
Efficiently Coevolving Deep Neural Networks and
Data Augmentations

Shane Acton, Sasha Abramowitz, Liron Toledo, Geoff Nitschke
Computer Science Department

University of Cape Town, South Africa
actsha001@myuct.ac.za, abrsas002@myuct.ac.za, tldlir001@myuct.ac.za, gnitschke@cs.uct.ac.za

Abstract—Designing large deep learning neural networks by
hand requires tuning large sets of method parameters, requiring
trial and error testing and domain specific knowledge. Neuro-
evolution methods such as CoDeepNeat (CDN), based on Neuro-
evolution of Augmenting Topologies (NEAT), apply evolutionary
algorithms to automate deep neural network parameter opti-
misation. This paper presents and demonstrates various novel
beneficial extensions to the CDN method, including new genotypic
speciation mechanisms, special mappings in deep neural network
encodings, as well as evolving Data Augmentation schemes.
Results indicate that these CDN method variants yield significant
task-performance benefits over the benchmark CDN method
when evaluated on a popular public image recognition data-set.

I. INTRODUCTION

Motivated and enabled by significant improvements in com-
putational processing power, advances in multi-core and high-
performance computing architectures, and increasing avail-
ability of high-dimensional data-sets, deep-learning [1] has
recently achieved state-of-the-art results in various traditional
machine-learning benchmark applications. This includes sig-
nificantly task performance gains over previous machine-
learning methods in image recognition [2], speech recognition
[3], game-playing [4], and drug discovery [5]. Generally, deep
artificial neural networks coupled with suitable supervised
learning mechanisms and sufficient compute-time and compu-
tational resources have consistently demonstrated an effective
capacity to generalise from patterns learnt across a vast range
of high-dimensional complex data-sets [1].

A Convolutional Neural Network (CNN) is a deep learning
architecture primarily used for computer vision tasks [6]. In
traditional CNNs, images are initially passed through convo-
lutional layers [7], which extract increasingly abstract features
from images. After feature extraction, the convolutional layer
outputs are passed into fully connected layers which learn a
target function [1]. CNNs currently yield state-of-the-art task
performance across a range of image recognition tasks using
large benchmark image data-sets such as ImageNet [8].

Deep learning algorithms using CNNs usually require very
large, well labeled and annotated data-sets in order to yield
comparable or superior task performance, when compared to
other machine learning methods for various applications [1].
Attaining such data-sets has been a key challenge in demon-

strating the efficacy of deep-learning algorithms for various
tasks [9], and this is where Data Augmentation (DA) has
become indispensable [10]. DA is a regularisation technique
that artificially inflates a training data-set by performing label-
preserving transformations to add more uniform examples.
A lack of quality labeled training data is a major cause of
over-fitting [11], and DA has been demonstrated as effective
means of synthetically augmenting training data to mitigate
over-fitting and boost CNN task-performance [10].

However, combinatorial space of possible DA operations is
extremely large for complex CNN training tasks and ensuring
correct labelled transformations is difficult and error-prone.
For example, vertically flipping images of text and numbers
results in meaningless data. Additional research has indicated
that finding a suitable DA method is also dependant on the
CNN architecture [12], [13], thus further complicating manual
selection of an appropriate DA method.

State-of-the-art deep learning artificial neural networks are
becoming increasingly sophisticated, have many parameters
and rely on experts with specific application domain knowl-
edge for designing neural network architectures and tuning
methodological and experimental parameters [14]. Finding
optimal neural architectures and associated learning and exper-
iment parameters is usually time consuming. It requires skilled
human experimenters to run various tuning tests for neural
architecture, learning and experiment parameters in order to
intuit suitable combinations of parameters and architecture
designs for any given task. To alleviate such design and param-
eter tuning problems, Automatic Machine Learning (AutoML)
[15], has been proposed to automate the design of optimal
neural architectures for given tasks. For example, AutoML has
been effectively demonstrated for largely automating neural
network topology design and parameter selection for artificial
neural network image classifiers [16], automating training data
pre-processing for such classifiers [17], as well as automating
bounds and constraints placed on the search domain in order
to increase classification efficacy [18].

Currently, there is no canonical or established approach to
the methodological design of the AutoML algorithms them-
selves. Use of techniques such as grid-search [19] become
prohibitively expensive in terms of time and computational
resources for complex tasks. However, recent AutoML meth-
ods have applied Evolutionary Algorithms (EAs) [20] to evolve978-1-7281-2547-3/20/$31.00 c©2020 IEEE

(automate the search for) optimal neural network topology and
associated learning parameters [21].

