Community Network Traffic Classification using
Two-Dimensional Convolutional Neural
Networks

Shane Weisz and Josiah Chavula

Computer Science Department
University of Cape Town, South Africa
wszsha0O1@myuct.ac.za, jchavula@cs.uct.ac.za

Abstract. Network traffic classification plays an important role in qual-
ity of service engineering. In recent years, it has become apparent that
deep learning techniques are effective for this classification task, espe-
cially since classical approaches struggle to deal with encrypted traffic.
However, deep learning models often tend to be computationally ex-
pensive, which weakens their suitability in low-resource community net-
works. This paper explores the computational efficiency and accuracy of
two-dimensional convolutional neural networks (2D-CNNs) deep learn-
ing models for packet-based classification of traffic in a community net-
work. We find that 2D-CNNs models attain higher out-of-sample accu-
racy than traditional support vector machines classifiers and the simpler
multi-layer perceptron neural networks, given the same computational
resource constraints. The improvement in accuracy offered by the 2D-
CNNs has a tradeoff of slower prediction speed, which weakens their
relative suitability for use in real-time applications. However, we observe
that by reducing the size of the input supplied to the 2D-CNNs, we can
improve their prediction speed whilst maintaining higher accuracy than
other simpler models.

Keywords: Network traffic classification, convolutional neural networks,
deep learning, community networks

1 Introduction

Network traffic classification — the task of categorizing network traffic into dif-
ferent classes — has many important applications in traffic engineering. One of
these applications is providing networks with smoother quality of service (QoS)
by assigning different priorities to different applications’ flows based on their
classification. For example, applications involving video and voice traffic rely on
fast packet transmission, whereas speed requirements are not as important for
text services like email applications [15]. This is especially prevalent in today’s
coronavirus-afflicted world, due to the increased digitization of the workplace
and emphasis on online/video communication. Effective QoS could be of par-
ticular value in low-resource community networks, where, for example, learners

2 Weisz, S., Chavula, J

in low-resource communities face particularly strenuous circumstances to adapt
to online curriculum. QoS services, guided by the traffic classification task, offer
the potential to prioritize those educational applications used by school students
to ensure as seamless a learning experience as possible. This is one example that
provides evidence of the potential positive impact towards which work on the
traffic classification task can strive.

Classic approaches that have historically been used for traffic classification
include port-based methods, payload-based methods such as deep packet in-
spection (DPI), and then classical machine learning techniques such as random
forests or k-nearest-neighbours algorithms. However, these approaches have each
been shown to have respective weaknesses in classifying modern network traffic.
Classification methods that rely on port numbers are no longer reliable since
many applications do not use standard ports. Additionally, some applications
use a technique known as port obfuscation to disguise their traffic by using well-
known port numbers [26]. DPI techniques require substantial time and compu-
tational resources to derive, update and maintain the rules and patterns used to
identify application signatures [4] — and this task has been made more difficult
by the encryption of traffic [8]. Additionally, a disadvantage of classical machine
learning approaches is that to be most effective, they tend to rely on human-
engineered features derived from data flows — which limits their generalizability
[22]. In light of the problems that these traditional approaches face with modern
network traffic, deep learning approaches have recently been explored in order to
improve on the performance of these methods. Many such studies have reported
excellent results, illustrating that deep learning models offer strong potential for
successful, accurate and generalizable approaches to traffic classification.

For our purposes, we require a lightweight deep learning approach to traffic
classification that can be utilized by community networks in low resource en-
vironments. This would require such a model to balance the trade-off between
classification speed and timeliness on the one hand (to be suitable for real-time
classification), and computational efficiency in terms of low memory resource
usage on the other; all whilst meeting acceptable accuracy performance require-
ments.

To this end, we explore the effectiveness of two-dimensional convolutional
neural networks (2D-CNNs) for the traffic classification task within the context
of community networks. 2D-CNNs have been shown to demonstrate success in
the packet-based classification task, as a result of their ability to learn spatial pat-
terns in the packet data [15, 24, 25]. Additionally, their characteristics of sparse
interactions and parameter sharing enhance their ability to meet computational
resource-usage constraints and hence their suitability to the needs of community
networks. The above factors guided the choice to investigate 2D-CNNs for our
use case.

Our study aims to evaluate the effectiveness of 2D-CNNs for the packet-based
classification task, compared to simpler MLP and SVM classifiers. To this end, we
aim to evaluate these models’ suitability for the context of community networks,
by aiming for the highest accuracy, lowest computational resource requirements,

CN Traffic Classification using 2D-CNNs 3

and fastest prediction speed (to be suitable for real-time applications). In order
to achieve these aims, our experiments are designed to answer the following
research questions:

1. What impact does the use of 2D-CNN deep learning models have on classi-
fication accuracy compared to the simpler MLP and SVM models given the
same computational requirements?

2. Are the classification models fast enough for real-time classification (in terms
of the time taken to classify packets) — and how do the 2D-CNN, MLP and
SVM models compare in terms of prediction speed (given the same memory
and processing power resources)?

3. To what extent can reducing the number of bytes used as input features to
the model increase the prediction speed of 2D-CNN classifiers, and at what
cost to the accuracy?

This paper makes the following contributions:

1. empirical evaluation of 2D-CNN deep learning models on classification accu-
racy for traffic classification in the context of computational constraints.

2. empirical evaluation of 2D-CNN, MLP and SVM models for real-time classi-
fication given memory and processor constraints.

3. empirical evaluation of the impact of reducing the proportion of a network

packet’s payload used as model input on the prediction speed and accuracy
of 2D-CNN classifiers.

2 Background

2.1 Community Networks

Community networks refer to network systems that are built, deployed and man-
aged by local geographical communities (often with the help of non-profit organi-
zations) to support their community by facilitating easier connectivity, commu-
nication and access to online services [18]. Technically speaking, these network
infrastructures are typically distributed, decentralized low-resource systems that
use low-cost hardware and wireless technologies to connect network nodes [2].

Community networks aim to help close the digital divide by providing cheaper
connectivity in typically rural areas or developing regions that otherwise would
struggle to obtain affordable and reliable internet access [18].

