
Deep Learning Traffic Classification in

Resource-Constrained Community Networks

Matthew Dicks∗ and Josiah Chavula†

Department of Computer Science, University of Cape Town

South Africa

Email: ∗dckmat0041@myuct.ac.za, †jchavula@cs.uct.ac.za

Abstract—Community networks are infrastructures that are
run by the citizens for the citizens. These networks are often run
with limited resources compared to traditional Internet Service
Providers. For such networks, careful traffic classification can
play an important role in improving quality of service. Deep
learning techniques have been shown to be effective for this classi-
fication task, especially since classical approaches struggle to deal
with encrypted traffic. However, deep learning models often tend
to be computationally expensive, which limits their suitability
for low-resource community networks. This paper explores the
computational efficiency and accuracy of Long Short-Term Mem-
ory (LSTM) and Multi-Layer Perceptron (MLP) deep learning
models for packet-based classification of traffic in a community
network. We find that LSTM models attain higher out-of-sample
accuracy than traditional support vector machines classifiers and
the simpler multi-layer perceptron neural networks, given the
same computational resource constraints. The improvement in
accuracy offered by the LSTM has a tradeoff of slower prediction
speed, which weakens their relative suitability for use in real-time
applications. However, we observe that by reducing the size of the
input supplied to the LSTMs, we can improve their prediction
speed whilst maintaining higher accuracy than other simpler
models.

Index Terms—Network traffic classification, deep learning,
community networks

I. INTRODUCTION

Community networks are infrastructures that are run by the

citizens for the citizens, where communities build, operate

and own open IP-based networks [1]. These networks provide

a wide range of application services such as VoIP, content

distribution, on-demand and live streaming media, instant mes-

saging as well as back-ups and software updates. Community

networks often provide services using diverse and volatile

resources [1]. For community networks, traffic classification

can be a vital tool for achieving advanced network manage-

ment, especially in the context of Quality of Service (QoS)

control, pricing, resource usage planning as well as malware

and intrusion detection. QoS engineering works by prioritizing

traffic of some applications over others depending on the

network’s requirements [2]. For a QoS system to prioritize

certain traffic, it needs to be able to classify traffic into

appropriate classes. In addition, traffic classification provides

a way for networks managers to determine how applications

utilize different resources in the network, and this allows them

to take more informed actions that can improve QoS in a

community network.

Previous traffic classification methods have used port num-

bers, deep packet inspection (DPI) or features hand crafted

by an expert. There are a number of issues with each of

these approaches. Using port numbers for traffic classification

is the simplest and fastest way to classify internet traffic.

However, due to port obfuscation, random port assignments,

port forwarding, protocol embedding and network address

translation (NAT), the accuracy of port-based methods has

decreased [3]. The accuracy of DPI methods has decreased

due to the increase in the amount of encrypted traffic and

user privacy agreements. DPI also has a large computational

overhead [4], which is not suited to real time classification.

Features that have been handcrafted by an expert can suffer

a lack of generality because they focus on only a few key

features. Aceto et. al. [5] notes that these hand-crafted features

rapidly become outdated due to the evolution and mix of

internet traffic. Manual feature extraction is also an expensive

method because experts have to be hired and the hand picking

procedure is subject to human error.

The key objective of this paper is to evaluate performance of

deep learning for real-time traffic classification in a resource

constrained community network. In particular, we compare the

deep learning architectures Long Short-Term Memory (LSTM)

and Multi-Layer Perceptron (MLP), to a traditional machine

learning model, the Support Vector Machine (SVM), given

the same resource constraints. We also compare the complex

LSTM to the simpler MLP, assuming the same computational

constraints. To achieve these objectives, we build a data

pipeline that takes a set of pcap files to create a dataset that

can be used to train and test deep learning models. We build

and evaluate three model types – SVM, MLP and LSTM. This

paper therefore makes the following contributions:

1) empirical evaluation of accuracy for LSTM and MLP

deep learning models in the context of memory con-

straints.

2) empirical evaluation of LSTM, MLP and SVM models

for real-time classification given memory.

3) empirical evaluation of the impact of reducing the pro-

portion of packets’ payload used as input on the predic-

tion speed and accuracy of LSTM and MLP classifiers.

