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Abstract. Real-time network traffic classification is vital for networks
to implement Quality of Service (QoS) traffic engineering. Deep learn-
ing techniques have proven to be effective for classification tasks, even
when the traffic is encrypted. The pursuit for higher accuracy has in-
centivized implementations of deep learning models that are larger and
slower, and require higher computational resources. This poses a problem
for real-time online classification, particularly in low resource environ-
ments. This paper considers the trade-off between prediction speed and
accuracy for the packet-based network traffic classification tasks when
computing resources are limited. We build and compare 1D Convolu-
tional Neural Network (1D-CNN) and the Multilayer Perceptron (MLP)
models of various sizes with varying packet payload lengths used as in-
put. These deep learning models are further compared to Support Vector
Machine (SVM) models across the same metrics. The models are eval-
uated on six different sets of hardware constraints that are likely to be
found in low-resource community networks. The study finds a clear trade-
off between prediction rate and attainable accuracy. Our results suggest
that MLP can achieve sufficiently fast prediction in community networks
with middle-range CPUs, and for the most powerful of CPUs, a 1D-CNN
should be the preferred model.

Keywords: deep learning, neural networks, network classification, com-
munity networks, quality of service, machine learning

1 Introduction

Network traffic classification is a problem that has undergone several evolu-
tionary steps in line with improvements in network security standards and the
growth of computational power. Improvements in network security, such as the
reduction in dedicated application ports and an increase in the prevalence of
encryption have made traditional network traffic classification algorithms less
effective at best, and obsolete at worst [21]. At the same time, the growth in
computational power and big data has resulted in the ever-increasing popularity
of machine learning (ML) frameworks for this classification task.



2 Tooke, J., Chavula, J

The focus of this study is on packet-based real-time or online network traffic
classification, which requires that traffic is classified using individual packets in
near real-time. The online classification task will be considered from the perspec-
tive of a community network wanting to make use of QoS engineering, which re-
quires a traffic classifier. Community networks typically experience slow internet
speeds compared to traditional internet service providers, and rely on inexpen-
sive hardware at the network gateway [5]. The slow internet speed experienced
in these networks makes QoS engineering especially appealing, as the benefits of
prioritizing latency-sensitive packets becomes more pronounced when there is a
bottleneck in the network. The resource constraints imposed by the inexpensive
hardware in community networks entails that a traffic classification tool must
be lightweight and efficient enough to avoid adding latency to the network.

Deep learning techniques have shown significant success for the network clas-
sification task in recent studies [2, 13, 21]). Despite their capability of achieving
higher accuracy on modern internet traffic than traditional ML [21], large deep
learning models come with considerable computational overheads as compared
to their traditional ML counterparts due to the sheer number of calculations that
need to be performed. For low-resource environments, such as in community net-
works, it is not clear if deep learning models that are constrained in complexity
due to computational limits would perform adequately, or outperform traditional
ML models that are not as computationally intensive.

This paper investigate the trade-off between speed and model complexity, in
the context of a resource constrained community network, and employing two
prominent deep learning architectures; the One Dimensional Convolutional Neu-
ral Network (1D-CNN) and the Multilayer Perceptron (MLP). Two key research
problems are pursued in this paper. Firstly, we evaluate whether 1D-CNNs and
MLP outperform the baseline models on the basis of classification accuracy. Sec-
ondly, we compare the models’ speed for real-time classification, in the context
of varying levels of hardware constraints.

We build and explore varying sizes of these deep learning architectures us-
ing a randomised grid search technique, and evaluate the prediction speed and
classification accuracy using a dataset collected from a community network in
South Africa. The 1D-CNN and MLP models are further compared across the
same metrics to a traditional and the more lightweight Support Vector Machine
(SVM). Additionally, these models are built with varying input lengths to in-
vestigate the potential performance implications of only considering a smaller
portion of each packet’s payload as features.

2 Background

2.1 Quality of Service (QoS)

QoS engineering is used to manage network traffic with the goal of reducing
latency, packet loss and jitter. This can be done by prioritizing traffic from some
applications over others according to predefined network rules [4]. Successful
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QoS engineering will improve user experience by ensuring that latency-sensitive
traffic (such as video calls) can be prioritised over traffic that can be delayed
for longer without frustrating users (such as email) . The router can only choose
which packets to prioritize if it can first classify the incoming packets. This is
done using online network traffic classification tools, such as the machine learning
ones implemented in this paper.

