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Abstract—The impact of the environment on evolving increas-
ingly complex morphologies (bodies) and controllers (brains) re-
mains an open question in evolutionary biology and has important
implications for the evolutionary design of robots. This study uses
evolutionary robotics as an experimental platform to evaluate
relationships between environment complexity and evolving body-
brain complexity given energy costs on evolving complexity.
We evolve robot body-brain designs for increasingly complex
environments (difficult cooperative transport tasks) in a collective
robotic gathering simulation. The impact of complexity costs
on body-brain evolution is evaluated across such increasingly
complex environments. Results indicate that complexity costs
enable the evolution of simpler body-brain designs that are
effective in simple environments but yield negligible behavior
(task performance) differences in more complex environments.

I. INTRODUCTION

An unsolved problem in natural and artificial evolutionary
systems is determining the exact environmental and evolution-
ary conditions that enable complexity to evolve [1]. This is
especially pertinent in evolutionary robotics [2] where possible
problem-solving behaviors is constrained by brain (controller)
and body (morphological) complexity [3]. This study addresses
this via evaluating the impact of environments and com-
plexity costs on robotic controller and morphology evolution
across various evolutionary robotics task scenarios. We use
evolutionary robotics as an experimental platform to test the
arrow of complexity hypothesis, which states that the functional
organization of the products of complex evolutionary systems
increases over time [4]. This hypothesis has held true in other
evolutionary robotics systems with complexity costs [5].

To evaluate the arrow of complexity hypothesis under a
broader spectrum of robotic controller and morphology pa-
rameterizations, we use an alternate definition of controller
and morphological complexity. In this study, morphological
complexity accounts for possible sensor configurations of
a counterpart Khepera III mobile robot [6], and controller
complexity accounts for possible Artificial Neural Network
(ANN) configurations coupled with a given morphology.

Evolutionary robotics was selected as the experimental
platform since previous (especially collective behavior) work
[7], [8], [9], [10] demonstrated that varying collective be-
havior task constraints as effective for tuning environment
complexity and thus testing environmental impact on evolving
robot controllers and morphologies. Evolutionary (collective)
robotics thus represents a suitable platform for investigating the

impact of environmental complexity on the artificial evolution
of robotic controller and morphological complexity.

A key difference to related work [11], [7], [8], [9], [10]
is that this study used complexity costs tantamount to mobile
robot battery costs. Morphological cost was the battery cost
of running robots configured with sensors of various types
and sophistication [12]. Whereas, controller complexity was
equated with controller efficiency (number of sensory-motor
updates per simulation iteration). Using an evolutionary collec-
tive robotics system we thus evaluated the impact of imposing
energy costs on robot neural (controller) and morphological
(sensor) complexity evolved in increasingly complex environ-
ments (difficult tasks). This study’s objective was thus to test if
energy costs imposed on controller-morphology (body-brain)
complexity enables the evolution of increasingly complex
robotic designs in increasingly complex environments.

This objective’s main motivation is the general lack of
understanding [1], [13] for how environment complexity and
energy requirements necessitates or enables the evolution
of body-brain complexity. This study is also motivated by
competing hypotheses and results in evolutionary robotics
demonstrating that complexity costs imposed over increasingly
complex environments enables the evolution of increased con-
troller and morphological complexity [5] versus enabling the
evolution of robots with simple designs [11], [9], [10].

From a practical perspective, the degree of controller
and morphological complexity has important implications for
engineering physical robots [14]. It is often necessary to
minimize energy and fiscal expenditure on sensors and actua-
tors by avoiding overly complicated and expensive designs.
Robotic controller and morphology designs should thus be
as efficient and effective as possible, allowing for optimal
trade-offs between minimal controller computed behavior and
maximal morphologically computed behavior [15]. This is
especially pertinent in collective and swarm robotic systems
where redundant behavioral and morphological complexity
amplifies design costs as robot numbers increase [16].