This is a branch of EA research popularly known as
Neuro-Evolution (NE) [22]. Neuro-Evolution of Augmenting
Topologies (NEAT) [23] uses direct encoding neuro-evolution
to evolve neural network connection weights and topologies.
NEAT applies three key techniques to enable the evolution of
effective and efficient neural network solutions. First, NEAT
assigns a unique historical marking to every new neuron (gene)
so that crossover can only be performed between pairs of
matching genes.

Second, NEAT speciates the population so as networks
(genotypes) compete primarily within their own niches (iden-
tified by historical markings) instead of competing with the
whole population. Third, NEAT begins evolution with a pop-
ulation of simple networks with no hidden nodes but gradually
adds new topological structure (nodes and connections) using
specialised mutation operators: add hidden node and add link.
An advantage of this NEAT complexification process is that
it will likely find a solution in lower dimension search spaces
compared to relatively large search spaces corresponding to
large fixed topology networks specified a priori. However,
direct encoding and complexification also means it is unlikely
that NEAT will evolve deep neural networks amenable for
solving various complex classification and recognition tasks.

The AutoML method CoDeepNEAT (CDN) [24], [25] ap-
plies NEAT to automatically adapt deep neural network topol-
ogy, while concurrently training the networks with supervised
learning and given data-sets. CDN has been demonstrated as
achieving near-optimal task performance in some text and
images classification tasks [25], though is currently unable
to achieve such near-optimal task performance on popular
benchmark image recognition data-sets such as CIFAR-101.

This paper’s main objective is to demonstrate the efficacy of
new neuro-evolution operator and evolutionary data augmenta-
tion extensions to the CDN method (section III), with the goal
of boosting overall task-performance of evolving deep neural
network architectures. Thus, the main contribution of this
study is the formulation of these methodological extensions
for CDN (section III), and the demonstration of the efficacy
of these CDN method variants in comparative experimental
evaluations (section IV) on the CIFAR-10 data-set.

II. METHODS I: CODEEPNEAT (CDN)

CoDeepNEAT (CDN) is an extension of NEAT designed
for deep-learning [23]. Both NEAT and CDN evolve neural
network topological structure however, instead of evolving
weight values, as in NEAT, CDN uses backpropagation [6]
to find the weights of relatively large Convolutional Neural
Networks (CNNs). CNN task performance accuracy on a given
data-set is used to comparatively score a population of CNNs
and thus determine which CNNs are selected as parents for

1https://www.cs.toronto.edu/∼kriz/cifar.html

application of evolutionary operators [20], and thus propagate
the next generation (population) of CNNs.

CDN combines unsupervised (evolutionary) and super-
vised (backpropagation) learning optimize the topological size
(number of parameters) and task performance (classification
accuracy) of CNNs. It achieves this by using a multi-objective
EA to find the Pareto front [26] when ranking CNNs in the
population. CDN used multi-objective optimisation in order
to select CNNs that have suitable trade-offs of effectiveness
(high task-performance) and computational efficiency (mini-
mal topological size) [24]. To enable the evolution of effective
and efficient CNNs, the CDN method co-evolves two genotype
populations: blueprints and modules.

Modules represent repeatable, independently functional neu-
ral network substructures, assembled to form complete CNNs,
where each node (gene) in a module genotype represents one
DNN layer and its parameters (for example, layer type, layer
size, kernel size and activation function). Blueprints specify
how these repeating structures (modules) are connected in
order to form a complete CNN. To achieve this, nodes in a
blueprint genotype sample modules and connect them.

The module population is decomposed into multiple sub-
populations (species) derived using the NEAT speciation
mechanism [23]. Blueprint nodes contain references to module
species, and each node randomly samples a module linked
to its species (Figure 1). When multiple blueprint nodes
sample the same species, all such nodes are assigned the
same module from a given species. This promotes repeated
substructures in the evolved CNN, which in turn promotes
increased effectiveness and efficiency in neural processing
[24], [25].