2.2 Community Networks

Community networks are a solution to providing internet access in rural areas
across the globe. They are typically formed by a small group of people coming
together to develop a network infrastructure in their local community and then
creating an access point to connect their network to the wider internet [16, 17].
Typically, community networks are distributed, decentralized low-resource sys-
tems that use low-cost hardware and wireless technologies to connect network
nodes [6]. For this reason, community networks typically experience slow internet
speeds, making QoS engineering particularly useful to ensure good user experi-
ence. However, due to the inexpensive hardware [5], computationally intensive
traffic classifiers, such as large deep learning models, may be too slow for online
classification. Smaller deep learning models and traditional ML models may be
required under these circumstances.

To contextualise the performance of the models in a community network, the
machine learning models trained in this paper use network traffic data samples
collected from a community network in South Africa. Six sets of low-resource
hardware specifications are considered, and the classification speed of the models
on these hardware systems is evaluated in terms of accuracy and speed of clas-
sification. The effect of reducing the length of the packet payload as the input
to deep learning models is evaluated in the context of speed and accuracy for
online classification.

2.3 Support Vector Machine (SVM)

The SVM is a traditional machine learning model that is typically used for binary
classification problems. In a binary classification problem, the SVM attempts to
distinguish classes along a maximum-margin hyperplane, which is essentially a
straight line that splits the two data classes most convincingly in the features
space [18]. In situations where the data is not linearly separable, a kernel func-
tion is used to transform the data into higher dimensions to allow for a linear
separation. To prevent overfitting with this approach, and since most real-world
datasets contain outliers, the basic SVM algorithm has been modified to allow
for some values to fall on the wrong side of the hyperplane. This is known as the
soft margin. In the case of multi-class classification, a one-versus-rest approach
is used, where each class is separated from all of the other classes in the dataset.
The one-versus-rest is the approach that is used in this paper.
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2.4 Multilayer Perceptron (MLP)

The multilayer perceptron is a type of feedforward artificial neural network. It
consists of an input layer, one or more hidden layers, and an output layer. Each
layer (l) consists of one or more nodes that are each connected to every node in
the subsequent layer [20]. For each connection in the network, a weight value (w)
is stored, and these values are adjusted as the network is trained. Additionally,
each non-input node is assigned a non-linear activation function (σ) and stores
a bias value (b) that is also learned during training. The data for the network
is passed to the input layer, with each node in the input layer representing a
feature of the data. Each subsequent node in the network calculates its output
(a) by applying an activation function to the sum of the outputs of the previous
layer multiplied by the connected weight and adding its bias value as shown by
the equation below.

alj = σ(
∑
k

wl
jka

l−1
k + blj) (1)

In this paper, the MLP is used for multi-class classification with a softmax
activation function at the output layer. Adam optimization [10] is used as the
optimizer with dropout [23] and early stopping as regularization mechanisms.

2.5 1D Convolutional Neural Networks (1D-CNN)

A convolutional neural network is a more advanced deep learning model. The
main difference to the MLP is that the input data is fed through convolutional
layers first which performs the feature extraction [13]. Thereafter, a dimension-
ality reduction technique, such as max pooling is used, and the output of this is
connected to one or more fully-connected layers.

In a 1D-CNN, the convolutional layers take a one-dimensional vector as in-
put. A kernel of some length is slid across each sub-region of the input data,
calculating the dot product between the kernel and the sub-region of the input
data at each point and appending the result to the output vector. This opera-
tion results in dependencies between subsequent features being captured by the
model.

The equation for the output, z, from one kernel operation is given below.
Where w is the kernel vector with a different weight value at each position a.
The value l is the layer in the network and m is the length of the kernel.

zli = σ(

m−1∑
a=0

waz
l−1
(i+a)) (2)

Max pooling is typically used after convolutional layers in order to reduce
the dimensions of the output. This works by taking the maximum value from
subsequent sub-regions of the output and discarding the other values. The size
of the sub-region can be chosen and tuned.
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Similar regularization can be used for CNNs as mentioned in Section ?? for
the MLP, although dropout is less common following directly from convolutional
layers. The same optimizer and output layer structure can be used as well.

3 Related Work

Deep learning techniques have been studied in recent years for for network traffic
classification, partly due to the additional challenges imposed by the encryption
of internet traffic [21]. In the context of network traffic classification, these deep
learning techniques can be broadly categorised into flow-based [3] and packet-
based approaches [14].