The community network constraint of low-cost and low-specification hard-
ware is pertinent to the traffic classification task. Classification models deployed
on routers in such a network may have use low-specification processors and lim-
ited memory. As a result, these constraints form a key basis upon which we
evaluate and compare the classification approaches considered in this paper.

4 Weisz, S., Chavula, J

2.2 Multi-layer Perceptrons

The multi-layer perceptron (MLP) model is the most basic neural network ar-
chitecture, a non-linear model used for supervised learning [7]. As the simplest
neural network structure, MLPs will be useful as a deep learning baseline to
which to compare the 2D-CNNs.

2.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are one of the most popular deep learning
architectures that have been applied in the traffic classification field, despite
traditionally being applied to recognizing patterns in image data [20]. CNNs
are designed for processing data stored in a grid-like structure, uncovering local
spatial patterns within the data [10].

In particular, two-dimensional CNNs (2D-CNNs) require input data to be
stored in a 2D grid-like format and make use of 2D k x k filters to uncover
patterns in the data. As such, for packet-based traffic classification, the bytes of
each packet’s payload is reshaped (‘imaged’) into a 2D image to be used as model
input (the bytes values can then be considered as image pixels). In this way, the
traffic classification task can be likened to image classification. Moreover, both
the sparsity of information to be found in the packet data, and the noisiness
of the data in terms of variability amongst packets, provide justification for the
suitability of 2D-CNNs for the packet classification task.

2.4 Support Vector Machines

Support vector machines (SVMs) are a traditional machine learning classification
framework suitable for high-dimensional data. For our purposes, the SVM model
provides a useful baseline for comparison to the neural networks, as a represen-
tative lightweight traditional machine learning classification model applicable to
high dimensional packet payload data.

3 Related work

Due to its many important applications, various approaches to traffic classifi-
cation have been studied extensively in literature. In recent years, much of the
research into traffic classification has been around applying deep learning tech-
niques — CNNSs in particular — to overcome the difficulties of encryption of
traffic. However, many such approaches perform flow-based classification based
on inter-packet features, which is less suited to the real-time classification task
necessary for QoS (since this would require packets to first be identified as part
of a particular flow before they can be classified). As such, the key works that
are particularly relevant to our study are rather those that have used CNNs for
packet-based classification (that is, classification based solely on each individual
packet).

CN Traffic Classification using 2D-CNNs 5

One such study is deep packet [17], which uses 1D-CNNs for packet-based
classification. The paper explains that due to spatial dependencies between bytes
in the packet data, their deep learning models are able to learn the distinguish-
able patterns within the encrypted data that characterize applications, despite
the content itself being inaccessible due to encryption. Their results testify to
this end, with their 1D-CNN model attaining a highly impressive F1 score of
0.95, outperforming all prior similar works in literature that perform classifica-
tion on the same public dataset. A study on DataNet [24] applied 2D-CNNs to
the same public dataset, attaining an even higher F1 score of 0.98. These exam-
ples demonstrate how deep learning networks — and CNNs in particular — can
learn valuable representations from the raw high dimensional data that comes
from individual packets.

Other studies [15, 25] have applied 2D-CNNs to the packet classification task
include those done by for malware classification. However, these studies all make
use of separate cleaned public datasets, which makes comparing results across
different studies difficult. The conclusions drawn from these studies, however, are
still valuable; and in each case 2D-CNNs demonstrate strong success in terms
of classification performance. These papers thus provide further support for ex-
ploring 2D-CNNs as an approach to the packet classification task for community
networks. Whilst packet-based classification using 2D-CNNs has been shown to
be successful on particular public datasets, studies have not considered the con-
text of computational resource utilization or classification speed constraints. A
previous study on traffic classification in community networks [9] evaluated com-
putational efficiency and accuracy of Long Short-Term Memory (LSTM) and
Multi-Layer Perceptron (MLP) models. The study showed that LSTM models
attain higher out-of-sample accuracy than traditional support vector machines
classifiers and the simpler multi-layer perceptron neural networks, given the same
computational resource constraints.

4 Design and Implementation

4.1 Overview of Preprocessing Pipeline

In order to compare and evaluate machine learning models for any supervised
learning task, appropriate labelled training and testing datasets (often in the
form of CSV files) are required. For network traffic classification in particular,
traffic data is usually captured in PCAP file format, which must then be pre-
processed to construct appropriately formatted datasets needed by the models.
Since we are performing packet-based classification, this preprocessing involves
labelling the packets, extracting the raw bytes of their payload to be used as fea-
tures, and then transforming the features such that they are in the approptiate
format for our models.

To this end, we scripted a robust pipeline that takes as input a set of PCAP
files as input, and produces as output ‘train.csv’, ‘val.csv’ and ‘test.csv’ files that
are ready for model building, training, evaluation and testing. This scripting
process was implemented using a combination of Python scripts for ease of data

6 Weisz, S., Chavula, J

manipulation, and bash scripts for automation, sequencing and file manipulation.
The code base was implemented with detailed easy-to-follow documentation that
outlines the prerequisites and steps to take to apply the pipeline on a new system,
given an arbitrary set of PCAP files as network traffic data. (This will be made
available as open-source software).

The end-to-end preprocessing pipeline applied to our study can be summa-
rized in the following diagram, and is expanded upon in the subsections there-

after:
v) Sample 10000 packets

—— =)

Diagram 1.1: Preprocessing pipeline

4.2 Dataset

Training and testing classification models to evaluate suitability for low-resource
community networks requires access to community network traffic data. To this
end, we have used a dataset that was collected from a community network in
South Africa. The dataset consists of numerous raw PCAP files that were col-
lected at the gateway of the network, capturing all traffic flowing between the
network and the Internet from February 2019 onwards. The PCAP files were
copied to a data repository at university, through which we accessed the data.
However, it should also be noted that any arbitrary set of PCAPs could be used
as input to this stage of the pipeline, and the rest of the preprocessing would
be applied in the same manner. (Name of community network and university
withheld for blind-review purpose).