For CNN population evaluation at each CDN generation,
every blueprint genotype is parsed into the assembly of
multiple distinct CNNs (as a blueprint node is likely to sample
distinct modules given each genotype parsing) [24], [25]. After
a given number of generations of evolution, the fittest (highest
classification accuracy) CNNs are selected for further training
on the given data-set, with the goal of finding the maximum
classification accuracy. CDN also uses Data Augmentation
(DA) [10] to complement data-sets and improve accuracy on
training and test data. The authors of CDN constructed a DA
scheme where each blueprint performed the same augmenta-
tion operations in the same order. However, each blueprint
evolved its own DA scheme parameters to enable overall
increased task-performance (accuracy) for evolved CNNs [24].

III. METHODS II: CDN EXTENSIONS

To address our objective of demonstrating the efficacy of
new methodological extensions to CoDeepNEAT [24], [25]
(CDN, section I), we present a complete re-implementation of
CDN, base-CDN2 and two CDN method variants: MMS-CDN:
CoDeepNEAT with ModMax and Speciation (sections III-A

2https://github.com/sash-a/CoDeepNEAT

Fig. 1: An example [24] of how modules (neural network sub-structures) are described by blueprints (module connectivity
map) in CoDeepNEAT. Numbers in the blueprint (left) genotype refer to a module (center) sub-population (species). The neural
network (right) is assembled via using each blueprint node corresponding to a specific module sampled from its given species.

and III-B), and MMS-DA-CDN: CoDeepNEAT with ModMax,
Speciation and Data Augmentation (section III-C).

MMS-CDN includes an extension (ModMax, section III-A)
to improve genotype to neural network architecture mapping,
and an extension to preserve effective functional specialization
that emerges in sub-populations (species) of modules (Spe-
ciation, section III-B). Whereas, MMS-DA-CDN is a novel
method for the automating the data augmentation process of
CDN, via evolving data augmentations schemes suitable for
the given training data (section III-C).

A. MMS-CDN: Component I: ModMax

ModMax is the first component of the CDN variant: MMS-
CDN. The second: Speciation, is described in section III-B.

1) Module Retention: Enables evolutionary elitist selec-
tion [20], via having the best performing (highest accuracy)
blueprints maintain references to modules sampled in previous
generations. In base-CDN blueprints randomly sample their
modules at the beginning of each generation, thus it is unlikely
that the best CNNs would be recreated in later generations,
even if their constituent components survive. This makes base-
CDN non-elitist, as successful CNNs are not guaranteed to
survive into later generations. Module retention attempts to
solve this issue.

Module retention directly encodes sampled modules in the
blueprint genome, ensuring the parsing from blueprint to CNN
can be deterministic, and can thus be subject to elitist selection.
Specifically, module retention stores the modules that blueprint
nodes sample inside the blueprint’s genotype.

The mapping from module species (sub-populations) to
module individuals (neural network sub-structures) is defined
for a blueprint (Bb) as a sample mapping (SMb). Each parse
(p) of a blueprint (Bb) entails a mapping from a module
species to a specific module (SMp

b). Sample mappings (SMb)
are also subject to crossover and mutation (Table II) and also
improved with elitist selection across generations.

This prevents (non-elitist) selection or assembly of weak

blueprints (resulting from random module sampling), as ob-
served when running base-CDN (Figure 2), and also promotes
the propagation of high task-performance (accuracy) CNNs
over successive generations.

2) Maximum Fitness Aggregation: Since blueprints and
modules are evaluated multiple times per generation (section
III-A1), we aggregate fitness via taking the highest fitness (per
generation) for each blueprint and module. This maximum
fitness aggregation means that modules with specific functions
are not be penalised for being used by low fitness blueprints
(as would be the case in mean fitness aggregation). For
example, if a module is used as an output node function
of a CNN, but referenced by a blueprint as an input node
function of the CNN, then this would result in the blueprint
being evaluated with a low fitness. However, the maximum
fitness aggregation allows a module which has been used
incorrectly to survive as long as it has been used correctly at
least once. Thus, maximum fitness aggregation, in combination
with Module Retention ensures the best CNNs are guaranteed
to be reconstructed in subsequent generations.

B. MMS-CDN: Component II: Speciation Extensions

All CDN method variants use a module speciation mech-
anism similar to NEAT [23], that operates in the module
genotype space, and provides a computationally cheap proxy
for measuring functional similarity between modules (neural
network sub-structures). At the end of each generation, a
new representative (module) is randomly selected from each
species. This is then the module used for similarity compar-
isons between that given species and other modules.