3.1 Flow Classification

More often than not, the objects of classification are flows [3], loosely a sequence
of packets sent from a particular source application to a particular destination
application. There are four prominent approaches for collecting data from a
flow [3,7,12,26,27]. The first approach is to take raw data, in the form of bytes,
from some of the packets in the flow [27]. Another approach is to extract raw
data from a flow. This mean that you only consider the first N bytes from the
flow and you do not care about individual packets [26]. The third approach
uses time series data like packet sizes, packets directions and inter-arrival times
from individual packets [22]. Flow statistics is the fourth way that data can be
extracted from a flow. Examples of flow statistics are means, standard deviations
as well as minimums and maximums for packet sizes and inter-arrival times. This
approach needs to use more packets from a flow so that estimates do not have
too much variance. This may not be suitable for fast real time classification [22].

Using raw data has been shown to work better than using hand picked time
series features and flow statistics [3]. These findings have shown that increasing
the raw information available to the deep learning models results in greater
prediction accuracy. Due to the structure of the data extracted from flows, new
model architectures become useful, such as the LSTM and One Dimensional
Convolutional Neural Network (1D-CNN). These deep learning architectures can
find long and short term temporal relationships in the data. The 2D-CNN also
gets used to find spatial patterns.

In another study [27], a 1D-CNN and a 2D-CNN were used to classify flows
using the first 784 or 1000 bytes of the flow. These bytes are converted either into
a 1D vector for the 1D-CNN, or into a 2D image for the 2D-CNN. In the study,
1D-CNN achieved an accuracy of 91.25% and the 2D-CNN had and accuracy
of 90% [27]. This is not a surprising result since 1D-CNNs are better suited
to processing sequential data [11]. The study [27] also compared the 1D-CNN
to the state of the art C4.5 decision tree. The CNN’s average recall was 8.1%
higher than the average recall of the decision tree [27]. This showed that end-to-
end deep learning was better than state-of-the-art machine learning. In a similar
study [3], 1D-CNNs also outperformed 2D-CNNs.
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3.2 Packet Classification

A more fined grained approach would be to classify individual packets. A number
of studies show that individual packet classification is possible and can yield
very good results [14, 24]. When doing individual packet classification, times
series features are not useful since the focus is on individual packets. Since deep
learning has the ability to learn high dimensional data [22], it can therefore learn
from the raw data of a packet.

Another study [15] used the first 1480 bytes of the IP payload as well as
the IP header as input. They masked the IP addresses because they only used
a limited number of hosts and servers. This did not allow the model to use the
information provided by the IP addresses which would have caused unreliable
results. In a similar study [24] used the same data but disregarded the IP header.

One of the most successful deep learning architectures is the Convolutional
Neural Network (CNN). This model has lead to good performance in image
recognition and object detection. Normally, CNNs are used on 2D images but
they can be adapted to be used on 1D vectors. These 1D-CNNs can learn se-
quential patterns in these 1D vectors. In one study [15], 1D-CNN was used to
classify individual packets into classes, and obtained an F1 score of 98% in ap-
plication classification, and an F1 score of 93% in traffic categorization. The
study also used a Stacked Auto-encoder (SAE) to classify internet traffic [15].
Auto-encoders are used as an unsupervised learning algorithm to try an generate
output that is as close to the input as possible. This allows the model to learn
a more comprehensive feature set that can be used to train supervised learn-
ing models [9]. The SAE was trained and then fitted with a soft-max layer to
classify the traffic. The model performed slightly worse than the 1D-CNN and
achieved F1 scores of 95% and 92% for application classification and traffic char-
acterization respectively [15]. A similar study [24] on application classification
saw the CNN and SAE achieve F1 scores of 98.4% and 98.8% respectively. They
also compared that with an MLP which had an F1 score of 96.5%. The MLP
was a smaller model with only two hidden layers and six neurons each, which
probably caused the reduced performance. In both of these studies, the input to
the models was a 1D vector that corresponded to the first 1480 bytes of the IP
payload data.

Packet-based classification using a 1D-CNN has been shown to be success-
ful. Two main studies made use of 1D-CNNs for encrypted traffic classification.
The first used flow-based features [25], making it less relevant for online classi-
fication. The second used the packet payload as features, where each byte is a
feature [13]. Studies [13] suggest that 1D-CNNs are ideal architectures for the
traffic classification task using the packet payload since they are able to recog-
nize dependencies between successive bytes in order to learn key patterns that
enable successful classification. Deep learning models are able to learn the dis-
tinguishable patterns within the encrypted data that characterize applications,
despite the content itself being inaccessible due to encryption. Results presented
by the studies [13] show the effectiveness of the 1D-CNN approach, with their
model attaining an F1 score of 0.95, outperforming all prior similar works in
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literature that performed classification on the same public dataset. This shows
that 1D-CNNs are promising for this packet-based classification task.