20
21

 IE
EE

 A
FR

IC
O

N
 |

97
8-

1-
66

54
-1

98
4-

0/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
A

FR
IC

O
N

51
33

3.
20

21
.9

57
08

75

Authorized licensed use limited to: University of Cape Town. Downloaded on December 12,2021 at 11:27:07 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

A. Flow Classification

More often than not, the objects of classification are

flows [5]. In the literature, there are four prominent approaches

for collecting data from a flow [6], [5], [7], [8], [9]. The

first approach is to take raw data, in the form of bytes, from

some of the packets in the flow [6]. Another approach is to

extract raw data from a flow. This mean that you only consider

the first N bytes from the flow and you do not care about

individual packets [8]. The third approach uses time series

data like packet sizes, packets directions and inter-arrival times

from individual packets [4]. Flow statistics is the fourth way

that data can be extracted from a flow. Examples of flow

statistics are means, standard deviations as well as minimums

and maximums for packet sizes and inter-arrival times. This

approach needs to use more packets from a flow so that

estimates do not have too much variance. Liu et al. [4] notes

that this may not be suitable for fast real time classification.

Aceto et al. [5] found that using raw data was better than

using hand picked time series features and flow statistics [5].

These findings have shown that increasing the raw informa-

tion available to the deep learning models results in greater

prediction accuracy.

Due to the structure of the data extracted from flows, new

model architectures become useful, such as the LSTM and

one dimensional Convolutional Neural Network (1D-CNN).

These deep learning architectures can find long and short term

temporal relationships in the data. The 2D-CNN also gets used

to find spatial patterns.

So far, studies have used 2D-CNN models to find spatial

patterns and have used LSTM models to find the temporal

patterns. There have been approaches that try to combine the

two models to learn both spatial and temporal patterns [9],

[8]. Lopez-Martin et al. [9] used the first 20 packets and 6

features from each packet to make a 20x6 matrix, with the

rows as the time dimension and the columns as the feature

dimension. They passed that matrix into a 2D-CNN-LSTM

network. The output of the CNN part is a 3D matrix, with the

extra dimension coming from the number of filters. Since the

LSTM accepts a 2D matrix, this matrix was squashed, along

the feature axis to preserve the time and the filter dimensions

which was past into the LSTM. The 2D-CNN-LSTM model

obtained an F1 score of 96%, which was an improvement

over the standard 2D-CNN and LSTM models, which achieve

F1 scores of 94.5% and 95.5% respectively. The plain LSTM

model seemed to capture the same information as the 2D-

CNN-LSTM [9]. This may be due to the CNN compromising

the time dimension of the input matrix by passing over it with

2D kernels. Therefore, the LSTM part of the model did not

have a meaningful sequence to learn.

Another approach that did preserve the time aspect of the

data was taken by Huang et al. [8]. They took 100 bytes from

each of the first 6 packets. They converted the data from each

packet into an image until they ended up with 6 images. They

used 6 CNN models, one for each packet to extract the spacial

features out of the images. Each CNN model had a dense last

layer, which created a feature vector for each packet, thus

preserving the time dimension. These feature vectors were

then run into the LSTM part of the model to classify the

flow. The CNN-LSTM model had an accuracy of 99.89% and

outperformed the vanilla CNN network [8]. By splitting up

the data into 6 images and processing them separately, they

allowed the output of the CNNs to be stacked in a manner

that would preserve the order of the packets and, therefore,

the time. This is a much more suitable input for the LSTM

part of the model when you compare it with the previous study.

B. Packet Classification

A more fined grained approach would be to classify individ-

ual packets. A number of studies show that individual packet

classification is possible and can yield very good results [10],

[11]. When doing individual packet classification, times series

features are not useful since the focus is on individual packets.

This means that individual packet classification is difficult, but

deep learning offers a solution. Since, deep learning has the

ability to learn high dimensional data [4], it can therefore learn

from the raw data of a packet.

Lotfollahi et al. [3] used the first 1480 bytes of the IP

payload as well as the IP header as input. They masked the

IP addresses because they only used a limited number of

hosts and servers [3]. This did not allow the model to use the

information provided by the IP addresses which would have

caused unreliable results. In a similar study, Chen et al. [11]

used the same data as Lotfollahi et al. [3] but disregarded the

IP header.

This paper aims to determine whether deep learning can

be used to perform traffic classification given the resource

constraints and requirements of low-resource community net-

works. We focus on online classification, i.e., where packets

need to be classified in near real-time, whereby the first

few packets of a flow are used for classification. For online

classification, there is also no way to tell apriori how many

packets are in a flow and, therefore, there is no way of

determining how long to wait for all packets to arrive before

a flow can be classified. For this reason, we explore packet-

based classification instead of flow classification.