In this study’s experiments (section IV), at each generation,
modules are placed in the species whose representative they
are most similar to (according to a topological similarity metric
[23]). Ideally, all modules in a species will serve a similar
function, so replacing any module reference in a blueprint
with another module reference from the same species will not
significantly impact task-performance of the CNN (encoded by

Fig. 2: Maximum blueprint accuracy (normalised to the range: [0.0, 1.0]) at each generation of neuro-evolution for a base-CDN
and MMS-CDN experiment. Note, base-CDN (compared to MMS-CDN) is prone to up to 10% drops in accuracy (green line).

all modules references in the CNN blueprint). The following
discusses this further.

1) Centroid Representative Selection: Speciation of mod-
ules (neural network sub-structures) enables the evolution of
functional specialization within different parts of the net-
work, where such specializations complement each other and
boost overall network task performance [27]. For example,
one species may specialize to evolving network output layer
modules. However, a species may also contain several outlier
modules (modules specialised to different sub-network func-
tionality). In this case random representative selection could
result in an outlier module being selected as the representative.
At each generation, centroid speciation prevents this via select-
ing the individual (module) with the maximum similarity to all
other individuals in the species (the centroid representative),
rather than a random representative. Specifically, given species
S = {Ii | i ∈ [0..n)}, where Ii is the ith member of S and
n is the number of individuals, the average similarity of each
individual Ii to all other members of that species is:

avgSim(i) =
1

n

n∑
j=0

similarity(Ii, Ij)

We then compute the representative of the species as the
individual with the maximum average similarity:

representative = maxi({avgSim(i) | i ∈ [0..n)})

This promotes modules within each species to remain func-
tionally similar while species themselves tend to be dissimilar
yet complementary in terms of network functionality.

C. Data Augmentation Evolution

This section describes an evolutionary Data Augmentation
(DA) scheme3 that enables further improvements to the super-
vised learning component of the CDN method (section II), via

3Data Augmentation (DA) library: imgaug: https://github.com/aleju/imgaug

evolving new data augmentations [10] and thus enhancing the
quality of CNN training. Previous AutoML algorithms have
used recurrent neural network controllers [12] and generative
networks [13] to predict suitable data augmentation policies
for given CNN architectures and data-sets. However, our DA-
CDN variant enables the co-evolution of data-augmentation
schemes together with evolving blueprints and modules for
the automated derivation of CNN topologies that work best
with a given data-set (section II).

The DA-CDN method variant thus cooperatively evolves
DA schemes (within the population of blueprints) that in turn
encode CNN topologies optimised for a given data-set. DA-
CDN is beneficial over previous automated DA schemes [12],
[13], as it reduces the need for user-specified domain-specific
knowledge, is comparatively computationally cheap, and also
optimises the order in which DA operations are executed to
boost overall CNN supervised learning performance.

DA genotypes (Figure 3) are encoded as part of each
blueprint genotype, which allows the fittest blueprints and
their corresponding DA schemes to be selected for during the
evolutionary process. DA genotypes (schemes) corresponding
to each blueprint are selected from a separate population (equal
size to the blueprint population, Table II), where both the DA
scheme and blueprint are subject to mutation and crossover
operators (Table II).

Each DA genotype is represented as a linear directed graph,
with no branching (Figure 3), where each node indicates
a separate DA operation (Table I), and the entire graph
represents the DA scheme. DA-CDN initialises blueprints with
DA schemes consisting of two random nodes (DA operations).
Such DA operations are randomly selected from a predefined
set of DA operations (Table I), and DA schemes can be
mutated to any number of nodes during neuro-evolution. This
allows for a larger exploration space of DA schemes when
compared to the system used in original CDN.

Fig. 3: An example Data Augmentation (DA) genotype. This genotype would rotate an image twice and then translate it. The
value range for these operations are below the operation name, where, exact values used are randomly sampled from this range.

DA Operator Operator Description

Flip lr Flips image horizontally

Translate Pixels Translate image along the x-axis or y-axis

Rotate Rotates image

Scale Scale image to percentage of its original size in either its x or y dimensions

Pad Pixels Adds rows or columns of blank pixels to image

Crop Pixels Removes existing rows or columns from image

Coarse Dropout Randomly erases portions of an image

Grayscale Manipulates alpha value of image

HSV Manipulate image’s Hue (H), Saturation (S) or Lightness Value (V)

TABLE I: Data Augmentation (DA) operations applied during DA evolution of the training data-set (section III-C)

IV. EXPERIMENTS AND RESULTS

Three experiment sets were executed4, one for each CDN
method variant: base-CDN, MMS-CDN and MMS-DA-CDN
(Table IV). Each experiment set comprised of 50 generations
of neuro-evolution together with 8 epochs of training per CNN
evaluated, and finally a further 150 epochs of training to
convergence for the best CNNs (Table II).

