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Abstract

Background

Climate change is expected to exacerbate diarrhoea outbreaks across the developing

world, most notably in Sub-Saharan countries such as South Africa. In South Africa, dis-

eases related to diarrhoea outbreak is a leading cause of morbidity and mortality. In this

study, we modelled the impacts of climate change on diarrhoea with various machine learn-

ing (ML) methods to predict daily outbreak of diarrhoea cases in nine South African

provinces.

Methods

We applied two deep Learning DL techniques, Convolutional Neural Networks (CNNs) and

Long-Short term Memory Networks (LSTMs); and a Support Vector Machine (SVM) to pre-

dict daily diarrhoea cases over the different South African provinces by incorporating climate

information. Generative Adversarial Networks (GANs) was used to generate synthetic data

which was used to augment the available data-set. Furthermore, Relevance Estimation and

Value Calibration (REVAC) was used to tune the parameters of the ML methods to optimize

the accuracy of their predictions. Sensitivity analysis was also performed to investigate the

contribution of the different climate factors to the diarrhoea prediction method.

Results

Our results showed that all three ML methods were appropriate for predicting daily diarrhoea

cases with respect to the selected climate variables in each South African province. How-

ever, the level of accuracy for each method varied across different experiments, with the

deep learning methods outperforming the SVM method. Among the deep learning tech-

niques, the CNN method performed best when only real-world data-set was used, while the

LSTM method outperformed the other methods when the real-world data-set was aug-

mented with synthetic data. Across the provinces, the accuracy of all three ML methods

improved by at least 30 percent when data augmentation was implemented. In addition,

REVAC improved the accuracy of the CNN method by about 2.5% in each province. Our

parameter sensitivity analysis revealed that the most influential climate variables to be
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considered when predicting outbreak of diarrhoea in South Africa were precipitation, humid-

ity, evaporation and temperature conditions.

Conclusions

Overall, experiments indicated that the prediction capacity of our DL methods (Convolu-

tional Neural Networks) was found to be superior (with statistical significance) in terms of

prediction accuracy across most provinces. This study’s results have important implications

for the development of automated early warning systems for diarrhoea (and related disease)

outbreaks across the globe.

Introduction

Diarrhoea is a major health concern and has remained among the top leading cause of global

morbidity and mortality amongst all ages [1, 2]. Annually, over 2.5 million deaths attributed to

diarrhoea is recorded worldwide [3]. The World Health Organization reported that the Sub-

Saharan Africa (SSA) and South Asia regions account for more than 80 percent of total world

records [1, 3]. Over the SSA region, South Africa is one of the most affected countries. In 2010

and 2015, diarrhoea was reported to be among the top ten leading causes of years of life lost

among South African residents [4]. Diarrhoea also accounts for three percent of the total death

records in individual of all ages in the country [5]. Some studies such as [6, 7] have shown that

diarrhoea infections in South Africa are attributed to nosocomial infections or community

acquired resulting from contaminated food and water caused by a range of pathogens. How-

ever, studies by [8, 9] reported that climate factors and weather variability influence the level of

abundance and seasonality of the pathogens present in the environment, thus the prevalence

of diarrhoea can be linked to extremities from weather events.

South Africa is a region that experiences significant temperature and precipitation anomaly,

which are factors that play a vital role in the long-term trends of diarrhoea [10, 11]. For exam-

ple, in Western Cape province of South Africa, the rate of diarrhoea hospitalizations was

strongly linked to increase in minimum and maximum temperature [7]. A study in Limpopo

province showed that seasons when precipitation rate was below normal coincides with a high

number of diarrhoea cases [9]. Thus, the development of a model with the ability to capture

complex relationships and long-term dependencies between climate factors and diarrhoea

may be effective for diarrhoea predictive analysis. A diarrhoea predictive model could be used

for public health surveillance as it will offer timely detection and prompt notification for the

control of diarrhoea outbreak.

Several studies have developed models for investigating diarrhoea outbreak in various com-

munities. A vast majority were developed with statistical models such as Auto-regressive Inte-
grated Moving Average Model (ARIMA) [12], Poisson Regression [7], Auto-regressive Analysis
of CovarianceModel (ANCOVA) [13] and Time-series Log Linear Regression [8]. For

instance, a study by [12] used the influence of climate variables to develop an ARIMA model

that predicts the daily incidence of diarrhoea in Beijing. The Poisson Regression model was

also used by [7] to assess the relationship between diarrhoea cases and temperature variability

in South Africa. Although these studies have proven useful, other studies such as [14, 15] have

shown that traditional statistical models and frameworks are often limited for the analysis of

high dimensional, imbalanced, and non-linear data. In addition, these studies [14, 15] reported

that the limitations of statistical models can be addressed usingMachine Learning (ML)
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methods. ML methods are known for their ability to handle high-dimensional data and model

complex predictive problems.

