
Investigating Measurement Scheduling Strategies in Low
Resource Networks (Poster)

Taveesh Sharma
University of Cape Town
Cape Town, South Africa
shrtav001@myuct.ac.za

Josiah Chavula
University of Cape Town
Cape Town, South Africa
jchavula@cs.uct.ac.za

ABSTRACT
Community networks have been proposed by many networking
experts and researchers as a way to bridge connectivity gaps in
rural and remote areas of the world. Many community networks are
built with low-capacity computing devices and low-capacity links.
Such community networks are examples of low resource networks.
The design and implementation of computer networks using limited
hardware and software resources has been studied extensively in
the past, but scheduling strategies for conducting measurements
on these networks remains an important area to be explored. In
this study, the design of a Quality of Service monitoring system
is proposed, focusing on performance of scheduling of network
measurement jobs in a low-resource network. In this paper, we
present a testbed for conducting performance evaluation of two
measurement scheduling algorithms and present an analysis of
trends in their performance with varying experiment profiles.

CCS CONCEPTS
• Networks→ Network measurement.

KEYWORDS
Internet Measurements, QoS, Scheduling Algorithms, Websockets

ACM Reference Format:
Taveesh Sharma and Josiah Chavula. 2021. Investigating Measurement
Scheduling Strategies in Low Resource Networks (Poster). In ACM SIGCAS
Conference on Computing and Sustainable Societies (COMPASS) (COMPASS
’21), June 28-July 2, 2021, Virtual Event, Australia. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3460112.3472310

1 INTRODUCTION
Community networks are open, free and neutral network infrastruc-
ture built and maintained by citizens and organisations who pool
their resources and coordinate their efforts [5]. These networks
are often run by non-profit organizations. Further, community ser-
vices like local networking, voice connections and internet access
can be developed in cooperation with local stakeholders [6]. ITU
statistics [2] for South Africa report that there were around 165.6
mobile-cellular subscriptions per 100 inhabitants as of 2019. Of

This work is licensed under a Creative Commons Attribution International
4.0 License.

COMPASS ’21, June 28-July 2, 2021, Virtual Event, Australia
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8453-7/21/06.
https://doi.org/10.1145/3460112.3472310

these 165.6 subscriptions, around 102.2 correspond to mobile broad-
band subscriptions. Also, about 92.6% of total active internet users
worldwide, and 94.7% of internet users in South Africa accessed
internet through their mobile phones as of January 2021 [3]. The
usage of smartphones as a computing and networking device thus
presents an opportunity for constructing mobile crowdsourcing
applications [9]. Such applications can be used as a platform to
conduct research to improve community networks.

System architectures based on crowdsourcing are generally more
complex as compared to systems where design, implementation
and execution are centralized [9]. Other challenges arise due to
adopting smartphones as an execution unit. It is difficult to precisely
capture internet performance data through smartphones because
the conditions, like location and bandwidth, are always changing
over time, and as the subject moves with the device.

Although the load of executing measurements is shifted to smart-
phones in a crowdsourcing-based architecture, a centralized server
should be able to allocate the measurements intelligently, given
the availability of resources like network bandwidth and execution
capacity of smartphones. If a large number of measurements are
carried out using a limited number of vantage points, the obtained
results could suffer from the observer effect [9], i.e a bias in the
measurements due to the measurement infrastructure itself. Mea-
surement processes that are executed in common points and links
could contend for shared network resources. This contention for
resources is also called measurement conflict problem [11]. Thus,
scheduling and synchronization of measurements among the smart-
phones is important to ensure proper resource utilization and accu-
racy of results.

The costs associated with building large-scale active internet
measurement platforms that provide open access to anonymized
data to researchers are generally very high [4]. Networks may be-
come overly congested and additional data costs on users’ side may
be incurred as a result of the injection of probing packets. A major
reason behind this phenomena lies in the skewed distribution of
measurement jobs towards a few vantage points. We posit that
these costs can be reduced by ensuring proper scheduling and dis-
tribution of these measurements. Our study thus introduces mobile
crowdsourcing in the context of a low cost monitoring system for
low-resource networks with a focus on measurement scheduling
strategies. In pursuit of finding the best possible design, we present
an empirical analysis of alternative techniques for measurement
scheduling and synchronization. We study the trends in perfor-
mance of these strategies with varying parameters and internet
measurements. Our study aims to answer the research question,
what design considerations are necessary for a low cost internet mea-
surement system for under-resourced networks?