All training was done using the CIFAR-10 image data-set,
which was also used for the original CDN experiments [24],
[25]. Each CDN variant experiment was executed for 10 runs
to control for stochastic variation in accuracy between runs.

Figure 4 presents average maximum and average CNN
accuracy results, for each CDN variant (base-CDN, MMS-
CDN, MMS-DA-CDN), given the experiment and method
parameters specified in Table II. For each experiment set (10
runs) we selected the five (5) fittest evolved CNNs after 50
generations of neuro-evolution, and trained each to conver-
gence (no change in CNN accuracy given successive epochs).
Given task-performance boosts demonstrated in previous evo-

4Each experiment run used up to four Tesla v100 GPUs on a computing
cluster. An overview of all experiment and method parameters and computa-
tional statistics is available at: https://github.com/sash-a/CoDeepNEAT/

lutionary AutoML methods [24], [28] we enlarged the size of
the CNN before training to convergence.

This entailed multiplying the size of each CNN layer by
a constant factor (1, 3, 5), to increase its size and thus
classification efficacy. We call this feature multiplication,
observing that typically a feature multiplication value of 5
achieved the highest accuracy overall, and parameter tuning
indicated diminishing task-performance benefits for higher
feature multiplication values. That is, parameter tuning and
preliminary testing demonstrated only a 0.4% accuracy in-
crease by changing the feature multiplier value from 5 to 20.

V. DISCUSSION

Table III presents the maximum and average results for
the original CDN implementation (CDN, section II), and
each CDN method variant (base-CDN, MMS-CDN, MMS-
DA-CDN), where all CNNs were evolved and trained on the
CIFAR-10 data-set. Note, only one run (n=1) was reported in
the original CDN study [24], [25]. Hence, 92.7% is presented
for both maximum and average accuracy (Table III).

Given the limited results reported in the original CDN
study [24], [25], we focus our discussion on our CDN
re-implementation (base-CDN), and our CDN variants:

Experiment Parameter Value Description

Experiment runs 10 The number of replications per experiment

Generations 50 The number of generations per CDN variant run

Epochs in evolution 8 The number of training epochs during evolution

Epochs in convergence 150 The number of training epochs after evolution when fully training networks

Evaluations per blueprint 4 Number of times each blueprint is evaluated each generation

Module population size 50 Number of modules per generation

Blueprint population size 20 Number of blueprints per generation

DA population size 20 Number of DA schemes per generation

Module species size 4 Number of module species groups

Blueprint add node chance 0.16 Probability to add a node to a blueprint genotype

Blueprint add connection chance 0.12 Probability to add a connection node to a blueprint genotype

Blueprint node species switch chance 0.15 The chance for a blueprint node to change its module species link

Module add node chance 0.1 Probability to add a node to a module genotype

Module add connection chance 0.1 Probability to add a connection node to a blueprint genotype

Module layer type switch chance 0.1 Probability a module node will change its layer type (e.g., Convolutional to
Linear or Regulariser)

Fitness aggregation [max, avg] Function combining fitness values from multiple module, blueprint and DA
scheme evaluations per generation (section III-A2)

TABLE II: Experiment and CDN method variants parameters. These parameters are most relevant to experiments presented
here. A complete list of parameters, values, and descriptions can be found online4.

Method Variant Name Runs (n) Maximum Accuracy (%) Average Accuracy (%)

CoDeepNeat (CDN) 1 92.7 92.7

CoDeepNeat Re-implementation (base-CDN) 10 90.1 85.8

CoDeepNeat with ModMax, Speciation (MMS-CDN) 10 91.1 87.8

CoDeepNeat with ModMax, Speciation and Data Augmentation (MMS-DA-CDN) 10 92.8 88.6

MMS-DA-CDN : 25 epochs 3 94.5 92.8

TABLE III: Maximum and average task-performance (accuracy), over 10 runs for each CDN method variant (base-CDN,
MMS-CDN, MMS-DA-CDN), and the original CDN implementation, given a feature multiplication factor of 5 (section IV).

MMS-CDN, and MMS-DA-CDN. Hence, we applied
Mann–Whitney U tests [29] to gauge significant differences
between comparative task-performance (accuracy) results of
base-CDN, MMS-CDN, and MMS-DA-CDN.