III. METHODOLOGY

A. Obtaining Network Traffic Data

We use a dataset from the iNethi Ocean View community

network in South Africa [12]. The data consists of numerous

PCAP files collected at the gateway of the community net-

work, capturing all traffic flowing between the network and

the Internet since February 2019. The PCAP files have been

copied to a data repository at our university, through which

we access the data.

B. Preprocessing

1) Flow extraction: Each PCAP file comprises numerous

traffic flows. Flow extraction is the process of splitting up a

PCAP file into smaller PCAP files that contain a single flow.

Authorized licensed use limited to: University of Cape Town. Downloaded on December 12,2021 at 11:27:07 UTC from IEEE Xplore. Restrictions apply.

We use a utility called pkt2flow1 to classify packets into flows.

Using the pkt2flow tool, we break each PCAP file into smaller

files where each file contains a single flow. Working with these

smaller files makes it easier to uniformly label the packets in

a file that contains only a single flow.

2) Labeling the packets: Classification is a supervised

learning task. This means that each example must have a label

associated with it, which will allow the neural networks and

the SVM to learn from their errors and adjust their parameters

accordingly. The labeling phase takes as input the PCAP files

containing single flows and then uses an open-source deep

packet inspection library called nDPI to label each flow. Each

packet associated with a given flow receives that flow’s label.

3) Feature extraction and transformation: The features

used as input into the models are the bytes extracted from the

IP payload of each packet. This method was chosen because it

enables the use of both encrypted and non-encrypted packets.

There is also evidence to suggest that using this data as input

into deep learning models in the context of traffic classification

can yield higher prediction accuracy [11], [10].

We extract the IP payload bytes from packets using a

Python open source library called scapy. The extracted bytes

are transformed into an appropriate format for each model.

The number of bytes in the IP payload is variable, with the

maximum number of bytes being 1480. To have a uniform

input, we pad zeros to all packets of length less than 1480.

The data was normalized to increase the learning algorithms’

stability and to decrease the training time. We mask the first

20 bytes of the 1480 byte vector to ensure that models only

learn the general patterns found in the IP payload, and not the

information relating to the port numbers used in the network.

The SVM and the MLP models requires feature vector in

the form of dimensional normalized byte stream appropriate.

Furthermore, the LSTM model needs the byte stream to be

broken up into multiple time steps. This means that the one

dimensional vector has to be transformed into a 2D vector,

with the first dimension giving the number of time steps and

the second dimension giving the number of observations in

a given time step. One way to break up the feature vector

would be to consider each of the bytes as an individual time

step, but this would create a sequence with length 1480. Due

to the vanishing and exploding gradients problem [13], it

is difficult for LSTM models to learn such long sequences.

To solve this problem the feature vector was split into 40

time steps, with each time step consisting of 37 bytes. This

reduced the length of the sequence and allowed the gradients

to flow back through the network, which increased the model’s

learning capacity. The reduced sequence length also reduced

the number of sequential steps taken by the model, which

reduced the model’s training and prediction times.

C. The Datasets

Once the preprocessing stage was complete, the final dataset

consisted of ten classes, each with ten thousand observations.

Table I, summarises the dataset.

1https://github.com/caesar0301/pkt2flow.

TABLE I
THE SET OF APPLICATIONS THAT WILL BE USED FOR CLASSIFICATION

AND THE NUMBER OF OBSERVATIONS IN EACH APPLICATION CLASS.

Class Number of Observations

WhatsApp 10 000

GoogleServices 10 000

Instagram 10 000

PlayStore 10 000

TeamViewer 10 000

BitTorrent 10 000

WindowsUpdate 10 000

GMail 10 000

Facebook 10 000

YouTube 10 000

Total Observations 100 000

This dataset is further subdivided into a training set, a

validation set and a test set. These subsets were created by

randomly sampling from the original dataset to ensure that

the distributions in the three datasets remain as similar as

possible. The percentage of observations are as follows: 64%

is reserved for training the models; 16% is used for validation

and hyperparameter tuning; and the last 20% is used as the

test set.

The validation dataset is used to evaluate the model and

give an estimate for the accuracy expected on the test set.

This estimate can also be used to test for overfitting, such that

if there is a vast decrease in the accuracy between the training

error and the validation error, then this would be an indicator

of overfitting. The validation dataset was also used in the

hyperparameter tuning process (described in Section III-D).