Flow-based classification based on inter-packet features are less suited for
QoS mechanisms that need require real-time traffic classification. This paper
therefore focuses on packet-based online classification. From the reviewed litera-
ture, there has not been critical evaluation of computational resources required
for deep learning models that can be used for online packet-based classifica-
tion in low-resource networks. MLP has rarely been used due to its complexity
and low accuracy [21], but it has mostly been evaluated for flow-based traffic
classification tasks. This paper aims to determine whether 1D-CNN and MLP
deep learning can be used to perform real-time packet-based traffic classification,
given the resource constraints and requirements of low-resource community net-
works. We focus on online classification, i.e., where packets need to be classified
in near real-time, and where the first few packets of a flow are used for clas-
sification. A previous study on traffic classification in community networks [?]
evaluated computational efficiency and accuracy of LSTM and Multi-Layer Per-
ceptron (MLP) models. The study showed that LSTM models attain higher out-
of-sample accuracy than traditional support vector machines classifiers and the
simpler multi-layer perceptron neural networks, given the same computational
resource constraints.

4 Methodology

In this section, we describe the preprocessing of raw community network traffic
data into the format required by the learning models. Thereafter, we specify the
requirements for systems that the models must be able to run on, as well as the
required throughput rates. Finally, we provide the approach for building and
evaluating the different models through the use of a randomised grid search over
possible model architectures and hyperparameters.

4.1 Preprocessing

Before building the traffic classifier models, the data, which is in the form of pcap
files, needs to be transformed into the required models’ input format. The data
is converted to a packet-payload representation, where each feature is a byte
from the payload. The IP and TCP headers are excluded to prevent the model
from using attributes such as port numbers and IP addresses as features since
these change with usage and configuration, and are therefore not necessarily
representative. A bash script is written to automate the transformation process
from raw pcap input to csv output, and the steps followed by the script are
outlined in full detail below.

Dataset The data used for training the models is collected from the network
gateway of a community network in South Africa (details withheld for blind-
review). A sample of 145 raw pcap files from this network, totalling 14.2GB in
size, was used with the files picked over a date-range from March to May 2019.
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Fig. 1: Preprocessing Steps

Separating raw pcap files into flows This step takes raw pcap files as input
and produces the pcap flows extracted from the raw files as output. A flow
consists of a number of packets that share the same source IP address and port,
destination IP address and port, and protocol [21]. Each raw pcap file in the
dataset consists of many flows that represent traffic from different application
classes. The tool pkt2flow1 was used to separate the flows in each raw pcap file,
and saved each flow to its own pcap file.

Label flows with nDPI This step takes pcap flows as input and produces a csv
file with a label for each flow as output. The open-source deep packet inspection
tool, nDPI 2, was used to produce the labels for each of the flows extracted in
the step above.

Extract IP payload from each packet This step takes the flows produced
by pkt2flow and extracts the raw 1480 byte IP payload from each packet in each
flow and saves them to a csv file where each byte is a feature, following the
approach by [13]. For packets that have less than 1460 bytes in the payload, the
remainder of the payload is zero-padded. Additionally, the label produced by
nDPI is assigned to this csv file, so that each packet payload has a label. The
python library scapy3 is used to perform the IP payload extraction.

Select and sample balanced classes nDPI produced labels for 65 different
classes, but only 10 of the classes were selected for this study on the basis
of having sufficient samples in the dataset. The application classes used were
BitTorrent, GoogleDocs, Instagram, GMail, YouTube, Cloudflare, WhatsApp,
GoogleServices, Facebook, and TeamViewer. For each each of the application

1 pkt2flow Available at: https://github.com/caesar0301/pkt2flow
2 nDPI Available at: https://github.com/ntop/nDPI
3 scapy Available at: https://github.com/secdev/scapy
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classes, 10 000 packets were sampled from the dateset to ensure a balanced
dataset. A study [13] showed that this was a good amount of data per class.

Separate into train, validation, and test sets The processed dataset, con-
sisting of 100 000 labelled byte-vectors (10 000 per class), is split into train,
validation, and test sets. Of this, 20% of is reserved for the test set, 16% for the
validation set, and 64% for the training set.

4.2 Hardware Constraints Considered

Performance of the various models built in the experiment are evaluated on the
six resource constraints provided in the Table ?? below.