453

https://doi.org/10.1145/3460112.3472310
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3460112.3472310


COMPASS ’21, June 28-July 2, 2021, Virtual Event, Australia Taveesh Sharma and Josiah Chavula

2 RELATEDWORK
Scheduling of active internet measurements in classical networks
has been studied by few researchers. Some of these works [8, 10]
have not given much attention to conflicts between individual
measurements. Calyam et. al [7] propose a novel enhanced-EDF
heuristic that allows concurrent execution of measurements to
address the measurement conflict problem. Scheduling algorithms
for both periodic and on-demand jobs have been proposed in this
work, and have been shown to perform better than Round Robin
and EDF through computer simulations as well as in an internet
testbed. Qin et. al [11] compare the EDF scheme with their novel
graph-coloring based approach, and through computer simulations
their approach proves to achieve effective contention resolution
and low execution delays.

Most of the QoS monitoring research on community networks
has been done on the basis of Guifi.net (the largest community
network) or other interconnected European community networks.
Limited research has been performed on monitoring network char-
acteristics in the context of community networks for developing
regions, and measurement scheduling aspect of frameworks that
characterize these networks has mostly been overlooked. In classi-
cal networks, the design and evaluation of measurement scheduling
algorithms is based on computer simulations or synthetic testbeds.
Also, these algorithms rely on the assumption that the execution
time of measurements is a constant, contrary to a real-world sce-
nario where it could vary because of several factors like signal
strength, geolocation and time of the day. In our work, we make
an attempt to apply the principles used in literature to develop
a QoS measurement platform that can be used and tested in any
real-world low resource network.

3 METHODOLOGY
We consider Round Robin (RR) and Earliest Deadline First - Concur-
rent Execution (EDF-CE) algorithms for evaluation as each of these
algorithms can be used in a concurrent context. Also, each of these
algorithms accepts the actual conflict relationship between the jobs
as input and generates a schedule that tries to avoid these conflicts.
For implementation and evaluation of scheduling algorithms, we
conduct a preliminary set of tests to obtain an estimate of maximum
execution time for each job type. As part of these experiments, we
conduct on-demand tests on mobile phones and Raspberry Pis at
different times of the day for each job type. We record execution
times of these tests in our database and use the maximum value of
execution time observed across 15 days in our experiments. The
maximum value of execution time is chosen so as to have a safe
time window for the next job to execute when the previous job
hasn’t finished it’s execution.

In our experiments, we evaluate implementations of scheduling
algorithms (Round Robin and EDF) through the following metrics:

(1) Platform delay (dplat f ormi j ) : Refers to the delay between
the actual and expected result display on the platform. This
metric captures the effect of multiple factors like poor sig-
nal strength at data collection points, scheduling algorithm
overhead and network latency. If the job is of type t , then

the platform delay is given by:

d
plat f orm
i j = tp (Ji j ) − [ts (Ji ) + jpi ] (1)

where tp (Ji j ) is the time at which the result is received at the
platform from data collection points for the jth instance of
ith job, and ts (Ji ) denotes the start time of the job. Average
platform delay for a job can be obtained by averaging the
platform delay across all it’s instances.

(2) Average waiting time (AWT) : Refers to the average duration
for which the job stays in the waiting queue before being
dispatched to one of the data collection points.

(3) Node Busy Time Ratio (NBTR): Refers to the percentage of
time for which a measurement node executes jobs during
an experiment. This metric is also critical in determining
overall load distribution.