Once a model has been trained and the hyperparameters

have been chosen, the definitive measure of predictive perfor-

mance will be the accuracy computed on the test set. This will

give us an indication of each model’s ability to generalize to

new examples and the accuracy computed on the test set will

be used to compare each model’s predictive performance.

D. Hyperparameter Tuning

Hyperparameters are values that are set before the training

of the models. Some examples of hyperparameters in neural

networks include the network topology, the learning rate of the

optimization algorithm, as well as the training batch size and

the number of training epochs. Since these parameters have to

be defined prior to training, the best way to find the parameters

will be to systematically try out different combinations and

then pick the best set. The best set will be determined by the

accuracy obtained on the validation set. Due to the changes

in network topology as a result of varying the number of

parameters, the topology will not be a hyperparameter that

will be searched. The batch size was selected to optimize the

training time, and the number of epochs was determined by

the time it took to reach convergence. Early stopping (whereby

an arbitrary large number of training epochs is specified and

training stops once the model performance stops improving)

was used in the MLP to limit overfitting when the number of

epochs proved to be too much. This means that for the deep

learning models, the only other hyperparameter that needed

Authorized licensed use limited to: University of Cape Town. Downloaded on December 12,2021 at 11:27:07 UTC from IEEE Xplore. Restrictions apply.

to be searched for was the learning rate. For the MLP, three

learning rates were checked at every parameter level, namely,

0.001, 0.0005 and 0.0001. The LSTM needed higher learning

rates to achieve convergence and the three rates searched over

were 0.01, 0.005 and 0.001.

E. Performance Evaluation

For our use case of a low-resource network, our deep

learning models need to be compared subject to memory and

time constraints. This means that the predictive performance

of these models will need to be evaluated at each of these

constraints. Thus, for each of the deep learning model archi-

tectures, MLP and LSTM, the number of parameters in the

architecture will be varied and the test accuracy will be calcu-

lated. The number of parameters in the architecture will range

from 15,000 to 1,000,000, with the breakdown as (15,000;

30,000; 50,000; 100,000; 200,000; 300,000; 350,000; 400,000;

500,000; 600,000; 700,000; 800,000; 900,000; 950,000;

1,000,000). This will allow the models to be compared at the

highest and lowest memory requirements. For example, if a

network can only have a model with 100 000 parameters due to

memory constraints, then we want to know which architecture

will perform the best with 100 000 parameters. At each of

the different parameter levels, the average time it takes to

make a prediction and the number of packets classified per

second will be calculated. This will allow time constraints to

be placed on the models, which will allow us to see which

type has the best accuracy under these constraints. This will

also indicate whether the deep learning models can support

real time classification.

The SVM model has a constant number of parameters. Our

evaluation used 14800 parameters and 10 classes. Therefore,

10 csv lines needed to be fit, each line with 1480 parameters.

Therefore, we report the test accuracy and the average time it

takes to classify a packet only in the single best performing

SVM.

1) Metrics used for predictive performance: The models

are evaluated based on two characteristics, predictive per-

formance, and computational efficiency. The metric used for

predictive performance is accuracy, and the formula is as

follows:

Accuracy =
Number of correct predictions

Total number of predictions
× 100

2) Metrics used for computational efficiency: We measure

the computational efficiency of the algorithms in two ways

– the time it takes to make a prediction, and the amount

of memory needed to make a prediction. Since our use-case

for the algorithms is to produce real-time classifications, the

speed of the predictions is key. Therefore, we use the average

time it takes a model to make a prediction as a metric to

analyze computational efficiency. This will be computed by

generating sample packets and timing how long the model

takes to classify these individual samples. The average time

over all these samples will be used as the metric to compare

the prediction speed between models. The average time it takes

to make a prediction is inversely proportional to the number of

packets classified per second, this will also be used to compare

the models’ prediction speeds.

The amount of memory needed by a model to make a

prediction is directly proportional to the number of parameters

in the model. As the number of parameters increase, the

amount of memory needed to make a prediction will increase,

since more memory will be needed to store the model. The

number of parameters in a model will be used as the metric

to compare the memory usage.