Table 1: Resource constraints considered
Effective CPU Speed

1 300 MHz
2 600 MHz
3 1.2 GHz
4 2.4GHz
5 4.8GHz
6 9.6GHz

A number of assumptions are made around the resource constraints. Firstly,
there will be about 25% of the CPU’s resources available for the model to perform
its classification. Secondly, differences in CPU architecture beyond clock speed
are ignored and the models are assumed to be perfectly parallelizable where the
effective CPU speed listed above is the number of CPU cores multiplied by the
clock speed per core. Thirdly, the community network servers do not have access
to a GPU. Fourthly, the RAM constraint is not considered. Lastly, the upload
speed is fixed at 10Mbps, which is used to calculate the required classification
throughput.

4.3 Required Classification Throughput

The required throughput refers to the number of packets that need to be clas-
sified per second to match the number of packets transferred per second by the
router. To calculate required throughput, the maximum network upload speed is
divided by the expected size of each packet. The required throughput is the num-
ber of packets that must be classified per second. A network speed of 10Mbps
(1250000 bytes/s) is based on our community network. The expected packet size
is calculated by taking the mean of the payload lengths of the sample taken from
the community network, giving 970 bytes per packet. We use this value to cal-
culate throughput, without including the IP header size as well. This produces
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the calculation below.

RequiredThroughput = 1250000/970 = 1289packets/s (3)

4.4 Input Length

To investigate the effect of including less features in the input layer on model
accuracy and performance, the packet lengths are considered. During training,
models will only take the first n bytes from the payload as input. The number
of bytes will be varied across the different models built as per Table 2.

Table 2: Number of bytes considered
Number of bytes (n) Payload length

1460 100%
1095 75%
730 50%
365 25%

4.5 Evaluation Criteria

Classification accuracy is the metric chosen for evaluating the correctness of
the models’ predictions. Additionally, the models are evaluated on the speed at
which they can predict the test set of 20 000 packets on a CPU, with a batch
size of 32. The speed of prediction is evaluated on the basis of whether it would
be sufficiently fast when subjected to varying resource constraints.

Accuracy = Number of correct predictionsTotal number of predictions×100
(4)

4.6 Architecture and Hyperparameter Selection

To find the best set of hyperparameters and model architectures for the varying
resource constraints, a randomised grid search technique is used to search over
both the model architecture and training parameters at the same time. The
architecture parameters considered are designed to produce models of varying
size and complexity.
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Model architectures MLP models are randomly constructed with between
one and three hidden layers. Ten different values for the number of nodes in
each layer are considered. However, the number of nodes considered is capped at
the input size, reducing the number of options and complexity for smaller inputs
used. For the CNN models, one or two 1D convolutional layers are used, followed
by a max pooling layer, and then one or two dense layers. Details regarding the
architecture parameters considered can be found in the Appendix B.

Hyperparameters Other parameters searched over include the dropout rate,
the batch size, the learning rate and the activation function. The input length
(number of features) is also varied. For the convolutional layers, values for filter
size, kernel size, stride and padding are searched over. Different values for the
max pooling layer are also considered. Details regarding the hyperparameters
considered can be found in the Appendix B.

4.7 Experiment Procedure

Varying the input length A method is written to transform the input data
to the input lengths specified in Section 4.4 so that the models can be built and
evaluated on inputs of varying sizes.

Establishing a baseline with SVM The first step of the experiment in-
volves setting a baseline classification accuracy on the dataset with a traditional
machine learning model using the scikit learn LinearSVC library (SVM clas-
sifier) [19]. The model was trained and evaluated across all 4 input lengths
specified. A linear kernel along with a one-vs-the-rest scheme is used as per the
scikit-learn documentation.

Training deep learning models 300 MLP and 1D-CNN models are trained
across the hyperparamater and model architecture search space for each of the
4 input lengths outlined in Section 4.4 using Keras [8] with Tensorflow [1]. This
results in 1200 different MLP models and 1200 different CNN models that can
be evaluated. The hyperparameters chosen for each of these models are saved
to a csv file and the model itself is also saved. Early stopping is used to reduce
training time and provide a regularization effect. A Tela V100 GPU is used to
do this training and it takes between 24 and 48 hours to train each set of 1200
models.

Performance evaluation The models are now loaded into a CPU instance
where their prediction speed on the test set of 20 000 packets is recorded using
a batch size of 32. This was performed on an Intel Xeon CPU with 2 cores and
a clock speed of 2.30GHz per core (effective CPU speed of 4.6GHz). This rate
is later adjusted to match the CPU requirements of the hardware constraints
specified in the Section 4 in order to provide a model allocation per hardware
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specification. The prediction speed is added to the csv file generated above, along
with the size of the saved model in megabytes. The hardware specs for the CPU
instance used is retrieved with a bash script and saved to a text file for analysis.