4.3 Labelling

Since traffic classification is a supervised learning task, each packet needs to have
a corresponding label to facilitate the learning and testing process. Our study
performs classification by application, and as such, examples of these labels are
Facebook and YouTube. A popular approach used in the literature for labelling
the data (when the labels are not recorded at the time of data collection, as
applicable to our data) is to use deep packet inspection (DPI) packages which use

CN Traffic Classification using 2D-CNNs 7

a database of application signatures to identify different classes from traffic traces
[22]. Another study [3] performed an independent study of different DPI tools,
evaluating their traffic classification accuracy, and showed that the open-source
tool nDPI ' attains a very high labelling accuracy. This approach is adopted
for a traffic-classification study [16], which used the nDPI tool — which handles
encrypted traffic — to label their dataset. These factors guided our decision to
use nDPIL

To make the labelling process cleaner, we first use the open-source package
pkt2flow ? to split the packets contained in the set of PCAP files into individual
flows (with a new PCAP file for each flow). Thereafter, the flows are labelled
using nDPI — such that each packet associated with a given flow is assigned that
flow’s label. The output of this stage of preprocessing is a CSV file containing,
for each flow from the original set of raw PCAPs, the flow’s PCAP file name
and the application label that applies to each packet in the flow.

4.4 Extracting the IP payload

The next stage of the preprocessing pipeline involves extracting the (up to)
1480 bytes of each packet’s IP payload to be used as features as input for the
classification models. 1480 bytes is the maximum size of a packet’s IP payload,
since the maximum transmission unit size over the internet is typically 1500
bytes [6] — with a minimum of 20 bytes used for the IP header, meaning the
remaining at most 1480 bytes correspond to the payload. As discussed in the
related work section in in Section 3, using the raw payload as model features has
been shown to produce high accuracy classification in classifying both encrypted
and unencrypted traffic.

To this end, the Python package scapy was used for processing the packet
data. Packets that do not contain a payload (such as TCP handshake messages)
are discarded. Transport-layer header bytes are masked to increase the gener-
alizability of our models (due to the unreliability of using port numbers [26]).
Packets with payloads less than 1480 bytes are zero-padded to ensure that all
feature vectors are of the same length, as required by the classification models.
The output of this stage is then a CSV file with a row for each packet containing
its application label and the 1480 bytes of its payload.

4.5 Sampling balanced classes

The next preprocessing stage involves sampling from the packets dataset to
produce a balanced dataset. The emphasis on balanced classes was motivated
by literature showing that studies that do not account for a class imbalance (e.g.

L nDPI is a deep packet inspection traffic classification module. It is available at:
https://github.com/ntop/nDPI.

2 pkt2flow is a simple utility that classifies packets into flows. It takes single PCAP
files as input and returns a set of PCAP files where each file contains a single flow.
It is available at: https://github.com/caesar0301/pkt2flow.

8 Weisz, S., Chavula, J

having many YouTube packets but few Facebook packets [16]), do not perform
as well when classifying some of the underrepresented classes, since models tend
to skew their predictions in favour of the majority classes. To solve this problem,
we use a method called under-sampling [15, 17], whereby classes containing more
packets than needed are sampled from to extract an equal number of packets
for each label class. To this end, we sample 10000 packets each from 10 selected
classes that are displayed in the Table 1 below.

Table 1: List of applications in the dataset

Application label |Application type
YouTube Video

Facebook Social Media
GoogleServices Phone background services
Intagram Images

WhatsApp Instant messaging
BitTorrent Torrent files
TeamViewer Remote desktop
Gmail Email
WindowsUpdate Desktop OS updates
PlayStore Mobile app store

The choice of 10000 packets per class is guided by the general size of datasets
typically used in the literature. The choice of which 10 classes was guided by con-
sidering the most popular classes in the community network (and hence which
would be most useful to the community network) whilst also ensuring a repre-
sentative spread across different application types to ensure the classifiers are
evaluated on a diverse range of applications.

Lastly, we create training, validation, and testing datasets as the final output
of the preprocessing pipeline by randomly sampling from the 100000 observations
in an 60-16-24 split, whilst preserving class proportions in each dataset. This
split choice is popular in the literature, for example in the study by [17]. The
training set is used for training the models, whilst the validation data is used
as an estimate of how the models perform on the test set so as to guide the
hyperparameter tuning process. Finally, the unseen test data yields an unbiased
indication of each model’s out-of-sample performance and ability to generalize
to new data.

5 Experimental Methodology

5.1 Evaluation Metrics

Accuracy is one of the most popular metrics used for evaluation of classifiers,
indicating the proportion of correct classifications relative to the total number of

CN Traffic Classification using 2D-CNNs 9

predictions made. The F1 score is another popular metric in the literature used
for evaluating models, since it gives a better indication of a model’s performance
on datasets that are unbalanced. However, since we took care to preprocess our
dataset to ensure equal number of samples from each application class, for our
study there is no reason to consider F1 score over and above accuracy. Accuracy
is thus used as our key metric for evaluating the performance of the classification
models under consideration.

We also need a metric for evaluating classification speed, as a means of
assessing how models perform in meeting the real-time classification constraint.
For this purpose, we use the average number of packets that a given model
can classify per second. The reason for this choice of metric, as opposed to the
average time taken to made a prediction, is that this allows for easier evaluation
of whether models are suitable for real-time classification. The internet link
capacity for the community network in questions is 10mbps, and the average
number of bytes per packet in our dataset, including the IP header, is 992.57.
We therefore assume that the network processes approximately 10 000 packets
per second on average, and this is thus be used as a reference point to compare
a given model’s prediction speed in packets per second, as an indication of how
suitable it is for real-time classification.

Finally, we use a given model’s number of parameters as a measure of its
computational resource utilization — since the number of parameters of a model
is the clearest determinant of a model’s complexity. The number of parameters
gives a proportional indication of a model’s size and associated memory usage
(typically parameters are stored as 32 bit floats, and thus 4B are needed for each
parameter). The storage to define the model architecture is trivial compared
to that needed for its parameters, such that the number of parameters of a
model is the main determinant of its memory usage. To this end, low-parameter
models are thus more desirable than high-parameter models for low-resource
environments since it implies lower memory usage requirements.