F. Implementation of Models

We built the deep learning networks using Python with

Tensorflow’s implementation of the Keras API. Keras was

chosen because it supports the use of input pipelines built in

Tensorflow, which decreases the memory requirements when

training the models. We implement the SVM using Python’s

scikit-learn library, which includes the ability to make multi-

class classifications. This is important because of the need to

classify traffic into multiple application classes. We run LSTM

and the MLP models in Google’s Colab. This was needed

because a large number of models needed to be trained and

GPUs offered a great speed up over CPUs. Google Drive was

used to store the datasets and all the experimental results.

IV. EXPERIMENTAL RESULTS

As stated in Section III-E, the number of parameters for

each architecture was varied, and the test accuracy as well as

the average time to make a prediction was calculated at each

parameter level.

A. Accuracy and Speed of Deep Learning Models – LSTM vs

MLP

The key research objective was to compare the accuracy

of LSTM and MLP, given the different levels of resource

constraints and model complexity. Figures 1 and 2 present

results for this objective. In both plots, the points represent

the accuracy and the packets classified per second for each

parameter level that was described in Section III-E.

Fig. 1. LSTM vs MLP

Authorized licensed use limited to: University of Cape Town. Downloaded on December 12,2021 at 11:27:07 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. LSTM vs MLP (Speed comparison); Prediction speed measured as
packets per second

Figure 1 shows that the LSTM out performs the MLP in

predictive power across all parameter levels. The LSTM’s

accuracy ranges form 86.5% to 91% and the MLP’s accuracy

ranges from 66.8% to 70.5%. While there is some noise in the

accuracy levels (due to stochastic nature of the optimization

process for neural networks), the difference between these two

models indicates that the LSTM performs better for all levels

of memory constraints. This can be attributed to the LSTM

being more suited to learning sequential information, and the

byte stream of a packet is inherently sequential. There also is a

general relationship between the number of parameters and the

accuracy, with the accuracy increasing at a decreasing rate as

the number of parameters increase. Initially, as the number of

parameters increase, the model’s accuracy drastically jumps

up but, over time, the accuracy starts to plateau. Increasing

the number of parameters past a certain point does not lead

to a sufficient increase in accuracy because the models have

already extracted most of the variation in the data. Increasing

the parameters further will likely lead to overfitting and a

degrading of the performance on the test set.

Figure 2 shows the results from the speed tests done for

the MLP and the LSTM. The results are presented as the

number of packets that can be classified in a second. For

each parameter level, the LSTM’s times were averaged over

7000 samples and the MLP’s times were averaged over 10

000 samples, to reduce the noise as much as possible. Even

though there is noise in the data, it is evident that the MLP

can classify more packets per second than the LSTM. The

number of packets the MLP can classify per second ranges

from 25.5 to 26.6 and for the LSTM the range is 19.7 to

24.3. The can be attributed to the structure of LSTM, which

limits the amount of parallelization and reduces the speed of

its forward pass. Figure 2 also shows that as the number of

parameters increases, there is a decrease in the number of

packets classified per second. However, the MLP’s decrease is

linear, while the LSTM decreases at a much faster rate. This

is probably due to the increase in the number of calculations

done per sequential step in the LSTM. It is also noted that the

smallest number of packets classified per second was 19.7,

which is fast enough for real time classification. This means

that even the slowest model will be able to pass the speed

constraints. Therefore, the only constraint that needs to be

looked at more carefully is the memory constraint.

B. Deep Learning vs SVM – Accuracy and Speed

Our other research object was to determine the extent

to which the deep learning model outperforms a traditional

machine learning model, the SVM. Figure 3 compares the

SVM with the LSTM.

Fig. 3. LSTM vs SVM

The SVM used a constant number of features, and the

test accuracy presented in Figure 3 was for the single best

performing SVM model. The accuracy obtained on the test set

by the SVM was 63%, which is much less than what LSTM

achieves at any parameter level. This shows that under any

memory constraint, the LSTM will perform better than the

SVM. The prediction speed of the SVM shows that it can

classify approximately 3846 packets per second. A trade-off

needs to be made between accuracy and speed, but the faster

prediction speed provided by the SVM may not be needed

because the LSTM is already classifying packets at a speed

that is sufficient for real time traffic classification.

Figure 4 compares all three models. LSTM provides best

performance over all the parameter levels, and MLP also

outperforms the SVM on all parameter levels.

Fig. 4. LSTM vs MLP vs SVM

Authorized licensed use limited to: University of Cape Town. Downloaded on December 12,2021 at 11:27:07 UTC from IEEE Xplore. Restrictions apply.