Several supervised learning-based ML techniques such as Support Vector Machines (SVMs)

[16] and Deep learning techniques such as Convolutional Neural Networks (CNNs) [17], Long
Short-TermMemory Networks (LSTMs) [18] have been applied in medical research for devel-

oping predictive and diagnostic models for various diseases [14, 15]. For example, CNNs have

been used for the detection of Malaria parasite [19] and Tuberculosis diseases [20] in individu-

als. LSTMs have also been used to predict the outbreak of diseases like Typhoid, Chicken Pox

and Scarlet Fever [14]. SVMs were also used for Hepatitis disease detection [21]. These ML

methods are widely used for modelling infectious diseases because of the numerous advantages

they possess. For instance, CNNs are popular for their powerful feature extraction capabilities

[17]. LSTMs are commonly used to handle sequential tasks such as time series forecasting

because of their ability to capture long term dependencies [14]. SVMs are widely accepted for

their ability to solve nonlinear regression estimation problems, their non-parametric nature

enables them to represent complex and nonlinear functions easily [16].

Despite advances in a range of health-care applications using such predictive-based ML [14,

15, 21], there is a lack of research and data on the efficacy of such predictive ML methods for

diarrhoea outbreak prediction in Sub-Saharan Africa. Additionally, the overall task perfor-

mance of ML algorithms, applied to many health-care applications and more broadly to any

predictive classification task, largely depends on the manual tuning and calibration by algo-

rithm designers and experimenters of methodological parameters over the course of several

experimental trials [22, 23]. Such manual tuning is often ineffective and significantly limits the

full potential of task performance achieved by the ML method, especially for high-dimen-

sional, partially observable, noisy and complex task domains [22], as are typified by the nature

of data-sets in many health-care applications including diarrhoea outbreak prediction. Task

performance also largely depends on the amount of available training data [24], which is a sig-

nificant challenge for most predictive ML in health-care applications due to the sensitive and

controlled nature of health-care data-sets [25]. The inaccessibility of data adds to the difficulty

of method comparison, accuracy, and the advancement of ML as a whole [24, 26].

The overall aim of this study is to ascertain the suitability of various ML methods given vari-

ous climate factors and synthetic (generative) training data for accurately predicting diarrhoea

outbreaks. Specifically, the study aims to elucidate what type of ML method is most appropri-

ate when coupled with specific training and test data-sets (that is, specific climate variables,

data-sparseness, data-noise and synthetic data compliment), in order to optimise prediction

efficacy. Thus, we compared task-performance of three ML methods (CNNs, LSTMs and

SVMs) to ascertain the most suitable method for predicting future number of daily diarrhoea

cases in nine South African provinces. The average predictive accuracy of each method was

compared across multiple datasets and experiment replications. Given the sparse and noisy

nature of the data-sets used for method training and testing, we necessarily augmented the

available data (real-world data) with synthetic data generated using Generative Adversarial
Networks (GANs). GANs were selected as they have been previously demonstrated as effective

for generating different types of realistic data [24, 25]. Also, since there was a lack of previous

research to guide parameter tuning and calibration for optimising such ML methods applied

to diarrhoea outbreak prediction, we used the Relevance Estimation and Value Calibration
(REVAC) method [27]. REVAC is an evolutionary algorithm design for meta-heuristic param-

eter tuning, and as such was applied to optimise methodological parameters of the ML meth-

ods used in this study. Previous work has demonstrated the effectiveness of REVAC for

parameter tuning and attaining optimal algorithm performance across a range of complex,

noisy and high-dimensional search spaces [28, 29].
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Methods

Study population

This study focused on the nine South African Provinces which are: Western Cape, Eastern
Cape, Northern Cape, North West, Free State, Limpopo, KwaZulu Natal, Gauteng, andMpu-
malanga. Most provinces in South Africa experience rainfall in the summer with the excep-

tion of Western Cape. Western Cape has a Mediterranean climate that receives rainfall

during winter with an average annual rainfall of 515mm. Provinces such as KwaZulu Natal,

Free State and Mpumalanga experience the highest annual rainfall rate which is between

800–1054mm while Eastern Cape, Limpopo, Gauteng, Northern Cape, and North West prov-

ince receive an annual rainfall that is between 400–600mm. In terms of temperature condi-

tions, Limpopo, Northern Cape, Mpumalanga and North West provinces usually record the

highest temperature with annual averages between 27.1–30˚C while the least annual average

temperatures which are between 22.1–23.3˚C are usually recorded for Western and Eastern

Cape provinces.

