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Abstract—Community networks have been proposed by many
networking experts and researchers as a way to bridge the
connectivity gaps in rural and remote areas of the world. Many
community networks are built with low-capacity computing
devices and low-capacity links. Such community networks are
examples of low resource networks. The design and imple-
mentation of computer networks using limited hardware and
software resources has been studied extensively in the past,
but scheduling strategies for conducting measurements on these
networks remains an important area to be explored. In this study,
the design of a Quality of Service monitoring system is proposed,
focusing on performance of scheduling of network measurement
jobs in different topologies of a low-resource network. Our
results show that a graph colouring algorithm (AOSD) that
arranges network measurement jobs in ascending order of
their number of conflicts performs better than other scheduling
algorithms like Round Robin (RR) and Earliest Deadline First
(EDF).

Index Terms—Internet Services, End User Applications, In-
ternet Performance

I. INTRODUCTION

Community networks are open, free and neutral network
infrastructure built and maintained by citizens and organisa-
tions who pool their resources and coordinate their efforts
[1]. These networks are often run by non-profit organiza-
tions. Further, community services like local networking,
voice connections and internet access can be developed in
cooperation with local stakeholders [2]. ITU statistics [3] for
South Africa report that there were around 165.6 mobile-
cellular subscriptions per 100 inhabitants as of 2019. Of
these 165.6 subscriptions, around 102.2 correspond to mobile
broadband subscriptions. Also, about 92.6% of total active
internet users worldwide, and 94.7% of internet users in
South Africa accessed internet through their mobile phones
as of January 2021 [4]. The usage of smartphones as a com-
puting and networking device thus presents an opportunity
for constructing mobile crowdsourcing applications [5]. Such
applications can be used as a platform to conduct research to
improve community networks.

System architectures based on crowdsourcing are generally
more complex as compared to systems where design, imple-
mentation and execution are centralized [5]. Other challenges
arise due to adopting smartphones as an execution unit. It
is difficult to precisely capture internet performance data
through smartphones because the conditions, like location and
bandwidth, are always changing over time, and as the subject
moves with the device.

Although the load of executing measurements is shifted
to smartphones in a crowdsourcing-based architecture, a cen-
tralized server should be able to allocate the measurements
intelligently, given the availability of resources like network
bandwidth and execution capacity of smartphones. If a large
number of measurements are carried out using a limited
number of vantage points, the obtained results could suffer
from the observer effect [5], i.e a bias in the measurements
due to the measurement infrastructure itself. Measurement
processes that are executed in common points and links
could contend for shared network resources. This contention
for resources is also called measurement conflict problem
[6]. Thus, scheduling and synchronization of measurements
among the smartphones is important to ensure proper resource
utilization and accuracy of results.

The costs associated with building large-scale active in-
ternet measurement platforms that provide open access to
anonymized data to researchers are generally very high [7].
Networks may become overly congested and additional data
costs on users’ side may be incurred as a result of the injection
of probing packets. A major reason behind this phenomena
lies in the skewed distribution of measurement jobs towards a
few vantage points. We posit that these costs can be reduced
by ensuring proper scheduling and distribution of these mea-
surements. Our study thus introduces mobile crowdsourcing in
the context of a low cost monitoring system for low-resource
networks with a focus on measurement scheduling strategies.
In pursuit of finding the best possible design, we present an
empirical analysis of alternative techniques for measurement
scheduling and synchronization. These techniques are com-
pared on the basis of evaluation metrics like platform delay,
waiting time and node busy time ratio.

II. RELATED WORK

Most of the research on community networks has been done
on the basis of Guifi.net [1], [8], [9] (the largest commu-
nity network) or other interconnected European community
networks [10]–[12]. Limited research has been performed on
monitoring network characteristics in the context of commu-
nity networks for developing regions [13]–[15], and measure-
ment scheduling aspect of systems that characterize these net-
works has mostly been overlooked. In classical networks, the
design and evaluation of measurement scheduling algorithms
is based on computer simulations or synthetic testbeds. Also,
these algorithms rely on the assumption that the execution



time of measurements is known in prior, contrary to a real-
world scenario where it could vary because of several factors
like signal strength, geolocation and time of the day. In our
work, we make an attempt to apply the principles used in
literature to develop a QoS measurement platform that can be
used and tested in any real-world low resource network.