5.2 Architectures

For the 2D-CNN networks, we consider two key architectures — a ‘shallow’
network with just one convolutional layer, and a ‘deep’ network with four con-
volutional layers. This allows us to compare whether the additional complexity
associated with a deeper CNN can be justified.

The shallow CNN consists of the input layer, a convolutional layer followed
by a max pooling layer, and then a fully-connected layer feeding into a 10-way
softmax output layer. The more complex deep CNN, however, is made up of
two sets of two convolutional then max pooling layers, followed again by a fully
connected layer feeding into a 10-neuron softmax output layer. The architecture
is depicted in Figure 1 below.

10 Weisz, S., Chavula, J

o

4 — o
] . Max pooling Max pooling & Softmax

‘Imaged’ packet input output,

Convolutional layer [x2] Convolutional layer [x2] Fully-connected layer

Fig. 1: Deep 2D-CNN network architecture

For both networks, the filters in the convolutional layers are 3 x 3 in size,
with “same” padding (meaning each layer’s input is zero-padded in such a way
as to preserve its spatial dimensions in its outputs). Such filters with small
receptive fields have been shown to have strong success for CNNs [23], and
also reduce the number of parameters per filter which is desirable for reducing
computational requirements. The number of filters in the convolutional layers
and sizes of the fully-connected layer are varied as outlined in the experiment
design in Section 5.3 below. Max pooling has been chosen for the pooling layers
due to the strong success it has demonstrated with CNNs [14, 23, 11].

All hidden layers make use of Rectified Linear Unit (ReLU) [14] activations
to introduce non-linearity. The Adam optimization algorithm has been chosen
due its computational efficiency and subsequent reduction in training time, as
well as its success in practice compared to other optimization methods [13].
To reduce model variance and prevent overfitting in the fully-connected lay-
ers, we use both dropout and 12-regularization. The learning rate and dropout
rate hyperparameter-tuning is discussed in the experiment design in Section 5.3
below. Note that the 2D-CNN requires the input packets’ features to first be
reshaped (‘imaged’) into an N x M matrix. For example, when the full 1480
bytes of the IP payload are used as model input, we reshape the bytes into a
40 x 37 matrix. The byte values (ranging from 0 to 255) are also scaled to be
between 0 and 1 in order to facilitate faster training, and the labels are one-hot
encoded as required by the model for multi-class classification.

For our baseline MLP models, against which the 2D-CNNs is compared, we
again consider two main architectures - a ‘shallow’ network with one hidden layer,
and a deeper network with three hidden layers. The shallow network provides a
benchmark to allow us to evaluate the performance benefit offered by deep learn-
ing compared to ’shallow’ learning. Like for the CNNs, we make use of the ReLU
activation function and the Adam optimizer. Dropout and 12-regularization are
used to avoid overfitting. The number of neurons in each hidden layer, and the
hyperparameter tuning of the learning rate and dropout rate are discussed in
the experiment design in Section 5.3 below.

Lastly, an SVM model is also be considered as a baseline model to which
to compare the neural networks. Since we expect the SVM classifier to be
lightweight in terms of memory usage, and have a fast classification speed, the
neural network architectures needs to show superior accuracy to justify their
additional complexity. Because the number of packets in our dataset is large

CN Traffic Classification using 2D-CNNs 11

relative to the number of features (64 0000 packets in the training set compared
to 1480 features), we use a linear kernel for our SVM classifier[19].

5.3 Experiment Design

We make use of two experiments in order to investigate the research questions.
Experiment 1 involves comparing the models’ accuracy and prediction speed
across a varying number of parameters, with reference to the first two 1. Experi-
ment 2 varies the number of bytes of each packet’s payload used as model input,
and evaluates the effect on the deep 2D-CNN’s accuracy and prediction speeds.

Experiment 1 — Comparing Accuracy and Prediction Speeds against
Number of Parameters :

For each p € {2 = 2048,2'% = 8192,...,22! = 2097152} where p is the
number of parameters of the model, we train a shallow MLP, a deep MLP, a
shallow 2D-CNN, and a deep 2D-CNN (using the above-described architecture),
each with approximately p parameters. The number of parameters are consid-
ered on an exponential scale in order to more comprehensively cover the sample
space. Defining the number of model parameters is done by varying the number
of filters in each convolutional layer and the size of the fully-connected layer
in the CNNs, and varying the number of neurons in the hidden layers in the
MLPs. For example, the deep 2D-CNNs for each given number of parameters
are constructed by letting the number of filters for the convolutional layers and
the size of the fully connected layer be f for each f € {4,8,16,32,64,128}. The
specific configurations for each model are outlined in the Appendix.

For each model with a given number of parameters, we perform a grid-search
hyperparameter tuning process. To this end, the grid search involves tuning the
learning rate — since the learning rate is widely regarded as the most important
hyperparameter to tune for neural networks [10] — as well as the dropout rate
to identify what level of dropout is desirable to reduce overfitting for a particular
configuration. The learning rates considered are {0.01, 0.005, 0.001, 0.0005, 0.0001}
and dropout rates of {0.05,0.1,0.2,0.5}. Each model with one of the combina-
tions of these hyperparameter options is trained for a maximum of 50 epochs
through the training data, with early stopping used to halt training if the vali-
dation accuracy has not improved over the last 5 epochs. Thereafter, the trained
model is selected as the model at the number of epochs that attained the highest
validation accuracy. Then the hyperparameter combination that results in the
highest accuracy on the validation set is chosen as the optimal configuration for
the given model architecture and number of parameters.

An SVM classifier is also trained to serve as a lightweight baseline compar-
ison, with the SVM having just 14810 parameters (for each class, there is a
parameter for each byte feature from the 1480 bytes in the IP payload, plus a
bias term).

We then evaluate each of the chosen models’ out-of-sample performance by
computing their accuracy on the test set, and then evaluate their prediction

12 Weisz, S., Chavula, J

speed by calculating the average number of packets predicted per second. This
is done by choosing a sample of 10000 packets from the test set, and averaging
the time taken to classify the sample over 25 trials. The number of packets in
the sample is then divided by the average time taken in seconds, to produce
an estimate of the average number of packets that can be classified per second,
along with an estimate of the standard error to aid in error analysis.