V. DISCUSSION

The results obtained in this study show that deep learning

models achieved a higher classification accuracy than the

machine learning models, which was also shown in previous

work [5], [7]. Furthermore, the LSTM architecture achieved

the best or the three models, achieving accuracy above 90%.

This model architecture has shown good performance in previ-

ous traffic classification studies [5], [8], [9], where the LSTM

had an accuracy of greater than 90%. Sequence models were

shown to perform well on packet data, which corroborates

evidence found by Lotfollahi et. al. [10] and Chen et. al. [11].

Figures 5 and 6 summarize the results found for each

of the deep learning models. In both figures, the blue line

represents the accuracy obtained over the different parameter

levels and the orange line represents the average number of

packets classified per second. The dots on the plot represent

the accuracy and number of packets for a specific number of

parameters.

There are some similarities between the two deep learning

architectures. For both architectures, as the number of param-

eters increases, the accuracy increases at a decreasing rate.

This shows that after a certain point adding more parameters

to the model does not increase the accuracy sufficiently to

warrant the added complexity. These larger models are also

more susceptible to overfitting on real world data. It would

thus be advantageous to have smaller powerful models to run

in a low-resourced community network. Such models would

take up less storage space and will be able to classify more

packets per second. Another similarity is that as the models

get larger, the number of packets classified per second drops.

The reason for this is that they will need to perform more

calculations to make a prediction. It was found that the depth

of the models have a larger effect on prediction speed. The

deeper the models become, the more the operations that need

to be done in sequence, which slows down the prediction

speed.

Although the accuracy of the LSTM model has a general

trend, within this trend, there is some noise. This randomness

is caused by the stochastic nature of the optimization algo-

rithm that tries to find the parameter set that minimizes the

loss function. However, noises are below 1%. An interesting

observation can be made about the prediction speed for the

LSTM model (Figures 5): unlike the MLP, the decrease in the

packets classified per second is not linear. Up to about 400 000

parameters, the decline is quite steep but after 400 000, the

decline becomes much more gradual. The steep initial decline

is probably due to the increased depth found in the models,

and after 400 000 the depth remained relatively constant. Thus,

if the network needs more packets to be classified per second

but still requires a high accuracy, one of the ways to finding a

solution would be to increase the width of the model. This will

enable the model to have more parameters and a greater chance

of learning the sequential information without sacrificing too

much speed.

The MLP also exhibits some noise as the models get larger,

0 200 400 600 800 1000
Parameters (thousands)

86

87

88

89

90

91

A
c
c
u
ra

c
y
(%

)

Summary of the LSTM results

18

20

22

24

26

P
a
c
k
e
ts

 P
e
r

S
e
c
o
n
d

Fig. 5. Accuracy vs Speed

with random decreases in performance at 350 000, 600 000

ad 950 000. However, the general trend does still hold. Once

again the decreases in performance were only about 1%. It

is interesting to note that the MLP’s speed decreases at a

linear rate. This could mean that unlike the LSTM architecture,

the relationship between the depth and size of the model and

the number of parameters is linear. A possible reason for this

phenomena is that the sequential nature of the LSTM model

exaggerates the decrease.

0 200 400 600 800 1000
Parameters (thousands)

68

69

70

71

A
c
c
u
ra

c
y
(%

)

Summary of the MLP results

24

25

26

27

28

29

P
a
c
k
e
ts

 P
e
r

S
e
c
o
n
d

Fig. 6. Accuracy vs Speed

Figure 7 and Figure 8 show the relationship between the

batch size and the prediction per second. The data points in

the plots represent the average number of packets classified

per second, for a given batch size. In Figure 7, the models

used to perform the experiment were the ones with the highest

accuracy. The MLP has 400 000 parameters and the LSTM

has 700 000 parameters. In Figure 8, both models had 700

000 parameters. These plots indicate that increasing the batch

size allows for faster predictions. This is because the prediction

function gets run in parallel, which reduces the overhead found

when predicting only a single packet. Figure 8 also shows that

the LSTM is slower than the MLP, but this difference is not

very significant even when the LSTM is almost twice the size

of the MLP.

Authorized licensed use limited to: University of Cape Town. Downloaded on December 12,2021 at 11:27:07 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Number of packets classified per second by the best MLP and LSTM
models plotted as a function of batch size.

Fig. 8. Number of packets classified per second by the same size MLP and
LSTM models plotted as a function of batch size.