Scheduling of active internet measurements in classical
networks has been studied by few researchers. Some of these
works [16], [17] have not given much attention to conflicts
between individual measurements. Calyam et. al [18] propose
a novel enhanced-EDF heuristic that allows concurrent exe-
cution of measurements to address the measurement conflict
problem. Scheduling algorithms for both periodic and on-
demand jobs have been proposed in this work, and have been
proven to perform better than existing algorithms through
computer simulations as well as in an internet testbed. Qin et.
al [6] compare the enhanced-EDF scheme with a novel graph-
coloring based approach, and through computer simulations
proves to achieve effective contention resolution and low
execution delays. In addition to the graph coloring approach,
the original Round Robin algorithm has also been modified
by the authors to work well in a concurrent context. Two
variants of the proposed graph coloring scheme are considered
in our implementations - AOSD and DOSD, corresponding
to ascending and descending order of subvertices’ degree
respectively. Both these schemes rely on a centralized point
of scheme generation and task reporting, which according
to Mathew Clegg [19], is a drawback. However, this could
benefit our centralized measurement platform. In addition to
proposing AOSD and DOSD algorithms, the original Round
Robin algorithm has also been modified to run in a concurrent
context.

III. MEASUREMENT SYSTEM OVERVIEW

This project will investigate strategies to measure under-
resourced networks by deploying a containerized measure-

Fig. 1. A diagram showing the architecture of QoSMon, the proposed
measurement system

ment system within iNethi [20], a localized content sharing
and services platform being developed in Ocean View, a
township in Cape Town, South Africa.

Fig. 1 shows the architecture of the system. A key com-
ponent in our architecture is a measurement server, which is
responsible for orchestrating measurements like ping, DNS
look-ups, HTTP downloads, and TCP throughput tests. For
community network users, our system is capable of collecting
and storing network usage data of applications in a phone.
The data for apps is aggregated within a phone and sent to
the server every 24 hours for storage. If the sending of usage
data fails due to connectivity issues on a day, the data for this
particular day is sent along with the batch for the next day.
We implement this using a 3-step communication process.
First, the phone sends a request to the server for a latest
timestamp from which usage data is required for that phone.
Second, the server responds with the desired timestamp. If
no timestamp is returned, the phone sends usage data to
the server for the last 24 hours. The measurement server
is capable of running one of RR, EDF, AOSD and DOSD
algorithms (Section II). Measurements are conducted in users’
mobile phones distributed within the community network.
Only Android phones are able to run the measurements
in our current implementation. The communication between
phones and measurement server is facilitated through HTTP
websockets, whereby the server sends measurement jobs to
the phones as and when they are ready to be dispatched.
In addition to the server, a user interface is developed for
community network administrators and researchers to sched-
ule experiments, visualize the collected data and perform
QoS analysis. Community network members will be able to
visualize application usage through their phones.

IV. IMPLEMENTATION DETAILS

A. Conflict determination

Conflicts between individual job instances are first decided
on the basis of target server. If two jobs are destined to the
same target server, it is highly likely that they use common
links in the network. Thus, we use a pairwise binary matrix for
representing conflicts between active jobs. This binary matrix
is then used to build an undirected conflict graph of the jobs
and supplied to the scheduling algorithms as input.

Our system is also capable of addressing conflicts that arise
due to the topology of the network. During initialization phase
of the measurement server, we load the network topology as
an undirected graph and then calculate the cost of schedul-
ing on each measurement node. This cost is calculated by
summing up the number of affected links in the network. We
thus calculate all simple paths from a measurement node to
the gateway access point and add the number of edges in
the network graph. Fig. 2 shows an example of a network
topology in which AP3 is the gateway access point. Requests
from M4 to a target server anywhere on the internet can be
routed through one of the paths in the set {M4 → AP6 →
AP2 → AP4 → AP3, M4 → AP6 → AP2 → AP1 → AP3,
M4 → AP6 → AP2 → AP1 → AP5 → AP3, M4 → AP6
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Fig. 2. A network topology with 6 access points and 4 measurement nodes.
AP3 is chosen as the gateway access point, i.e, an access point having direct
connection to the internet. All requests originating from other nodes in the
network are routed through AP3.