Datasets

The datasets used for all experiments consists of nine features categorized into two data sub-

sets: Diarrhoea and a set of eight climate features.

For each province, daily sales records of Loperamide, an anti-diarrhoea compound that has

been evaluated in the treatment of patients with chronic non-specific diarrhoea in South Africa

and other parts of the world was obtained from Clicks Group Limited, South Africa (https://

www.clicksgroup.co.za/). The data contains a 10-year period of total number of loperamide

purchased between November 2008 and March 2018. This data was used as a proxy for diar-

rhoea cases in the region. In this study, the number of diarrhoea cases per day for a specific

province was computed as the number of loperamide sales per day associated with the prov-

ince. Six-hourly data onMaximum temperature,Minimum temperature, Air temperature, Spe-
cific humidity, Potential evaporation rate, Precipitation rate, Surface pressure, andWind
velocity climate factors for each South African province between the period of November 2008

and October 2019 were obtained from the National centres for Atmospheric Research and

Atmospheric Prediction. Please see (https://psl.noaa.gov/).

Generative Adversarial Networks (GANs) [25] were used to generate 20, 000 synthetic time-

series samples with 24 time-steps each for the diarrhoea and eight climate data in each prov-

ince. Data augmentation was performed to have sufficient data for making predictions, where

synthetic data was augmented with the real-world data-sets in two ways: upward augmentation
and downward augmentation. When the data-sets were augmented upwards, the training set

included a combination of the real-world and synthetic samples, but the test set included only

the synthetic data-sets and when the data-sets were augmented downwards, the training set

included mainly the synthetic data-sets and the test set included the real-world data-set. Tech-

nical details on GAN implementation can be seen in S1 Appendix.

The violin plots in Fig 1 show the distribution of the augmented dataset used in the study

for each province. The distribution of the diarrhoea case variable (loperamide) is similar across

Western Cape, KwaZulu Natal and Gauteng with Western Cape having the highest spread of

cases among all provinces. The distribution of the pressure variable is shown to be symmetric

across all provinces, meaning that its values occur at regular frequencies while the precipitation

variable is positively skewed thus, the mean value for each province is greater than the median.

The distribution of the other climate variables is shown to be approximately identical across

provinces.
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Data preprocessing

The real world climate and diarrhoea cases data-sets for each province collected for the study

were numerical and was ordered in the form of time series. To predict daily diarrhoea cases,

the six-hourly climate features data-sets for each province was converted into daily average

format. For all experiments, the normalization technique we adopted for our CNNs and

LSTMs is theMin-Max Normalization because it largely adopted for most neural network

regression models [30]. For our SVM methods, we adopted the Standard Scaling technique

since SVMs assume that the data given as input is within a standard range [31]. We used the

python Scikit-Learn (https://scikit-learn.org/) library to implement all our normalizations. For

all experiments, we divided our data-sets into a ratio of 70: 30 for training and testing our

methods. The data-sets with the earlier dates were used for training while the data-sets with

later dates were used to test and verify the accuracy of the methods.

Performance evaluation criteria

To compare and evaluate the performance of our ML methods, the Root Mean Square Error
(RMSE) was used since it is widely adopted in many prediction studies [14, 15]. The RMSE

was also chosen because it is recommended if evaluations based on understanding of predic-

tions are desired [32]. It is also superior at disclosing differences in method task-performance.

RMSE is the square root of the mean of the squared differences between actual outcomes and

the predictions made by a given method. It is calculated using the equation below:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

� �
Xn

i¼1

ðxi � yiÞ
2

s

ð1Þ

Fig 1. Violin plots showing the distribution of loperamide (diarrhoea) and climate variables across the provinces.

EC = Eastern Cape, FS = Free State, GA = Gauteng, KZ = KwaZulu Natal, LP = Limpopo, MP = Mpumalanga,

NC = Northern Cape, NW = North West, WC = Western Cape. The distribution of the real-world and synthetic data

(augmented data) are shown in S1 and S2 Figs respectively.

https://doi.org/10.1371/journal.pone.0262008.g001
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In Eq (1), xi is the actual value while yi is the predicted value and n is the total number of

observations to be analysed. The ML method with the smallest RMSE error is considered to be

the best performing method in terms of prediction accuracy.