II. COOPERATIVE TRANSPORT TASK

The cooperative transport task requires groups of robots to
find resources distributed throughout a bounded environment,
and to then cooperatively transport them to a gathering zone
[17]. This task was selected given its pertinence to autonomous
robotics applications in remote and hazardous environments



Fig. 1. LEFT: Initial robot neural controller connecting five sensors to two wheel motors. Robots were initialized with one ultrasonic, infrared proximity, color,
bottom proximity sensor and low-resolution camera. CENTER: Example robot with one sensor. Position determined sensor location on the robot chassis with
respect to its heading and orientation determined sensor direction. RIGHT: Example simulation containing 20 robots and different block types. Gathering zone
(bottom) contained gathered blocks (blue squares). Varying sensor parameters (type, position, orientation, field of view, and range) are shaded semi-circles.

[18], and is an abstraction of other collective robotics ap-
plications such as environmental cleanup [19] and disaster
management [20]. Cooperative transport is also an established
evolutionary robotics benchmark task [2] and thus a suitable
experimental test-bed for this study’s experiments (section IV).

Cooperation was defined as the number of robots needed
to push a given block type. Blocks types were: small, medium,
or large, and could be pushed by one, two and three robots,
respectively (table II). Task difficulty (simple, medium, or
difficult environments) was a function of the number of blocks
and degree of cooperation mandated for task accomplishment.
Each environment type contained varying combinations of
block types (table II). For example, the simple environment
contained 10 small and 5 medium sized blocks, meaning robots
could work concurrently with minimal cooperation to move
all blocks into the gathering zone. Task performance (fitness,
section IV-A) was the total number of blocks pushed into the
gathering zone during the robots’ lifetime (table II).

Environment complexity was thus abstracted as task dif-
ficulty, represented as the degree of cooperation required to
solve the collective transport task. This parameterization of the
environment in terms of task complexity, was selected as it was
computationally tractable [9], [10] and found to be a suitable
level of abstraction for evaluating the impact of environment
complexity on evolving robot body-brain complexity.

III. METHODS

To evolve controller (behavior) and morphology (sensory
configuration) in robots, we used Neuro-Evolution of Augment-
ing Topologies and Morphologies (NEAT-M) [7]. NEAT-M co-
adapts Artificial Neural Network (ANN) robot controllers and
morphologies via evolving direct genotypic encodings of both
controller and morphology (ANN connections to sensors).

NEAT-M equates the evolving topology of an ANN’s input
layer with a robot’s adaptive sensory configuration, and as such
includes evolutionary operators for adapting the number and
type of sensors on a robot chassis as well as sensory Field of
View (FOV), range, bearing, and orientation (figure 1). The
NEAT-M method is described in related work [7].

A. Robot Controller-Morphology Adaptation

Experiments applied NEAT-M rather than cooperative co-
evolution [5] to controller-morphology evolution as NEAT-M
requires significantly less computational expense [7]. Robots
began with a minimal sensory configuration of five sensors
(one of each type) as an evolutionary starting point for NEAT-
M. The five sensor types were: Ultrasonic, Infrared Proximity,
Color, Low Resolution Camera and Bottom Proximity (table
II). These sensors were selected as they are typically available
for the Khepera III mobile robot [6]. Two wheel motors
(figure 1, left, center) were explicitly activated by the ANN
controller, but fixed throughout evolutionary adaptation. A
robot’s heading was determined by normalizing and scaling
output values by the maximum distance it could traverse
in one simulation time-step (table I). This initial sensory-
motor configuration was selected to ensure that robots initially
exhibited some basic task accomplishing behavior.

Each sensor corresponded to an ANN input node, where
each input was initially fully connected (no hidden nodes) to
two output nodes (figure 1, left). ANN weight connections
were randomly initialized within a given range (table II). Con-
trollers were then subject to complexification where connection
weights and hidden-layer topology was adapted with NEAT-M.
Controllers used Sigmoidal units for hidden and output nodes
and all sensory inputs were normalized to the range: [0.0, 1.0].