The experiments are performed on a low-resource virtual machine instance
with only a single core in order to simulate deployment in a low-resource envi-
ronment (see Section 5.4 for hardware specifications). As a result, the results
pertaining to prediction speeds are made with reference to this specific hard-
ware environment. However, the comparative results and inferences drawn can
be extrapolated and extended to different hardware environments as needed.

Experiment 2 — Effect of Input Size on 2D-CNN Accuracy and Pre-
diction Speed :

This experiment is designed to determine the effect that decreasing the num-
ber of payload bytes used as features for the 2D-CNN has on the prediction time
and accuracy. For each k% € {82 = 64,162 = 256,24% = 576,322 = 1024}, we
train a deep 2D-CNN using the first k2 bytes of the payload as model input for
each packet (reshaped into a k x k image). The number of bytes being chosen
on a quadratic scale is appropriate due to the 2D-nature of the input required
for 2D-CNNs. The model architecture is that of the deep 2D-CNN described
in Section 5.2 above, with four convolutional layers, two max-pooling layers,
and a fully-connected layer feeding into a softmax output layer. Each convolu-
tional layer consists of 32 filters, with the fully connected layer consisting also
of 32 neurons. For each input size k, the corresponding model configuration is
chosen according to a grid-search across the hyperparameter space. The hyper-
parameters considered in the search are again the learning rate chosen from
{0.01,0.005,0.001, 0.0005,0.0001}, and dropout rate from {0.05,0.1,0.2,0.5}.

As in Experiment 1, each selected model’s accuracy on the test set is com-
puted as an indication of its out-of-sample performance, and its prediction speed
is estimated by calculating the average number of packets predicted per second
(along with the associated standard error). These results are used to draw in-
ferences about the relationship between the size of the input and the prediction
speed and accuracy of the 2D-CNN.

5.4 Software and Hardware Environment

The CNN and MLP networks were implemented in Python through the Keras Se-
quential APT [5] with a Tensorflow 2.0 backend [1]. Keras was chosen as our deep
learning framework because of its ease of use and modularity for model building,
without reducing flexibility [12]. This allowed for rapid model development, and
enabled more time to be spent on experimentation. The SVM classifiers were
implemented in Python using the scikit-learn API [21]. Similar to the rationale
for choosing Keras for developing the neural networks, scikit-learn was chosen

CN Traffic Classification using 2D-CNNs 13

for its simplicity and efficiency in building machine learning models, including
SVMs, for multi-class classification.

To simulate a low-resource environment, the model testing and evaluation
for the experiments were preformed on a single-core Intel Xeon 2.50 GHz pro-
cessor with 3.75GB RAM. The models were trained using GPUs via Google
Colaboratory.

6 Results and Discussion

In this section we present and discuss our findings from the experiments con-
ducted. We explore the relationships between both accuracy and prediction speed
with number of parameters across the different classification models, and com-
pare the classifiers based on these evaluation metrics. We then reduce and vary
the number of bytes used as input to the 2D-CNNs, and explore to what extent
the prediction time can be reduced and at what cost to the model accuracy. Full
results are provided in the Appendix.

6.1 Accuracy Results

Figure 2 compares the deep 2D-CNN, shallow 2D-CNN, deep MLP, shallow
MLP, and SVM models on the basis of their accuracy on the test set containing
24000 packets, for each given number of parameters. The test accuracy indicates
each model’s out-of-sample performance and, thus, is indicative of the model’s
ability to generalize to unseen data. As a result, as per convention in the machine
learning field, the accuracy results displayed in the plot are considered a reliable
measure of model out-of-sample performance without conducting statistical error
analysis.

Test Accuracy vs Log, of Number of Parameters

0.8 /.
. D S
-~ ,_—::::: ------ 2
o« ~ 55/‘"4 ______ [-
—l e
X PUNENY ~oots

Test Accuracy
o
o
N
S

)
IS

NS
N

-®- Shallow MLP
-®- Deep MLP
-@- Shallow CNN
-@- Deep CNN
X SVM

0.2

0.0

10 11 12 13 14 15 16 17 18 19 20 21

Log, of Number of Parameters
Fig.2: Accuracy results against number of parameters for the MLP, 2D-CNN
and SVM classifiers

14 Weisz, S., Chavula, J

It is clear that test accuracy increases as the number of parameters increases
across the models. This matches our intuitive expectations, as increasing the
number of parameters improves the flexibility of the models to fit patterns in
the data. However, added flexibility in machine learning models has the potential
to result in overfitting to the training data, causing out-of-sample performance to
worsen as models become more complex. This effect is not observed in our results,
however, with the most likely explanation being the multiple measures we took
to prevent increasing complexity from causing overfitting (using dropout and 12-
regularization). Notably, however, the rate of increase in test accuracy decreases
for each of the models as the number of parameters increases. For example, the
2D-CNN test accuracy can be seen to plateau from a logs parameters of 15.
An inference that can be drawn from this observation is that it would likely be
unnecessary to fit larger models with logs parameters greater than 21 — since
at this point, the added model size appears empirically to only yield a marginal
improvement in performance. Notably though, models with logy parameters of
21 only require approximately 2MB of storage for the parameters — which is
unlikely to pose memory problems on a router in production. However, due to
our preference for low-parameter models for low-resource networks, we still tend
to favour models at the beginning of plateaus in accuracy if increasing model
size does not result in a significant improvement in performance.

Now, comparing the models’ accuracy, we first note that the SVM classifier
attained a test accuracy of 64.6%, and, being the smallest model in terms of
number of parameters, provides a baseline accuracy to which to compare the
other models. Comparing the neural networks, it is immediately apparent that
the deep 2D-CNN model performs significantly better on the unseen test data
than all of the other models across the range of number of parameters — with
the largest deep 2D-CNN attaining a test accuracy of 90.1%. Thus, if we were
to decide on the best model based solely on performance in terms of accuracy,
we would choose this deep 2D-CNN model with loge number of parameters of
21. We can also conclude that the use of 2D-CNN deep learning models has a
significant impact on attaining higher classification accuracy compared to the
simpler MLP and SVM models for a given model size, in answer to our first
research question.