Configuration of ML methods

This study adopted two popular deep learning methods namely CNNs, LSTMs and a tradi-

tional ML method SVM for all experiments. These methods were chosen because of their suc-

cess in time series predictive tasks such as [14, 33]. Asides the powerful feature representation

capabilities of deep learning models, the LSTM network is a powerful technique for analyzing

temporal data. While the existence of other traditional ML methods such as decision trees [34]

and ARIMA [12] are known, SVM was chosen because it is a widely used nonlinear regression

estimation technique [16]. In addition, our preliminary analysis showed that the chosen ML

methods outperforms the decision trees (see the S1 Appendix section). The rest of this section

provides details on how the chosen methods were implemented.

CNN method. CNNs are a class of feed forward, deep neural network that consist of mul-

tiple convolutional and activation layers, pooling layers, and a fully connected layer as shown

in Fig 2. These layers are designed to perform specific tasks in order to extract important fea-

tures from the input data. After several iterations of convolutions, node activations and pool-

ing the final output is computed in the fully connected layer of the network. Our CNN method

was designed with 1D convolutions to match the sequential nature of our input data.

LSTM method. LSTMs as shown in Fig 3 are examples of Neural Networks under the cat-

egory of Recurrent Neural Networks (RNNs) that address the issue of exploding and vanishing

gradients. They contain memory cells that maintain their state overtime. The memory cells are

managed by gating units that control how it memorize, erase, and expose information. These

gating units are called the input gate, forget gate and output gate respectively.

SVM method. SVMs are mathematical models whose main function is to find hyper-

planes capable of creating margins that separates data points in a high dimensional feature

Fig 2. Basic architecture of the Convolutional Neural Network (CNN) with two convolution and pooling layers.

https://doi.org/10.1371/journal.pone.0262008.g002
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space with the smallest structural risk using kernel functions. We used the Scikit-Learn package
(https://scikit-learn.org/) to develop all our SVM method with a Radial Basis Function Kernel
(RBF) for predictions as shown in Fig 4.

For all the methods used in this study, we prepared our input data in a lag format (described

in the experiment section), no manual feature extraction step was conducted. Both deep learn-

ing methods (CNN and LSTM) were implemented with the Keras and TensorFlow (https://

keras.io/) deep learning library. The methods were configured to make reproducible results

Fig 3. Basic structure of the Long-term Short Term (LSTM) method with two LSTM layers.

https://doi.org/10.1371/journal.pone.0262008.g003

Fig 4. Structure of the Support Vector Machine (SVM) regression method. The mappings of the input vectors and

the final output is discerned with the RBF kernel function.

https://doi.org/10.1371/journal.pone.0262008.g004
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thus, a fixed random seed (https://www.tensorflow.org/) was set for all experiments. For all

ML methods, we kept some parameters fixed (based on parameter values established in previ-

ous related work [14, 15]), while others were tuned. See Table 1 for the list of tuned

parameters.

Determining the optimal ML parameters

One of the major factors that influence the performance of ML methods is the configuration

settings of its parameters. Thus, in this study we used grid-search tuning [22] and REVAC [27]

parameter tuning methods to find optimal parameter values for all ML methods. Both parame-

ter tuning technique select a combination of possible parameter values from a range of values

specified by a user. See Table 1 for the list and range of parameters values specified for each

ML method. The deep learning parameters that were not specified used the default values of

the Keras package. The grid-search method was implemented with the python Scikit-Learn
package (https://scikit-learn.org/) while REVAC tuning was designed based on the methodol-

ogy used by Nannen & Eiben [27]. REVAC was implemented at a layer that aids in searching

for optimal parameter values for an ML algorithm trying to solve the problem of predicting

daily diarrhoea cases. See S1 Appendix for technical details on REVAC implementation. The

parameter tuning of each ML method was implemented separately for each province.

Experiments setup

Table 2 gives an overview of the experiments conducted for this study and Fig 5 presents the

overall pipeline used to predict daily diarrhoea cases in our experiments. Since this is a regres-

sion task, the input data were all in numerical format. Previous studies such as [12, 15] have

shown that the basic form of feature engineering applied to a time series prediction task is tak-

ing past observations into consideration. Although, deep learning methods are known for

automatic feature engineering [17], we applied this feature engineering step across all models

for consistency. This approach is also consistent with previous works such as [14, 15, 33]. To

make forecasts on the possible number of daily diarrhoea cases, we considered past observa-

tions (lags) in all our methods because patterns of the past are likely to be repeated in the

Table 1. Experiment parameters and corresponding value ranges.