Controller-morphology evolution was driven by crossover
and mutation operators (table I) adapting ANN connection
weights and hidden node topology (behavior adaptation),
adding or removing sensors or perturbing sensor parameters
(morphology and behavior adaptation). At each generation of
NEAT-M, crossover and mutation operators [7] were applied
(mutation operators with a given probability, table I). For each
sensor type, sensor parameters could be perturbed by mutation
operators (table I), that add or remove sensors, as well as
modify, add or remove ANN connection weight values, add
and remove weight connections to sensors, and change sensor
positions and orientations (on the robot’s periphery).

The mutable parameter set for each sensory input node was:
Sensor Type, FOV, Range, Position, and Orientation (table I).
Figure 1 (center), presents an example robot with one sensor
and an illustration of this mutable parameter set.



B. Morphological Complexity Cost

The morphology complexity metric was derived from ex-
periments that evaluated battery1 drain from running a Khepera
III mobile robot [6] with one of five given sensor types (table
II) onboard and constantly active for three hours. Running a
Khepera III robot with a complement of 10 infrared proximity
sensors gave the robot an approximate run-time of four hours.
However, a maximum run-time of three hours (10800 simula-
tion iterations, table II), was selected given the extra battery
cost of robots that used multiple low-resolution cameras [6].

To estimate energy costs for each sensor type, battery drain
was measured every second (for each sensor type), where the
robot executed heuristic wall following behavior in a physical
reconstruction of the simulation environment (figure 1, right).
Given this, we calculated per second (60 simulation time-steps)
sensor energy costs, as a portion of total initial energy for a
fully charged battery (set to an initial normalized value of 1.0).
Per simulation time-step battery drain was then calculated as
one 60th this for each of the five sensor types.

The Morphological Complexity Cost (MC, equation 1),
was thus the sum of energy costs for all onboard robot sensors.

MC =

n∑
i=1

C(Si) (1)

Where, n was the total number of sensors and C(Si) the
energy cost for sensor Si, of a particular type. Since the
maximum number of sensors allowable on a robot chassis was
10, the bottom-proximity sensor was always active (not subject
to evolutionary adaptation). The sensor type with the highest
energy cost (battery usage) was the low-resolution camera.

The maximum value for MC was: 10 × 0.001 + 0.0001
= 0.0101 (table I), and the minimum value for MC was: 1 ×
0.0001 + 0.0001 = 0.0002. The minimum MC equated to a
robot using one infrared proximity sensor (lowest energy cost
sensor type), whereas the maximum MC equated to a robot
using 10 low-resolution cameras (highest energy cost sensor
type). Each simulation time-step of a robot’s lifetime its battery
level was decremented by the morphological complexity cost
(equation 2) or the neural complexity cost (section III-C).

Bt+1 = Bt −MC (2)

Where, Bt was the battery level at time step t. Since a robot’s
battery could fully drain before the end of its lifetime, a
robot could have its active lifetime reduced, which reduced
the robot’s given time to interact with its environment and
contribute to solving the collective transport task (section II).

C. Neural Complexity Cost

The neural complexity metric computes controller com-
plexity as the number of connections and neurons [22]. This
complexity metric selected since it accounts for the size of the
robot sensory-motor system connected to the controller and
was demonstrated as effective metric in related work [23].

Neural Complexity (NC) was the number of connections c
(c ∈ [4, 200]) and (sensory and hidden) nodes n (n ∈ [2, 23])

1The Khepera III mobile robot uses a battery pack composed of two Li-Ion
Polymer elements with a 7.4V volt battery and a 1400 mAH capacity [6].

in an evolved ANN controller. The simplest controller config-
uration was one sensory input node directly connected to two
output nodes (wheel motors), meaning the controller contained
three nodes and two connections. The most complex controller
was 11 input nodes, 10 hidden nodes and two output nodes,
meaning the controller used 22 nodes and 200 connections.