→ AP5 → AP3, M4 → AP6 → AP5 → AP1 → AP3}. We
calculate the scheduling cost by adding up the number of links
in these paths irrespective of the number of times they appear
in each path. Therefore, the scheduling cost for M4 is 20 in
this example. We then assign the first available device with
lowest value of scheduling cost to an executing job.

B. Job life-cycle

When a measurement job is requested to be scheduled,
a unique identifier is assigned to the job by our system.
After the job passes the criteria for a valid MobiPerf job,
it gets stored into the metadata database. Next, the job is
taken up by the scheduler service after which it is added
into a global queue of active jobs. At this point, the job
is assigned an instance number of 1. The time at which
the job is added to the queue is recorded in the metadata
database. A tracker thread executes within the server every
20 seconds that checks whether any of the jobs in the queue
is ready to be fed to the underlying scheduling algorithm.
This thread is also responsible for checking if a job is ready
to be removed or reset. If a number of jobs are past their
start time, they are supplied to the scheduling algorithm. The
scheduling algorithm assigns a dispatch time and a mobile
device to each job. A job is dispatched to the assigned device
when the present time exceeds the dispatch time.

After the job finishes execution in the assigned mobile
device, the job’s results are sent to the measurement server
through the websocket connection. The server checks the
instance number of the job and records the time at which
job’s result was received. It also captures the execution time
in milliseconds of the job in the mobile device. Starting from
this time, when the tracker thread executes for the next time, it
resets the job by updating the start time and incrementing the
job’s instance number. If the end time of the job is attained,
it is removed from the job queue.

C. Device-Server communication

When our android application is installed in a phone, it
establishes an HTTP websocket connection with the server.
This connection is kept alive until the server is shut down
manually or the app is manually stopped within the phone.
Our android application is robust enough to handle con-
nectivity changes in the community network. If the internet
connectivity changes or the user switches to a different type
of internet connection in the phone, the phone establishes a
new websocket connection with the server. When new jobs are
ready to be dispatched from the server, the server publishes
the list of jobs to a fixed endpoint. The phone subscribes to
this endpoint and receives jobs as and when they are made
available.

V. PERFORMANCE EVALUATION

Before the deployment of our system in the community
network, we performed evaluations in a lab setup. Fig. 3
and Fig. 4 show the testbeds of our measurement system.
In the lab setup, four Android phones were used to conduct
our experiments. We first conducted a set of preliminary
experiments to determine the execution time of each job type
and calibrate our scheduling algorithms. Then we assumed the
maximum time across each job type as the expected value of
execution time for any upcoming jobs in our system. We argue
that the maximum value of execution time would be a good
estimate so as to have a safe time window for the next job to
execute when the previous job has not finished execution.

The target servers for ping, DNS lookup, traceroute and
http were chosen uniformly from Alexa top 8 global websites
[21]. TCP speed tests were run against a local speed test server
running on the same test network. The periods of the jobs
were chosen uniformly from the range [5, 10] minutes.
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Fig. 3. A diagram showing the testbed for QoSMon set up in the iNethi
community network
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Fig. 4. A diagram showing the testbed for QoSMon set up in a lab
environment

For our main experiments, we executed 20 periodic jobs
with randomized network topologies containing 8 access
points and 4 measurement nodes. Every topology had a
conflict probability associated with it. A conflict probability
of p indicates that there is an edge between any two access
points with a probability of p. Topologies with lower value
of conflict probability were likely to have more than one
connected component. Therefore, we decided to randomly
assign one gateway access point to each connected component
in the generated topologies. All four scheduling algorithms
were allowed to run with the same topology and set of jobs
for 2 hours each. For the next iteration of our experiments, we
changed the conflict probability and generated a new topology.
The choice of p was made from the set {0.1, 0.5, 0.9} so as to
ensure that we could capture results for sparsely, moderately
and densely connected topologies respectively.