NBTR =
Total time spent by the node in job execution

Total time of the experiment
(2)

Scheduler

Measurement
Server

Job
queue

Android 
phone 
users

User
Interface

Experimenter

Databases

User
DB

Measurements
DB

Metadata
DB

Figure 1: A diagram showing the architecture of QoSMon,
the proposed measurement system. A key component in
our architecture is a centralizedmeasurement server, which
is responsible for orchestrating measurements. Measure-
ments are conducted in data collection points distributed
within the community network. Scheduling of measure-
ments is not decentralized to end-user devices because a
network-aware central server can be useful in determina-
tion of conflicts prior to jobs getting scheduled. This will
further help in reducing the congestion in the network and
thus lead to results with higher accuracy. Our implemen-
tation supports Android phones running a custom version
of MobiPerf [1]. Communication between the phones and
the measurement server is facilitated through Websockets,
whereby the server sends measurement jobs to the phones
as and when they are scheduled. In addition to the server, a
user interface is developed for community network admin-
istrators and researchers to schedule experiments, visualize
the collected data and perform QoS analysis. Community
networkmembers will be able to visualize application usage
through their smartphones.

454



Investigating Measurement Scheduling Strategies in Low Resource Networks (Poster) COMPASS ’21, June 28-July 2, 2021, Virtual Event, Australia

Internet

Experimenter

CN
Firewall

Wireless
Access
Point

Fixed data
collection

node
(Raspberry

Pi)
Mobile data
collection

node
(Smartphone)

Measurement
Server

CN 
Gateway
Router

WiFi
range 1

WiFi
range 2

WiFi
range 3

Ocean View High SchoolMasiphumelele Taxi Rank

Masiphumelele Library

Local
measurement

Server

Speed
test

Server

University
Firewall

University

Community
Network

University
Gateway
Router

Router

Network
Manager

Figure 2: A number of Android phones will be used to run
each type of MobiPerf-supported experiment. The phones
should have the requisite hardware for running at least An-
droid Marshmallow (API level 23). Multiple Raspberry Pis
(4B, 4 GB RAM) will also be used to run the same set of ex-
periments that MobiPerf supports. The Android phones and
Raspberry Pis will be connected to the community network
through multiple wireless access points. Two measurement
servers will be used to schedule the experiments and store
the collected data. One of these servers will be used by re-
searchers in the university and the other will be used by
community network administrators. The server located in
the university will be responsible for running scheduling al-
gorithms while the server located in community network
will only be responsible for accepting jobs from network
administrators and sending them to the university server.
Speed tests will be run against a separate server located in
our university’s campus in Cape Town.

4 PRELIMINARY RESULTS
Our current implementation of the measurement server supports
the concurrent versions of Round Robin and EDF algorithms. In
our preliminary experiments on a test network, job types were
selected uniformly from the set {ping, dns_lookup, traceroute, http,
tcp_speed_test }. The target servers for ping, dns_lookup, traceroute
and httpwere chosen uniformly from 8 popular websites. TCP speed
tests were run against a local speed test server running on the same
test network. The periods of the jobs were chosen uniformly from
the range [5, 10 ] minutes and the experiments were allowed to run
for 2 hours for each scheduling algorithm on 4 Android phones (API
level 27). Our measurement server was running on 64-bit Ubuntu
20.04 on Intel Core i5-10210U CPU @ 1.60GHz × 8 processor with
16 GB RAM.

Figure 3: Number of job instances that ran for RR and EDF
along with total number of expected instances for RR and
EDF algorithms. It can be inferred from this figure that the
missed job ratios were an absolute zero for most of the jobs.
The reason for jobs being missed in RR and EDF in some
cases can be due to the parallel execution of high-duration
jobs like traceroutes and TCP throughput tests, causing the
replacement of currently pending jobs with their new in-
stances.

Figure 4: We achieved low average platform delays in min-
utes for almost all of the jobs. In a future work, these delays
can be further reduced by calibrating the system with more
accurate estimates of expected values of execution times of
different job types. In our current implementation, the ex-
pected values for job execution times were chosen as the
maximum value observed across our preliminary tests. We
used the maximum value so as to have a safe time window
for the next job to execute when the previous job has not
finished it’s execution.

455



COMPASS ’21, June 28-July 2, 2021, Virtual Event, Australia Taveesh Sharma and Josiah Chavula

Figure 5: To investigate the delays further, we checked the
average waiting time (in minutes) for each of the jobs. It can
be inferred that in some cases (Job 15, for example), jobs be-
ing stuck in the waiting queue for long was one of the rea-
sons of higher platform delays. Also, most of the scheduled
jobs had more waiting time in EDF as compared to RR. This
can be attributed to the fact that these jobs had higher pe-
riods and an almost similar inter-arrival time compared to
other jobs.