A controller’s energy cost was a function of it’s network
topology (the number of connections and nodes) and the
number of possible sensory-motor updates per simulation
time-step. Experiments running a Khepera III robot with 10
infrared proximity sensors indicated that all sensors needed
approximately 30ms to be read. Specifically, a controller’s
motor outputs directly connecting an input layer of 10 nodes
could be updated 30 times per second (or per 60 simulation
iterations, table II). However, a controller using only one
proximity sensor needed only 3ms to be read, and could
thus process 300 sensory-motor updates per second. Hence the
simplest controller was an order of magnitude more efficient
than the most complex controller. This provided a comparable
estimate of the factor of difference (NM ) in neural complexity
between the simplest and most complex evolvable controllers.

Given neural network controller complexity (NC), and this
factor of difference in efficiency of sensory-motor updates
between the simplest and most complex evolvable controllers
(NM ), equation 3 estimates the Neural Energy Cost (NEC),
at each simulation time-step of a robot’s lifetime.

NEC =
NC

cmax + nmax
∗NM (3)

Where, cmax = 200 (maximum node connections), nmax

= 33 (maximum number of nodes). Neural Magnitude (NM )
= 10 (magnitude of difference in update efficiency of simplest
versus most complex controller). NEC (equation 3) is indica-
tive of a robot’s battery drain associated with its controller’s
sensory-motor update efficiency per 60 simulation time-steps.
Per time-step cost was then calculated as one 60th of NEC.

Consider that, per 60 simulation iterations (one second of
actual Khepera III run-time), the simplest controller (one sen-
sory input node) runs approximately 10 times as many sensory-
motor updates as the most complex controller (200 inter-node
connections and 33 nodes). The most complex controller costs
more due to added sensory complexity. This cost is manifest as
increased energy usage (equation 3), where such an energy cost
represents a penalty for evolving complex controllers. That is,
complex controllers have less chance to discover and adapt to
beneficial sensory-motor patterns (behaviors) [24], due to their
lower sensory-motor update efficiency.

For experiments testing the impact of a neural complexity
cost (section IV), a robot’s battery level was decremented each
simulation iteration by the neural complexity cost (equation 3).

Bt+1 = Bt −NEC (4)

Where Bt is the battery level at time step t of the 10800
simulation iterations comprising a robot’s lifetime.



TABLE I. ROBOT MORPHOLOGY (SENSOR) & CONTROLLER (ANN) EVOLUTION PARAMETERS

Crossover rate 0.32
Probability to apply a mutation operator 0.34

Mutation Operators : Selection rate

Sensor weight perturbation 0.08
Add / Remove sensor 0.07
Sensor position / Orientation perturbation 0.10
Sensor Field of View (FOV) / Range perturbation 0.07
Add / Remove hidden node 0.05
Add / Remove connection weight 0.05
Connection weight perturbation 0.335

Generations per experiment / Experiment replications (evolutionary runs) 250 / 20
Task trials (robot lifetimes) per generation 5
Population size 150
ANN connection weight range [−1.0, 1.0]

ANN Hidden, output nodes Sigmoidal
ANN Input nodes Sensor input: [0.0, 1.0]
Initial Connection Density 0.5
Initial / Maximum Sensory Input Nodes 5 / 11
Minimum Sensory Input Nodes (Bottom proximity + another) 2
Output Nodes (fixed) 2
Minimum sensor placement distance (Portion of chassis circumference) 0.01

TABLE II. EXPERIMENT AND SIMULATION PARAMETERS

Block size Small 0.01 × 0.01
(As portion of environment size) Medium 0.015 × 0.015

Large 0.02 × 0.02

Sensor types : Range / FOV

Ultrasonic (0.0, 1.0] / (0.0, π)
Infrared Proximity (0.0, 0.4] / (π/6, 5π/6)
Color (0.0, 0.4] / (π/6, 5π/6)
Low Resolution Camera (0.0, 0.8] / (π/9, 8π/9)
Bottom proximity sensor Bottom facing