Each results set was n = 50, attained via selecting the 5
fittest individuals (blueprints) from each of the 10 runs for
each CDN method variant (Table III). Comparing CDN to our
re-implementation (base-CDN) one may note the discrepancy
between the original CDN results (92.7%, [24], [25]), versus
our base-CDN results (90.43% with a feature multiplication
value of 3, section II).

This is attributed to differing method parameter values
which were necessarily tuned for our experiments (Table II),
since pertinent parameter tuning and implementation details

were not reported in the CDN study [24], [25]. For example,
large variations in CNN accuracy were observed via varying
the merge layers [24] parameter.

However, all statistical comparisons discussed here are for
a feature multiplier of 5, given that this yielded the most
favourable results across all CDN variants (section IV).

First, statistical tests were applied for pair-wise (method
accuracy) comparisons between base-CDN and MMS-CDN,
and base-CDN and MMS-DA-CDN. Mann–Whitney U tests
indicated the average maximum (Figure 4, left) and average
(Figure 4, right) accuracy of MMS-CDN was significantly
higher than base-CDN (p < 0.01). Similarly, the average
maximum and average accuracy (Figure 4) of MMS-DA-CDN
was significantly higher than base-CDN (p < 0.01).

Fig. 4: Average maximum (left) and average (right) task-performance (accuracy) of CDN variants: MMS-DA-CDN, MMS-CDN
and base-CDN (CDN), achieved by blueprints per generation (per variant). Color bands present maximum and minimum
accuracy across generations per variant (solid lines indicate the average). Note differing accuracy scales (left versus right).

We theorize this to be a result of the module retention
and maximum fitness aggregation elitism extensions in the
ModMax component of MSS-CDN (section III-A). This en-
abled MMS-CDN to consistently evolve fitter solutions overall
(compared to base-CDN, Figure 4). This gave MMS-CDN a
more suitable CNN design (evolved modules and blueprints),
which benefited training to convergence (section IV), thus
resulting in a task-performance boost (compared to base-
CDN). Specifically, MMS-CDN achieves a maximum accuracy
of 91.1% after training to convergence, whereas base-CDN
achieves 90.1% (Table III).

The improved efficacy of MMS-CDN is also hypothesized
to be a result of the MMS-CDN speciation extensions (section
III-B). Module speciation enabled the evolution of function-
ally specialized modules within blueprints (encoding CNN
designs), which in turn enabled improvements in overall CNN
task-performance. This is supported by results in previous
work [24], [25]. However, in this study our centroid repre-
sentative selection in speciation ensured that functionally in-
congruous outlier modules would not be selected for and thus
not inhibit overall behavioural efficacy of evolving blueprints.

The task-performance boost enabled by elitism and spe-
ciation extensions is reflected in the average accuracy over
generations (green and red solid lines in Figure 4 for
base-CDN versus MMS-CDN, respectively), indicating the
blueprint populations (over all 50 generations) of MMS-CDN
yield an approximately 20% higher accuracy compared to
base-CDN.

However, the maximum accuracy of all method variants
(green, red and blue solid lines in Figure 4 for base-CDN,
MMS-CDN, and MMS-DA-CDN, respectively), increases
slowly between generations 10 and 50, indicating that making
significant improvements in blueprint task-performance be-
comes increasingly difficult at higher accuracy scores. This
is supported by related work that similarly evolved CNN ar-
chitectures and demonstrated only marginal task-performance
gains above given classification accuracy thresholds [30], [31].

Second, Mann–Whitney U tests compared the accuracy of
MMS-CDN and MMS-DA-CDN evolved and trained CNNs.
Results indicate MMS-CDN average maximum and average
(Figure 4) accuracy as significantly higher (p < 0.01).
However, MMS-DA-CDN achieves the highest maximum and
average accuracy after being trained to convergence (Table III).
During neuro-evolution, MMS-DA-CDN yields maximum and
average accuracy significantly higher (p < 0.01) than base-
CDN (blue and green lines in Figure 4).

The demonstrated higher accuracy of CNNs trained to
convergence after neuro-evolution by MMS-DA-CDN is hy-
pothesized to be the result of improved data-augmentation5

evolved by MMS-DA-CDN. However, given the lack of re-
lated research on evolving data-augmentation [32], the exact
computational mechanisms responsible for the higher accuracy
of MMS-DA-CDN remains the topic of ongoing research.