Comparison to hardware constraints The ratio between the clock speed
on the system that the model was tested on and the hardware constraints un-
der consideration is calculated and the prediction rate is scaled by that same
ratio. Thereafter, the calculated prediction rate is reduced by 75% to account
for the assumption that only 25% of the system’s resources should be allocated
to the traffic classification. The prediction rate is now compared to the required
throughput calculated in Section 4.3 to see if the hardware under consideration
can support the model.

5 Results and Discussion

Related literature [2] suggests that 1D-CNN should outperform the MLP on
accuracy, and in general, deep learning models perform better than traditional
ML on modern network traffic [21]. This suggests that the MLP and 1D-CNN
should outperform the SVM on accuracy. However, our analysis focuses on the
prediction rate and accuracy attainable for the different models, as well as the
trade-off between the two, given different resource and performance constraints.
Additionally, we provide insights into the effect of reducing the payload length.
For all of the graphs plotted below, prediction rate is calculated by predicting
on the 20 000 packets in the test set and then calculating the number of packets
predicted per second.

5.1 SVM Accuracy and Prediction Rate

Table 3: SVM Results
No. bytes (n) Accuracy (%) Prediction Rate (packets/s)

1460 64.59% 142116
1095 47.95% 193205
730 48.09% 260783
365 48.24% 322039

Table 3 shows that the SVM is capable of predicting at an accuracy of just
under 65% when the full payload is used as the input. The prediction rate im-
proves as the number of bytes included decreases, showing the improvement in
performance of considering less features. However, this comes at the cost of a
decrease in accuracy of just over 15% as soon as the full payload of 1460 bytes is
no longer considered. There seems to be no significant difference in the accuracy
of SVM models that use less than the full payload, suggesting that the model
does not extract any additional useful information from bytes 365 to 1095.
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5.2 Model Accuracy Comparison

Fig. 2: Accuracy Distribution by Model and Input Length

Figure 2 shows the difference between the distribution of accuracy on the
test set for each of the deep learning models using each of the input lengths
considered. It is clear that models with the full payload are capable of achieving
a higher accuracy than models that use less bytes as input, but there does not
seem to be a significant difference between the accuracy attainable for input
lengths of any other size. The higher accuracy achieved by the 1460-byte models
could be attributed to either some very useful features in the later bytes in the
payload or that the payload length is a useful feature that the models can only
learn when they have the full payload.

Table 4: Maximum Model Accuracy Comparisons
1D-CNN MLP SVM

Accuracy (%) 88.64% 82.48% 64.59%
Input Length (n) 1460 1460 1460
Prediction Rate (packets/s) 1115 34880 193205

Table 4 shows a comparison between the maximum accuracy attained by
the models of each class as well as the input length used and the prediction
rate. There is a clear difference in accuracy across the classes, with the 1D-CNN
outperforming the MLP, which outperforms the SVM. However, the prediction
rate is about 30 times slower for the CNN as compared to the MLP, which is 6
times slower than the SVM. The hyperparameters used for these models can be
found in the Appendix B.
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Fig. 3: Prediction Rate Distribution by Model and Input Length

5.3 Model Prediction Rate Comparison

Figure 3 provides insight into the differences between the prediction rates of the
MLP and the 1D-CNN, as well as the differences between the prediction rates of
models trained with the different input lengths. It is clear from the diagram that
the CNN is considerably slower than the MLP across input lengths of all sizes.
Additionally, a trend of models performing faster with a smaller input length
can be seen for both the MLP and CNN.

5.4 Maximum Accuracy Attainable by Input Length

Fig. 4: Best Accuracy Attainable by Each Model for each Input Size

Figure 4 shows the maximum accuracy that each model class can attain for
each input length. The highest accuracy attained by every model class was done
with the full payload, indicating that the full payload should be used if accuracy
is the only concern. However, Section 5.4 showed that considering less features
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can result in a faster prediction rate, so it is possible that using a smaller payload
could be beneficial for some hardware-model combinations. There does not seem
to be a significant difference between the highest accuracy attainable for models
with between 365 and 1095 bytes as input, suggesting that bytes 365 to 1095 do
not add significant information.