Figure 6: To check the distribution of jobs among the four
nodes, we calculated the node busy time ratio. Figure 6
shows that EDF scheme distributes jobsmore evenly as com-
pared to Round Robin. A more even distribution of jobs
in case of EDF could have led to lesser number of jobs per
phone during the 2 hour window, resulting in a lower busy
time ratio. This also means that EDF algorithm is more en-
ergy efficient than Round Robin from an end user perspec-
tive as lower values of node busy time ratios directly trans-
late into less drainage of smartphone batteries.

5 FUTUREWORK
Our current work is the first step towards an optimal low resource
network monitoring solution. In future work, more advanced sched-
uling algorithms like the ones proposed in the work by Qin et al.
[11] will be implemented and considered for evaluation. A future
implementation can also be made to support fixed nodes, like Rasp-
berry Pis. For performance evaluation, dependant variables like
number of jobs, number of measurement nodes, time of the day
and mobility of the devices etc. will be considered. Another inter-
esting addition to this paper would be the support for on-demand
measurements and the adjustment of job schedules in accordance
with a custom priority order.

REFERENCES
[1] 2019. MobiPerf. Retrieved June 10, 2021 from http://mobilab.eecs.umich.edu/

mobiperf.html
[2] 2020. Statistics. Retrieved May 27, 2021 from https://www.itu.int/en/ITU-

D/Statistics/Documents/statistics/2020/MobileCellularSubscriptions_2000-
2019.xlsx

[3] 2021. Internet users in the world 2021 | Statista. Retrieved May 27, 2021 from
https://www.statista.com/statistics/617136/digital-population-worldwide/

[4] Giuseppe Aceto, Alessio Botta, Walter De Donato, Pietro Marchetta, Antonio
Pescapé, and Giorgio Ventre. 2012. Open source platforms for Internet Monitor-
ing and Measurement. In 2012 Eighth International Conference on Signal Image
Technology and Internet Based Systems. IEEE, 563–570.

[5] Roger Baig, Ramon Roca, Leandro Navarro, and Felix Freitag. 2015. guifi. net:
A network infrastructure commons. In Proceedings of the Seventh International
Conference on Information and Communication Technologies and Development.
1–4.

[6] Bart Braem, Chris Blondia, Christoph Barz, Henning Rogge, Felix Freitag, Leandro
Navarro, Joseph Bonicioli, Stavros Papathanasiou, Pau Escrich, Roger Baig Viñas,
et al. 2013. A case for research with and on community networks.

[7] Prasad Calyam, Chang-Gun Lee, Phani Kumar Arava, and Dima Krymskiy. 2005.
Enhanced EDF scheduling algorithms for orchestrating network-wide active
measurements. In 26th IEEE International Real-Time Systems Symposium (RTSS’05).
IEEE, 10–pp.

[8] R Les Cottrell, Connie Logg, and I-Heng Mei. 2003. Experiences and results from
a new high performance network and application monitoring toolkit. In Passive
and Active Measurement Workshop.

[9] Adriano Faggiani, Enrico Gregori, Luciano Lenzini, Valerio Luconi, and Alessio
Vecchio. 2014. Smartphone-based crowdsourcing for network monitoring: op-
portunities, challenges, and a case study. IEEE Communications Magazine 52, 1
(2014), 106–113.

[10] Matthew Luckie and A McGregor. 2002. IPMP: IP measurement protocol. In
Passive and Active Measurement Workshop.

[11] Zhen Qin, Roberto Rojas-Cessa, and Nirwan Ansari. 2010. Task-execution sched-
uling schemes for network measurement and monitoring. Computer communica-
tions 33, 2 (2010), 124–135.

456

http://mobilab.eecs.umich.edu/mobiperf.html
http://mobilab.eecs.umich.edu/mobiperf.html
https://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2020/MobileCellularSubscriptions_2000-2019.xlsx
https://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2020/MobileCellularSubscriptions_2000-2019.xlsx
https://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2020/MobileCellularSubscriptions_2000-2019.xlsx
https://www.statista.com/statistics/617136/digital-population-worldwide/

	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	4 Preliminary Results
	5 Future Work
	References