Scheduling algorithms were first compared in terms of their
job success rate. For a single periodic job, success rate is
defined as:

JSR =
Number of successful instances

Total number of instances
× 100 (1)

For each 2-hour long iteration on a single topology, we
calculated the average JSR over all 20 jobs and plotted it
against the chosen conflict probability (Fig. 5(a)). Our first
observation was that none of the algorithms achieved a 100%
success rate for any given topology. This can be attributed to a
few jobs missing their deadlines after being sent to the phones
for execution. We argue that the job success rate for each
algorithm can be improved by limiting the execution period
to a fixed threshold of more than 10 minutes. This will allow
the tracker thread to pick up less number of jobs at once and
thus reduce the overall load on measurement nodes. Another
way to improve JSR would be to increase the number of
measurement nodes so that jobs can be distributed in a better
way. We also observed that DOSD algorithm achieved the
least job success rate of all algorithms and the rest of the
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Fig. 5. Job evaluation metrics used in our experiments

algorithms had similar performance except for moderately
connected topologies for which AOSD algorithm performed
better than the rest.

We also calculated average platform delay for each periodic
job and plotted it against conflict probability. Platform delay
is defined as the time difference between actual and expected
completion time of the job. For example, if a job’s start time
is 6:05 PM but its result is received on server end at 6:10
PM, then the platform delay for that particular instance of
the job would be 5 minutes. We calculated average platform
delay by averaging the platform delay over all instances of all
20 scheduled jobs (Fig. 5(b)). All four algorithms achieved



an average platform delay of less than 30 seconds, which
confirms the absence of any implementation issues within our
measurement server. AOSD algorithm outperformed the other
algorithms for all three topologies except for the case of p =
0.5 where EDF performs slightly better. We argue that this
is due to the randomized nature of our selection of jobs. We
expected that an average over multiple job distributions would
declare AOSD as a clear winner.

For determining the root cause behind platform delays,
we calculated the waiting time of jobs in the queue (Fig.
5(c)). We observed that the waiting time of the jobs was
almost unaffected by network’s topology but it contributed
quite significantly to the overall platform delay. We observed
that 33% of the platform delay in AOSD algorithm was due to
waiting time on an average. This percentage was 27%, 29%
and 32% for DOSD, EDF and RR respectively. The remaining
portion of platform delay was due to factors like network
delay and scheduling delay within the phones due to uneven
distribution of jobs.

In order to get an idea of the amount of load on the
measurement nodes, we calculated their busy time ratios (Fig.
6). This metric translates directly into the energy efficiency
of the scheduling algorithms. Better the distribution of jobs
to the smartphones, lesser would be the chance of battery
drainage. Node busy time ratio for ith node, Mi is defined as:

NBTRi =
ei∑m
i=1 ei

× 100 (2)

where ei denotes the execution time in milliseconds of all
job instances in Mi in a single iteration.

We observed a highly skewed distribution of jobs among
the phones in the case of DOSD algorithm. RR and EDF
had similar load distribution patterns while the best load
distribution was achieved in AOSD, where one of the phones
executed about 50% of the total job load in all three topolo-
gies. This confirmed that the higher contribution of external
factors towards platform delay in RR, EDF and DOSD was
indeed due to a skewed distribution of jobs among the phones.

VI. CONCLUSION

We compared our implementations of four network mea-
surement scheduling algorithms on three different virtual
network topologies. We designed our system to schedule
network measurements by accounting for conflicts between
individual jobs as well as conflicts that arise when active
measurements route through common links and access points
in wireless networks. Our results show that AOSD algorithm
is superior than the rest of the chosen algorithms in terms of
efficient distribution of jobs among measurement nodes and
job success rate. A success rate as high as 97.3% is extremely
useful in areas where internet connection is unstable due to
a high proportion of wireless links in comparison to wired
links. Our system thus has high applicability in wireless
community networks, especially in communities where users
access internet through their smartphones.
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Fig. 6. Node busy time ratios for 4 mobile phones used in our experiments



VII. FUTURE WORK

In our current work, we make an attempt to find an effective
scheduling strategy for low resource network measurements.
In future work, the algorithms can be coupled with a job
assignment algorithm to ensure even better allocation of
jobs to the measurement nodes. A future implementation of
our system can also be made to support fixed nodes, like
Raspberry Pis coupled with a mininet-based implementation
of the network topology. For performance evaluation, depen-
dant variables like number of jobs, number of measurement
nodes, time of the day and mobility of the devices etc.
will be considered. Another interesting addition to this paper
would be the support for on-demand measurements and the
adjustment of job schedules in accordance with a custom
priority order.
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