Sensor types : Energy cost
Ultrasonic 0.0005

Infrared Proximity 0.0001

(As portion of initial battery level: 1.0) Color 0.0002

Low Resolution Camera 0.001

Bottom proximity sensor 0.0001

Environment width x height / Gathering zone size 1.0 × 1.0 / 0.5 × 0.2
Sensor bearing range [−π, π] Radians
Sensor orientation range [−π/2, π/2] Radians
Robot lifetime (time-steps per simulation task trial) 10800 (∼ 3 hours run-time) / 60 (∼ 1 second run-time)
Initial robot battery capacity (energy units) 100000
Robot group size 20
Robot size (Diameter) / Gripping distance 0.004 / 0.002 (As portion of environment size)
Robot speed (per time step) 0.013 (As portion of environment size)
Initial robot / block positions Random (Outside gathering zone)

Task environments (Blocks: small, medium, large)
Simple 10, 5, 0
Medium 5, 5, 5
Difficult 0, 5, 10

Cooperation needed for block pushing
Small 1 Robot
Medium 2 Robots
Large 3 Robots



IV. EXPERIMENTS

Experiments measured the impact of imposing morpho-
logical (section III-B) and neural (section III-C) complexity
costs on robot controller-morphology evolution in increasing
difficult task environments. Task environment difficulty was
equivalent to the degree of cooperation needed for optimal task
performance (to move all blocks into the environment’s gath-
ering zone). The simple, medium, and difficult environments
thus represented increasing task difficulty (section II).

Experiments used a collective robotics simulator2 that
implemented the cooperative transport task environment (figure
1, right). Robots were modeled after the Khepera III [6],
with co-adaptable ANN controllers and sensor configurations.
Experiments executed simulations of 20 robots in bounded two
dimensional continuous environments containing distributions
of small, medium and large blocks (table II).

Each experiment applied NEAT-M to evolve cooperative
transport behavior for 250 generations. A generation comprised
five robot lifetimes (10800 simulation iterations). Each lifetime
was a cooperative transport task simulation testing different
(random) robot starting positions, orientations, and block lo-
cations in simple, medium or difficult environments (table II).
Average task performance (section IV-A) was calculated at the
end of each run and averaged over 20 runs. Tables I and II
present all experiment parameters. All other parameters are as
in previous work [21], [7].

Experiments were defined by robot controller-morphology
evolution with or without neural or morphological complexity
measures in simple, medium or difficult environments. For
each environment type, blocks were randomly distributed
throughout the environment, excluding the gathering zone, and
robots were randomly placed throughout the environment. The
three block type distributions (table II), thus corresponded to
increasing levels of cooperative transport task difficulty.

To evaluate the impact of complexity (energy) costs versus
no complexity (energy) costs on the controller-morphology
evolution in each of the simple, medium or difficult environ-
ments we devised four experiment sets. First, to test the impact
of controller-morphology evolution given a morphological
complexity cost (section III-B). Second, to test the impact
of controller-morphology evolution given a neural complexity
cost. The third and fourth experiment sets used the same setup
as the first and second experiments, but did not apply the
morphological and neural complexity costs (respectively) to
robot controller-morphology evolution. Hence, the first and
second experiments produced evolved morphological complex-
ity (MC, section III-B) and evolved controller complexity re-
sults (NC, section III-C), respectively, Where, as a benchmark
comparison, the third and fourth experiments yielded only
cooperative transport task performance results (section IV-A).

For simplicity and to reduce experiment run-time, only
homogenous robot groups were evaluated. At each generation
of NEAT-M, the fittest genotype (controller-morphology cou-
pling) was copied 20 times to represent a group of 20 robots.
Thus, for all experiments, robot groups were behaviorally and
morphologically homogenous, meaning the same evolutionary
adaptations were applied to all robots at each generation.

