://doi.org/10.1007/s10270-020-00836-z
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-syntax/
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1007/978-3-319-39696-5_1
http://www.omg.org/spec/UML/2.5.1/
http://www.omg.org/spec/SBVR/1.0

 Journal of Intelligent Information Systems

1 3

Ong, D., & Jabbari, M. (2019). A review of problems and challenges of using multiple conceptual models.
In: vom Brocke, J., Gregor, S., Müller, O. (eds.) 27th European Conference on Information Systems,
ECIS 2019. https:// www. aisel. aisnet. org/ ecis2 019_ rp/ 179

Poveda-Villalon, M., Garcia-Castro, R., Daniele, L., de Roode, M. (2019). SAREF4AGRI: an extension of
SAREF for the agriculture and food domain. https:// saref. etsi. org/ saref 4agri/ v1.1. 2/

QUDT.org (2011). FAIRsharing.org: QUDT; Quantities, Units, Dimensions and Types. https:// doi. org/ 10.
25504/ FAIRs haring. d3pqw7

Rull, G., Farré, C., Queralt, A., Teniente, E., & Urpí, T. (2015). AuRUS: explaining the validation of UML/
OCL conceptual schemas. Software and Systems Modeling, 14(2), 953–980. https:// doi. org/ 10. 1007/
s10270- 013- 0350-8.

Sabegh, M. A. J., & Recker, J. (2017). Combined use of conceptual models in practice: An exploratory
study. Journal of Database Management, 28(2), 56–88. https:// doi. org/ 10. 4018/ JDM. 20170 40103.

Sportelli, F., & Franconi, E. (2016). Formalisation of ORM Derivation Rules and Their Mapping into
OWL. In: OTM Conferences in Computer Science, vol. 10033, pp. 827–843. https:// doi. org/ 10.
1007/ 978-3- 319- 23135-8_ 15

Steigmiller, A., Liebig, T., & Glimm, B. (2014). Konclude: System description. Journal of Web Semantics,
27–28, 78–85. https:// doi. org/ 10. 1016/j. websem. 2014. 06. 003.

Thalheim, B. (2009). Extended Entity Relationship Model. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of
Database Systems. Springer, vol. 1, pp. 1083–1091

Thalheim, B. (2010). Towards a theory of conceptual modelling. Journal of Universal Computer Science,
16(20), 3102–3137. https:// doi. org/ 10. 3217/ jucs- 016- 20- 3102.

Uhnák, P., & Pergl, R. (2016). The openponk modeling platform. In: Proceedings of the 11th Edition of the
International Workshop on Smalltalk Technologies. ACM. https:// doi. org/ 10. 1145/ 29910 41. 29910 55

Venable, J. R., & Grundy, J. C. (1995). Integrating and supporting entity relationship and object role mod-
els. In: 14th Int. Conference of Object-Oriented and Entity-Relationship Modelling. LNCS, vol. 1021,
pp. 318–328. https:// doi. org/ 10. 1007/ BFb00 20543

Whittle, J., Hutchinson, J., & Rouncefield, M. (2014). The state of practice in model-driven engineering.
IEEE Software, 31(3), 79–85. https:// doi. org/ 10. 1109/ MS. 2013. 65

Zhu, N., Grundy, J. C., & Hosking, J. G. (2004). Pounamu: a metatool for multi-view visual language envi-
ronment construction. In: IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE Computer Society, pp. 254–256. https:// doi. org/ 10. 1109/ VLHCC. 2004. 41

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

Authors and Affiliations

Germán Braun1,2 · Pablo Rubén Fillottrani3,4 · C. Maria Keet5

 Pablo Rubén Fillottrani
 prf@cs.uns.edu.ar

 C. Maria Keet
 mkeet@cs.uct.ac.za

1 Universidad Nacional del Comahue, 1400 Buenos Aires, Argentina
2 Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz,

2290 (C1425FQB) Buenos Aires, Argentina
3 Universidad Nacional del Sur, San Andrés 800, Bahía Blanca, Argentina
4 Comisión de Investigaciones Científicas de la provincia de Buenos Aires, calle 526 e/10 y 11,

La Plata, Argentina
5 Department of Computer Science, University of Cape Town, 18 University Avenue,

7700 Rondebosch, Cape Town, South Africa

https://www.aisel.aisnet.org/ecis2019_rp/179
https://saref.etsi.org/saref4agri/v1.1.2/
https://doi.org/10.25504/FAIRsharing.d3pqw7
https://doi.org/10.25504/FAIRsharing.d3pqw7
https://doi.org/10.1007/s10270-013-0350-8
https://doi.org/10.1007/s10270-013-0350-8
https://doi.org/10.4018/JDM.2017040103
https://doi.org/10.1007/978-3-319-23135-8_15
https://doi.org/10.1007/978-3-319-23135-8_15
https://doi.org/10.1016/j.websem.2014.06.003
https://doi.org/10.3217/jucs-016-20-3102
https://doi.org/10.1145/2991041.2991055
https://doi.org/10.1007/BFb0020543
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1109/VLHCC.2004.41
http://orcid.org/0000-0003-0769-6680

	A framework for interoperability between models with hybrid tools
	Abstract
	1 Introduction
	2 Motivational scenario
	3 FaCIL: A framework for hybrid modelling
	3.1 Context
	3.2 Framework
	3.2.1 Overview of the main components
	3.2.2 Achieving interoperability
	3.2.3 Additional functionality

	4 Possible workflows
	5 Implementation and evaluation
	5.1 A hybrid tool that implements the FaCIL framework
	5.1.1 Overview of crowd 2.0
	5.1.2 Framework instantiation in crowd 2.0
	5.1.3 Scalability considerations

	5.2 Alignment with a reference framework
	5.3 Use case: revisiting the motivational scenario

	6 Related work and discussion
	7 Conclusions
	Acknowledgements
	References