ML method Parameter Parameter range

SVM C [1, 100]

Gamma [0.001, 0.1]

LSTM Dropout rate [0.1, 0.2, 1.0]

LSTM layers [1, 2, 3]

Neurons [6, 12, 16, 18, 24, 28, 32, 50, 64, 100]

Batch size [4, 16, 18, 32, 64]

Learning rate [0.001, 0.01]

Epochs size [40, 50, 60, 70, 100, 120, 150, 200]

CNN Pool size [1, 2]

Convolutional layers [1, 2, 3]

Kernel size [1, 2, 3]

Batch size [4, 16, 18, 32, 64]

Learning rate [0.001, 0.01]

Epochs size [40, 50, 60, 70, 100, 120, 150, 200]

Filter size [6, 12, 16, 18, 24, 28, 32, 64]

https://doi.org/10.1371/journal.pone.0262008.t001
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future. We tested the predictions of the three ML methods with respect to four different lag

periods from all input features. The lag periods we considered include a lag of one (1) day, lag

of five (5) days, lag of two (2) weeks and a lag of three (3) weeks. For example, a lag of one day

means that the predictions made by a method for the 6th of January 2018 was made with input

variables (for all features) of the 5th of January 2018 while a lag of five days means predictions

for the 1st of January 2018 was made with input variables (for all features) of the 1st to the 5th

of January 2018. These specific lag periods were chosen since our preliminary analyses show

that they produce more accurate predictions.

Thereafter, optimal parameters were selected and we determined the best performing ML

method by comparing the RMSE from the predictions made by the three ML algorithms (with

respect to the four lag periods) in three different experiments in which for each ML method,

predictions were repeated three times for each lag, across each province and the average RMSE

result was computed.

The first experiment (Experiment I) was implemented with the real-world case data which

contained the diarrhoea cases and eight climate features. The objective was to determine

which ML method performs best given the amount of data instances contained in the real-

world data-set. In order to obtain optimal training parameter values for each ML method

across each province, the grid-search method was used in this experiment. For most deep neu-

ral networks, such as the CNNs, the computational complexity, can be computed as O(n2) for

both training and inference time, where n is the input dataset size [35]. However for networks

that deal with sequential learning such as the LSTM, their learning complexity per time step is

O(W), where W is the number of parameters in a standard network [36]. The computational

Fig 5. Pipeline of the daily diarrhoea prediction model.

https://doi.org/10.1371/journal.pone.0262008.g005

Table 2. Experiments overview.

Experiment description Parameter tuning

technique

Datasets used Research objective

(I) Predictions with real-world data Grid-search Real-world data Determine best predicting method given real-world

data

(II) Predictions with augmented data Grid-search Upward and downward

augmented data

Determine the effect of augmented data on

predicting performance

(III) Predictions with augmented data and

REVAC parameters

REVAC tuning Upward and downward

augmented data

Determine the impact of REVAC tuning on

predicting performance

https://doi.org/10.1371/journal.pone.0262008.t002
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complexity of SVM on the other hand is On3 [37]. This shows that computational complexity

of each model is different hence training and test time will also differ. In other to address this,

the average run-time of each model was computed for this experiment. (see the S1 Appendix

section more details).

After concluding the first experiment, we measured the degree of importance of each cli-

mate variable to the best performing diarrhoea prediction method in a specific province by

conducting a sensitivity analysis [38]. We adopted the Backward stepwisemethod [38] in

which we measured the effect of one variable at a time while keeping the other variables fixed.

Sensitivity is then measured by observing changes in the RMSE error of the given method

based on the omission of a certain variable. The larger the increase in RMSE, the higher the

importance of the omitted variable. The second experiment (Experiment II) was conducted to

determine the effect of augmented training and testing data as well as the effect of a larger

training data size on the prediction performance of the three ML methods. The data-sets used

in this experiment were combinations of the synthetic and real-world data-set, that is, the

upward and downward augmented data in each province. Predictions by each ML method

were made with each input data-set separately for each province. The data preprocessing steps

and the parameters selected by the grid-search tuning in the first experiment were maintained

for each ML method with regards to a specific province.

The third experiment (Experiment III) was performed to determine the effect of REVAC

parameter tuning on the prediction performance of the three ML methods with the upward

and downward augmented data. The major difference between the second and third experi-

ment is the method used for tuning the parameters of each ML method. For all the prediction

tasks carried out in the third experiment, data preprocessing steps taken for the three ML

methods were the same as the previous experiments. However, the parameter values of each

ML method were tuned with REVAC tuning method. Once the REVAC parameter tuning

tasks were completed for each ML method, the fittest set of parameter values for each province

were used to carry out final predictions.