2Simulator and experiment source-code: github.com/robotcomplexity/2020

A. Cooperative Transport Evaluation

Cooperative transport task performance was the average
number of blocks pushed into the gathering zone by robots
over five simulated task trials. We defined vc as total value
of resources in the gathering zone, vt as total value of all
resources in the environment, se as the number of simulation
time-steps in the robots’ lifetime and st as number of task
trial evaluations per genotype (representing a given behavior-
morphology configuration). As such, NEAT-M evolved geno-
types that maximized task performance T (equation 5):

T = 100× vc
vt

+ 10× (1.0− se
st
) (5)

Where, 100 was the maximum number of blocks that could
be gathered in a given task trial and 10 was a task performance
weighting that boosted fitness for efficient gatherers.

V. RESULTS AND DISCUSSION

Figure 2 (left) presents average maximum task performance
(fitness) for robot groups evolved with and without morphology
complexity (energy) costs in the simple, medium and difficult
environments. Figure 2 (right) presents the corresponding
average (normalized) morphological complexity (section III-B)
for robot groups evolved with and without morphological
complexity costs in the same environments. From each run, we
selected the evolved morphology (sensor configuration) corre-
sponding to the fittest controller and calculated the average
morphological complexity across all evolutionary runs.

Figure 3 (left) presents average maximum task performance
for groups evolved with and without neural complexity (en-
ergy) costs in simple, medium and difficult environments. Fig-
ure 3 (right) presents the corresponding average (normalized)
neural complexity (section III-C) for groups evolved with and
without neural complexity costs in the same environments. For
each run, we selected the fittest evolved controller from each
run and calculated average neural complexity across all runs.

Independent two-tailed t-tests [25] (p < 0.05) were applied
to test for significant differences in average task performance
between comparative result data-sets (for robot groups evolved
in each environment, with and without complexity costs).
These t-tests indicated that in the simple environment, robots
evolved with either morphological or neural complexity costs
yielded statistically comparable average task performances
compared to those evolved without an energy cost (tables III
and IV). In medium and difficult environments, robots evolved
without complexity costs yielded significantly higher average
task performances. Such task performances exceeded those
evolved with morphological and neural complexity costs by
25% and 27% in the medium environment and 20% and 23%
(respectively) in the difficult environment (tables III and IV).

This study’s contributions are thus two-fold. First, the
demonstration that if the task requires a low-degree of co-
operative behavior between robots to optimally solve (simple
environment, section II), then homogenous robot groups using
simple controllers and morphologies are suitable [7], [8], [10],
[9]. Specifically, in the simple environment, 10 of the 15 blocks
could be pushed by individual robots and five blocks required
at least two robots to cooperatively transport (table II).



Fig. 2. Normalized average maximum task performance (left) and corresponding morphological (sensor) complexity cost (right) for robots evolved with and
without sensor energy costs (left and right in figure, respectively) in each of the three environments: simple, medium and difficult.

Fig. 3. Normalized average maximum task performance (left) and corresponding neural (controller) complexity cost (right) for robots evolved with and without
sensor energy costs (left and right in figure, respectively) in each of the three environments: simple, medium and difficult.

TABLE III. STATISTICAL task performance AND morphological complexity COMPARISONS OF BEST NEAT-M EVOLVED ROBOTS WITH No (energy) Cost
(NC) VERSUS THOSE WITH AN Energy cost (EC). == : STATISTICALLY COMPARABLE. MORPHOLOGICAL COMPLEXITY IS DEFINED IN SECTION III-B.

Task Performance Morphological Complexity

Simple Environment NC == EC NC >EC (Simpler by ∼ 55%)

Medium Environment NC >EC (Lower by ∼ 25%) NC >EC (Simpler by ∼ 61%)

Difficult Environment NC >EC (Lower by ∼ 27%) NC >EC (Simpler by ∼ 56%)

However, as the cooperative transport task is made more
complex it requires less concurrent and more cooperative
behavior (medium and difficult environments, section II),
meaning robots with increased controller and morphology
complexity are required for optimal task performance. This
is supported by related work [7], [8], [10], [9] that similarly
demonstrates increased environment complexity mandates in-
creased controller and morphological complexity.