The deep 2D-CNN outperforms the shallow 2D-CNN model for any given
number of parameters, which shows the benefit that added convolutional layers
can offer in terms of fitting more complex patterns in the data. The shallow
MLP, deep MLP, and shallow CNN perform relatively similarly across the range
of number of parameters. When the number of parameters is sufficiently large,
though, we note that the shallow 2D-CNN does outperform the MLP models.
This provides evidence that the more sophisticated 2D-CNN models offer better
out-of-sample performance than the baseline MLP and SVM models for the
traffic classification task given sufficient model complexity. We also observe that
the deep MLP model attains a higher test accuracy than the shallow MLP model
once the logy of parameters is larger than 15, thus showing the benefit of ‘deep’
learning when given sufficient model flexibility.

CN Traffic Classification using 2D-CNNs 15

6.2 Prediction Speed Results

In Figure 3 we compare the prediction speed of the various models in terms of
average number of packets per second that can be predicted by each model, for
each given model size. The associated standard errors for each average packets
per second estimate for each model are relatively small (most less than 1%)
and hence are omitted from the plot, but they are included in the results in
the Appendix. The small standard errors can be attributed to the results being
computed as an average taken over 25 trials, thereby testifying to the reliability
of the observed results.

Average Packets Predicted Per Second vs Log, of Number of Parameters

50000
-@- Shallow MLP
[T - -@®- Deep MLP
40000 ®7m=--o .- l% o -@- Shallow CNN
RO -@- Deep CNN
?, RN X SVM*
3 30000 4 \
8
g N
g \
2 ®”,
© 20000 \
o
< N
Yo
10000 4 C
& - P
______ PO - __
o ¢ - P — - oIIIC -2

10 11 12 13 14 15 16 17 18 19 20 21
Log; of Number of Parameters

*SVM recorded 236726.9 + 276.9 packets per second, but has been omitted from the plot for readability.

Fig. 3: Prediction speed (in packets per second) against number of parameters
for the MLP, 2D-CNN and SVM classifiers.

The general trend observed amongst the models is the greater the number
of parameters, the fewer average packets per second that can be classified. This
matches our expectations, since having more parameters corresponds to larger
weight matrices being involved in the matrix multiplications performed when
making predictions for the MLPs, in addition to more convolution operations
(since additional filters are responsible for increasing the number of parame-
ters in the CNN convolutional layers) when the CNNs make predictions. These
consequently result in longer computational time required to make predictions.

The lightweight SVM classifier predicts on average 236726.9 packets per sec-
ond, which is substantially faster than all other models considered — in fact, this
is more than five times more packets than the fastest MLP model considered.
However, as discussed in the experiment design, 10000 packets per second can be
considered an approximate benchmark for a model’s ability to process packets
in time for real-time classification for a 10mbps network. Thus the SVM’s fast
prediction speed is not necessary for our low-resource purposes, but could offer
value to a very high capacity network that supports a very large traffic volume.

Comparing the neural networks, we observe that the MLP classifiers are
significantly faster in terms of prediction speed than the 2D-CNNs for any given

16 Weisz, S., Chavula, J

fixed number of parameters. The reason for this observation is that for each
filter in a convolutional layer in a CNN (and similarly for the pooling layers),
the convolution operation using the filter must be applied to every element of
the preceding layer’s output. Therefore the parameters for each filter are used
repeatedly in multiple computations for a given layer, which is responsible for
the high computation time required. This is in contrast to fully-connected layers
in an MLP where each layer’s weight matrix is only used once in making a
prediction for a packet. This observation then also explains why the shallow 2D-
CNN attains a faster prediction speed than the deep 2D-CNN for a given number
of parameters, due to fewer convolution operations needing to be applied.

The MLP models are relatively similar in terms of prediction speed, with the
shallow MLP generally able to predict slightly more packets per second than the
deep MLP. This could be attributed to fewer computational overheads involved
in performing a large matrix multiplication for the shallow MLP compared to
three smaller matrix multiplications for the deep MLP (with three hidden layers)
for a fixed number of parameters.

We now consider the neural networks’ suitability for real-time classification,
keeping in mind our benchmark of 10000 packets per second. The deep 2D-CNN,
although achieving the highest accuracy amongst the classifiers across the entire
range of parameters, is the slowest in terms of prediction speed and does not
appear suitable for real-time classification regardless of the model size — the
maximum packets per second even amongst the small deep 2D-CNN models is
just 1931.4. The results of the next experiment in Section 6.3 below explore to
what extent this prediction speed can be improved but high accuracy maintained
by reducing the size of the input supplied to the 2D-CNNs.

The shallow 2D-CNNs only attained a higher accuracy than the MLPs from
logy parameters of 17 onwards — however, in this range the shallow 2D-CNN
recorded a maximum of 3435.2 packets per second, which is again likely too slow
to be suitable for real-time classification relative to our benchmark. In contrast,
both MLP models seem to be suitable for real-time classification across the range
of parameters considered, since on average they are able to predict more than
10000 packets per second.

6.3 The Effect of Reducing Input Size

Figure 4 plots the test accuracy and average packets predicted per second for the
deep 2D-CNN model across varying input sizes (that is, using only the first n
bytes of the packet payload for some n). The standard errors associated with the
average prediction time estimates were again small and thus have been omitted
from the plot for readability purposes, but can be seen along with the full results
in the Appendix.

The general trends we empirically observe match our expectations. As we
reduce the number of bytes used as model input, the test accuracies decrease,
as a result of losing the information contained in the latter bytes of the pay-
load. However, reducing the number of input bytes does result in an increasing

CN Traffic Classification using 2D-CNNs

35000

Accuracy and Average Packets Per Second vs \ Input Size
0.90
e —-e- Red i
' et %lced input X
\ X Fullinput
30000 - \‘ 0.88
\
‘\
25000 - \‘ 0.86
° L]
s \ ’/ -
o \ 7 o
% 20000 \ 3 0.84 ©
o \ - 3
g \ e g
Ju) \ - -
K 15000 4 Y ‘—,,f 0.82 #3
] \ e~
g \ -
10000 \Le--— 0.80
.—"\\
’ S
5000 /s Sve 0.78
/ ~~
/ -
-
0 : STt X
4 8 12 16 20

24 28 32 36
V/Size of input (number of bytes of payload used)

Fig.4: Accuracy and prediction speed (in packets per second) against root input

size for the deep 2D-CNN

average number of packets that can be predicted per second (since fewer con-
volutions need to be performed in the convolutional layers, and fewer pooling

operations in the pooling layers) - thus improving the model’s suitability for
real-time classification.

