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Extended Abstract
Many researchers hypothesize that language adaptation, as
with other evolutionary processes, entails both directed se-
lection and random drift (Sapir, 1921; McMahon, 1994;
Croft, 2000; Baxter et al., 2006; Van de Velde, 2014; Steels
and Szathmáry, 2018). However, the specific contributions
of these processes to language evolution remains an open
question. It is well established that language evolution is
not necessarily driven by selection, for example, speakers
preferring specific word variants (Andersen, 1987; Blythe,
2012; Hamilton et al., 2016; Newberry et al., 2017).

Extending related work (Kandler et al., 2017), we use
computational agent-based models to elucidate the impact of
individual-level bias (speaker prestige) on population-level
dynamics (average word similarity), where word diversity
is measured by Levenshtein similarity (Levenshtein, 1966).
Agents interacted in iterative language games (Kirby et al.,
2014), to name and thus converse about resource types (A,
B). Such object types represented conversation topics (Kar-
jus et al., 2020c), where resource value indicated agent bias
for conversing about (evolving words for) popular topics.
For a null model comparison, we comparatively evaluated
random drift versus directed word evolution on evolving
word similarity, where using directed evolution, agent bias
for adopting specific words (about resource types) increased
with speaker agent social prestige (fitness).

While previous work has demonstrated selective advan-
tages of various forms of speaker sociolinguistic prestige
including competing word variants and borrowed words
(Abrams and Strogatz, 2003; Labov, 2011; J. Hernández-
Campoy and J. Conde-Silvestre, 2012; Kauhanen, 2017;
Calude et al., 2017; Monaghan and Roberts, 2019; Karjus
et al., 2020a,c), there has been little research on the impact
of speaker prestige on word diversity in language evolution.

Methods and Experiments
Experiments used random distributions of agent-resource
combinations scattered in Q×Q bounded grid worlds. Each
combinations was assigned five random environments with
each environment randomly reset and re-run 20 times. Sim-

ulation parameters were: agent populations of 100-500 in
increments of 100, resource amounts of 500, 1000, 2500,
and Q×Q= 50× 50, 75× 75, and 100× 100.

Resources were type A (50%) and type B (50%), with pay-
out of 10.0 (type A, popular topics) or 1.0 (type B, obscure
topics). Agents were initialised (iteration 0) with fitness of
10.0 and assigned random strings of 3-9 ASCII characters
(words) for each resource type (A, B) in the environment.
Agents moved about the grid randomly for 2000 iterations
during which a variable number of evolutionary or random-
Drift naming games were played. A naming game started
when an agent moved atop a resource and at least one other
agent was within the agent’s neighbourhood (adjacent cells).

Evolutionary naming games used Artificial Neural Net-
work (ANN) agent controllers with a static layer of eight
inputs and one output, where NEAT (Stanley and Mi-
ikkulainen, 2002) evolved hidden-layer connectivity and
weights. Each agent’s ANN controller input all surrounding
grid-cell information including: agents’ terms for resource
types, agents’ fitness and potential resource payout, to de-
termine a bid value to output. The highest bidding agent
consumed the (talked about) resource (receiving payout),
and the bid value was deducted from this winning agent’s
fitness. All other agents adopted the winning agent’s word
for the talked about resource type. Random-Drift naming
games assigned a random agent’s word for a given resource
to all others in the naming game with uniform probability.

Evolutionary (Sets 1-3) and Random-Drift (Set 4) experi-
ments thus tested the impact of agent bias (prestige equated
with fitness) on evolving word diversity for resource types
(conversation topics A and B, of varying popularity).

Set 1: Resources are initialised in random locations. ANN
bidding for word adopted by k agents (in talking game).

Set 2: Type A resources were popular (payout = 10.0) and
type B obscure (payout = 1.0). Agents used ANN bidding
for word to be adopted by k agents (in talking game).

Set 3: As per Set 2: Except after 1000 iterations, resource
type B became popular and type A became obscure.

Set 4: As per Set 1, except randomly selected agent had its
word for resource type adopted by all (talking game) agents.



Figure 1: A−D: Levenshtein similarity (LVS) versus increasing population, resources amounts, environment size, and simulation iteration
(error bars represent 95% confidence intervals). E − F : Agent terms clustered by Levenshtein dissimilarity at iteration 2000 (E) versus
0 (F ), given population = 500, resources = 2500, area = 50 × 50. Multi-Dimensional Scaling (MDS) is used as all 500 agents’ terms’
Levenshtein dissimilarity are calculated and compared against one another.

Results and Discussion
Results used normalised Levenshtein similarity (LVS) (Lev-
enshtein, 1966) to measure linguistic distance between agent
words (LVS=0.0 means words are most dissimilar, LVS=1.0
words are most similar). Ordinary least squares regres-
sion (Flannery et al., 1986) analysis indicated statistically
significant positive relationships between resource amounts
and average LVS (t-test, t=56.623, p<0.01), controlling for
other independent variables. A statistically significant nega-
tive relationship between average LVS and population size
(t=−116.196, p<0.01) and environment area (t=−5.235,
p<0.01), was also observed. As was a statistically signif-
icant increase in average LVS from simulation iteration 0 to
2000 by an average of 0.02667 (t=138.464, p<0.01).

Two-way ANOVA (Flannery et al., 1986) computed dif-
ferences in mean LVS (iteration 2000) between experiment
sets, population sizes, resource numbers, and environment
areas (figure 1A-D), showing statistically significant differ-
ences (F-test, F=7.45, p<0.01) in at least one of the average
LVS when comparing experiment sets. In post-hoc analy-
sis, 2-Sample Kolmogrov Smirnov (Massey, 1951) tested if
mean LVS per iteration per experiment were generated from
the same distribution, indicating all experiment sets were
generated from differing distributions (p<0.01). Tukey’s
HSD test (Abdi and Williams, 2010) indicated statistically
significant differences (p<0.01) in mean LVS of random-
drift experiments (Set 4) and evolutionary experiments (Set
1-3), but with no significant difference (p>0.10) between
the mean LVS of evolutionary sets (Set 1-3).

Results indicated that there was no significant difference

in the average similarity (LVS) of words propagated in the
population via evolutionary naming games (Sets 1-3, figure
1A). As in related work (Karjus et al., 2020b), individual-
level bias (bidding in this study) resulted in increased word
similarity at the population-level. This indicates the criti-
cal role of directed (evolutionary) word selection on pop-
ulation dynamics. Supporting this, figure 1(E, F) presents
example clusters of similar words at the start (Figure 1F)
versus end of evolution (Figure 1E), where statistically sig-
nificant LVS differences between evolutionary (sets 1-3) and
random-drift (set 4), experiments was observed (figure 1D).
However, for all experiments, results indicated varying en-
vironment parameters (population size, environment area,
resource amount) significantly impacted average LVS of
words in the population. Average word similarity decreased
with population and environment size (figure 1A), but in-
creased with resource amounts (figure 1B, that is, increasing
with the number of possible conversations).
Thus, larger population and environment sizes yield high
diversity in the population’s words, where word diversity
change is not driven by directed selection (Sindi and Rick,
2016; Newberry et al., 2017) (speaker prestige) or random
drift (Reali and Griffiths, 2010; Blythe, 2012), but by the
number of potential naming games (conversations). To fur-
ther ascertain environmental impact on language evolution
(Greenhill, 2016), ongoing research is investigating how
individual-level cultural and social bias changes topic pop-
ularity (Karjus et al., 2020c) and social networks (Ke et al.,
2008; Fagyal et al., 2010; Kauhanen, 2017), and impact on
population-level dynamics such as corpus diversity.
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