VII. FUTURE WORK

There are several avenues that present valuable opportu-

nities to extend the work presented in this paper. Firstly,

VI. CONCLUSIONS

This paper has presented a preprocessing pipeline and

three models that could be used for traffic classification. The

preprocessing pipeline that was made is able to take a set of

pcap files collected from a community network and create a

dataset that can be used to train and test machine and deep

learning models. Using the models trained on this dataset,

the paper shows the deep learning architectures, the MLP

and LSTM, should be able to perform real-time classifica-

tion, which is vital for improving QoS engineering in low-

resource networks. The LSTM architecture attained the highest

classification accuracy of 91%, and significantly outperformed

the MLP across all memory constraints. These results showed

that LSTM sufficiently outperformed the MLP when resource

constraints were applied. The MLP and the LSTM were also

able to obtain a sufficiently higher classification accuracy than

the SVM, even under the most strict memory constraints. The

high accuracy obtained by the LSTM gives evidence that the

data found in packets is sequential, and architectures that are

built to process this information will do better in the packet

classification task.

it could be useful to test the trained models on a different

community networks’ labelled data, to investigate the models’

ability to generalize to unseen data of potentially different

distribution. Additionally, it could be beneficial to include

further classes and to identify whether adequate performance

can be maintained as the number of classes increase. A further

avenue could be to explore the application of other deep

learning architectures to packet-based classification tasks. For

example, this could involve applying Stacked Auto-Encoders

for dimensionality reduction, or using hybrid architectures that

combine CNNs with recurrent neural networks (RNNs) with

the aim of learning both spatial and temporal patterns in the

data.

VIII. DISCLAIMER

This work is based on the research supported in part by the

National Research Foundation of South Africa (Grant Number

MND190728459990)

REFERENCES

[1] B. Braem, C. Blondia, C. Barz, H. Rogge, F. Freitag, L. Navarro,
J. Bonicioli, S. Papathanasiou, P. Escrich, R. Baig Viñas, et al., “A
case for research with and on community networks,” 2013.

[2] A. O. Adedayo and B. Twala, “Qos functionality in software defined
network,” in 2017 International Conference on Information and Com-

munication Technology Convergence (ICTC), pp. 693–699, 2017.

[3] M. Lotfollahi, R. S. H. Zade, M. J. Siavoshani, and M. Saberian, “Deep
packet: A novel approach for encrypted traffic classification using deep
learning,” 2017.

[4] S. Rezaei and X. Liu, “Deep learning for encrypted traffic classification:
An overview,” IEEE communications magazine, vol. 57, no. 5, pp. 76–
81, 2019.

[5] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Mobile encrypted
traffic classification using deep learning,” in 2018 Network Traffic

Measurement and Analysis Conference (TMA), pp. 1–8, IEEE, 2018.

[6] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-end
encrypted traffic classification with one-dimensional convolution neural
networks,” in 2017 IEEE International Conference on Intelligence and

Security Informatics (ISI), pp. 43–48, IEEE, 2017.

[7] Z. Chen, K. He, J. Li, and Y. Geng, “Seq2img: A sequence-to-image
based approach towards ip traffic classification using convolutional
neural networks,” in 2017 IEEE International Conference on Big Data

(Big Data), pp. 1271–1276, IEEE, 2017.

[8] W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, and M. Zhu,
“Hast-ids: Learning hierarchical spatial-temporal features using deep
neural networks to improve intrusion detection,” IEEE Access, vol. 6,
pp. 1792–1806, 2017.

[9] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, “Net-
work traffic classifier with convolutional and recurrent neural networks
for internet of things,” IEEE Access, vol. 5, pp. 18042–18050, 2017.

[10] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and M. Saberian, “Deep
packet: A novel approach for encrypted traffic classification using deep
learning,” Soft Computing, vol. 24, no. 3, pp. 1999–2012, 2020.

[11] P. Wang, F. Ye, X. Chen, and Y. Qian, “Datanet: Deep learning based
encrypted network traffic classification in sdn home gateway,” IEEE

Access, vol. 6, pp. 55380–55391, 2018.

[12] iNethi Technologies. http://www.inethi.org.za/deployments/ [Accessed:
2020-04-29].

[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

Authorized licensed use limited to: University of Cape Town. Downloaded on December 12,2021 at 11:27:07 UTC from IEEE Xplore. Restrictions apply.

		2021-10-21T09:10:53-0400
	Preflight Ticket Signature