We now consider whether this approach of reducing the input size can enable
the 2D-CNN model to be suitable for real-time classification but still maintain
high accuracy. Recall that the deep 2D-CNN model using the full payload with
this given model complexity (loga number of parameters of 17) attained an accu-
racy of 88.95%, but an average prediction speed of only 851.3 packets per second.
This meant that this model was not suitable for real-time classification with ref-
erence to our benchmark of 10000 packets per second. However, we notice now
that when the v/inputsize is 8 or less (i.e. using only the first 64 bytes or fewer),
the average packets per second is greater than 10000, thus meeting our bench-
mark for real-time classification. The associated test accuracy is 79.2%, which
is superior to the MLLP and SVM models that were deemed suitable candidates
for real-time classification. For faster networks, we could use even fewer input
bytes (just the first 16 bytes) to get a faster prediction speed of 33472.0 packets

per second, and 76.7% accuracy, which still exceeds the highest observed MLP
accuracy.

This shows that, by reducing input size, the 2D-CNN model can be suitable
for real-time classification and still outperform the other classification models
in terms of accuracy. It is thus clear that reducing the number of bytes can
significantly improve the prediction speed of the 2D-CNN without the cost to

its accuracy decreasing its predictive performance advantage over the simpler
models.

17

18 Weisz, S., Chavula, J

7 Conclusions and Future Work

The experiments demonstrated that 2D-CNN models are indeed superior to the
baseline model candidates of SVM and MLPs when the basis of comparison is
solely classification accuracy, given the same computational resources (in terms
of memory allocation, based on the number of parameters). In answer to our
first research question, we can thereby conclude that 2D-CNNs do have a signifi-
cant impact on classification accuracy compared to the simpler models. Notably,
the largest 2D-CNN model successfully attained an accuracy of 90.1% on the
test set, indicative of excellent out-of-sample performance. We observed that the
neural network architectures attained higher test accuracies than the SVM tra-
ditional machine learning model, which is evidence of the added predictive power
that these deep learning architectures offer over a traditional machine learning
approach for traffic classification. The benefits of ‘deep’ learning over ‘shallow’
learning were also highlighted by the fact that both the deep CNNs and deep
MLPs outperformed the shallow CNNs and shallow MLPs respectively.

Our second research question was set up to investigate whether the classifiers
are fast enough for real-time classification, and how the models compare on this
basis. To this end, we noted that despite clearly offering the strongest predictive
power on out-of-sample data, the 2D-CNNs models were significantly slower than
the other models in terms of prediction time, which weakens their suitability for
real-time classification. In comparison, the MLP and SVM models predicted
packets at a much faster rate, which is certainly more appropriate for use in
real-time.

However, we observed that by reducing the proportion of the payload used
as model input to just 64 bytes, the prediction speed of the deep 2D-CNN model
can be improved to 14581.5 packets per second, whilst maintaining an accuracy
of 79.2%. This exceeds the 10000 packets per second benchmark for real-time
classification on a 10mbps network, and still offers superior out-of-sample per-
formance relative to the other models considered. This then provides an answer
to our third research question, demonstrating that by reducing the input size,
the prediction speed of 2D-CNNs can be significantly improved, without the cost
to its accuracy detracting from its accuracy advantage over the baseline models.
As a result, we would recommend this 2D-CNN approach as the most suitable
for use in real-time in community networks.

In conclusion, 2D-CNNs have been shown to be excellent candidates for the
real-time packet-based traffic classification task in low-resource community net-
work environments. As a result, through its application in QoS provisioning
(amongst other areas), traffic classification using 2D-CNNs has the potential to
offer significant value to the members of community networks and make impor-
tant contributions towards closing the digital divide.

For future work, we will explore options for model simplification, such as
dimensionality reduction using Stacked Auto-Encoders, as well as exploring hy-
brid architectures that combine CNNs with recurrent neural networks (RNNs)
to learn both spatial and temporal patterns in the datasets.

13.

14.

15.

16.

17.

18.

CN Traffic Classification using 2D-CNNs 19

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale machine
learning. In: 12th {USENIX} Symposium on Operating Systems Design and Im-
plementation ({OSDI} 16). pp. 265-283 (2016)

2. Braem, B., Blondia, C., Barz, C., Rogge, H., Freitag, F., Navarro, L.,
Bonicioli, J., Papathanasiou, S., Escrich, P., Baig Vinas, R., Kaplan, A.L.,
Neumann, A., Vilata i Balaguer, I., Tatum, B., Matson, M.: A case
for research with and on community networks. SIGCOMM Comput. Com-
mun. Rev. 43(3), 68-73 (Jul 2013). https://doi.org/10.1145/2500098.2500108,
https://doi.org/10.1145,/2500098.2500108

3. Bujlow, T., Carela-Espanol, V., Barlet-Ros, P.: Independent comparison of popular
dpi tools for traffic classification. Computer Networks 76, 75-89 (2015)

4. Chen, Z., He, K., Li, J., Geng, Y.: Seq2img: A sequence-to-image based approach
towards ip traffic classification using convolutional neural networks. In: 2017 IEEE
International Conference on Big Data (Big Data). pp. 1271-1276. IEEE (2017)

5. Chollet, F., et al.: Keras. https://keras.io (2015), accessed: 2020-09-16

6. CloudFlare: (2020), https://www.cloudflare.com/learning/network-layer/what-is-
mtu/, accessed: 2020-09-15

7. Cross, S.S., Harrison, R.F., Kennedy, R.L.: Introduction to neural networks. The
Lancet 346(8982), 1075-1079 (1995)

8. Dainotti, A., Pescape, A., Claffy, K.C.: Issues and future directions in traffic clas-
sification. IEEE network 26(1), 35-40 (2012)

9. Dicks, M., Chavula, J.: Deep learning traffic classification in resource-
constrained community networks. In: 2021 IEEE AFRICON. pp. 1-7 (2021).
https://doi.org/10.1109/AFRICON51333.2021.9570875

10. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)

11. Tandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.:
Squeezenet: Alexnet-level accuracy with 50x fewer parameters andj 0.5 mb model
size. arXiv preprint arXiv:1602.07360 (2016)

12. Keras: (2020), https://keras.io/whyreras/, accessed : 2020 — 09 — 16

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980 (2014)

Krizhevsky, A., Sutskever, 1., Hinton, G.E.: Imagenet classification with deep convo-

lutional neural networks. In: Advances in neural information processing systems. pp.