5.5 Relationship Between Accuracy and Prediction Rate

Fig. 5: MLP Accuracy vs Prediction Rate for Models with Accuracy above 65%

Figure 5 shows the relationship between the test accuracy attainable and the
prediction rate for the MLP models. There appears to be an inverse relationship,
with the models attaining a higher accuracy at the cost of a slower prediction
rate. The number of bytes considered by each model is also shown by adjusting
the hue of the dots. A trend of the dots getting darker as the accuracy improves
and then prediction rate declines can also be observed, indicating that the smaller
input sizes demonstrate faster classification at the expense of accuracy for the
MLP models.

Figure 6 shows the relationship between the test accuracy attainable and
the prediction rate for the 1D-CNN models. A similar inverse relationship exists
between test accuracy and prediction rate, but it is worth noting that the models
are considerably slower than those presented in Figure 5. As with Figure 5, a
trend of the dots getting darker as the accuracy improves can be seen indicating
that the smaller input sizes demonstrate faster classification at the expense of
accuracy for the 1D-CNN models.

5.6 Model Allocations by Hardware Constraints

The following model allocations are made for the resource constraints outlined
Section 4. Note that the CPU speed in the table is taken after taking the clock
speed and reducing it to the 25% available for classification. Furthermore, the
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Fig. 6: 1D-CNN Accuracy vs Prediction Rate for Models with Accuracy above
65%

prediction rate is adjusted to be representative of what might be expected on
each of the CPUs under consideration, and this adjusted rate is used to allocate
the model with the highest accuracy that can meet the required throughput rate
of 1289 packets/s for each of the CPUs. The model name is a unique identifier
which follows the format [Model class] [Number of bytes used as input] [id] where
id is a number between 0 and 299.

Table 5: Model Allocations by CPU speed
CPU Available (GHz) Model Name Accuracy Rate (pk/s)

0.075 SVM 1480 64.59% 2317
0.15 MLP 365 136 72.16% 1343
0.3 MLP 1460 127 82.48% 2274
0.6 MLP 1460 127 82.48% 4549
1.2 MLP 1460 127 82.48% 9099
2.4 CNN 1460 197 84.29% 1438

Table 5 shows models that were selected for each hardware system. The model
with the highest classification accuracy is selected, subject to it meeting the
required prediction speed on the given hardware system. Firstly, it is only for the
weakest processor that has its highest accuracy (within required speed) obtained
through an SVM, with an accuracy of 64.59%. For the most powerful processor,
the best performance is obtained a CNN with an accuracy of 84.29%. The other
hardware configurations achieve the best performance through MLP model, with
an accuracy of 82.48%. The second weakest processor uses an MLP with 365
bytes as input and produces an accuracy of 72.16%. The highest accuracy CNN
reported in Section 5.4 is too slow even for the fastest CPU considered. The
hyperparameters for these models can be found in the Appendix B.
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6 Conclusions and Future Work

Some key conclusions can be drawn from the results of the experiment. Firstly,
similar to related literature, the 1D-CNN has performed better than the MLP on
accuracy. However, our analysis finds 1D-CNN to significantly slower for online
classification than the MLP, with the highest accuracy 1D-CNN predicting 30
times slower than the highest accuracy MLP. The highest accuracy 1D-CNN
achieved an accuracy of 88.64% and the highest accuracy MLP achieved an
accuracy of 82.48%. The best SVM model uses the full payload as features and
achieves an accuracy of 64.59%, significantly worse than the CNN and MLP, but
performs six times faster than the best MLP and 180 times faster than the best
1D-CNN. The highest accuracy 1D-CNN is too slow for even the fastest of the
resource constraints considered.

Secondly, it has been shown that there is a general inverse relationship be-
tween the prediction rate and the attainable accuracy, for both within and be-
tween model classes. This means that low-resource environments may have to
select a faster model with a lower accuracy to meet the throughput require-
ments of an online traffic classifier. Our analysis on the use of packet payload
lengths of less than the full 1460 bytes revealed that this does come at a signifi-
cant accuracy cost, but with a faster prediction rate. Despite performing worse
than full-payload models, the models with 365, 730, and 1095 bytes as features
performed similarly to each other, suggesting that there is no consequential infor-
mation captured from bytes 365 to 1095. Despite the lower accuracy, considering
smaller input lengths can be worthwhile for lower resource environments, as is
shown by MLP 365 136 in Table 5 which only uses the first 365 bytes as input
and was selected for the second slowest resource environment.

For a community network, the recommended model would depend on the
required throughput, available processor resources, and available RAM. Only the
first two have been considered here, but it is reasonable to infer that models with
a faster prediction rate will generally require less RAM as less calculations are
performed and thus less values need to be stored. For low-resourced community
networks, it appears that the MLP is a good option as it perform sufficiently
fast to meet the processor constraints, while achieving a reasonable accuracy.
The CNN should be used in community networks that have high-end CPUs or
access to a GPU. The SVM should only be used in community networks that
have exceptionally slow processors.