Increasing the number of epochs used in evolution to 25 (as
in AmoebaNet [21]) yielded significant convergence accuracy
increases over our results measured with 8 epochs in evolution.
This can be seen in Table III where the maximum accuracy of
the MMS-DA-CDN (25 epoch variant) is 94.5% compared
to the MMS-DA-CDN (8 epoch variant), which yielded a
maximum accuracy of 92.8%.

Overall, these results support hypotheses from related
work [33] demonstrating benefits of suitable neuro-evolution
elitism (boosting exploitation in evolutionary search [34]),
and speciation operators (diversifying the population and
encouraging function specialisation [23]). Hence, this study’s
results support our main research objective (section I), via
demonstrating the evolutionary benefits of these elitism and
speciation extensions (MMS-CDN in Figure 4), and further
accuracy benefits to CNNs of evolutionary data-augmentation
and post-evolution training (MMS-DA-CDN in Table IV).

5An overview of the evolved DA schemes used by the highest performing
blueprints is available at: https://github.com/sash-a/CoDeepNEAT/

To thoroughly test the efficacy of our CDN method variants,
ongoing research is applying these variants beyond CIFAR-10,
to a broad range of publicly available computer-vision data-
sets. Current research is also running experiments to further
investigate the exact contributions of the elitism, speciation
and evolutionary data-augmentation extensions to the overall
accuracy of evolved and trained CNNs, especially in compari-
son to established AutoML methods such as AmoebaNet [21].
Such experiments are also testing extended neuro-evolution
run-times and training on broad range of data-sets.

VI. CONCLUSION

This paper presented experiments demonstrating novel
elitism, speciation and evolutionary data augmentation
operators applied as extensions to the CoDeepNEAT neuro-
evolution based deep-learning method. This benefited the
neuro-evolution and automated design of Convolutional
Neural Networks, subsequently trained on a popular
computer-vision data-set (CIFAR-10). These extensions
constituted CoDeepNEAT variants, then compared to a re-
implementation of the original CoDeepNEAT method. Results
indicated significant task-performance (accuracy classification)
improvements for all method variants (extensions) when
compared to our CoDeepNEAT re-implementation.

REFERENCES

[1] Y. Le Cun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol.
521, pp. 436–444, 2015.

[2] R. Cichy, A. Khosla, D. Pantazis, A. Torralba, and A. Oliva, “Compar-
ison of Deep Neural Networks to Spatio-Temporal Cortical Dynamics
of Human Visual Object Recognition Reveals Hierarchical Correspon-
dence,” Scientific Reports, vol. 6, pp. 1–13, 2016.

[3] G. Hinton and etal, “Deep Neural Networks for Acoustic Modeling in
Speech Recognition,” IEEE Signal Processing Magazine, vol. 29, pp.
82—-97, 2012.

[4] D. Silver and etal, “Mastering the Game of Go with Deep Neural
Networks and Tree Search,” Nature, vol. 529, pp. 484–489, 2016.

[5] J. Vamathevan and et al, “Applications of Machine Learning in Drug
Discovery and Development,” Nature Reviews Drug Discovery, vol. 18,
p. 463–477, 2019.

[6] Y. LeCun and etal, “Handwritten Digit Recognition with a Back-
Propagation Network,” Proc. Advances in Neural Information Process-
ing Systems, pp. 396–404, 1990.

[7] Y. Le Cun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
Learning Applied to Document Recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[8] H. Touvron, A. Vedaldi, M. Douze, and H. Jegou, “Fixing the Train-Test
Resolution Discrepancy,” in Advances in Neural Information Processing
Systems, H. Wallach and etal., Eds., 2019, pp. 8252–8262.

[9] Z. Hussain, F. Gimenez, D. Yi, and D. Rubin, “Differential Data
Augmentation Techniques for Medical Imaging Classification Tasks,”
in AMIA Annual Symposium Proceedings, vol. 2017, 2017, p. 979.

[10] L. Taylor and G. Nitschke, “Improving Deep Learning with Generic
Data Augmentation,” in Proceedings of the IEEE Symposium Series on
Computational Intelligence, 2018, pp. 1542–1547.

[11] D. M. Hawkins, “The Problem of Overfitting,” Journal of Chemical
Information and Computer Sciences, vol. 44, no. 1, pp. 1–12, 2004.