1097-1105 (2012)

Lim, H.K., Kim, J.B., Heo, J.S., Kim, K., Hong, Y.G., Han, Y.H.: Packet-based network

traffic classification using deep learning. In: 2019 International Conference on Artificial

Intelligence in Information and Communication (ICAIIC). pp. 046-051. IEEE (2019)

Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A., Lloret, J.: Network traffic clas-

sifier with convolutional and recurrent neural networks for internet of things. IEEE

Access 5, 18042-18050 (2017)

Lotfollahi, M., Siavoshani, M.J., Zade, R.S.H., Saberian, M.: Deep packet: A novel

approach for encrypted traffic classification using deep learning. Soft Computing 24(3),

1999-2012 (2020)

Micholia, P., Karaliopoulos, M., Koutsopoulos, 1., Navarro, L., Vias, R.B., Boucas,

D., Michalis, M., Antoniadis, P.: Community networks and sustainability: a survey

of perceptions, practices, and proposed solutions. IEEE Communications Surveys &

Tutorials 20(4), 3581-3606 (2018)

19.
20.

21.

22.

23.

24.

25.

26.

20 Weisz, S., Chavula, J

Ng, A.: Cs229 lecture notes. CS229 Lecture notes 1(1), 1-3 (2000)

O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint
arXiv:1511.08458 (2015)

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-
del, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research 12, 2825-2830 (2011)

Rezaei, S., Liu, X.: Deep learning for encrypted traffic classification: An overview. IEEE
communications magazine 57(5), 76-81 (2019)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556 (2014)

Wang, P., Ye, F., Chen, X., Qian, Y.: Datanet: Deep learning based encrypted network
traffic classification in sdn home gateway. IEEE Access 6, 55380-55391 (2018)

Wang, W., Zhu, M., Zeng, X., Ye, X., Sheng, Y.: Malware traffic classification using
convolutional neural network for representation learning. In: 2017 International Con-
ference on Information Networking (ICOIN). pp. 712-717. IEEE (2017)

Zhang, J., Chen, X., Xiang, Y., Zhou, W., Wu, J.: Robust network traffic classification.
IEEE/ACM transactions on networking 23(4), 1257-1270 (2014)

CN Traffic Classification using 2D-CNNs 21

Appendix: Supplementary Information

22

Weisz, S., Chavula, J

Experiment 1 2D-CNN Model Configurations

Number of Filters Per Dense

Model Parameters Layer Layer Size

Deep-CNN 1578 4 4
Deep-CNN 7690 8 8
Deep-CNN 30346 16 16
Deep-CNN 120586 32 32
Deep-CNN 480778 64 64
Deep-CNN 1920010 128 128
Shallow-CNN 2952 4 2
Shallow-CNN 8763 8 3
Shallow-CNN 29025 16 5
Shallow-CNN 127171 32 11
Shallow-CNN 484721 64 21
Shallow-CNN 1983203 128 4

Experiment 1 MLP Model Configurations:

Number of Hidden Layer

Model Parameters Sizes

Deep-MLP 1505 (1,1,1)
Deep-MLP 7685 (5,10,10)
Deep-MLP 33730 (20,50,50)
Deep-MLP 121880 (70,100,100}
Deep-MLP 492910 (200,350,350)
Deep-MLP 1892260 (450,900,900)
Shallow-MLP 1501 (1
Shallow-MLP 7465 (5)
Shallow-MLP 29830 (20
Shallow-MLP 120781 (81)
Shallow-MLP 480112 (322)
Shallow-MLP 1920418 (1288

Experiment 1 Results

0.698
0.726
0.760
0.761
0615
0.612
0.653
0.740
0.789
0.784
0,693
0.842
0.885
0.890
0.891
0.501
0.646

43197.145
42723.336
41314.968
36097.037
23107.187
11352.556
41511.741
39529.375
39491.803
35031.978
23859.578
9556.860
4312,595
4257.496
4021.531
3435223
2653.293
1570.599
1688.317
1931.446
1504.579
851.302
312.899
97.090
236726.872

Experiment 2 Results

Shallow-MLP 1501
Shallow-MLP 7465
Shallow-MLP 29830
Shallow-MLP 120781
Shallow-MLP 480112
Shallow-MLP 1520418
Deep-MLP 1505
Deep-MLP 7685
Deap-MLP 33730
Deep-MLP 121880
Deep-MLP 492910
Deep-MLP 1892260
Shallow-CNN 2952
Shallow-CNN B763
Shallow-CNN 249025
Shallow-CNN 12mn
Shallow-CNN 484721
Shallow-CNN 1983203
Deep-CNN 1978
Deep-CNN 7690
Deep-CNN 30346
Deep-CNN 120586
Deep-CNN 480778
Deep-CNN 1920010
SVvm 1481
Number of
Bytes of Input

16

B4

144

256

400

576

784

1024

1296

Average Packets PPS Standard

0.767
0.792
0.799
0.800
0.812
0.817
0.823
0.837
0.854

Test Accuracy Per Second (PPS) Error

33472017 95.797
14581469 36.040
7251.381 20.446
4364 418 5.552
2804555 5.229
2055.019 2907
1557.008 2.056
1214787 1448

967467 1.167,

208.174
365.578
259.977
223,702
79.578
43.226
392.387
B74.219
210.787
209.343
137.279
40.998
6,199
43.852
7.449
22.398
5.637
26.536
1.469
2.370
1150
1335
0.425
0.062

276.890,