While this study has provided insight into the potential of using deep learn-
ing models for online traffic classification in low resource networks, there are a
number of ways in which the work could be extended. For example, it is useful
to investigate the effects of using different number of classes for classification
on accuracy and performance. This study has only considered the effectiveness
of 1D-CNN, MLP and SVM on for the online traffic classification task. Other
deep learning models used in related literature with good performance include
the LSTM, 2D-CNN and Stacked Autoencoder. The performance of other tra-
ditional machine learning models could be investigated and compared.
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A Hardware Constraints

– 300 MHz single core ARM processor as found on very low-range home
routers.

– 600 MHz single core ARM processor as found on low-range home routers.
– 1.2 GHz single core ARM processor as found on middle-range home routers.
– Intel Pentium 4 Processor. 1 core @ 2.80 GHz. 2GB RAM. As found in entry

level servers.
– Intel Core i3-5010U process. 2 cores @ 2.10 GHz/core. As found in some

community network servers.
– Intel Core i5-8259U processor. 4 cores @ 2.3Ghz per core. As found in some

community network servers.

B Architectures and Hyperparameters Considered

For each model constructed an item is selected from the parameters provided in
the lists below.

B.1 MLP

– Number of layers: [1,2,3]
– Number of nodes per layer: [8, 16, 32, 64, 128, 256, 512, 1024], but does not

select a number of nodes for each layer that is greater than the input length
– Activation function: [relu, selu, sigmoid, swish]
– Dropout from input layer: [0, 0, 0.05, 0.1, 0.15, 0.2]
– Dropout between hidden layers: [0, 0, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5]
– Dropout to the output layer: [0, 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4,

0.45, 0.5]
– Learning rate: [0.002, 0.0015, 0.001, 0.001, 0.0009, 0.0008]

B.2 1D-CNN

– Number of convolutional layers: [1,2]
– Number of filters: [20, 50, 75, 100, 125, 200]
– Kernel size: [2, 3, 4, 5, 6]
– Stride length: [1,2,3]
– Padding: [valid, same]
– Max pooling size: [2, 4, 6, 8]
– Activation function: [relu, selu, sigmoid, swish]
– Learning rate: [0.002, 0.0015, 0.001, 0.001, 0.0009, 0.0008]
– Number of hidden layers: [1,2]
– Number of hidden nodes: [30, 50, 80, 100, 120, 200, 300]
– Dropout to hidden nodes: [0, 0, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5]
– Dropout to output layer: [0, 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45,

0.5]
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B.3 Other

– Batch size: [64, 128, 256, 512, 1024]

C Notable Model Parameters

C.1 MLPs

MLP 1460 127 (highest accuracy MLP)

– Number of layers: 3
– Number of nodes per layer: [32, 32, 256]
– Activation function: relu
– Dropout from input layer: 0
– Dropout between hidden layers: 0
– Dropout to the output layer: 0.35
– Learning rate: 0.002
– Batch size: 128
– Number of bytes as input: 1460

MLP 365 136

– Number of layers: 3
– Number of nodes per layer: [16, 64, 32]
– Activation function: selu
– Dropout from input layer: 0.05
– Dropout between hidden layers: 0
– Dropout to the output layer: 0.1
– Learning rate: 0.0015
– Batch size: 64
– Number of bytes as input: 365

C.2 1D-CNNs

CNN 1460 177 (highest accuracy CNN)

– Number of convolutional layers: 2
– Number of filters: [100, 20]
– Kernel size: [5, 6]
– Stride length: 2
– Padding: same
– Max pooling size: 6
– Activation function: relu
– Learning rate: 0.001
– Number of hidden layers: 1
– Number of hidden nodes: 50
– Dropout to hidden nodes: 0.3
– Dropout to output layer: 0.5
– Batch size: 64
– Number of bytes as input: 1460
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CNN 1460 197

– Number of convolutional layers: 2
– Number of filters: [20, 20]
– Kernel size: [5, 4]
– Stride length: 1
– Padding: same
– Max pooling size: 2
– Activation function: relu
– Learning rate: 0.002
– Number of hidden layers: 1
– Number of hidden nodes: 100
– Dropout to hidden nodes: 0.45
– Dropout to output layer: 0.1
– Batch size: 256
– Number of bytes as input: 1460