[12] E. Cubuk, B. Zoph, D. Mané, V. Vasudevan, and Q. Le, “AutoAugment:
Learning Augmentation Strategies From Data,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 113–123.

[13] J. Lemley, S. Bazrafkan, and P. Corcoran, “Smart Augmentation Learn-
ing an Optimal Data Augmentation Strategy,” IEEE Access, vol. 5, pp.
5858–5869, 2017.

[14] A. Zahangir and etal, “A State-of-the-Art Survey on Deep Learning
Theory and Architectures,” Electronics, vol. 292, no. 1, pp. 1–67, 2019.

[15] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated Machine Learning:
Methods, Systems, Challenges. Berlin, Germany: Springer, 2019.

[16] E. Real, A. Aggarwal, Y. Huang, and Q. Le, “Regularized Evolution
for Image Classifier Architecture Search,” in Proceedings of the AAAI
Conference on Artificial Intelligence, 2019, pp. 4780–4789.

[17] R. Olson and J. Moore, “Tpot: A Tree-based Pipeline Optimization Tool
for Automating Machine Learning,” in Proceedings of the Workshop on
Automatic Machine Learning, 2016, pp. 66–74.

[18] H. Yu, Q. Han, J. Li, J. Shi, G. Cheng, and B. Fan, “Search What
You Want: Barrier Panelty NAS for Mixed Precision Quantization,”
in Proceedings of the 16th European Conference on Computer Vision,
2020, pp. 1–16.

[19] M. Feurer and F. Hutter, “Hyperparameter Optimization,” in Automated
Machine Learning. Springer, Berlin, Germany, 2019, pp. 3–33.

[20] A. Eiben and J. Smith, Introduction to Evolutionary Computing (2nd
edition). Berlin, Germany: Springer, 2015.

[21] E. Real, A. Aggarwal, Y. Huang, and Q. Le, “Regularized Evolution
for Image Classifier Architecture Search,” in Proceedings of the Thirty-
Third AAAI Conference on Artificial Intelligence, 2019, pp. 1–10.

[22] R. Miikkulainen, “Neuroevolution,” in Encyclopedia of Machine Learn-
ing, C. Sammut and G. Webb, Eds. Springer, 2010, pp. 716–720.

[23] K. Stanley and R. Miikkulainen, “Evolving Neural Networks through
Augmenting Topologies,” Evolutionary Computation, vol. 10, no. 2, pp.
99–127, 2002.

[24] R. Miikkulainen and et al, “Evolving Deep Neural Networks,” in Artifi-
cial Intelligence in the Age of Neural Networks and Brain Computing,
R. Kozma and etal., Eds. Elsevier, 2019, pp. 293–312.

[25] J. Liang and et al., “Evolutionary Neural AutoML for Deep Learning,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
2019, pp. 401–409.

[26] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6(2), pp. 182–197, 2002.

[27] O. Sporns, D. Chialvo, M. Kaiser, and C. Hilgetag, “Organization,
Development and Function of Complex Brain Networks,” Trends Cogn.
Sci., vol. 8, pp. 418–425, 2004.

[28] E. Real, A. Aggarwal, Y. Huang, and Q. Le, “Regularized Evolution
for Image Classifier Architecture Search,” in Proceedings of the AAAI
Conference on Artificial Intelligence, 2018, pp. 4780–4789.

[29] B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes.
Cambridge, UK: Cambridge University Press, 1986.

[30] B. V. T. Sinha and A. Haidar, “Optimization of convolutional neural
network parameters for image classification,” in Proceedings of the IEEE
Symposium Series on Computational Intelligence, 2017, pp. 1–7.

[31] T. Elsken, J. H. Metzen, and F. Hutter, “Neural Architecture Search:
A Survey,” Journal of Machine Learning Research, vol. 20, pp. 1–21,
2019.

[32] J. Correia, T. Martins, and P. Machado, “Evolutionary Data Augmen-
tation in Deep Face Detection,” in Proceedings of the Genetic and
Evolutionary Computation Conference, 2019, pp. 163–164.

[33] K. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, “Designing neural
networks through neuroevolution,” Nature Machine Intelligence, vol. 1,
pp. 24–35, 2019.

[34] X. Cui, W. Zhang, Z. Tuske, and M. Picheny, “Evolutionary stochastic
gradient descent for optimization of deep neural networks,” in Pro-
ceedings of the 32nd International Conference on Neural Information
Processing Systems, 2018, pp. 6051–6061.