Results

Table 3 represents the average RMSE for predictions made with real-world data in all prov-

inces. We observed that the high performance of the CNN method was closely followed by the

LSTM method. SVM on the other hand showed the poorest performance. Table 3 also showed

that the CNN method had the least overall RMSE average of 31.55% while LSTM and SVM

averages were 32.91% and 33.89% respectively. We can infer from these results that the RMSE

errors are lower for the deep learning methods (CNN & LSTM).

Fig 6 shows that the use of augmented data greatly improved the performance of the three

ML methods in each province. Predictions for Limpopo province show the highest improve-

ment with over 50% increase for each ML methods when both upward and downward aug-

mented data were used for predictions. However, over most provinces, the percentage increase

Table 3. Root Mean Square Error (RMSE) averages for predictions using real-world data.

ML method RMSE

Convolutional Neural Network (CNN) 31.55%

Long-term Short Term Memory (LSTM) 32.91%

Support Vector Machine (SVM) 33.89%

Standard Deviation 0.008

https://doi.org/10.1371/journal.pone.0262008.t003

PLOS ONE Predicting diarrhoea outbreaks with climate change

PLOS ONE | https://doi.org/10.1371/journal.pone.0262008 April 19, 2022 10 / 18

https://doi.org/10.1371/journal.pone.0262008.t003
https://doi.org/10.1371/journal.pone.0262008


in performance for predictions with the LSTM and SVM methods was more than the CNN

method.

Table 4 compares the performance of the overall predictions made by each ML method

when the augmented data-sets were used based on the parameter tuning technique selected.

By comparing the RMSE of the augmented data made with grid-search parameters in Table 3

against the RMSE of predictions made with the real-world data in Table 2. For each ML

method, the predictions made with the augmented datasets yielded better and lower RMSE

than their predictions with the real-world data-sets. Thus, we can infer that the amount of

training data used for training, significantly affects the prediction performance of all the three

ML methods. By comparing the average RMSE percentages across data-sets, it also shows that

CNN outperformed the other methods when the real-world dataset was used alone while

LSTM outperformed the other methods when either of the augmented datasets were used.

Fig 7 shows the results when the parameters of the three ML methods were tuned with

REVAC instead of grid-search. We found that the CNN method’s prediction results improved

across all provinces. The highest percentage increase recorded for CNN was over 12% and the

least increase was about 2.5%. The LSTM method’s performance also increased across most

province, however, its predictive task performance declined in Limpopo, KwaZulu Natal and

Free state provinces. Among the three methods, the SVM recorded the highest number of

provinces that saw a decline in task performance. The average increase of SVM task perfor-

mance across all provinces was also the least.

Fig 8 shows the provincial prediction results of the ML methods when augmented data was

used for training. In Fig 6a, when grid-search parameters were used, the LSTM method out-

performed all the other methods in most provinces with both augmented data-sets and was

Fig 6. Percentage change in performance of each ML method for predictions in Experiment II. (a) & (b):

Percentage change in performance of each ML method over each province when predictions were made with the (a)

upward augmented data-set and (b) downward augmented data-set instead of the real-world data. High percentage

RMSE indicates an improvement in performance and vice-versa.

https://doi.org/10.1371/journal.pone.0262008.g006

Table 4. RMSE averages for REVAC and grid-search method parameter tuning.

ML Method REVAC tuning Grid-search tuning

Upward augmented data Downward augmented data Upward augmented data Downward augmented data

CNN 22.07% 23.86% 23.11% 25.80%

LSTM 21.60% 23.61% 21.93% 23.78%

SVM 22.17% 27.30% 22.17% 27.97%

Standard Deviation 0.003 0.021 0.006 0.134

https://doi.org/10.1371/journal.pone.0262008.t004
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closely followed by the SVM except in Western Cape and KwaZulu Natal province where the

CNN outperformed the SVM. When REVAC tuning parameters were used as shown in Fig 6b,

the LSTM method still outperformed the other methods for most provinces and was closely

followed by the CNN for most of the data-sets. However, in Gauteng province, the SVM out-

performed the CNN.

The results from the sensitivity study we conducted in Fig 9 shows that the relative impor-

tance of each climate variable differs across provinces. For instance, over provinces such as

Western Cape, Eastern Cape and Free State, the Pressure climate variable was the most sensi-

tive when training any given diarrhoea outbreak prediction method. Whereas, in North West

and Mpumalanga, Evaporation was the most sensitive climate variable. In Gauteng, Maximum

Temperature was most important while in and KwaZulu Natal,Minimum Temperature was

more sensitive. In Limpopo, Humidity was most sensitive variable whileWind speed was more

important in the Northern Cape.