Notably this result held despite key differences in defining
controller and morphological complexity and complexity costs.
This study used an energy cost associated with evolving

controller and morphological complexity (taking inspiration
from evolutionary biology [26]), whereas previous work used
multi-objective optimization to simulate complexity costs [10],
[9], as well as other complexity definitions [11].

A second contribution was demonstrated benefits of com-
plexity costs on evolutionary design in tasks requiring minimal
cooperative behavior (simple environment, section II). In the
simple environment, complexity costs enabled the evolution
of low complexity controller-morphology designs eliciting
collective behaviors of comparable efficacy to robots with more
complex controllers and morphologies.



TABLE IV. STATISTICAL task performance AND neural complexity COMPARISONS OF BEST NEAT-M EVOLVED ROBOTS WITH No (energy) Cost (NC)
VERSUS THOSE WITH AN Energy Cost (EC). == : STATISTICALLY COMPARABLE. NEURAL COMPLEXITY IS DEFINED IN SECTION III-B.

Task Performance Neural Complexity

Simple Environment NC == EC NC >EC (Simpler by ∼ 37%)

Medium Environment NC >EC (Lower by ∼ 29%) NC >EC (Simpler by ∼ 34%)

Difficult Environment NC >EC (Lower by ∼ 23%) NC >EC (Simpler by ∼ 44%)

From a practical perspective of engineering robot designs,
consider that robots evolved with energy costs had their
lifetimes (table II), significantly reduced as a result of battery
drain associated with controller and morphology complexity
costs. Thus, across all environments (simple, medium and
difficult), imposed complexity costs resulted in robot lifetime
(battery run-time) being reduced by approximately 50%. This
corresponded to approximately 5400 simulation iterations or
1.5 hours of run-time in a physical Khepera III robot (sec-
tion III-B). Hence the cooperative transport task could be
completed in the simple environment, with comparable task
performance to robots running for 10800 simulation iterations
(approximately 3 hours of actual Khepera III run-time).

This has important implications for the evolutionary design
of physical robots that must solve tasks in minimal time
given minimally complex robot designs. Assuming complex
sensory-motor configurations, complicated robot designs, and
sophisticated sensors imply high fiscal costs to engineer and
high energy costs to run, it is important that the engineer-
ing of robotic solutions use minimally complex controller-
morphology designs. This is especially pertinent in swarm-
robotic systems that comprise potentially thousands of robots
[27], [28]. Furthermore, overly complex controllers have had
demonstrated disadvantages such as containing unnecessary
controller complexity that hinders behavioral performance as
task complexity changes [23].

In summary, this study supports the arrow of complexity
hypothesis (section I), demonstrating that increasingly com-
plex environments enables the evolution of increasing robot
complexity, but under the assumption that such increased
complexity does not incur an evolutionary cost.

VI. CONCLUSION

This paper investigated the relationship between evolving
body-brain architecture in robot groups and complexity of
the evolution environment. Experiments evaluated the impact
of imposing complexity (energy) costs on evolving controller
and morphological robot complexity given increasing envi-
ronment complexity (collective behavior task difficulty). The
key contribution was that for simple tasks (requiring minimal
cooperation), these complexity costs enabled the evolution
of simpler controllers and morphologies, that elicited col-
lective behaviors comparable to those of robots with more
complex controllers and morphologies. However, this result
did not hold for more complex task environments where
increased degrees of cooperative behavior were required. In
such environments, lower task performance was achieved by
controller-morphology designs evolved with complexity costs.
This indicates that the added controller and morphological
complexity evolved without a complexity cost in these more
complex environments was required in order for robots to
achieve increased task performance.

Future work will continue to use evolutionary robotics as
an experimental platform, to further evaluate the impact of
varying environments on evolving controller and morphology
complexity according to various complexity definitions.
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