Fig 7. Percentage change in performance of each ML method for predictions in Experiment III. (a) & (b):

Percentage change in performance of each ML method over each province when predictions were made with the

parameters from REVAC tuning instead of the grid-search parameters for (a) upward augmented data and (b)

downward augmented data-set. High percentage RMSE indicates an improvement in task performance and vice-versa.

https://doi.org/10.1371/journal.pone.0262008.g007

Fig 8. Provincial results of the ML methods with the augmented data-sets in Experiments II & III. (a) & (b): Results

of the predictions with the augmented data-sets for each province (a) represents the results with grid-search tuned

parameters and (b) represents the results with REVAC tuning parameters. Low RMSE averages indicate better task

performance and vice-versa.

https://doi.org/10.1371/journal.pone.0262008.g008
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Discussion

The results of our experiments revealed that although the Deep Learning (DL) methods (Con-

figuration of ML methods section) outperformed the SVM (SVM method section). In most

tasks, there was no clear best ML method overall. The ML methods showed different levels of

skill based on the availability of training data and the type of parameter tuning method used

during training.

Performance based on dataset type

The CNN method (section CNN method) was able to generalize well and select important fea-

tures to yield the most satisfactory performance when only real-world data was used for mak-

ing predictions regardless of its limited training set size. Based on different metrics, some

studies [19, 20] have shown results for CNNs to be more accurate than several other methods

for infectious diseases prediction. We theorize this to be a result of CNNs being effective uni-

versal approximators capable of automatic feature engineering [17]. Our findings also agree

with previous research which showed that deep neural networks outperform traditional ML

algorithms for most disease prediction tasks [19, 20].

Fig 9. Variable importance plot. Result of the sensitivity analysis carried out for the CNN prediction method for each province. The x-axis indicates

the prediction accuracy of the method once the variable on the y-axis is omitted from the method. The longer the bar, the larger the loss in accuracy and

the higher the importance of that variable.

https://doi.org/10.1371/journal.pone.0262008.g009
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The prediction performance of all ML methods improved when the augmented data-sets

were used for training, with the LSTM (LSTM method section) giving the overall best perfor-

mance. This implies that a large training set size boosts the performance of most ML algo-

rithms. We also surmise that the LSTM method performs better when the size of training data

is large, perhaps the reason for its relatively poor performance in the first experiment where

only real-world data with limited training set was used. A study conducted by [39] have shown

that LSTM benefits from a large training set size. In addition, Another study by [14] reported

that LSTMs are a state of the art for capturing the long-term dependencies specific to a given

data-set thus their ability to learn patterns in sequential data with sufficient training size

regardless of its noisy nature.

Performance based on parameter tuning method

With respect to the parameter tuning as a factor for task performance with the augmented

data, we found that with the given grid-search parameters (Table 1), the average percentage

increase in task performance of the CNN method was the least when compared to the other

methods across individual provinces. The provincial instances such as in Gauteng, Eastern
Cape, andMpumalanga in Fig 8a (Provincial results of the ML methods with the augmented

data-sets in Experiments II & III. figure) where SVM outperformed the CNN method is likely

due to the parameter settings of CNN used during training. Therefore, we deduce that the

choice of parameters greatly affects the performance of deep learning models especially when

applied to noisy and augmented data-sets. Thus, we setup a different experiment with REVAC

tuning strategy.

With the REVAC parameter tuning implementation, the CNN method gave the highest

percentage increase in performance across each province. However, the LSTM method’s pre-

diction performance was still better than the other methods for most provinces. However, the

SVM demonstrated the least average percentage increase and the highest average percentage

decrease across the provinces. Therefore, we can infer from these results that the REVAC

parameter tuning is not ideal for the SVM method rather it is more suited to deep learning

methods. A possible explanation maybe the low dimensional search space of parameters for

the SVM method considering that an SVM’s (with RBF kernel) major parameters are gamma

and C only. A study by [40] have found that predefining a search space especially for few

parameters can be difficult. However, [22] reported that grid-search is better suited for low

dimensional search space perhaps the reason for SVM’s satisfactory performance with grid-

search tuning.

In Table 5, we compared the performance of the results obtained when REVAC parameter

tuning was used on the upward augmented data with the results of some existing models on

diarrhoea outbreak prediction with different datasests [14, 15, 41]. Although our RMSE values

appear lower, we note that the difference in the error values may be due to the type/size of the

dataset used in the different study as well the unit and scale of the dataset.

Table 5. Root Mean Square Error (RMSE) performance comparison with the existing diarrhoea prediction studies.

Study CNN LSTM SVM RF ARIMA

our study 0.22 0.21 0.22 - -

[14] - 1.43 - - 1.38

[15] - - 49.91 48.14 -

[41] - - - 0.45 0.31

https://doi.org/10.1371/journal.pone.0262008.t005
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Sensitivity analysis

Our parameter sensitivity analysis (Experiments setup section) demonstrated that the predic-

tion of diarrhoea outbreak by the given ML methods is influenced by specific climate factors.

The most prominent (influential) factors are precipitation, humidity, evaporation and tempera-
ture, although their levels of influence differ across South African provinces. Our findings are

in agreement with studies such as [7, 8] that have shown that diarrhoea cases increase for every

1˚C increase in temperature. In addition, related work by [42] reported that evaporation rate

is strongly linked to high temperature. Since increase in diarrhoea cases have been associated

with high temperature, perhaps diarrhoea can also be linked to evaporation rate. Other studies

[9, 15] have also demonstrated that precipitation rate and humidity are strongly related to

reported increases in diarrhoea-related hospitalizations.

Study contributions

A key contribution of this research is the first comprehensive study and application of perti-

nent ML methods to real-world health-care data sourced from various South African medical

institutions in order to formalise an effective predictive machine learning methodology for

Sub-Saharan Africa (currently, one of the most adversely affected areas, globally, by diarrhoea

outbreaks [1, 3]). A second key contribution of this research is the use of evolutionary optimi-

sation for automating parameter tuning for a given ML method and associated training data-

set, as well as demonstration of data augmentation techniques, such as use of generative mod-

els to generate artificial data [24, 25] to complement training data deficiencies.

While our study has demonstrated that ML can be used for diarrhoea outbreak prediction

with climate factors. The results can be improved in some ways. For example, taking other

human and environmental factors that cause the spread of infectious diseases into consider-

ation may improve the accuracy of future diarrhoea prediction models. Given the different

strength of each ML algorithm, developing a hybrid method that combines the advantage and

benefits of at least two ML algorithms may result in a methodology that yields consistently

high predictive task performance regardless of the conditions set in an experiment.

Conclusion

The global burden of diarrhoea is a major public health problem that causes both personal and

widespread harm. This study ascertained the applicability of variousMachine Learning (ML)

methods in the development of automated early warning system for predicting the outbreak of

diarrhoea in South Africa given specific climate variables. We compared the predictive task

performance of various ML methods, including Support Vector Machines, Long-Short Term
Memory Neural Networks (LSTM) and Convolutional Neural Networks (CNNs), for predicting

daily diarrhoea cases over nine South African provinces. Prediction comparisons were with

respect to a specific set of climate variables and varying proportional combinations of real-

world and synthetic (data augmentation) training and testing data. Results indicated that over-

all (for all real-world data-sets), our CNN yielded the highest accuracy predictions supporting

the well established predictive capacity and efficacy of deep-learning systems. However, given

synthetic training and testing data-augmentation, our LSTM yielded the most accuracy predic-

tions overall. This also study elucidated that the climate variables: precipitation, humidity,
evaporation, and temperature, yielded the greatest impact on daily diarrhoea cases across

South Africa, and were thus the data-set variables integral to the predictive success of our

tested methods. Thus, a key contribution of this study is the guidance it provides researchers

in selecting a suitable ML method for disease outbreak prediction (diarrhoea case prediction

in this study), given real-world and augmented training and testing data-sets containing
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specific types of climate variables. Current research is applying further predictive machine

learning methods in an ongoing effort to develop automated early-warning systems for broad-

spectrum disease outbreak prediction across various developing nations with deficient public

health systems.
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S1 Fig. Violin plots showing the distribution of the upward augmented data for lopera-

mide (diarrhoea) and climate variables across theprovinces. EC = Eastern Cape, FS = Free

State, GA = Gauteng, KZ = KwaZulu Natal, LP = Limpopo, MP = Mpumalanga,

NC = Northern Cape, NW = North West, WC = Western Cape.

(TIF)

S2 Fig. Violin plots showing the distribution of the downward augmented data for lopera-

mide (diarrhoea) and climate variables across theprovinces. EC = Eastern Cape, FS = Free

State, GA = Gauteng, KZ = KwaZulu Natal, LP = Limpopo, MP = Mpumalanga,

NC = Northern Cape, NW = North West, WC = Western Cape.

(TIF)
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